WO2021054113A1 - Method for manufacturing fuel battery cell separator gasket - Google Patents
Method for manufacturing fuel battery cell separator gasket Download PDFInfo
- Publication number
- WO2021054113A1 WO2021054113A1 PCT/JP2020/033026 JP2020033026W WO2021054113A1 WO 2021054113 A1 WO2021054113 A1 WO 2021054113A1 JP 2020033026 W JP2020033026 W JP 2020033026W WO 2021054113 A1 WO2021054113 A1 WO 2021054113A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gasket
- separator
- pressure
- base material
- sensitive adhesive
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 239000000853 adhesive Substances 0.000 claims abstract description 59
- 230000001070 adhesive effect Effects 0.000 claims abstract description 59
- 239000011324 bead Substances 0.000 claims abstract description 56
- 238000007493 shaping process Methods 0.000 claims abstract description 39
- 239000012530 fluid Substances 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract 4
- 239000000463 material Substances 0.000 claims description 132
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 95
- 238000000465 moulding Methods 0.000 claims description 44
- 230000013011 mating Effects 0.000 claims description 24
- 238000004049 embossing Methods 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 abstract description 22
- 230000006378 damage Effects 0.000 abstract description 10
- 239000012528 membrane Substances 0.000 description 32
- 239000007789 gas Substances 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 230000001590 oxidative effect Effects 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 239000002737 fuel gas Substances 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 229920005549 butyl rubber Polymers 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000013013 elastic material Substances 0.000 description 6
- 238000001746 injection moulding Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 230000000630 rising effect Effects 0.000 description 6
- 238000001721 transfer moulding Methods 0.000 description 6
- 238000010248 power generation Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- -1 tackifiers Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0286—Processes for forming seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/10—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
- F16J15/108—Special methods for making a non-metallic packing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/10—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
- F16J15/12—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering
- F16J15/121—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement
- F16J15/122—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement generally parallel to the surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0276—Sealing means characterised by their form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0284—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0297—Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- Fuel cells that generate electricity by electrochemically reacting reaction gas are rapidly becoming widespread. Fuel cells are attracting attention as a preferable energy source because they have high power generation efficiency and have little impact on the environment.
- the polymer electrolyte type has a stack structure in which a plurality of fuel cell cells are stacked.
- Each fuel cell has a membrane electrode assembly (MEA) sandwiched between a pair of separators.
- MEA membrane electrode assembly
- the membrane electrode joint is a structure in which an electrolyte membrane is sandwiched between an anode electrode (anode) and a cathode electrode (cathode), and each electrode has a laminated structure of a catalyst layer and a gas diffusion layer (GDL).
- GDL gas diffusion layer
- the separator is in close contact with the gas diffusion layer and forms a flow path for hydrogen and oxygen with the gas diffusion layer.
- Such a fuel cell uses a flow path formed in a separator to supply hydrogen to the anode electrode and oxygen to the cathode electrode. As a result, power is generated by the electrochemical reaction opposite to the electrolysis of water.
- the electrolyte membrane (reference numeral 55 in Document 1) of the membrane electrode assembly is sealed at the end.
- the seal for example, gaskets (gaskets main bodies 21 and 31) formed of a rubber-like elastic body as described in Patent Document 1 are used. The gasket elastically deforms in a direction orthogonal to the surface of the separator and seals the electrolyte membrane of the membrane electrode assembly between the pair of separators.
- the gasket that seals the electrolyte membrane is formed on the separator by injection molding or transfer molding.
- a brittle separator such as one made of carbon may be destroyed by the pressure at the time of gasket molding, for example, the pressure due to the mold press or the injection pressure.
- the coating may be damaged by the pressure during gasket molding.
- One aspect of the method for manufacturing a gasket for a fuel cell separator is to form an adhesive to be a gasket on a flexible base material using a molding mold, face the mating member with the mating member in between, and bring the mating member into close contact with the mating member.
- the gasket is formed by transferring the pressure-sensitive adhesive formed on the flexible base material to one of a pair of separators having beads that form a fluid flow path with the mating member of the lever.
- Another aspect of the method for manufacturing a gasket for a fuel cell separator is to use a molding mold to shape an adhesive to be a gasket on an intermediate base material, and apply the adhesive to the intermediate base material with respect to a flexible base material having flexibility.
- the formed adhesive is transferred to one of a pair of separators having a bead that faces the mating member with the mating member in between and has a bead that is in close contact with the mating member to form a fluid flow path with the mating member.
- the pressure-sensitive adhesive transferred to the flexible base material is transferred to form the gasket.
- an adhesive serving as a gasket is formed on the lower mold of a molding mold having an upper mold and a lower mold, and the mating member is sandwiched between them to face each other.
- the gasket is transferred from the adhesive formed on the lower mold to one of a pair of separators having a bead that is in close contact with the mating member and forms a fluid flow path between the mating member and the mating member.
- a gasket can be molded on the separator without causing breakage or damage.
- the schematic diagram which conceptually shows the stack structure in which a plurality of fuel cell cells are laminated.
- (A) to (C) are vertical cross-sectional views showing over time each step executed at the time of shaping the pressure-sensitive adhesive as the first embodiment.
- (A) to (D) are vertical cross-sectional views showing over time each step performed when transferring the pressure-sensitive adhesive to the separator as the first embodiment.
- (A) to (C) are vertical cross-sectional views showing with time each step executed at the time of shaping the pressure-sensitive adhesive as the second embodiment.
- (A) to (D) are vertical cross-sectional views showing over time each step performed when transferring the pressure-sensitive adhesive to the separator as the second embodiment.
- (A) to (D) are vertical cross-sectional views showing with time each step executed at the time of shaping the pressure-sensitive adhesive as the third embodiment.
- (A) to (E) are vertical cross-sectional views showing over time each step performed when transferring the pressure-sensitive adhesive to the separator as the third embodiment.
- (A) to (C) are vertical cross-sectional views showing over time each step executed at the time of shaping the pressure-sensitive adhesive as the fourth embodiment.
- (A) to (C) are vertical cross-sectional views showing over time each step performed in the first stage transfer of the pressure-sensitive adhesive to the separator as the fourth embodiment.
- (A) to (C) are vertical cross-sectional views showing over time each step performed in the second step transfer of the pressure-sensitive adhesive to the separator as the fourth embodiment.
- (A) to (C) are vertical cross-sectional views showing over time each step executed at the time of shaping the pressure-sensitive adhesive as the fifth embodiment.
- (A) to (D) are vertical cross-sectional views showing over time each step performed when transferring the pressure-sensitive adhesive to the separator as the fifth embodiment.
- (A) to (C) are vertical cross-sectional views showing over time each step executed at the time of shaping the pressure-sensitive adhesive as the sixth embodiment.
- (A) to (D) are vertical cross-sectional views showing over time each step performed when transferring the pressure-sensitive adhesive to the separator as the sixth embodiment.
- the method for manufacturing a gasket for a fuel cell separator according to the present embodiment is an example of a method in which a gasket to be provided on a separator used in a fuel cell is shaped and the gasket is transferred to the separator.
- An example of a fuel cell to which the method of this embodiment is applied will be described first.
- the fuel cell 1 has a laminated structure in which a plurality of fuel cell cells 2 are laminated.
- an electrolyte membrane 102 provided with a membrane electrode assembly 101 called MEA (Membrane Electrode Assembly) is interposed between a pair of separators 11 for a fuel cell.
- MEA Membrane Electrode Assembly
- Such fuel cell cells 2 are stacked via the cooling surface seal 201.
- FIG. 1 only two sets of fuel cell 2 are drawn, but in reality, hundreds of sets of fuel cell cells 2 are stacked to form the fuel cell 1.
- the membrane electrode assembly 101 is a structure in which electrodes (not shown) are provided at the central portions of both sides of the electrolyte membrane 102.
- the electrode has a laminated structure having a catalyst layer formed on the electrolyte film 102 and a gas diffusion layer (GDL) formed on the catalyst layer (neither is shown).
- GDL gas diffusion layer
- one side of the electrolyte membrane 102 is used as an anode electrode (anode), and the opposite side thereof is used as a cathode electrode (cathode).
- the separator 11 for a fuel cell is, for example, a flat plate-shaped member formed of a resin such as carbon.
- the separator 11 is not limited to a brittle material such as that made of carbon, and as another example, a flat plate-like member that can be press-processed, such as a thin stainless steel plate, may be used as the separator 11.
- the separator 11 has a rectangular planar shape, and is provided with an arrangement region 12 for arranging the membrane electrode assembly 101.
- Three openings provided at positions on both ends outside the arrangement region 12 are manifolds 13 for circulating a fluid used for power generation or generated by power generation.
- the fluid flowing through the manifold 13 is a fuel gas (hydrogen), an oxidizing gas (oxygen), water generated by an electrochemical reaction during power generation, excess oxidizing gas, a refrigerant, or the like.
- the position is aligned with the manifold 13 provided on the separator 11, and the manifold 103 is also provided on the electrolyte membrane 102.
- These manifolds 103 are three openings provided at positions on both ends away from the membrane electrode assembly 101.
- the fuel cell 1 uses the manifolds 13 and 103 to guide the fuel gas (hydrogen) between the separator 11A facing one surface of the electrolyte membrane 102 provided with the membrane electrode assembly 101, and the fuel cell 1 with one surface of the electrolyte membrane 102.
- Oxidizing gas (oxygen) is guided between the separator 11B facing the opposite surface.
- the cooling water used as the refrigerant is guided between the two sets of fuel cell 2 sealed by the cooling surface seal 201. At this time, the fuel gas, the oxidation gas, and the cooling water flow through the respective flow paths formed by the pair of separators 11 (11A, 11B) that assemble the fuel cell 2.
- the pair of separators 11 face each other with the electrolyte membrane 102 as a mating member interposed therebetween to form a fuel cell 2.
- the separator 11 includes a bead 14 that is in close contact with the electrolyte membrane 102 and forms a fluid flow path between the separator and the electrolyte membrane 102.
- the space between the electrolyte membrane 102 and the bead 14A of the separator 11A forms a flow path for the fuel gas.
- the space between the electrolyte membrane 102 and the bead 14B of the separator 11B forms a flow path for the oxidizing gas.
- the space between the beads 14A and 14B provided between the separator 11A of the set of fuel cell 2 and the separator 11B of the fuel cell 2 overlapping the separator 11A forms a flow path for the cooling water.
- the fuel cell 2 has a seal structure on the outer peripheral edge of the separator 11 and the membrane electrode assembly 101 and on the peripheral edges of the manifolds 13 and 103.
- the seal structure includes a cooling surface seal 201 interposed between the two sets of fuel cell cells 2 and a reaction surface seal 202 provided between the separator 11 and the membrane electrode assembly 101.
- the flow path of the fuel gas and the surplus fuel gas, the flow path of the water generated by the electrochemical reaction of the oxidation gas and power generation, and the flow path of the cooling water as the refrigerant are made independent of each other. , Prevents mixing of different types of fluids.
- a gasket 203 fixed to the separator 11 is used for the cooling surface seal 201 and the reaction surface seal 202 having a sealing structure.
- embodiments of a method for manufacturing a gasket for a fuel cell separator will be described.
- the first embodiment will be described with reference to FIGS. 2 (A) to 2 (C) and FIGS. 3 (A) to 3 (D).
- the gasket manufacturing method of the present embodiment includes a shaping step and a transfer step.
- the shaping step is a step of shaping a flexible base material 301 having flexibility, for example, a pressure-sensitive adhesive 211 to be a gasket 203 on a resin film.
- the flexible base material 301 is placed on the base 401, and the molding die 411 is placed via the flexible base material 301.
- the molding die 411 is provided with a gate 412 and a cavity 413.
- the cavity 413 has a shape for forming the gasket 203.
- the material 212 of the pressure-sensitive adhesive 211 for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413.
- injection molding or transfer molding is adopted.
- the pressure-sensitive adhesive 211 is formed on the flat surface of the flexible base material 301 by separating the molding die 411 from the base 401.
- the shaped pressure-sensitive adhesive 211 becomes the gasket 203.
- the flexible base material 301 exhibits stronger adhesiveness than the wall portion of the cavity 413. Has been done.
- the pressure-sensitive adhesive 211 used in the shape step for example, a rubber-based pressure-sensitive adhesive using butyl rubber, polyisobutylene rubber, styrene-butadiene rubber, ethylene-propylene diene rubber, natural rubber, or the like as a base polymer can be used.
- Additives that can be blended include, for example, cross-linking agents, tackifiers, fillers, anti-aging agents and the like.
- the transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the flexible base material 301 to the separator 11 to form the gasket 203.
- the pressure-sensitive adhesive 211 formed on the flexible base material 301 is faced with one of the separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen).
- the facing position is the fixed position of the gasket 203 with respect to the separator 11B.
- a region other than the bead 14B provided on the separator 11B is set as a fixed position.
- the top of the bead 14B provided on the separator 11B may be set as a fixed position.
- the separator 11B and the flexible base material 301 are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed.
- the pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
- the flexible base material 301 is bent and peeled from the adhesive 211.
- the separator 11B is designed to exhibit stronger adhesiveness than the flexible base material 301. Therefore, the pressure-sensitive adhesive 211 maintains the state of being adhered to the flexible base material 301, and the flexible base material 301 is peeled off from the pressure-sensitive adhesive 211.
- the adhesive 211 is fixed to the separator 11B, and the adhesive 211 becomes the gasket 203.
- the adhesive 211 serving as the gasket 203 may or may not be crosslinked. Cross-linking of the pressure-sensitive adhesive 211 is carried out after shaping on the flexible base material 301 or after transferring to the separator 11B.
- the gasket 203 can be formed on the separator 11B.
- the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
- FIG. 4 shows the seal structure of the cooling surface seal 201 and the reaction surface seal 202, which are the premise of the gasket manufacturing method of the present embodiment.
- the beads 14 of the separator 11 are nested and overlapped with each other.
- the bead 14B of the separator 11B facing the surface opposite to one surface of the electrolyte membrane 102 is formed larger than the bead 14A of the separator 11A facing one surface of the electrolyte membrane 102 provided with the membrane electrode assembly 101.
