JP6746994B2 - Method for manufacturing membrane electrode assembly of fuel cell - Google Patents

Method for manufacturing membrane electrode assembly of fuel cell Download PDF

Info

Publication number
JP6746994B2
JP6746994B2 JP2016057709A JP2016057709A JP6746994B2 JP 6746994 B2 JP6746994 B2 JP 6746994B2 JP 2016057709 A JP2016057709 A JP 2016057709A JP 2016057709 A JP2016057709 A JP 2016057709A JP 6746994 B2 JP6746994 B2 JP 6746994B2
Authority
JP
Japan
Prior art keywords
electrode assembly
electrolyte membrane
polymer electrolyte
solid polymer
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016057709A
Other languages
Japanese (ja)
Other versions
JP2017174572A (en
Inventor
友希 五十嵐
友希 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2016057709A priority Critical patent/JP6746994B2/en
Publication of JP2017174572A publication Critical patent/JP2017174572A/en
Application granted granted Critical
Publication of JP6746994B2 publication Critical patent/JP6746994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、燃料電池の膜電極接合体(MEA:Membrane−Electrode Assembly)の製造方法に関する。 The present invention relates to a method for manufacturing a membrane electrode assembly (MEA: Membrane-Electrode Assembly) of a fuel cell.

従来の膜電極接合体の製造方法としては、所望の形状を有する触媒層が付与された転写基材と固体高分子電解質膜をホットプレス、熱ラミネートロールなどで熱圧着した後、基材を剥離する方法が提案されている。
例えば、特許文献1には、ホットプレスを用いる手法、及び熱ラミネートロールを用いる手法が開示されている。上記熱ラミネートロールを用いる手法は、長尺の固体高分子電解質膜とその両側に配された所望の形状を有する触媒層が付与された転写基材とを接触させ、一対の熱ラミネートロールで熱圧着することによって、固体高分子電解質膜と触媒層とを一体的に接合し、その後転写基材から基材のみを一対の剥離ロールを用いて触媒層から剥離し、触媒層を固体高分子電解質膜表面に転写している。
As a conventional method for producing a membrane electrode assembly, a transfer substrate provided with a catalyst layer having a desired shape and a solid polymer electrolyte membrane are thermocompression-bonded with a hot press, a thermal laminating roll, or the like, and then the substrate is peeled off. The method to do is proposed.
For example, Patent Document 1 discloses a method using a hot press and a method using a thermal laminating roll. The method using the thermal laminating roll is such that a long solid polymer electrolyte membrane and a transfer substrate provided with a catalyst layer having a desired shape arranged on both sides thereof are brought into contact with each other and heat is applied by a pair of thermal laminating rolls. The solid polymer electrolyte membrane and the catalyst layer are integrally bonded by pressure bonding, and then only the base material is peeled from the transfer base material using a pair of peeling rolls, and the catalyst layer is solid polymer electrolyte. Transferred to the film surface.

一方、特許文献2には、上記熱転写の後、固体高分子電解質膜表面の露出部にガスの漏洩、及び電解質における触媒層が形成されない領域の集中的な劣化を防ぐため、ガスケット部材を付与して膜電極接合体を得る技術が開示されている。
ここで、特許文献2のガスケット部材の付与方法では、既に形成された触媒層の外周を覆うため、完全に触媒層と固体高分子電解質膜との間の露出部がなくなるようにするには、触媒層上にガスケット部材を乗り上げるほか選択肢がない。乗り上げ部は燃料電池の発電に関与しないため、触媒層の利用効率が下がってしまうという懸念点がある。
On the other hand, in Patent Document 2, after the thermal transfer, a gasket member is provided in order to prevent gas leakage to the exposed portion of the surface of the solid polymer electrolyte membrane and intensive deterioration of a region of the electrolyte where the catalyst layer is not formed. A technique for obtaining a membrane electrode assembly is disclosed.
Here, in the method of applying the gasket member of Patent Document 2, since the outer periphery of the catalyst layer already formed is covered, in order to completely eliminate the exposed portion between the catalyst layer and the solid polymer electrolyte membrane, There is no option other than mounting a gasket member on the catalyst layer. Since the riding portion does not participate in the power generation of the fuel cell, there is a concern that the utilization efficiency of the catalyst layer will decrease.