- the bead 14B has entered the bead 14A in a non-contact state.
- the beads 14 (14A, 14B) of the pair of separators 11 have a rising angle ⁇ from the separator 11 of, for example, about 70 °. Therefore, the side walls 15 (15A, 15B) of the beads 14 (14A, 14B) facing each other of the pair of separators 11 are inclined with respect to the separator 11.
- the gasket 203 used in such a sealing structure is arranged between the side walls 15 (15A, 15B) of the beads 14 (14A, 14B) facing each other by overlapping in a nested manner. At this time, since the rising angle ⁇ of the bead 14 from the separator 11 is about 70 °, the gasket 203 has a parallelogram cross-sectional shape.
- the gasket 203 is formed by the adhesive 211, it adheres to the side walls 15 (15A, 15B) of the beads 14 (14A, 14B) facing each other of the pair of separators 11. It is fixed. Further, the gasket 203 is adhered and fixed not only to the side wall 15 of the bead 14 but also to the surface of the separator 11 communicating with the side wall 15.
- the gasket manufacturing method of the present embodiment produces a gasket 203 that conforms to the sealing structures of the cooling surface seal 201 and the reaction surface seal 202 as described above.
- the present manufacturing method includes a shaping step and a transfer step as in the first embodiment.
- the shaping step is a step of shaping a flexible base material 301 having flexibility, for example, a pressure-sensitive adhesive 211 to be a gasket 203 on a resin film.
- the flexible base material 301 is placed on the base 401, and the molding die 411 is placed via the flexible base material 301.
- the molding die 411 is provided with a gate 412 and a cavity 413.
- the flexible base material 301 includes a protrusion 302 that enters between two adjacent beads 14B provided on one of the pair of separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen).
- the protrusion 302 rises from the flexible base material 301 at a rising angle of about 70 °. That is, the protrusion 302 is formed in a shape imitating the side wall 15B of the bead 14B to which the pressure-sensitive adhesive 211 serving as the gasket 203 adheres.
- the cavity 413 provided in the molding die 411 has a shape for forming the gasket 203 at the portion where the protrusion 302 of the flexible base material 301 is arranged and in contact with the gate 412.
- the material 212 of the pressure-sensitive adhesive 211 for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413.
- injection molding or transfer molding is adopted.
- the adhesive 211 is formed on the flexible base material 301 along the protrusion 302.
- the shaped pressure-sensitive adhesive 211 becomes the gasket 203.
- the flexible base material 301 exhibits stronger adhesiveness than the wall portion of the cavity 413. Has been done.
- the transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the flexible base material 301 to the separator 11 to form the gasket 203.
- the pressure-sensitive adhesive 211 formed on the flexible base material 301 is made to face the separator 11B on the side in contact with the oxidizing gas (oxygen).
- the facing position is the fixed position of the gasket 203 with respect to the separator 11B.
- the fixing position of the gasket 203 is the side wall 15B of the bead 14B which is nestedly overlapped with the bead 14A of the separator 11A on the side in contact with the fuel gas (hydrogen).
- the separator 11B and the flexible base material 301 are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed.
- the pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
- the flexible base material 301 is bent and peeled from the adhesive 211.
- the separator 11B is designed to exhibit stronger adhesiveness than the flexible base material 301. Therefore, the pressure-sensitive adhesive 211 keeps sticking to the separator 11B, and the flexible base material 301 is peeled off from the pressure-sensitive adhesive 211.
- the gasket 203 can be formed on the separator 11B.
- the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
- the same parts as those of the second embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
- This embodiment is an example in which the protrusion 302 is formed by embossing the material 212 of the pressure-sensitive adhesive 211 against the molding die 411 by embossing the material 212, instead of using the flexible base material 301 provided with the protrusion 302 in advance. .. In such a manufacturing method, a more flexible film-like flexible base material 301 is used as the flexible base material 301.
- the gasket manufacturing method of the present embodiment also produces a gasket 203 that conforms to the seal structure of the cooling surface seal 201 and the reaction surface seal 202 as shown in FIG.
- the point that the shaping step and the transfer step are included is also the same as the gasket manufacturing method of the first and second embodiments.
- the shaping step is a step of shaping the pressure-sensitive adhesive 211 to be the gasket 203 on the flexible base material 301 having flexibility such as a resin film.
- the lower mold 411L and the upper mold 411U are used.
- the flexible base material 301 is placed on the lower mold 411L, and the upper mold 411U is placed via the flexible base material 301.
- the lower mold 411L is provided with a protrusion 414, and the upper mold 411U is provided with a gate 412 and a cavity 413.
- the protrusion 414 provided on the lower mold 411L corresponds to the protrusion 302 provided on the flexible base material 301 of the second embodiment, and is about 70 ° from the flexible base material 301 like the bead 14B. It stands up at the rising angle of. That is, the protrusion 302 is formed in a shape imitating the side wall 15B of the bead 14B to which the pressure-sensitive adhesive 211 serving as the gasket 203 adheres.
- the cavity 413 provided in the upper mold 411U has a shape for arranging the protrusion 414 of the lower mold 411L and forming the gasket 203 in the portion communicating with the gate 412.
- the material 212 of the pressure-sensitive adhesive 211 for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413.
- the flexible base material 301 bends into the shape of the protrusion 414 due to the filling pressure of the material 212 of the adhesive 211 into the cavity 413.
- the adhesive 211 is formed on the flexible base material 301 along the protrusion 414.
- the shaped pressure-sensitive adhesive 211 becomes the gasket 203.
- the flexible base material 301 exhibits stronger adhesiveness than the wall portion of the cavity 413. Has been made.
- the transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the flexible base material 301 to the separator 11 to form the gasket 203.
- the adhesive 211 formed on the flexible base material 301 together with the lower mold 411L is made to face the separator 11B on the side in contact with the oxidizing gas (oxygen).
- the facing position is the fixed position of the gasket 203 with respect to the separator 11B.
- the fixing position of the gasket 203 is the side wall 15B of the bead 14B which is nestedly overlapped with the bead 14A of the separator 11A on the side in contact with the fuel gas (hydrogen).
- the separator 11B attached to the lower mold 411L and the flexible base material 301 are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed.
- the pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
- the lower mold 411L is removed from the flexible base material 301.
- the adhesive force between the flexible base material 301 and the lower mold 411L is greater than the adhesive force between the separator 11B and the pressure-sensitive adhesive 211 and the adhesive force between the pressure-sensitive adhesive 211 and the flexible base material 301. Due to its small size, the lower mold 411L can be smoothly removed from the flexible base material 301.
- the flexible base material 301 is bent and peeled from the adhesive 211.
- the separator 11B is designed to exhibit stronger adhesiveness than the flexible base material 301. Therefore, the pressure-sensitive adhesive 211 maintains the state of being adhered to the flexible base material 301, and the flexible base material 301 is peeled off from the pressure-sensitive adhesive 211.
- the gasket 203 can be formed on the separator 11B.
- the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
- the same parts as those of the second embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
- the pressure-sensitive adhesive 211 is not directly shaped on the flexible base material 301, but is shaped on the intermediate base material 351 and transferred from the intermediate base material 351 to the flexible base material 301, and further formed on the flexible base material 301. Is transferred to the separator 11.
- the gasket manufacturing method of the present embodiment also produces a gasket 203 that conforms to the seal structure of the cooling surface seal 201 and the reaction surface seal 202 as shown in FIG.
- the point that the shaping step and the transfer step are included is also the same as the gasket manufacturing method of the first and second embodiments. However, as described above, it is provided with a two-step transfer step of the intermediate base material 351 to the flexible base material 301 (intermediate transfer step) and the flexible base material 301 to the separator 11 (final transfer step).
- the shaping step is a step of shaping the pressure-sensitive adhesive 211 to be the gasket 203 on the intermediate base material 351.
- the intermediate base material 351 does not have to have flexibility and may be a member made of a hard material.
- the intermediate base material 351 is placed on the base 401, and the molding die 411 is placed via the intermediate base material 351.
- the molding die 411 is provided with a gate 412 and a cavity 413.
- the intermediate base material 351 includes a protrusion 352 that enters between two adjacent beads 14B provided on one of the pair of separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen).
- the protrusion 352 rises from the flexible base material 301 at a rising angle of about 70 °. That is, the protrusion 352 is formed in a shape imitating the side wall 15B of the bead 14B to which the pressure-sensitive adhesive 211 serving as the gasket 203 adheres.
- the cavity 413 provided in the molding die 411 has a shape for arranging the protrusion 352 provided in the intermediate base material 351 and molding the gasket 203 in the portion communicating with the gate 412.
- the material 212 of the pressure-sensitive adhesive 211 for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413.
- injection molding or transfer molding is adopted.
- the pressure-sensitive adhesive 211 is formed on the intermediate base material 351 along the protrusion 352.
- the shaped pressure-sensitive adhesive 211 becomes the gasket 203.
- the intermediate base material 351 exhibits stronger adhesiveness than the wall portion of the cavity 413. Has been done.
- the intermediate transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the intermediate base material 351 to the flexible base material 301.
- the flexible base material 301 has a flat shape, not the shape provided with the protrusion 302 as in the second embodiment.
- the pressure-sensitive adhesive 211 formed on the intermediate base material 351 is made to face the flexible base material 301.
- the flexible base material 301 and the intermediate base material 351 are brought close to each other, and the pressure-sensitive adhesive 211 is brought into contact with the flexible base material 301.
- the pressure-sensitive adhesive 211 adheres to the flexible base material 301 due to its own adhesiveness.
- the flexible base material 301 is separated from the intermediate base material 351. At this time, the flexible base material 301 exhibits stronger adhesiveness than the intermediate base material 351. Therefore, the pressure-sensitive adhesive 211 maintains the state of being adhered to the flexible base material 301, and the flexible base material 301 is peeled off from the pressure-sensitive adhesive 211.
- the final transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the flexible base material 301 to the separator 11 to form the gasket 203.
- the pressure-sensitive adhesive 211 formed on the flexible base material 301 is made to face the separator 11B on the side in contact with the oxidizing gas (oxygen).
- the facing position is the fixed position of the gasket 203 with respect to the separator 11B.
- the fixing position of the gasket 203 is the side wall 15B of the bead 14B which is nestedly overlapped with the bead 14A of the separator 11A on the side in contact with the fuel gas (hydrogen).
- the separator 11B and the flexible base material 301 are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed.
- the pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
- the flexible base material 301 is bent and peeled off from the adhesive 211.
- the separator 11B is designed to exhibit stronger adhesiveness than the flexible base material 301. Therefore, the pressure-sensitive adhesive 211 maintains the state of being adhered to the flexible base material 301, and the flexible base material 301 is peeled off from the pressure-sensitive adhesive 211.
- the pressure-sensitive adhesive 211 to be the gasket 203 may or may not be crosslinked, as in the first to third embodiments. Cross-linking of the pressure-sensitive adhesive 211 is carried out after shaping on the intermediate base material 351 and then transferring to the flexible base material 301 or after transferring to the separator 11B.
- the gasket 203 can be formed on the separator 11B.
- the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
- a region other than the bead 14B of the separator 11B or the top of the bead 14B provided on the separator 11B may be a fixed position of the gasket 203 with respect to the separator 11B.
- the pressure-sensitive adhesive 211 is shaped on the flat surface of the intermediate base material 351 in the shaping step, and the pressure-sensitive adhesive 211 is intermediate-transferred on the flat surface of the flexible base material 301 in the intermediate transfer step. ..
- the pressure-sensitive adhesive 211 can be transferred from the flexible base material 301 to the region other than the bead 14B of the separator 11B or the top of the bead 14B provided on the separator 11B.
- the same parts as those in the first embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
- the molding die 411 of the present embodiment includes an upper die 411U and a lower die 411L.
- the shaping step is a step of shaping the pressure-sensitive adhesive 211, which should be the gasket 203, into the lower mold 411L.
- the lower mold 411L of the molding mold 411 is placed on the base 401.
- the upper mold 411U of the molding mold 411 is provided with a gate 412 and a cavity 413.
- the cavity 413 has a shape for forming the gasket 203.
- the material 212 of the pressure-sensitive adhesive 211 for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413.
- injection molding or transfer molding is adopted.
- the adhesive 211 is formed on the flat surface of the lower die 411L.
- the shaped pressure-sensitive adhesive 211 becomes the gasket 203.
- the lower die 411L exhibits stronger adhesiveness than the wall portion of the cavity 413. ..
- the transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the lower mold 411L to the separator 11 to form the gasket 203.
- the pressure-sensitive adhesive 211 formed on the lower mold 411L is faced with one of the separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen).
- the facing position is the fixed position of the gasket 203 with respect to the separator 11B.
- a region other than the bead 14B provided on the separator 11B is set as a fixed position.
- the separator 11B and the lower mold 411L are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed.
- the pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
- the separator 11B is bent to peel off the adhesive 211 from the lower mold 411L.
- the separator 11B exhibits stronger adhesiveness than the lower mold 411L. Therefore, the pressure-sensitive adhesive 211 keeps sticking to the separator 11B and is peeled off from the lower mold 411L.
- the pressure-sensitive adhesive 211 to be the gasket 203 may or may not be crosslinked, as in the first to fourth embodiments. Cross-linking of the pressure-sensitive adhesive 211 is carried out after shaping into the lower mold 411L or after transferring to the separator 11B.
- the gasket 203 can be formed on the separator 11B.
- the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
- the same parts as those in the fifth embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
- the gasket manufacturing method of the present embodiment produces a gasket 203 that conforms to the seal structure of the cooling surface seal 201 and the reaction surface seal 202 as shown in FIG. 4, similarly to the method of the second embodiment. Similar to the gasket manufacturing method of the fifth embodiment, the method of the present embodiment also includes a shaping step and a transfer step.
- the shaping step is a step of shaping the pressure-sensitive adhesive 211 to be the gasket 203 on the lower mold 411L.
- the lower mold 411L of the molding mold 411 is placed on the base 401.
- the upper mold 411U of the molding mold 411 is provided with a gate 412 and a cavity 413.
- the lower mold 411L is provided with a protrusion 414 that enters between two adjacent beads 14B provided on one of the pair of separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen).
- the protrusion 414 rises from the lower mold 411L at a rising angle of about 70 °. That is, the protrusion 414 is formed in a shape imitating the side wall 15B of the bead 14B to which the pressure-sensitive adhesive 211 serving as the gasket 203 adheres.
- the cavity 413 provided in the upper mold 411U has a shape for arranging the protrusion 414 of the lower mold 411L and forming the gasket 203 in the portion communicating with the gate 412.
- the material 212 of the pressure-sensitive adhesive 211 for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413.
- injection molding or transfer molding is adopted.
- the adhesive 211 is formed on the lower die 411L along the protrusion 414.
- the shaped pressure-sensitive adhesive 211 becomes the gasket 203.
- the lower die 411L exhibits stronger adhesiveness than the wall portion of the cavity 413. ..
- the transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the lower mold 411L to the separator 11 to form the gasket 203.
- the pressure-sensitive adhesive 211 formed on the lower mold 411L is faced with one of the separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen).
- the facing position is the fixed position of the gasket 203 with respect to the separator 11B.
- the fixing position of the gasket 203 is the side wall 15B of the bead 14B which is nestedly overlapped with the bead 14A of the separator 11A on the side in contact with the fuel gas (hydrogen).
- the separator 11B and the lower mold 411L are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed.
- the pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
- the separator 11B is bent to peel off the adhesive 211 from the lower mold 411L.
- the separator 11B exhibits stronger adhesiveness than the lower mold 411L. Therefore, the pressure-sensitive adhesive 211 keeps sticking to the separator 11B and is peeled off from the lower mold 411L.
- the gasket 203 can be formed on the separator 11B.
- the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
- Fuel cell 2 Fuel cell cell 11, 11A, 11B Separator 12 Placement area 13 Manifold 14, 14A, 14B Bead 15, 15A, 15B Side wall 101
- Membrane electrode assembly 102
- Electrolyte membrane (mating member) 103
- Cooling surface seal 202
- Reaction surface seal 203
- Gasket 211
- Adhesive 212
- Material 301
- Flexible base material 302
- Protrusion 351
- Intermediate base material 352
- Protrusion 401
- Base 411 Mold 411U Upper mold 411L Lower mold 412 Cavity 413 Gate 414 Protrusion
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fuel Cell (AREA)
Abstract
A fuel battery separator gasket 203 is formed via a shaping step for an adhesive 211 and a transfer step for the adhesive 211. During the shaping step, a shaping mold is used to shape the adhesive 211, which will become the gasket 203, on a flexible substrate 301 having flexibility. During the transfer step, the adhesive 211 shaped on the flexible substrate 301 is transferred to one (for example, the separator 11B) from among a pair of separators 11 that face each other with an electrolyte film, which is provided to the fuel cell, interposed therebetween and that have a bead 14 which is close to the electrolyte film and which forms a fluid flow path between the bead and the electrolyte film, thereby forming the gasket 203. Through this method, it is possible to shape a gasket on a separator without causing destruction or damage.
Description
燃料電池セル用セパレータのガスケット製造方法に関する。
Regarding the method of manufacturing gaskets for fuel cell separators.
反応ガスを電気化学反応させて発電する燃料電池が急速に普及している。燃料電池は発電効率が高く、環境への影響も少ないことから、好ましいエネルギー源として注目を集めている。
Fuel cells that generate electricity by electrochemically reacting reaction gas are rapidly becoming widespread. Fuel cells are attracting attention as a preferable energy source because they have high power generation efficiency and have little impact on the environment.
燃料電池のうち、固体高分子形のものは、複数枚の燃料電池セルを積層したスタック構造を備えている。個々の燃料電池セルは、膜電極接合体(MEA)を一対のセパレータで挟み込んでいる。膜電極接合体は、電解質膜をアノード電極(陽極)とカソード電極(陰極)とで挟み込んだ構造物であり、それぞれの電極は、触媒層とガス拡散層(GDL)との積層構造を有している。セパレータはガス拡散層に密接し、ガス拡散層との間に水素と酸素の流路を形成する。
Among the fuel cells, the polymer electrolyte type has a stack structure in which a plurality of fuel cell cells are stacked. Each fuel cell has a membrane electrode assembly (MEA) sandwiched between a pair of separators. The membrane electrode joint is a structure in which an electrolyte membrane is sandwiched between an anode electrode (anode) and a cathode electrode (cathode), and each electrode has a laminated structure of a catalyst layer and a gas diffusion layer (GDL). ing. The separator is in close contact with the gas diffusion layer and forms a flow path for hydrogen and oxygen with the gas diffusion layer.
このような燃料電池セルは、セパレータに形成した流路を利用し、アノード電極には水素を、カソード電極には酸素を供給する。これによって水の電気分解の逆の電気化学反応によって発電を行う。
Such a fuel cell uses a flow path formed in a separator to supply hydrogen to the anode electrode and oxygen to the cathode electrode. As a result, power is generated by the electrochemical reaction opposite to the electrolysis of water.
特許文献1の各図に示されているように、膜電極接合体の電解質膜(文献1中、符号55)は端部でシールされている。シールとしては、例えば特許文献1に記載されているようなゴム状弾性体などによって成形されたガスケット(ガスケット本体21、31)が用いられる。ガスケットは、セパレータの面と直交する方向に弾性変形し、一対のセパレータの間で膜電極接合体の電解質膜をシールする。
As shown in each figure of Patent Document 1, the electrolyte membrane (reference numeral 55 in Document 1) of the membrane electrode assembly is sealed at the end. As the seal, for example, gaskets (gaskets main bodies 21 and 31) formed of a rubber-like elastic body as described in Patent Document 1 are used. The gasket elastically deforms in a direction orthogonal to the surface of the separator and seals the electrolyte membrane of the membrane electrode assembly between the pair of separators.
電解質膜をシールするガスケットは、射出成型やトランスファー成形によってセパレータに賦形される。このときカーボン製などのような脆性のセパレータは、ガスケット成形時の圧力、例えば型押さえによる圧力や射出圧などによって破壊されてしまう可能性がある。また比較的硬質である金属製のセパレータでも、例えばカーボンコーティングなどが表面に施されている場合には、ガスケット成形時の圧力によってコーティングが損傷してしまう可能性もある。
The gasket that seals the electrolyte membrane is formed on the separator by injection molding or transfer molding. At this time, a brittle separator such as one made of carbon may be destroyed by the pressure at the time of gasket molding, for example, the pressure due to the mold press or the injection pressure. Further, even with a relatively hard metal separator, if a carbon coating or the like is applied to the surface, the coating may be damaged by the pressure during gasket molding.
破壊や損傷を生じさせることなくセパレータにガスケットを成形できるようにすることが求められる。
It is required to be able to mold the gasket on the separator without causing breakage or damage.
燃料電池用セパレータのガスケット製造方法の一態様は、柔軟性を有するフレキシブル基材に成形型を用いてガスケットとなる粘着剤を賦形し、相手部材を挟んで対面し、前記相手部材に密接してこの相手部材との間に流体の流路を形成するビードを有する一対のセパレータのうちの一方に対して、前記フレキシブル基材に賦形された粘着剤を転写して前記ガスケットを成形する。
One aspect of the method for manufacturing a gasket for a fuel cell separator is to form an adhesive to be a gasket on a flexible base material using a molding mold, face the mating member with the mating member in between, and bring the mating member into close contact with the mating member. The gasket is formed by transferring the pressure-sensitive adhesive formed on the flexible base material to one of a pair of separators having beads that form a fluid flow path with the mating member of the lever.
燃料電池用セパレータのガスケット製造方法の別の一態様は、成形型を用いて中間基材にガスケットとなる粘着剤を賦形し、柔軟性を有するフレキシブル基材に対して前記中間基材に賦形された前記粘着剤を転写し、相手部材を挟んで対面し、前記相手部材に密接してこの相手部材との間に流体の流路を形成するビードを有する一対のセパレータのうちの一方に対して、前記フレキシブル基材に転写された粘着剤を転写して前記ガスケットを成形する。
Another aspect of the method for manufacturing a gasket for a fuel cell separator is to use a molding mold to shape an adhesive to be a gasket on an intermediate base material, and apply the adhesive to the intermediate base material with respect to a flexible base material having flexibility. The formed adhesive is transferred to one of a pair of separators having a bead that faces the mating member with the mating member in between and has a bead that is in close contact with the mating member to form a fluid flow path with the mating member. On the other hand, the pressure-sensitive adhesive transferred to the flexible base material is transferred to form the gasket.
燃料電池用セパレータのガスケット製造方法のさらに別の一態様は、上型と下型とを有する成形型の前記下型にガスケットとなる粘着剤を賦形し、相手部材を挟んで対面し、前記相手部材に密接してこの相手部材との間に流体の流路を形成するビードを有する一対のセパレータのうちの一方に対して、前記下型に賦形された粘着剤を転写して前記ガスケットを成形する。
In yet another aspect of the method for manufacturing a gasket for a fuel cell separator, an adhesive serving as a gasket is formed on the lower mold of a molding mold having an upper mold and a lower mold, and the mating member is sandwiched between them to face each other. The gasket is transferred from the adhesive formed on the lower mold to one of a pair of separators having a bead that is in close contact with the mating member and forms a fluid flow path between the mating member and the mating member. To mold.
破壊や損傷を生じさせることなくセパレータにガスケットを成形することができる。
A gasket can be molded on the separator without causing breakage or damage.
[燃料電池]
本実施の形態の燃料電池セパレータのガスケット製造方法は、燃料電池に用いられるセパレータに設けるべきガスケットを賦形し、このガスケットをセパレータに転写する方法の一例である。本実施の形態の方法が適用される燃料電池の一例を最初に説明する。 [Fuel cell]
The method for manufacturing a gasket for a fuel cell separator according to the present embodiment is an example of a method in which a gasket to be provided on a separator used in a fuel cell is shaped and the gasket is transferred to the separator. An example of a fuel cell to which the method of this embodiment is applied will be described first.
本実施の形態の燃料電池セパレータのガスケット製造方法は、燃料電池に用いられるセパレータに設けるべきガスケットを賦形し、このガスケットをセパレータに転写する方法の一例である。本実施の形態の方法が適用される燃料電池の一例を最初に説明する。 [Fuel cell]
The method for manufacturing a gasket for a fuel cell separator according to the present embodiment is an example of a method in which a gasket to be provided on a separator used in a fuel cell is shaped and the gasket is transferred to the separator. An example of a fuel cell to which the method of this embodiment is applied will be described first.
図1に示すように、燃料電池1は、燃料電池セル2を複数個積層した積層構造を有している。燃料電池セル2は、燃料電池用の一対のセパレータ11の間にMEA(Membrane Electrode Assembly)と呼ばれている膜電極接合体101を設けた電解質膜102を介在させている。このような燃料電池セル2は、冷却面シール201を介して積み重ねられる。図1では燃料電池セル2は二組だけ描かれているが、実際には数百組もの燃料電池セル2が積み重ねられて燃料電池1は構成されている。
As shown in FIG. 1, the fuel cell 1 has a laminated structure in which a plurality of fuel cell cells 2 are laminated. In the fuel cell 2, an electrolyte membrane 102 provided with a membrane electrode assembly 101 called MEA (Membrane Electrode Assembly) is interposed between a pair of separators 11 for a fuel cell. Such fuel cell cells 2 are stacked via the cooling surface seal 201. In FIG. 1, only two sets of fuel cell 2 are drawn, but in reality, hundreds of sets of fuel cell cells 2 are stacked to form the fuel cell 1.
膜電極接合体101は、電解質膜102の両面中央部分に図示しない電極を設けた構造物である。電極は、電解質膜102上に成膜された触媒層と、触媒層上に成膜されたガス拡散層(GDL)とを有する積層構造を備えている(いずれも図示せず)。このような電極は、電解質膜102の一面側をアノード電極(陽極)とし、その反対面側をカソード電極(陰極)として用いられる。
The membrane electrode assembly 101 is a structure in which electrodes (not shown) are provided at the central portions of both sides of the electrolyte membrane 102. The electrode has a laminated structure having a catalyst layer formed on the electrolyte film 102 and a gas diffusion layer (GDL) formed on the catalyst layer (neither is shown). In such an electrode, one side of the electrolyte membrane 102 is used as an anode electrode (anode), and the opposite side thereof is used as a cathode electrode (cathode).
燃料電池用のセパレータ11は、一例としてカーボンなどの樹脂によって成形された平板状の部材である。もっともこのようなカーボン製のような脆性のものに限らず、別の一例として、薄肉のステンレス鋼板などプレス加工可能な平板状の部材をセパレータ11として用いてもよい。
The separator 11 for a fuel cell is, for example, a flat plate-shaped member formed of a resin such as carbon. However, the separator 11 is not limited to a brittle material such as that made of carbon, and as another example, a flat plate-like member that can be press-processed, such as a thin stainless steel plate, may be used as the separator 11.
セパレータ11は、矩形の平面形状を備え、膜電極接合体101を配置するための配置領域12を設けている。配置領域12から外れた両端側の位置に三つずつ設けられている開口は、発電のために用いられたり、発電によって生じたりする流体を流通させるためのマニホールド13である。マニホールド13を流通させる流体は、燃料ガス(水素)、酸化ガス(酸素)、発電時の電気化学反応によって生成される水や余剰の酸化ガス、冷媒等である。
The separator 11 has a rectangular planar shape, and is provided with an arrangement region 12 for arranging the membrane electrode assembly 101. Three openings provided at positions on both ends outside the arrangement region 12 are manifolds 13 for circulating a fluid used for power generation or generated by power generation. The fluid flowing through the manifold 13 is a fuel gas (hydrogen), an oxidizing gas (oxygen), water generated by an electrochemical reaction during power generation, excess oxidizing gas, a refrigerant, or the like.