また、上記熱転写による手法のほかに、特許文献3に示すような、固体高分子電解質膜に触媒インクを直接塗布・乾燥し、触媒層を形成する手法がある。この方法では、転写基材・転写工程を必要としないため、コスト削減、工程の簡略化が可能である。しかし、この方法でも、特許文献2同様、ガスケット部材を触媒層形成後に付与するため、触媒層の利用効率が下がってしまう。 In addition to the thermal transfer method, there is a method as described in Patent Document 3 in which a catalyst ink is directly applied to a solid polymer electrolyte membrane and dried to form a catalyst layer. This method does not require a transfer substrate and a transfer process, and thus can reduce costs and simplify the process. However, even in this method, as in Patent Document 2, since the gasket member is provided after the catalyst layer is formed, the utilization efficiency of the catalyst layer is lowered.

さらに、特許文献4のように、事前に電極形状にくりぬかれた開口部を有するマスク材を固体高分子電解質膜に貼合した後、触媒インクを特許文献3同様にして、触媒層を形成する手法もある。しかし、この方法では、塗布前に固体高分子電解質膜の表裏面に開口部が開いているため、固体高分子電解質膜部分が柔軟に動けてしまうため、触媒インクを塗布した場合、触媒インクに含まれる溶媒の浸透により固体高分子電解質膜に寸法変化が生じてしまう。この寸法変化した固体高分子電解質膜部分と、非開口部における電解質膜部分の寸法変化が大きく異なるため、得られるMEAに平面性の低下が発生してしまう。平面性の悪いMEAは発電セルに組み込むのが困難になるといった問題がある。 Further, as in Patent Document 4, after a mask material having an opening hollowed into an electrode shape in advance is attached to the solid polymer electrolyte membrane, the catalyst ink is formed in the same manner as in Patent Document 3 to form a catalyst layer. There is also a method. However, in this method, since the openings are opened on the front and back surfaces of the solid polymer electrolyte membrane before coating, the solid polymer electrolyte membrane portion moves flexibly. The dimensional change occurs in the solid polymer electrolyte membrane due to the permeation of the contained solvent. Since the dimensional change of the solid polymer electrolyte membrane portion having the dimensional change and the dimensional change of the electrolyte membrane portion in the non-opening portion are largely different, the planarity of the obtained MEA is deteriorated. MEA having poor planarity has a problem that it is difficult to incorporate it in a power generation cell.

特開平10−64574号公報JP, 10-64574, A 特許第5720810号公報Japanese Patent No. 5720810 特開2015−162308号公報JP, 2015-162308, A 特許第4737924号公報Japanese Patent No. 4737924

本発明は、上記の点に鑑みてなされたものであって、ガスケット材の乗り上げによる触媒層の利用効率低下がなく、簡便な工程を用いながら、膜電極接合体の平面性の低下を抑制することができる膜電極接合体の製造方法を提供することを目的とする。 The present invention has been made in view of the above points, and does not reduce the utilization efficiency of the catalyst layer due to the riding of the gasket material, and suppresses the reduction in the planarity of the membrane electrode assembly while using a simple process. An object of the present invention is to provide a method for producing a membrane electrode assembly that can be manufactured.

上記課題を解決するための膜電極接合体の製造方法の一態様は、少なくとも1辺の断面が露出するように固体高分子電解質膜の表面及び裏面にそれぞれ、積層フィルムを貼合する貼合工程と、
上記積層フィルムの触媒層形成部を除去して上記固体高分子電解質膜の表面及び裏面を露出させる触媒層形成部除去工程と、
加熱部上で加熱しながら、触媒インクを、露出した上記固体高分子電解質膜の表面及び裏面に塗布する塗布工程と、
上記触媒インクを乾燥させて触媒層を形成する乾燥工程とを含み、
上記乾燥工程における乾燥時間が30秒以下である。
One aspect of a method for producing a membrane electrode assembly for solving the above problem is a laminating step of laminating a laminated film on each of the front surface and the back surface of a solid polymer electrolyte membrane so that a cross section of at least one side is exposed. When,
A step of removing the catalyst layer forming portion of the laminated film to expose the front and back surfaces of the solid polymer electrolyte membrane,
While heating on the heating unit, a catalyst ink, a coating step of applying to the front and back surfaces of the exposed solid polymer electrolyte membrane,
A drying step of drying the catalyst ink to form a catalyst layer,
The drying time in the drying step is 30 seconds or less.