セパレータ11に設けられたマニホールド13に位置を合わされて、電解質膜102にもマニホールド103が設けられている。これらのマニホールド103は、膜電極接合体101から外れた両端側の位置にそれぞれ三つ設けられた開口である。
The position is aligned with the manifold 13 provided on the separator 11, and the manifold 103 is also provided on the electrolyte membrane 102. These manifolds 103 are three openings provided at positions on both ends away from the membrane electrode assembly 101.
燃料電池1は、マニホールド13、103を利用して、膜電極接合体101を設けた電解質膜102の一面に対面するセパレータ11Aとの間に燃料ガス(水素)を導き、電解質膜102の一面と反対側の面に対面するセパレータ11Bとの間に酸化ガス(酸素)を導く。冷媒として用いられる冷却水は、冷却面シール201によってシールされた二組の燃料電池セル2の間に導かれる。このとき燃料ガス、酸化ガス、及び冷却水は、燃料電池セル2を組み立てる一対のセパレータ11(11A,11B)によって形成されたそれぞれの流路を流れる。
The fuel cell 1 uses the manifolds 13 and 103 to guide the fuel gas (hydrogen) between the separator 11A facing one surface of the electrolyte membrane 102 provided with the membrane electrode assembly 101, and the fuel cell 1 with one surface of the electrolyte membrane 102. Oxidizing gas (oxygen) is guided between the separator 11B facing the opposite surface. The cooling water used as the refrigerant is guided between the two sets of fuel cell 2 sealed by the cooling surface seal 201. At this time, the fuel gas, the oxidation gas, and the cooling water flow through the respective flow paths formed by the pair of separators 11 (11A, 11B) that assemble the fuel cell 2.
一対のセパレータ11は、相手部材としての電解質膜102を挟んで対面し、燃料電池セル2を形成する。セパレータ11は、電解質膜102に密接してこの電解質膜102との間に流体の流路を形成するビード14を備えている。電解質膜102とセパレータ11Aのビード14Aとの間の空間は、燃料ガスの流路を形成する。電解質膜102とセパレータ11Bのビード14Bとの間の空間は、酸化ガスの流路を形成する。一組の燃料電池セル2のセパレータ11Aとこれに重なり合う燃料電池セル2のセパレータ11Bとの間に設けられたそれぞれのビード14A,14Bの間の空間は、冷却水の流路を形成する。
The pair of separators 11 face each other with the electrolyte membrane 102 as a mating member interposed therebetween to form a fuel cell 2. The separator 11 includes a bead 14 that is in close contact with the electrolyte membrane 102 and forms a fluid flow path between the separator and the electrolyte membrane 102. The space between the electrolyte membrane 102 and the bead 14A of the separator 11A forms a flow path for the fuel gas. The space between the electrolyte membrane 102 and the bead 14B of the separator 11B forms a flow path for the oxidizing gas. The space between the beads 14A and 14B provided between the separator 11A of the set of fuel cell 2 and the separator 11B of the fuel cell 2 overlapping the separator 11A forms a flow path for the cooling water.
燃料電池セル2は、セパレータ11及び膜電極接合体101の外周縁及びマニホールド13、103の周縁に、シール構造を備えている。シール構造は、二組の燃料電池セル2の間に介在する冷却面シール201と、セパレータ11と膜電極接合体101との間に設けられる反応面シール202とを含んでいる。このようなシール構造は、燃料ガス及び余剰の燃料ガスの流路と、酸化ガス及び発電時の電気化学反応によって生成される水の流路と、冷媒である冷却水の流路をそれぞれ独立させ、異なる種類の流体の混合を防止する。
The fuel cell 2 has a seal structure on the outer peripheral edge of the separator 11 and the membrane electrode assembly 101 and on the peripheral edges of the manifolds 13 and 103. The seal structure includes a cooling surface seal 201 interposed between the two sets of fuel cell cells 2 and a reaction surface seal 202 provided between the separator 11 and the membrane electrode assembly 101. In such a seal structure, the flow path of the fuel gas and the surplus fuel gas, the flow path of the water generated by the electrochemical reaction of the oxidation gas and power generation, and the flow path of the cooling water as the refrigerant are made independent of each other. , Prevents mixing of different types of fluids.
シール構造をなす冷却面シール201及び反応面シール202には、セパレータ11に固定されたガスケット203が用いられている。以下、燃料電池セパレータのガスケット製造方法の実施の形態を説明する。
A gasket 203 fixed to the separator 11 is used for the cooling surface seal 201 and the reaction surface seal 202 having a sealing structure. Hereinafter, embodiments of a method for manufacturing a gasket for a fuel cell separator will be described.
[第1の実施の形態]
第1の実施の形態を図2(A)~(C)及び図3(A)~(D)に基づいて説明する。本実施の形態のガスケット製造方法は、賦形工程と転写工程とを含んでいる。 [First Embodiment]
The first embodiment will be described with reference to FIGS. 2 (A) to 2 (C) and FIGS. 3 (A) to 3 (D). The gasket manufacturing method of the present embodiment includes a shaping step and a transfer step.
第1の実施の形態を図2(A)~(C)及び図3(A)~(D)に基づいて説明する。本実施の形態のガスケット製造方法は、賦形工程と転写工程とを含んでいる。 [First Embodiment]
The first embodiment will be described with reference to FIGS. 2 (A) to 2 (C) and FIGS. 3 (A) to 3 (D). The gasket manufacturing method of the present embodiment includes a shaping step and a transfer step.
(賦形工程)
賦形工程は、柔軟性を有するフレキシブル基材301、例えば樹脂フィルムにガスケット203となるべき粘着剤211を賦形する工程である。 (Shaping process)
The shaping step is a step of shaping aflexible base material 301 having flexibility, for example, a pressure-sensitive adhesive 211 to be a gasket 203 on a resin film.
賦形工程は、柔軟性を有するフレキシブル基材301、例えば樹脂フィルムにガスケット203となるべき粘着剤211を賦形する工程である。 (Shaping process)
The shaping step is a step of shaping a
図2(A)に示すように、ベース401の上にフレキシブル基材301を載置し、このフレキシブル基材301を介して成形型411を載置する。成形型411にはゲート412とキャビティ413とが設けられている。キャビティ413はガスケット203を成形するための形状を有している。
As shown in FIG. 2A, the flexible base material 301 is placed on the base 401, and the molding die 411 is placed via the flexible base material 301. The molding die 411 is provided with a gate 412 and a cavity 413. The cavity 413 has a shape for forming the gasket 203.
図2(B)に示すように、ゲート412から粘着剤211の材料212、例えばゴム状弾性材料である未加硫のブチルゴムなどをキャビティ413に導く。このときの成形手法としては、射出成形又はトランスファー成形が採用される。
As shown in FIG. 2B, the material 212 of the pressure-sensitive adhesive 211, for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413. As the molding method at this time, injection molding or transfer molding is adopted.
図2(C)に示すように、ベース401から成形型411を離すことで、フレキシブル基材301の平坦な面に粘着剤211が賦形される。賦形された粘着剤211は、ガスケット203となる。
As shown in FIG. 2C, the pressure-sensitive adhesive 211 is formed on the flat surface of the flexible base material 301 by separating the molding die 411 from the base 401. The shaped pressure-sensitive adhesive 211 becomes the gasket 203.
ベース401から成形型411を離すことでフレキシブル基材301に粘着剤211を賦形できるようにするために、キャビティ413の壁部よりもフレキシブル基材301の方が強い粘着性を発揮するようにされている。
In order to allow the adhesive 211 to be formed on the flexible base material 301 by separating the molding 411 from the base 401, the flexible base material 301 exhibits stronger adhesiveness than the wall portion of the cavity 413. Has been done.
腑形工程で用いる粘着剤211としては、例えばブチルゴム、ポリイソブチレンゴム、スチレンブタジエンゴム、エチレンプロピレンジエンゴム、天然ゴムなどをベースポリマーとするゴム系粘着剤などを用いることができる。
As the pressure-sensitive adhesive 211 used in the shape step, for example, a rubber-based pressure-sensitive adhesive using butyl rubber, polyisobutylene rubber, styrene-butadiene rubber, ethylene-propylene diene rubber, natural rubber, or the like as a base polymer can be used.
粘着剤211には、添加剤を配合することも可能である。配合することができる添加剤は、例えば架橋剤、粘着付与剤、充填剤、老化防止剤などである。
It is also possible to add an additive to the adhesive 211. Additives that can be blended include, for example, cross-linking agents, tackifiers, fillers, anti-aging agents and the like.
(転写工程)
転写工程は、フレキシブル基材301に賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Transfer process)
The transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the flexible base material 301 to the separator 11 to form the gasket 203.
転写工程は、フレキシブル基材301に賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Transfer process)
The transfer step is a step of transferring the pressure-
図3(A)に示すように、一方のセパレータ11、例えば酸化ガス(酸素)に接する側のセパレータ11Bに対して、フレキシブル基材301に賦形された粘着剤211を対面させる。対面させる位置は、セパレータ11Bに対するガスケット203の固定位置である。本実施の形態では、セパレータ11Bに設けられたビード14B以外の領域を固定位置としている。
As shown in FIG. 3A, the pressure-sensitive adhesive 211 formed on the flexible base material 301 is faced with one of the separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen). The facing position is the fixed position of the gasket 203 with respect to the separator 11B. In the present embodiment, a region other than the bead 14B provided on the separator 11B is set as a fixed position.
本実施の形態の変形例としては、セパレータ11Bに設けられたビード14Bの頂部を固定位置としてもよい。
As a modification of the present embodiment, the top of the bead 14B provided on the separator 11B may be set as a fixed position.
図3(B)に示すように、セパレータ11Bとフレキシブル基材301とを接近させ、ガスケット203を固定すべき位置に粘着剤211を接触させる。粘着剤211は自らの粘着性により、セパレータ11Bに粘着する。
As shown in FIG. 3B, the separator 11B and the flexible base material 301 are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed. The pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
図3(C)に示すように、フレキシブル基材301を屈曲させ、粘着剤211から剥離する。このときフレキシブル基材301よりもセパレータ11Bの方が強い粘着性を発揮するようにされている。このため粘着剤211はフレキシブル基材301に粘着したままの状態を維持し、粘着剤211からフレキシブル基材301が剥離される。
As shown in FIG. 3C, the flexible base material 301 is bent and peeled from the adhesive 211. At this time, the separator 11B is designed to exhibit stronger adhesiveness than the flexible base material 301. Therefore, the pressure-sensitive adhesive 211 maintains the state of being adhered to the flexible base material 301, and the flexible base material 301 is peeled off from the pressure-sensitive adhesive 211.
図3(D)に示すように、その結果セパレータ11Bに粘着剤211が固定され、粘着剤211はガスケット203となる。
As shown in FIG. 3D, as a result, the adhesive 211 is fixed to the separator 11B, and the adhesive 211 becomes the gasket 203.
ガスケット203となる粘着剤211は、架橋してもしなくてもどちらでもよい。粘着剤211の架橋は、フレキシブル基材301に賦形した後、あるいはセパレータ11Bに転写した後に実施する。
The adhesive 211 serving as the gasket 203 may or may not be crosslinked. Cross-linking of the pressure-sensitive adhesive 211 is carried out after shaping on the flexible base material 301 or after transferring to the separator 11B.
こうしてセパレータ11Bにガスケット203を成形することができる。このときセパレータ11Bにはガスケット成形時の圧力、例えば型押さえによる圧力や射出圧などがかからず、破壊や損傷を生じさせることなくセパレータ11Bにガスケット203を成形することができる。したがってセパレータ11(11A,11B)として、カーボン製のような脆性のものを用いることが可能である。
In this way, the gasket 203 can be formed on the separator 11B. At this time, the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
[第2の実施の形態]
第2の実施の形態を図4ないし図6(A)~(D)に基づいて説明する。第1の実施の形態と同一部分は同一符号で示し、説明も省略する。 [Second Embodiment]
The second embodiment will be described with reference to FIGS. 4 to 6 (A) to 6 (D). The same parts as those in the first embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
第2の実施の形態を図4ないし図6(A)~(D)に基づいて説明する。第1の実施の形態と同一部分は同一符号で示し、説明も省略する。 [Second Embodiment]
The second embodiment will be described with reference to FIGS. 4 to 6 (A) to 6 (D). The same parts as those in the first embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
図4は、本実施の形態のガスケット製造方法の前提となる冷却面シール201及び反応面シール202のシール構造を示している。このシール構造は、セパレータ11のビード14を入れ子状に重なり合せている。一例として、膜電極接合体101を設けた電解質膜102の一面に対面するセパレータ11Aのビード14Aよりも、電解質膜102の一面と反対側の面に対面するセパレータ11Bのビード14Bの方が大きく形成され、ビード14Bは非接触状態でビード14Aに入り込んでいる。
FIG. 4 shows the seal structure of the cooling surface seal 201 and the reaction surface seal 202, which are the premise of the gasket manufacturing method of the present embodiment. In this seal structure, the beads 14 of the separator 11 are nested and overlapped with each other. As an example, the bead 14B of the separator 11B facing the surface opposite to one surface of the electrolyte membrane 102 is formed larger than the bead 14A of the separator 11A facing one surface of the electrolyte membrane 102 provided with the membrane electrode assembly 101. The bead 14B has entered the bead 14A in a non-contact state.
一対のセパレータ11のビード14(14A,14B)は、セパレータ11からの立ち上がり角度θを例えば70°程度にしている。このため一対のセパレータ11の互いに対面するビード14(14A,14B)の側壁15(15A,15B)は、セパレータ11に対して傾斜している。
The beads 14 (14A, 14B) of the pair of separators 11 have a rising angle θ from the separator 11 of, for example, about 70 °. Therefore, the side walls 15 (15A, 15B) of the beads 14 (14A, 14B) facing each other of the pair of separators 11 are inclined with respect to the separator 11.
このようなシール構造で用いられるガスケット203は、入れ子状に重なり合うことで互いに対面するビード14(14A,14B)同士の側壁15(15A,15B)の間に配置されている。このときセパレータ11からのビード14の立ち上がり角度θは70°程度であることから、ガスケット203は平行四辺形の断面形状をなす。
The gasket 203 used in such a sealing structure is arranged between the side walls 15 (15A, 15B) of the beads 14 (14A, 14B) facing each other by overlapping in a nested manner. At this time, since the rising angle θ of the bead 14 from the separator 11 is about 70 °, the gasket 203 has a parallelogram cross-sectional shape.
第1の実施の形態と同様に、ガスケット203は粘着剤211によって成形されているので、一対のセパレータ11の互いに対面するビード14(14A,14B)の側壁15(15A,15B)に粘着して固定されている。またガスケット203は、ビード14の側壁15のみならず、側壁15に連絡するセパレータ11の面にも粘着して固定されている。
Similar to the first embodiment, since the gasket 203 is formed by the adhesive 211, it adheres to the side walls 15 (15A, 15B) of the beads 14 (14A, 14B) facing each other of the pair of separators 11. It is fixed. Further, the gasket 203 is adhered and fixed not only to the side wall 15 of the bead 14 but also to the surface of the separator 11 communicating with the side wall 15.
本実施の形態のガスケット製造方法は、以上説明したような冷却面シール201及び反応面シール202のシール構造に適合するガスケット203を生成する。本製造方法は、第1の実施の形態と同様に、賦形工程と転写工程とを含んでいる。
The gasket manufacturing method of the present embodiment produces a gasket 203 that conforms to the sealing structures of the cooling surface seal 201 and the reaction surface seal 202 as described above. The present manufacturing method includes a shaping step and a transfer step as in the first embodiment.
(賦形工程)
賦形工程は、柔軟性を有するフレキシブル基材301、例えば樹脂フィルムにガスケット203となるべき粘着剤211を賦形する工程である。 (Shaping process)
The shaping step is a step of shaping aflexible base material 301 having flexibility, for example, a pressure-sensitive adhesive 211 to be a gasket 203 on a resin film.
賦形工程は、柔軟性を有するフレキシブル基材301、例えば樹脂フィルムにガスケット203となるべき粘着剤211を賦形する工程である。 (Shaping process)
The shaping step is a step of shaping a
図5(A)に示すように、ベース401の上にフレキシブル基材301を載置し、このフレキシブル基材301を介して成形型411を載置する。成形型411にはゲート412とキャビティ413とが設けられている。
As shown in FIG. 5A, the flexible base material 301 is placed on the base 401, and the molding die 411 is placed via the flexible base material 301. The molding die 411 is provided with a gate 412 and a cavity 413.
フレキシブル基材301は、一対のセパレータ11のうちの一方、例えば酸化ガス(酸素)に接する側のセパレータ11Bに設けられている隣接する二つのビード14Bの間に入り込む突部302を備えている。突部302は、ビード14Bと同様に、フレキシブル基材301から70°程度の立ち上がり角度で立ち上がっている。つまり突部302は、ガスケット203となる粘着剤211が粘着するビード14Bの側壁15Bを模した形状に形成されている。
The flexible base material 301 includes a protrusion 302 that enters between two adjacent beads 14B provided on one of the pair of separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen). Like the bead 14B, the protrusion 302 rises from the flexible base material 301 at a rising angle of about 70 °. That is, the protrusion 302 is formed in a shape imitating the side wall 15B of the bead 14B to which the pressure-sensitive adhesive 211 serving as the gasket 203 adheres.
成形型411に設けられたキャビティ413は、フレキシブル基材301の突部302を配置し、ゲート412と連絡する部分にガスケット203を成形するための形状を有している。
The cavity 413 provided in the molding die 411 has a shape for forming the gasket 203 at the portion where the protrusion 302 of the flexible base material 301 is arranged and in contact with the gate 412.
図5(B)に示すように、ゲート412から粘着剤211の材料212、例えばゴム状弾性材料である未加硫のブチルゴムなどをキャビティ413に導く。このときの成形手法としては、射出成形又はトランスファー成形が採用される。
As shown in FIG. 5B, the material 212 of the pressure-sensitive adhesive 211, for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413. As the molding method at this time, injection molding or transfer molding is adopted.
図5(C)に示すように、ベース401から成形型411を離すことで、突部302に沿うように、フレキシブル基材301に粘着剤211が賦形される。賦形された粘着剤211は、ガスケット203となる。
As shown in FIG. 5C, by separating the molding die 411 from the base 401, the adhesive 211 is formed on the flexible base material 301 along the protrusion 302. The shaped pressure-sensitive adhesive 211 becomes the gasket 203.
ベース401から成形型411を離すことでフレキシブル基材301に粘着剤211を賦形できるようにするために、キャビティ413の壁部よりもフレキシブル基材301の方が強い粘着性を発揮するようにされている。
In order to allow the adhesive 211 to be formed on the flexible base material 301 by separating the molding 411 from the base 401, the flexible base material 301 exhibits stronger adhesiveness than the wall portion of the cavity 413. Has been done.
(転写工程)
転写工程は、フレキシブル基材301に賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Transfer process)
The transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the flexible base material 301 to the separator 11 to form the gasket 203.
転写工程は、フレキシブル基材301に賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Transfer process)
The transfer step is a step of transferring the pressure-
図6(A)に示すように、酸化ガス(酸素)に接する側のセパレータ11Bに対して、フレキシブル基材301に賦形された粘着剤211を対面させる。対面させる位置は、セパレータ11Bに対するガスケット203の固定位置である。ガスケット203の固定位置は、図4に示すように、燃料ガス(水素)と接する側のセパレータ11Aのビード14Aと入れ子状に重なり合うビード14Bの側壁15Bである。
As shown in FIG. 6A, the pressure-sensitive adhesive 211 formed on the flexible base material 301 is made to face the separator 11B on the side in contact with the oxidizing gas (oxygen). The facing position is the fixed position of the gasket 203 with respect to the separator 11B. As shown in FIG. 4, the fixing position of the gasket 203 is the side wall 15B of the bead 14B which is nestedly overlapped with the bead 14A of the separator 11A on the side in contact with the fuel gas (hydrogen).
図6(B)に示すように、セパレータ11Bとフレキシブル基材301とを接近させ、ガスケット203を固定すべき位置に粘着剤211を接触させる。粘着剤211は自らの粘着性により、セパレータ11Bに粘着する。
As shown in FIG. 6B, the separator 11B and the flexible base material 301 are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed. The pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
図6(C)に示すように、フレキシブル基材301を屈曲させ、粘着剤211から剥離する。このときフレキシブル基材301よりもセパレータ11Bの方が強い粘着性を発揮するようにされている。このため粘着剤211はセパレータ11Bに粘着したままの状態を維持し、粘着剤211からフレキシブル基材301が剥離される。
As shown in FIG. 6C, the flexible base material 301 is bent and peeled from the adhesive 211. At this time, the separator 11B is designed to exhibit stronger adhesiveness than the flexible base material 301. Therefore, the pressure-sensitive adhesive 211 keeps sticking to the separator 11B, and the flexible base material 301 is peeled off from the pressure-sensitive adhesive 211.
図6(D)に示すように、その結果セパレータ11Bに粘着剤211が固定され、粘着剤211はガスケット203となる。
As shown in FIG. 6D, as a result, the adhesive 211 is fixed to the separator 11B, and the adhesive 211 becomes the gasket 203.
こうしてセパレータ11Bにガスケット203を成形することができる。このときセパレータ11Bにはガスケット成形時の圧力、例えば型押さえによる圧力や射出圧などがかからず、破壊や損傷を生じさせることなくセパレータ11Bにガスケット203を成形することができる。したがってセパレータ11(11A,11B)として、カーボン製のような脆性のものを用いることが可能である。
In this way, the gasket 203 can be formed on the separator 11B. At this time, the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
[第3の実施の形態]
第3の実施の形態を図7(A)~(D)及び図8(A)~(E)に基づいて説明する。第2の実施の形態と同一部分は同一符号で示し、説明も省略する。 [Third Embodiment]
The third embodiment will be described with reference to FIGS. 7 (A) to 7 (D) and FIGS. 8 (A) to 8 (E). The same parts as those of the second embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
第3の実施の形態を図7(A)~(D)及び図8(A)~(E)に基づいて説明する。第2の実施の形態と同一部分は同一符号で示し、説明も省略する。 [Third Embodiment]
The third embodiment will be described with reference to FIGS. 7 (A) to 7 (D) and FIGS. 8 (A) to 8 (E). The same parts as those of the second embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
本実施の形態は、予め突部302が設けられたフレキシブル基材301を用いるのではなく、成形型411に対する粘着剤211の材料212の充填圧による型押しによって突部302を形成する一例である。このような製造方法上、フレキシブル基材301としてはより柔軟性の高いフィルム状のものが用いられる。
This embodiment is an example in which the protrusion 302 is formed by embossing the material 212 of the pressure-sensitive adhesive 211 against the molding die 411 by embossing the material 212, instead of using the flexible base material 301 provided with the protrusion 302 in advance. .. In such a manufacturing method, a more flexible film-like flexible base material 301 is used as the flexible base material 301.
本実施の形態のガスケット製造方法も第2の実施の形態の方法と同様に、図4に示すような冷却面シール201及び反応面シール202のシール構造に適合するガスケット203を生成する。賦形工程と転写工程とを含んでいる点も、第1及び第2の実施の形態のガスケット製造方法と同様である。
Similar to the method of the second embodiment, the gasket manufacturing method of the present embodiment also produces a gasket 203 that conforms to the seal structure of the cooling surface seal 201 and the reaction surface seal 202 as shown in FIG. The point that the shaping step and the transfer step are included is also the same as the gasket manufacturing method of the first and second embodiments.
(賦形工程)
賦形工程は、例えば樹脂フィルムのような柔軟性を有するフレキシブル基材301にガスケット203となるべき粘着剤211を賦形する工程である。本実施の形態では、下型411Lと上型411Uとを用いる。 (Shaping process)
The shaping step is a step of shaping the pressure-sensitive adhesive 211 to be the gasket 203 on the flexible base material 301 having flexibility such as a resin film. In this embodiment, the lower mold 411L and the upper mold 411U are used.
賦形工程は、例えば樹脂フィルムのような柔軟性を有するフレキシブル基材301にガスケット203となるべき粘着剤211を賦形する工程である。本実施の形態では、下型411Lと上型411Uとを用いる。 (Shaping process)
The shaping step is a step of shaping the pressure-
図7(A)に示すように、下型411Lの上にフレキシブル基材301を載置し、このフレキシブル基材301を介して上型411Uを載置する。下型411Lには突部414が設けられ、上型411Uにはゲート412とキャビティ413とが設けられている。
As shown in FIG. 7A, the flexible base material 301 is placed on the lower mold 411L, and the upper mold 411U is placed via the flexible base material 301. The lower mold 411L is provided with a protrusion 414, and the upper mold 411U is provided with a gate 412 and a cavity 413.
下型411Lに設けられた突部414は、第2の実施の形態のフレキシブル基材301に設けられた突部302に相当するもので、ビード14Bと同様に、フレキシブル基材301から70°程度の立ち上がり角度で立ち上がっている。つまり突部302は、ガスケット203となる粘着剤211が粘着するビード14Bの側壁15Bを模した形状に形成されている。
The protrusion 414 provided on the lower mold 411L corresponds to the protrusion 302 provided on the flexible base material 301 of the second embodiment, and is about 70 ° from the flexible base material 301 like the bead 14B. It stands up at the rising angle of. That is, the protrusion 302 is formed in a shape imitating the side wall 15B of the bead 14B to which the pressure-sensitive adhesive 211 serving as the gasket 203 adheres.
上型411Uに設けられたキャビティ413は、下型411Lの突部414を配置し、ゲート412と連絡する部分にガスケット203を成形するための形状を有している。
The cavity 413 provided in the upper mold 411U has a shape for arranging the protrusion 414 of the lower mold 411L and forming the gasket 203 in the portion communicating with the gate 412.
図7(B)に示すように、ゲート412から粘着剤211の材料212、例えばゴム状弾性材料である未加硫のブチルゴムなどをキャビティ413に導く。
As shown in FIG. 7B, the material 212 of the pressure-sensitive adhesive 211, for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413.
図7(C)に示すように、キャビティ413への粘着剤211の材料212の充填圧によって、フレキシブル基材301は突部414の形状に屈曲する。
As shown in FIG. 7C, the flexible base material 301 bends into the shape of the protrusion 414 due to the filling pressure of the material 212 of the adhesive 211 into the cavity 413.
図7(D)に示すように、下型411Lから上型411Uを離すことで、フレキシブル基材301には、突部414に沿うように粘着剤211が賦形される。賦形された粘着剤211は、ガスケット203となる。
As shown in FIG. 7D, by separating the upper mold 411U from the lower mold 411L, the adhesive 211 is formed on the flexible base material 301 along the protrusion 414. The shaped pressure-sensitive adhesive 211 becomes the gasket 203.
下型411Lから上型411Uを離すことでフレキシブル基材301に粘着剤211を賦形できるようにするために、キャビティ413の壁部よりもフレキシブル基材301の方が強い粘着性を発揮するようにされている。
In order to allow the adhesive 211 to be formed on the flexible base material 301 by separating the upper mold 411U from the lower mold 411L, the flexible base material 301 exhibits stronger adhesiveness than the wall portion of the cavity 413. Has been made.
(転写工程)
転写工程は、フレキシブル基材301に賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Transfer process)
The transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the flexible base material 301 to the separator 11 to form the gasket 203.
転写工程は、フレキシブル基材301に賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Transfer process)
The transfer step is a step of transferring the pressure-
図8(A)に示すように、酸化ガス(酸素)に接する側のセパレータ11Bに対して、下型411Lごとフレキシブル基材301に賦形された粘着剤211を対面させる。対面させる位置は、セパレータ11Bに対するガスケット203の固定位置である。ガスケット203の固定位置は、図4に示すように、燃料ガス(水素)と接する側のセパレータ11Aのビード14Aと入れ子状に重なり合うビード14Bの側壁15Bである。
As shown in FIG. 8A, the adhesive 211 formed on the flexible base material 301 together with the lower mold 411L is made to face the separator 11B on the side in contact with the oxidizing gas (oxygen). The facing position is the fixed position of the gasket 203 with respect to the separator 11B. As shown in FIG. 4, the fixing position of the gasket 203 is the side wall 15B of the bead 14B which is nestedly overlapped with the bead 14A of the separator 11A on the side in contact with the fuel gas (hydrogen).
図8(B)に示すように、下型411Lに取り付けられたセパレータ11Bとフレキシブル基材301とを接近させ、ガスケット203を固定すべき位置に粘着剤211を接触させる。粘着剤211は自らの粘着性により、セパレータ11Bに粘着する。
As shown in FIG. 8B, the separator 11B attached to the lower mold 411L and the flexible base material 301 are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed. The pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
図8(C)に示すように、フレキシブル基材301から下型411Lを外す。このときセパレータ11Bと粘着剤211との間の粘着力、及び粘着剤211とフレキシブル基材301との間の粘着力よりも、フレキシブル基材301と下型411Lとの間の接合力の方が小さいため、下型411Lはフレキシブル基材301から円滑に外れる。
As shown in FIG. 8C, the lower mold 411L is removed from the flexible base material 301. At this time, the adhesive force between the flexible base material 301 and the lower mold 411L is greater than the adhesive force between the separator 11B and the pressure-sensitive adhesive 211 and the adhesive force between the pressure-sensitive adhesive 211 and the flexible base material 301. Due to its small size, the lower mold 411L can be smoothly removed from the flexible base material 301.
図8(D)に示すように、フレキシブル基材301を屈曲させ、粘着剤211から剥離する。このときフレキシブル基材301よりもセパレータ11Bの方が強い粘着性を発揮するようにされている。このため粘着剤211はフレキシブル基材301に粘着したままの状態を維持し、粘着剤211からフレキシブル基材301が剥離される。
As shown in FIG. 8D, the flexible base material 301 is bent and peeled from the adhesive 211. At this time, the separator 11B is designed to exhibit stronger adhesiveness than the flexible base material 301. Therefore, the pressure-sensitive adhesive 211 maintains the state of being adhered to the flexible base material 301, and the flexible base material 301 is peeled off from the pressure-sensitive adhesive 211.
図8(E)に示すように、その結果セパレータ11Bに粘着剤211が固定され、粘着剤211はガスケット203となる。
As shown in FIG. 8 (E), as a result, the adhesive 211 is fixed to the separator 11B, and the adhesive 211 becomes the gasket 203.
こうしてセパレータ11Bにガスケット203を成形することができる。このときセパレータ11Bにはガスケット成形時の圧力、例えば型押さえによる圧力や射出圧などがかからず、破壊や損傷を生じさせることなくセパレータ11Bにガスケット203を成形することができる。したがってセパレータ11(11A,11B)として、カーボン製のような脆性のものを用いることが可能である。
In this way, the gasket 203 can be formed on the separator 11B. At this time, the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
[第4の実施の形態]
第4の実施の形態を図9(A)~(C)ないし図11(A)~(C)に基づいて説明する。第2の実施の形態と同一部分は同一符号で示し、説明も省略する。 [Fourth Embodiment]
A fourth embodiment will be described with reference to FIGS. 9 (A) to 9 (C) to 11 (A) to 11 (C). The same parts as those of the second embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
第4の実施の形態を図9(A)~(C)ないし図11(A)~(C)に基づいて説明する。第2の実施の形態と同一部分は同一符号で示し、説明も省略する。 [Fourth Embodiment]
A fourth embodiment will be described with reference to FIGS. 9 (A) to 9 (C) to 11 (A) to 11 (C). The same parts as those of the second embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
本実施の形態は、フレキシブル基材301に粘着剤211を直接賦形するのではなく、中間基材351に賦形し、中間基材351からフレキシブル基材301に転写し、さらにフレキシブル基材301からセパレータ11に転写する。
In this embodiment, the pressure-sensitive adhesive 211 is not directly shaped on the flexible base material 301, but is shaped on the intermediate base material 351 and transferred from the intermediate base material 351 to the flexible base material 301, and further formed on the flexible base material 301. Is transferred to the separator 11.
本実施の形態のガスケット製造方法も第2の実施の形態の方法と同様に、図4に示すような冷却面シール201及び反応面シール202のシール構造に適合するガスケット203を生成する。賦形工程と転写工程とを含んでいる点も、第1及び第2の実施の形態のガスケット製造方法と同様である。もっとも前述したとおり、中間基材351からフレキシブル基材301(中間転写工程)、フレキシブル基材301からセパレータ11(最終転写工程)という二段階の転写工程を備えている。
Similar to the method of the second embodiment, the gasket manufacturing method of the present embodiment also produces a gasket 203 that conforms to the seal structure of the cooling surface seal 201 and the reaction surface seal 202 as shown in FIG. The point that the shaping step and the transfer step are included is also the same as the gasket manufacturing method of the first and second embodiments. However, as described above, it is provided with a two-step transfer step of the intermediate base material 351 to the flexible base material 301 (intermediate transfer step) and the flexible base material 301 to the separator 11 (final transfer step).
(賦形工程)
賦形工程は、中間基材351にガスケット203となるべき粘着剤211を賦形する工程である。中間基材351は柔軟性を有している必要はなく、硬質な材料からなる部材であってもよい。 (Shaping process)
The shaping step is a step of shaping the pressure-sensitive adhesive 211 to be the gasket 203 on the intermediate base material 351. The intermediate base material 351 does not have to have flexibility and may be a member made of a hard material.
賦形工程は、中間基材351にガスケット203となるべき粘着剤211を賦形する工程である。中間基材351は柔軟性を有している必要はなく、硬質な材料からなる部材であってもよい。 (Shaping process)
The shaping step is a step of shaping the pressure-
図9(A)に示すように、ベース401の上に中間基材351を載置し、この中間基材351を介して成形型411を載置する。成形型411にはゲート412とキャビティ413とが設けられている。
As shown in FIG. 9A, the intermediate base material 351 is placed on the base 401, and the molding die 411 is placed via the intermediate base material 351. The molding die 411 is provided with a gate 412 and a cavity 413.
中間基材351は、一対のセパレータ11のうちの一方、例えば酸化ガス(酸素)に接する側のセパレータ11Bに設けられている隣接する二つのビード14Bの間に入り込む突部352を備えている。突部352は、ビード14Bと同様に、フレキシブル基材301から70°程度の立ち上がり角度で立ち上がっている。つまり突部352は、ガスケット203となる粘着剤211が粘着するビード14Bの側壁15Bを模した形状に形成されている。
The intermediate base material 351 includes a protrusion 352 that enters between two adjacent beads 14B provided on one of the pair of separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen). Like the bead 14B, the protrusion 352 rises from the flexible base material 301 at a rising angle of about 70 °. That is, the protrusion 352 is formed in a shape imitating the side wall 15B of the bead 14B to which the pressure-sensitive adhesive 211 serving as the gasket 203 adheres.
成形型411に設けられたキャビティ413は、中間基材351に設けられた突部352を配置し、ゲート412と連絡する部分にガスケット203を成形するための形状を有している。
The cavity 413 provided in the molding die 411 has a shape for arranging the protrusion 352 provided in the intermediate base material 351 and molding the gasket 203 in the portion communicating with the gate 412.
図9(B)に示すように、ゲート412から粘着剤211の材料212、例えばゴム状弾性材料である未加硫のブチルゴムなどをキャビティ413に導く。このときの成形手法としては、射出成形又はトランスファー成形が採用される。
As shown in FIG. 9B, the material 212 of the pressure-sensitive adhesive 211, for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413. As the molding method at this time, injection molding or transfer molding is adopted.
図9(C)に示すように、ベース401から成形型411を離すことで、突部352に沿うように、中間基材351に粘着剤211が賦形される。賦形された粘着剤211は、ガスケット203となる。
As shown in FIG. 9C, by separating the molding die 411 from the base 401, the pressure-sensitive adhesive 211 is formed on the intermediate base material 351 along the protrusion 352. The shaped pressure-sensitive adhesive 211 becomes the gasket 203.
ベース401から成形型411を離すことで中間基材351に粘着剤211を賦形できるようにするために、キャビティ413の壁部よりも中間基材351の方が強い粘着性を発揮するようにされている。
In order to allow the adhesive 211 to be formed on the intermediate base material 351 by separating the mold 411 from the base 401, the intermediate base material 351 exhibits stronger adhesiveness than the wall portion of the cavity 413. Has been done.
(中間転写工程)
中間転写工程は、中間基材351に賦形された粘着剤211をフレキシブル基材301に転写する工程である。フレキシブル基材301は、第2の実施の形態のような突部302が設けられた形状のものではなく、フラットな形状を有している。 (Intermediate transfer process)
The intermediate transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the intermediate base material 351 to the flexible base material 301. The flexible base material 301 has a flat shape, not the shape provided with the protrusion 302 as in the second embodiment.
中間転写工程は、中間基材351に賦形された粘着剤211をフレキシブル基材301に転写する工程である。フレキシブル基材301は、第2の実施の形態のような突部302が設けられた形状のものではなく、フラットな形状を有している。 (Intermediate transfer process)
The intermediate transfer step is a step of transferring the pressure-
図10(A)に示すように、フレキシブル基材301に対して、中間基材351に賦形された粘着剤211を対面させる。
As shown in FIG. 10 (A), the pressure-sensitive adhesive 211 formed on the intermediate base material 351 is made to face the flexible base material 301.
図10(B)に示すように、フレキシブル基材301と中間基材351とを近接させ、フレキシブル基材301に粘着剤211を接触させる。粘着剤211は自らの粘着性により、フレキシブル基材301に粘着する。
As shown in FIG. 10B, the flexible base material 301 and the intermediate base material 351 are brought close to each other, and the pressure-sensitive adhesive 211 is brought into contact with the flexible base material 301. The pressure-sensitive adhesive 211 adheres to the flexible base material 301 due to its own adhesiveness.
図10(C)に示すように、中間基材351からフレキシブル基材301を離す。このとき中間基材351よりもフレキシブル基材301の方が強い粘着性を発揮するようにされている。このため粘着剤211はフレキシブル基材301に粘着したままの状態を維持し、粘着剤211からフレキシブル基材301が剥離される。
As shown in FIG. 10C, the flexible base material 301 is separated from the intermediate base material 351. At this time, the flexible base material 301 exhibits stronger adhesiveness than the intermediate base material 351. Therefore, the pressure-sensitive adhesive 211 maintains the state of being adhered to the flexible base material 301, and the flexible base material 301 is peeled off from the pressure-sensitive adhesive 211.
(最終転写工程)
最終転写工程は、フレキシブル基材301に賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Final transfer process)
The final transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the flexible base material 301 to the separator 11 to form the gasket 203.
最終転写工程は、フレキシブル基材301に賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Final transfer process)
The final transfer step is a step of transferring the pressure-
図11(A)に示すように、酸化ガス(酸素)に接する側のセパレータ11Bに対して、フレキシブル基材301に賦形された粘着剤211を対面させる。対面させる位置は、セパレータ11Bに対するガスケット203の固定位置である。ガスケット203の固定位置は、図4に示すように、燃料ガス(水素)と接する側のセパレータ11Aのビード14Aと入れ子状に重なり合うビード14Bの側壁15Bである。
As shown in FIG. 11A, the pressure-sensitive adhesive 211 formed on the flexible base material 301 is made to face the separator 11B on the side in contact with the oxidizing gas (oxygen). The facing position is the fixed position of the gasket 203 with respect to the separator 11B. As shown in FIG. 4, the fixing position of the gasket 203 is the side wall 15B of the bead 14B which is nestedly overlapped with the bead 14A of the separator 11A on the side in contact with the fuel gas (hydrogen).
図11(B)に示すように、セパレータ11Bとフレキシブル基材301とを接近させ、ガスケット203を固定すべき位置に粘着剤211を接触させる。粘着剤211は自らの粘着性により、セパレータ11Bに粘着する。
As shown in FIG. 11B, the separator 11B and the flexible base material 301 are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed. The pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
図11(C)に示すように、フレキシブル基材301を屈曲させ、粘着剤211から剥離する。このときフレキシブル基材301よりもセパレータ11Bの方が強い粘着性を発揮するようにされている。このため粘着剤211はフレキシブル基材301に粘着したままの状態を維持し、粘着剤211からフレキシブル基材301が剥離される。
As shown in FIG. 11C, the flexible base material 301 is bent and peeled off from the adhesive 211. At this time, the separator 11B is designed to exhibit stronger adhesiveness than the flexible base material 301. Therefore, the pressure-sensitive adhesive 211 maintains the state of being adhered to the flexible base material 301, and the flexible base material 301 is peeled off from the pressure-sensitive adhesive 211.
図11(D)に示すように、その結果セパレータ11Bに粘着剤211が固定され、粘着剤211はガスケット203となる。
As shown in FIG. 11D, as a result, the adhesive 211 is fixed to the separator 11B, and the adhesive 211 becomes the gasket 203.
ガスケット203となる粘着剤211については、架橋してもしなくてもどちらでもよいことは第1~第3の実施の形態と同様である。粘着剤211の架橋は、中間基材351に賦形した後、フレキシブル基材301に転写した後、又はセパレータ11Bに転写した後に実施する。
The pressure-sensitive adhesive 211 to be the gasket 203 may or may not be crosslinked, as in the first to third embodiments. Cross-linking of the pressure-sensitive adhesive 211 is carried out after shaping on the intermediate base material 351 and then transferring to the flexible base material 301 or after transferring to the separator 11B.
こうしてセパレータ11Bにガスケット203を成形することができる。このときセパレータ11Bにはガスケット成形時の圧力、例えば型押さえによる圧力や射出圧などがかからず、破壊や損傷を生じさせることなくセパレータ11Bにガスケット203を成形することができる。したがってセパレータ11(11A,11B)として、カーボン製のような脆性のものを用いることが可能である。
In this way, the gasket 203 can be formed on the separator 11B. At this time, the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
本実施の形態の変形例としては、セパレータ11Bのビード14B以外の領域、又はセパレータ11Bに設けられたビード14Bの頂部をセパレータ11Bに対するガスケット203の固定位置としてもよい。これらの変形例を採用する場合、賦形工程では中間基材351の平坦な面に粘着剤211を賦形し、中間転写工程ではフレキシブル基材301の平坦な面に粘着剤211を中間転写する。
As a modification of the present embodiment, a region other than the bead 14B of the separator 11B or the top of the bead 14B provided on the separator 11B may be a fixed position of the gasket 203 with respect to the separator 11B. When these modifications are adopted, the pressure-sensitive adhesive 211 is shaped on the flat surface of the intermediate base material 351 in the shaping step, and the pressure-sensitive adhesive 211 is intermediate-transferred on the flat surface of the flexible base material 301 in the intermediate transfer step. ..
これによって最終転写工程では、セパレータ11Bのビード14B以外の領域、又はセパレータ11Bに設けられたビード14Bの頂部に対して、フレキシブル基材301から粘着剤211を転写することができる。
Thereby, in the final transfer step, the pressure-sensitive adhesive 211 can be transferred from the flexible base material 301 to the region other than the bead 14B of the separator 11B or the top of the bead 14B provided on the separator 11B.
[第5の実施の形態]
第5の実施の形態を図12(A)~(C)及び図13(A)~(D)に基づいて説明する。第1の実施の形態と同一部分は同一符号で示し、説明も省略する。 [Fifth Embodiment]
A fifth embodiment will be described with reference to FIGS. 12 (A) to 12 (C) and FIGS. 13 (A) to 13 (D). The same parts as those in the first embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
第5の実施の形態を図12(A)~(C)及び図13(A)~(D)に基づいて説明する。第1の実施の形態と同一部分は同一符号で示し、説明も省略する。 [Fifth Embodiment]
A fifth embodiment will be described with reference to FIGS. 12 (A) to 12 (C) and FIGS. 13 (A) to 13 (D). The same parts as those in the first embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
(賦形工程)
本実施の形態の成形型411は、上型411Uと下型411Lとを含んでいる。賦形工程は、ガスケット203となるべき粘着剤211を下型411Lに賦形する工程である。 (Shaping process)
The molding die 411 of the present embodiment includes anupper die 411U and a lower die 411L. The shaping step is a step of shaping the pressure-sensitive adhesive 211, which should be the gasket 203, into the lower mold 411L.
本実施の形態の成形型411は、上型411Uと下型411Lとを含んでいる。賦形工程は、ガスケット203となるべき粘着剤211を下型411Lに賦形する工程である。 (Shaping process)
The molding die 411 of the present embodiment includes an
図12(A)に示すように、ベース401の上に成形型411の下型411Lを載置する。成形型411の上型411Uにはゲート412とキャビティ413とが設けられている。キャビティ413はガスケット203を成形するための形状を有している。
As shown in FIG. 12 (A), the lower mold 411L of the molding mold 411 is placed on the base 401. The upper mold 411U of the molding mold 411 is provided with a gate 412 and a cavity 413. The cavity 413 has a shape for forming the gasket 203.
図12(B)に示すように、ゲート412から粘着剤211の材料212、例えばゴム状弾性材料である未加硫のブチルゴムなどをキャビティ413に導く。このときの成形手法としては、射出成形又はトランスファー成形が採用される。
As shown in FIG. 12B, the material 212 of the pressure-sensitive adhesive 211, for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413. As the molding method at this time, injection molding or transfer molding is adopted.
図12(C)に示すように、ベース401から成形型411を離すことで、下型411Lの平坦な面に粘着剤211が賦形される。賦形された粘着剤211は、ガスケット203となる。
As shown in FIG. 12C, by separating the molding die 411 from the base 401, the adhesive 211 is formed on the flat surface of the lower die 411L. The shaped pressure-sensitive adhesive 211 becomes the gasket 203.
ベース401から成形型411を離して下型411Lに粘着剤211を賦形できるようにするために、キャビティ413の壁部よりも下型411Lの方が強い粘着性を発揮するようにされている。
In order to separate the molding die 411 from the base 401 so that the adhesive 211 can be formed on the lower die 411L, the lower die 411L exhibits stronger adhesiveness than the wall portion of the cavity 413. ..
(転写工程)
転写工程は、下型411Lに賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Transfer process)
The transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the lower mold 411L to the separator 11 to form the gasket 203.
転写工程は、下型411Lに賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Transfer process)
The transfer step is a step of transferring the pressure-
図13(A)に示すように、一方のセパレータ11、例えば酸化ガス(酸素)に接する側のセパレータ11Bに対して、下型411Lに賦形された粘着剤211を対面させる。対面させる位置は、セパレータ11Bに対するガスケット203の固定位置である。本実施の形態では、セパレータ11Bに設けられたビード14B以外の領域を固定位置としている。
As shown in FIG. 13 (A), the pressure-sensitive adhesive 211 formed on the lower mold 411L is faced with one of the separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen). The facing position is the fixed position of the gasket 203 with respect to the separator 11B. In the present embodiment, a region other than the bead 14B provided on the separator 11B is set as a fixed position.
図13(B)に示すように、セパレータ11Bと下型411Lとを接近させ、ガスケット203を固定すべき位置に粘着剤211を接触させる。粘着剤211は自らの粘着性により、セパレータ11Bに粘着する。
As shown in FIG. 13B, the separator 11B and the lower mold 411L are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed. The pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
図13(C)に示すように、セパレータ11Bを屈曲させ、下型411Lから粘着剤211を剥離する。このとき下型411Lよりもセパレータ11Bの方が強い粘着性を発揮するようにされている。このため粘着剤211はセパレータ11Bに粘着したままの状態を維持し、下型411Lから剥離される。
As shown in FIG. 13C, the separator 11B is bent to peel off the adhesive 211 from the lower mold 411L. At this time, the separator 11B exhibits stronger adhesiveness than the lower mold 411L. Therefore, the pressure-sensitive adhesive 211 keeps sticking to the separator 11B and is peeled off from the lower mold 411L.
図13(D)に示すように、その結果セパレータ11Bに粘着剤211が固定され、粘着剤211はガスケット203となる。
As shown in FIG. 13D, as a result, the adhesive 211 is fixed to the separator 11B, and the adhesive 211 becomes the gasket 203.
ガスケット203となる粘着剤211については、架橋してもしなくてもどちらでもよいことは第1~第4の実施の形態と同様である。粘着剤211の架橋は、下型411Lに賦形した後、あるいはセパレータ11Bに転写した後に実施する。
The pressure-sensitive adhesive 211 to be the gasket 203 may or may not be crosslinked, as in the first to fourth embodiments. Cross-linking of the pressure-sensitive adhesive 211 is carried out after shaping into the lower mold 411L or after transferring to the separator 11B.
こうしてセパレータ11Bにガスケット203を成形することができる。このときセパレータ11Bにはガスケット成形時の圧力、例えば型押さえによる圧力や射出圧などがかからず、破壊や損傷を生じさせることなくセパレータ11Bにガスケット203を成形することができる。したがってセパレータ11(11A,11B)として、カーボン製のような脆性のものを用いることが可能である。
In this way, the gasket 203 can be formed on the separator 11B. At this time, the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
[第6の実施の形態]
第6の実施の形態を図14(A)~(C)及び図15(A)~(D)に基づいて説明する。第5の実施の形態と同一部分は同一符号で示し、説明も省略する。 [Sixth Embodiment]
The sixth embodiment will be described with reference to FIGS. 14 (A) to 14 (C) and FIGS. 15 (A) to 15 (D). The same parts as those in the fifth embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
第6の実施の形態を図14(A)~(C)及び図15(A)~(D)に基づいて説明する。第5の実施の形態と同一部分は同一符号で示し、説明も省略する。 [Sixth Embodiment]
The sixth embodiment will be described with reference to FIGS. 14 (A) to 14 (C) and FIGS. 15 (A) to 15 (D). The same parts as those in the fifth embodiment are indicated by the same reference numerals, and the description thereof will be omitted.
本実施の形態のガスケット製造方法は、第2の実施の形態の方法と同様に、図4に示すような冷却面シール201及び反応面シール202のシール構造に適合するガスケット203を生成する。第5の実施の形態のガスケット製造方法と同様に、本実施の形態の方法も賦形工程と転写工程とを含んでいる。
The gasket manufacturing method of the present embodiment produces a gasket 203 that conforms to the seal structure of the cooling surface seal 201 and the reaction surface seal 202 as shown in FIG. 4, similarly to the method of the second embodiment. Similar to the gasket manufacturing method of the fifth embodiment, the method of the present embodiment also includes a shaping step and a transfer step.
(賦形工程)
賦形工程は、下型411Lにガスケット203となるべき粘着剤211を賦形する工程である。 (Shaping process)
The shaping step is a step of shaping the pressure-sensitive adhesive 211 to be the gasket 203 on the lower mold 411L.
賦形工程は、下型411Lにガスケット203となるべき粘着剤211を賦形する工程である。 (Shaping process)
The shaping step is a step of shaping the pressure-
図14(A)に示すように、ベース401の上に成形型411の下型411Lを載置する。成形型411の上型411Uにはゲート412とキャビティ413とが設けられている。
As shown in FIG. 14 (A), the lower mold 411L of the molding mold 411 is placed on the base 401. The upper mold 411U of the molding mold 411 is provided with a gate 412 and a cavity 413.
下型411Lは、一対のセパレータ11のうちの一方、例えば酸化ガス(酸素)に接する側のセパレータ11Bに設けられている隣接する二つのビード14Bの間に入り込む突部414を備えている。突部414は、ビード14Bと同様に、下型411Lから70°程度の立ち上がり角度で立ち上がっている。つまり突部414は、ガスケット203となる粘着剤211が粘着するビード14Bの側壁15Bを模した形状に形成されている。
The lower mold 411L is provided with a protrusion 414 that enters between two adjacent beads 14B provided on one of the pair of separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen). Like the bead 14B, the protrusion 414 rises from the lower mold 411L at a rising angle of about 70 °. That is, the protrusion 414 is formed in a shape imitating the side wall 15B of the bead 14B to which the pressure-sensitive adhesive 211 serving as the gasket 203 adheres.
上型411Uに設けられたキャビティ413は、下型411Lの突部414を配置し、ゲート412と連絡する部分にガスケット203を成形するための形状を有している。
The cavity 413 provided in the upper mold 411U has a shape for arranging the protrusion 414 of the lower mold 411L and forming the gasket 203 in the portion communicating with the gate 412.
図14(B)に示すように、ゲート412から粘着剤211の材料212、例えばゴム状弾性材料である未加硫のブチルゴムなどをキャビティ413に導く。このときの成形手法としては、射出成形又はトランスファー成形が採用される。
As shown in FIG. 14B, the material 212 of the pressure-sensitive adhesive 211, for example, unvulcanized butyl rubber, which is a rubber-like elastic material, is guided from the gate 412 to the cavity 413. As the molding method at this time, injection molding or transfer molding is adopted.
図14(C)に示すように、ベース401から成形型411を離すことで、突部414に沿うように、下型411Lに粘着剤211が賦形される。賦形された粘着剤211は、ガスケット203となる。
As shown in FIG. 14C, by separating the molding die 411 from the base 401, the adhesive 211 is formed on the lower die 411L along the protrusion 414. The shaped pressure-sensitive adhesive 211 becomes the gasket 203.
ベース401から成形型411を離して下型411Lに粘着剤211を賦形できるようにするために、キャビティ413の壁部よりも下型411Lの方が強い粘着性を発揮するようにされている。
In order to separate the molding die 411 from the base 401 so that the adhesive 211 can be formed on the lower die 411L, the lower die 411L exhibits stronger adhesiveness than the wall portion of the cavity 413. ..
(転写工程)
転写工程は、下型411Lに賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Transfer process)
The transfer step is a step of transferring the pressure-sensitive adhesive 211 formed on the lower mold 411L to the separator 11 to form the gasket 203.
転写工程は、下型411Lに賦形された粘着剤211をセパレータ11に転写し、ガスケット203を成形する工程である。 (Transfer process)
The transfer step is a step of transferring the pressure-
図15(A)に示すように、一方のセパレータ11、例えば酸化ガス(酸素)に接する側のセパレータ11Bに対して、下型411Lに賦形された粘着剤211を対面させる。対面させる位置は、セパレータ11Bに対するガスケット203の固定位置である。ガスケット203の固定位置は、図4に示すように、燃料ガス(水素)と接する側のセパレータ11Aのビード14Aと入れ子状に重なり合うビード14Bの側壁15Bである。
As shown in FIG. 15 (A), the pressure-sensitive adhesive 211 formed on the lower mold 411L is faced with one of the separators 11, for example, the separator 11B on the side in contact with the oxidizing gas (oxygen). The facing position is the fixed position of the gasket 203 with respect to the separator 11B. As shown in FIG. 4, the fixing position of the gasket 203 is the side wall 15B of the bead 14B which is nestedly overlapped with the bead 14A of the separator 11A on the side in contact with the fuel gas (hydrogen).
図15(B)に示すように、セパレータ11Bと下型411Lとを接近させ、ガスケット203を固定すべき位置に粘着剤211を接触させる。粘着剤211は自らの粘着性により、セパレータ11Bに粘着する。
As shown in FIG. 15B, the separator 11B and the lower mold 411L are brought close to each other, and the adhesive 211 is brought into contact with the position where the gasket 203 should be fixed. The pressure-sensitive adhesive 211 adheres to the separator 11B due to its own adhesiveness.
図15(C)に示すように、セパレータ11Bを屈曲させ、下型411Lから粘着剤211を剥離する。このとき下型411Lよりもセパレータ11Bの方が強い粘着性を発揮するようにされている。このため粘着剤211はセパレータ11Bに粘着したままの状態を維持し、下型411Lから剥離される。
As shown in FIG. 15C, the separator 11B is bent to peel off the adhesive 211 from the lower mold 411L. At this time, the separator 11B exhibits stronger adhesiveness than the lower mold 411L. Therefore, the pressure-sensitive adhesive 211 keeps sticking to the separator 11B and is peeled off from the lower mold 411L.
図15(D)に示すように、その結果セパレータ11Bに粘着剤211が固定され、粘着剤211はガスケット203となる。
As shown in FIG. 15D, as a result, the adhesive 211 is fixed to the separator 11B, and the adhesive 211 becomes the gasket 203.
こうしてセパレータ11Bにガスケット203を成形することができる。このときセパレータ11Bにはガスケット成形時の圧力、例えば型押さえによる圧力や射出圧などがかからず、破壊や損傷を生じさせることなくセパレータ11Bにガスケット203を成形することができる。したがってセパレータ11(11A,11B)として、カーボン製のような脆性のものを用いることが可能である。
In this way, the gasket 203 can be formed on the separator 11B. At this time, the separator 11B is not subjected to the pressure at the time of gasket molding, for example, the pressure due to the mold pressing or the injection pressure, and the gasket 203 can be molded on the separator 11B without causing breakage or damage. Therefore, as the separator 11 (11A, 11B), a brittle material such as one made of carbon can be used.
1 燃料電池
2 燃料電池セル
11,11A,11B セパレータ
12 配置領域
13 マニホールド
14,14A,14B ビード
15,15A,15B 側壁
101 膜電極接合体
102 電解質膜(相手部材)
103 マニホールド
201 冷却面シール
202 反応面シール
203 ガスケット
211 粘着剤
212 材料
301 フレキシブル基材
302 突部
351 中間基材
352 突部
401 ベース
411 成形型
411U 上型
411L 下型
412 キャビティ
413 ゲート
414 突部 1Fuel cell 2 Fuel cell cell 11, 11A, 11B Separator 12 Placement area 13 Manifold 14, 14A, 14B Bead 15, 15A, 15B Side wall 101 Membrane electrode assembly 102 Electrolyte membrane (mating member)
103 Manifold 201 Cooling surface seal 202 Reaction surface seal 203 Gasket 211 Adhesive 212 Material 301 Flexible base material 302 Protrusion 351 Intermediate base material 352 Protrusion 401 Base 411 Mold 411U Upper mold 411L Lower mold 412 Cavity 413 Gate 414 Protrusion
2 燃料電池セル
11,11A,11B セパレータ
12 配置領域
13 マニホールド
14,14A,14B ビード
15,15A,15B 側壁
101 膜電極接合体
102 電解質膜(相手部材)
103 マニホールド
201 冷却面シール
202 反応面シール
203 ガスケット
211 粘着剤
212 材料
301 フレキシブル基材
302 突部
351 中間基材
352 突部
401 ベース
411 成形型
411U 上型
411L 下型
412 キャビティ
413 ゲート
414 突部 1
Claims (10)
- 柔軟性を有するフレキシブル基材に成形型を用いてガスケットとなる粘着剤を賦形し、
相手部材を挟んで対面し、前記相手部材に密接してこの相手部材との間に流体の流路を形成するビードを有する一対のセパレータのうちの一方に対して、前記フレキシブル基材に賦形された粘着剤を転写して前記ガスケットを成形する、
燃料電池用セパレータのガスケット製造方法。 An adhesive that serves as a gasket is formed on a flexible base material using a molding mold to form a flexible base material.
The flexible substrate is shaped with respect to one of a pair of separators having beads that face each other with the mating member in between and that form a fluid flow path between the mating member and the mating member. The adhesive is transferred to form the gasket.
A method for manufacturing gaskets for fuel cell separators. - 前記粘着剤の転写位置は、前記ビードの側面である、
請求項1に記載の燃料電池用セパレータのガスケット製造方法。 The transfer position of the pressure-sensitive adhesive is the side surface of the bead.
The method for manufacturing a gasket for a fuel cell separator according to claim 1. - 前記粘着剤の賦形位置は、隣接する二つの前記ビードの間に入り込む前記フレキシブル基材に設けられた突部の側面である、
請求項2に記載の燃料電池用セパレータのガスケット製造方法。 The shaping position of the pressure-sensitive adhesive is the side surface of the protrusion provided on the flexible base material that enters between the two adjacent beads.
The method for manufacturing a gasket for a fuel cell separator according to claim 2. - 前記フレキシブル基材の突部は、前記成形型に対する前記粘着剤の充填圧による型押しによって成形される、
請求項3に記載の燃料電池用セパレータのガスケット製造方法。 The protrusion of the flexible base material is molded by embossing the pressure of the pressure-sensitive adhesive on the molding die.
The method for manufacturing a gasket for a fuel cell separator according to claim 3. - 成形型を用いて中間基材にガスケットとなる粘着剤を賦形し、
柔軟性を有するフレキシブル基材に対して前記中間基材に賦形された前記粘着剤を転写し、
相手部材を挟んで対面し、前記相手部材に密接してこの相手部材との間に流体の流路を形成するビードを有する一対のセパレータのうちの一方に対して、前記フレキシブル基材に転写された粘着剤を転写して前記ガスケットを成形する、
燃料電池用セパレータのガスケット製造方法。 Using a molding mold, a pressure-sensitive adhesive that serves as a gasket is formed on the intermediate base material.
The pressure-sensitive adhesive shaped to the intermediate base material is transferred to the flexible base material having flexibility, and the adhesive is transferred to the flexible base material.
Transferred to the flexible substrate for one of a pair of separators having beads that face each other with the mating member in between and that form a fluid flow path between the mating member and the mating member. The adhesive is transferred to form the gasket.
A method for manufacturing gaskets for fuel cell separators. - 前記粘着剤の転写位置は、前記ビードの側面である、
請求項5に記載の燃料電池用セパレータのガスケット製造方法。 The transfer position of the pressure-sensitive adhesive is the side surface of the bead.
The method for manufacturing a gasket for a fuel cell separator according to claim 5. - 前記粘着剤の賦形位置は、前記中間基材に設けられた突部の側面である、
請求項6に記載の燃料電池用セパレータのガスケット製造方法。 The shaping position of the pressure-sensitive adhesive is the side surface of the protrusion provided on the intermediate base material.
The method for manufacturing a gasket for a fuel cell separator according to claim 6. - 上型と下型とを有する成形型の前記下型にガスケットとなる粘着剤を賦形し、
相手部材を挟んで対面し、前記相手部材に密接してこの相手部材との間に流体の流路を形成するビードを有する一対のセパレータのうちの一方に対して、前記下型に賦形された粘着剤を転写して前記ガスケットを成形する、
燃料電池用セパレータのガスケット製造方法。 An adhesive serving as a gasket is formed on the lower mold of a molding mold having an upper mold and a lower mold.
It is shaped into the lower mold with respect to one of a pair of separators having beads that face each other with the mating member in between and that form a fluid flow path between the mating member and the mating member. The adhesive is transferred to form the gasket.
A method for manufacturing gaskets for fuel cell separators. - 前記粘着剤の転写位置は、前記ビードの側面である、
請求項8に記載の燃料電池用セパレータのガスケット製造方法。 The transfer position of the pressure-sensitive adhesive is the side surface of the bead.
The method for manufacturing a gasket for a fuel cell separator according to claim 8. - 前記粘着剤の賦形位置は、隣接する二つの前記ビードの間に入り込む前記下型に設けられた突部の側面である、
請求項9に記載の燃料電池用セパレータのガスケット製造方法。 The shaping position of the pressure-sensitive adhesive is the side surface of the protrusion provided on the lower mold that enters between the two adjacent beads.
The method for manufacturing a gasket for a fuel cell separator according to claim 9.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20865088.7A EP4033574A4 (en) | 2019-09-18 | 2020-09-01 | Method for manufacturing fuel battery cell separator gasket |
US17/619,026 US11973246B2 (en) | 2019-09-18 | 2020-09-01 | Method for manufacturing fuel battery cell separator gasket |
CN202080032721.4A CN113767490A (en) | 2019-09-18 | 2020-09-01 | Method for manufacturing gasket of separator for fuel cell |
JP2021546585A JP7385668B2 (en) | 2019-09-18 | 2020-09-01 | Gasket manufacturing method for fuel cell separator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019169232 | 2019-09-18 | ||
JP2019-169232 | 2019-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021054113A1 true WO2021054113A1 (en) | 2021-03-25 |
Family
ID=74884249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/033026 WO2021054113A1 (en) | 2019-09-18 | 2020-09-01 | Method for manufacturing fuel battery cell separator gasket |
Country Status (5)
Country | Link |
---|---|
US (1) | US11973246B2 (en) |
EP (1) | EP4033574A4 (en) |
JP (1) | JP7385668B2 (en) |
CN (1) | CN113767490A (en) |
WO (1) | WO2021054113A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016143479A (en) | 2015-01-30 | 2016-08-08 | Nok株式会社 | Fuel battery gasket |
WO2016194573A1 (en) * | 2015-06-04 | 2016-12-08 | Nok株式会社 | Gasket and method for producing same |
JP2017054727A (en) * | 2015-09-10 | 2017-03-16 | 凸版印刷株式会社 | Manufacturing method of membrane electrode assembly, and membrane electrode assembly |
WO2017188059A1 (en) * | 2016-04-28 | 2017-11-02 | Nok株式会社 | Liquid silicone rubber composition and sealing component for solid polymer fuel cell separator |
WO2017195489A1 (en) * | 2016-05-10 | 2017-11-16 | Nok株式会社 | Gasket and method for mounting same |
WO2017199644A1 (en) * | 2016-05-20 | 2017-11-23 | Nok株式会社 | Gasket and method for assembling same |
WO2017212775A1 (en) * | 2016-06-10 | 2017-12-14 | Nok株式会社 | Gasket manufacturing method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4420166B2 (en) * | 2001-03-02 | 2010-02-24 | Nok株式会社 | Manufacturing method of fuel cell component |
JP4367477B2 (en) * | 2006-10-30 | 2009-11-18 | トヨタ自動車株式会社 | Fuel cell |
JP5099352B2 (en) * | 2008-05-23 | 2012-12-19 | Nok株式会社 | Manufacturing method of seal parts |
KR101141366B1 (en) * | 2009-10-27 | 2012-05-03 | 현대하이스코 주식회사 | Solid gasket fabrication method for fuel cell separator |
JP6098948B2 (en) * | 2014-11-06 | 2017-03-22 | トヨタ自動車株式会社 | Fuel cell separator, fuel cell and fuel cell |
JP6600230B2 (en) * | 2015-06-29 | 2019-10-30 | Nok株式会社 | Manufacturing method of gasket |
JP6673678B2 (en) * | 2015-12-03 | 2020-03-25 | Nok株式会社 | Gasket with carrier film and method of manufacturing the same |
-
2020
- 2020-09-01 CN CN202080032721.4A patent/CN113767490A/en active Pending
- 2020-09-01 WO PCT/JP2020/033026 patent/WO2021054113A1/en unknown
- 2020-09-01 US US17/619,026 patent/US11973246B2/en active Active
- 2020-09-01 JP JP2021546585A patent/JP7385668B2/en active Active
- 2020-09-01 EP EP20865088.7A patent/EP4033574A4/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016143479A (en) | 2015-01-30 | 2016-08-08 | Nok株式会社 | Fuel battery gasket |
WO2016194573A1 (en) * | 2015-06-04 | 2016-12-08 | Nok株式会社 | Gasket and method for producing same |
JP2017054727A (en) * | 2015-09-10 | 2017-03-16 | 凸版印刷株式会社 | Manufacturing method of membrane electrode assembly, and membrane electrode assembly |
WO2017188059A1 (en) * | 2016-04-28 | 2017-11-02 | Nok株式会社 | Liquid silicone rubber composition and sealing component for solid polymer fuel cell separator |
WO2017195489A1 (en) * | 2016-05-10 | 2017-11-16 | Nok株式会社 | Gasket and method for mounting same |
WO2017199644A1 (en) * | 2016-05-20 | 2017-11-23 | Nok株式会社 | Gasket and method for assembling same |
WO2017212775A1 (en) * | 2016-06-10 | 2017-12-14 | Nok株式会社 | Gasket manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
EP4033574A1 (en) | 2022-07-27 |
US11973246B2 (en) | 2024-04-30 |
EP4033574A4 (en) | 2024-11-06 |
CN113767490A (en) | 2021-12-07 |
JPWO2021054113A1 (en) | 2021-03-25 |
JP7385668B2 (en) | 2023-11-22 |
US20220302475A1 (en) | 2022-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4147773B2 (en) | Fuel cell | |
US9331346B2 (en) | Fuel cell resin frame equipped membrane electrode assembly | |
TWI358151B (en) | Membrane electrode assembly | |
JP2008147157A (en) | Method of manufacturing metal separator for fuel cell | |
US10770737B2 (en) | Gasket and fuel cell stack including gasket | |
US11171341B2 (en) | Fuel cell and method of manufacturing fuel cell | |
JP2003220664A (en) | Resin/metal joint body for sealing | |
WO2005045971A1 (en) | Separator and production method for separator | |
KR101417107B1 (en) | Bipolarplate for fuel cell Stack | |
JP2001332277A (en) | Stack for fuel cell | |
JP2010165577A (en) | Seal structure of fuel battery cell | |
WO2021049280A1 (en) | Seal structure for fuel cell separator | |
WO2021054113A1 (en) | Method for manufacturing fuel battery cell separator gasket | |
JP4945094B2 (en) | Fuel cell | |
JP4826716B2 (en) | Gasket for fuel cell | |
US10193179B2 (en) | Fuel cell stack | |
JP6126049B2 (en) | Manufacturing method of fuel cell | |
US12136749B2 (en) | Seal structure for fuel cell separator | |
CN115881999A (en) | Method for manufacturing single cell and method for manufacturing stack | |
JP7236913B2 (en) | Fuel cell separator assembly and fuel cell stack including the same | |
JP2006054058A (en) | Separator | |
KR101400569B1 (en) | A gasket for a fuel cell with advanced performance in assembly and sealing and a fuel cell having the same | |
CN110311150A (en) | The manufacturing method of fuel cell monopole and bipolar plates | |
CN216389445U (en) | Single cell and stack | |
JP5273369B2 (en) | Method for manufacturing seal structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20865088 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021546585 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020865088 Country of ref document: EP Effective date: 20220419 |