ここで、上記膜電極接合体製造方法においては、上記塗布工程における触媒インクの揮発成分が、水、及び水より揮発性が高い溶媒であり、水と溶媒との質量比が6:4〜4:6であることが好ましい。
また、上記膜電極接合体製造方法においては、上記塗布工程における上記加熱部による加熱温度が、70℃以上120℃未満であることが好ましい。
また、上記膜電極接合体製造方法においては、上記塗布工程及び上記乾燥工程を、固体高分子電解質膜の表面及び裏面に順次行うが好ましい。
また、上記膜電極接合体製造方法においては、上記塗布工程及び上記乾燥工程を、固体高分子電解質膜の表面及び裏面に同時に行うことが好ましい。
Here, in the above-mentioned method for producing a membrane electrode assembly, the volatile component of the catalyst ink in the coating step is water and a solvent having a higher volatility than water, and the mass ratio of water to the solvent is 6:4 to 4. : 6 is preferred.
Further, in the above-mentioned method for producing a membrane electrode assembly, it is preferable that the heating temperature by the heating unit in the coating step is 70° C. or higher and lower than 120° C.
In the method for producing a membrane electrode assembly, it is preferable that the coating step and the drying step are sequentially performed on the front surface and the back surface of the solid polymer electrolyte membrane.
Further, in the above-mentioned method for producing a membrane electrode assembly, it is preferable that the coating step and the drying step are performed simultaneously on the front surface and the back surface of the solid polymer electrolyte membrane.

本発明の一態様によれば、固体高分子電解質膜の寸法変化の影響による平面性の低下を抑制することが出来る。 According to one aspect of the present invention, it is possible to suppress a decrease in flatness due to the influence of a dimensional change of the solid polymer electrolyte membrane.

膜電極接合体の製造方法の一実施形態を示す概略図である。It is a schematic diagram showing one embodiment of a manufacturing method of a membrane electrode assembly.

以下に、膜電極接合体の製造方法の実施形態について図面を参照して説明する。なお、本発明は、以下に記す実施形態に限定されるものではなく、当業者の知識に基づいて設計の変更などの変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の実施形態の範囲に含まれるものである。
本実施形態の膜電極接合体の製造方法は、貼合工程と、触媒層形成部除去工程と、塗布工程と、乾燥工程とを含む。
Hereinafter, an embodiment of a method for manufacturing a membrane electrode assembly will be described with reference to the drawings. The present invention is not limited to the embodiments described below, and modifications such as design changes can be added based on the knowledge of those skilled in the art, and embodiments with such modifications added Also included in the scope of the embodiments of the present invention.
The method for manufacturing a membrane electrode assembly of the present embodiment includes a bonding step, a catalyst layer forming portion removing step, a coating step, and a drying step.

貼合工程は、少なくとも1辺の断面が露出するように固体高分子電解質膜の表面及び裏面にそれぞれ、積層フィルムを貼合する工程である。
また、触媒層形成部除去工程は、上記積層フィルムの触媒層形成部を除去して上記固体高分子電解質膜の表面及び裏面を露出させる工程である。
また、塗布工程は、加熱部上で加熱しながら、触媒インクを、露出した上記固体高分子電解質膜の表面及び裏面に塗布する工程である。なお、触媒インクの揮発成分が、水、及び水より揮発性が高い溶媒であり、水と溶媒との質量比が6:4〜4:6であることが好ましい。また、上記加熱部による加熱温度が、70℃以上120℃未満であることが好ましい。
また、乾燥工程は、上記触媒インクを乾燥させて触媒層を形成する工程であり、この乾燥工程における乾燥時間は30秒以下である。
The laminating step is a step of laminating the laminated film on each of the front surface and the back surface of the solid polymer electrolyte membrane so that the cross section of at least one side is exposed.
The catalyst layer forming portion removing step is a step of removing the catalyst layer forming portion of the laminated film to expose the front and back surfaces of the solid polymer electrolyte membrane.
The applying step is a step of applying the catalyst ink to the exposed front and back surfaces of the solid polymer electrolyte membrane while heating on the heating unit. The volatile component of the catalyst ink is water and a solvent having higher volatility than water, and the mass ratio of water to the solvent is preferably 6:4 to 4:6. The heating temperature by the heating unit is preferably 70° C. or higher and lower than 120° C.
The drying step is a step of drying the catalyst ink to form a catalyst layer, and the drying time in this drying step is 30 seconds or less.

<貼合工程>
まず、図1(a)に示すように、貼合工程として、固体高分子電解質膜10の表面及び裏面に一対の積層フィルム5,5を貼合してなる電解質膜基材12を作製する。
ここで、積層フィルム5は、粘着層を有するガスバリア性フィルム1と粘着層を有するプラスチックフィルム4とを積層してなる。積層フィルム5は、ガスバリア性フィルム1の粘着層を介して固体高分子電解質膜10の表面及び裏面に貼合される。
電解質膜基材12は、固体高分子電解質膜10の断面の少なくとも1辺が積層フィルム5,5に完全に覆われることなく露出した構成である。また、積層フィルム5は後述する触媒層の形状と一致した形状の触媒層形成部2を有する。
次に、図1(b)に示すように、この電解質膜基材12を平滑に保持した状態で加熱部20に積載する。
<Laminating process>
First, as shown in FIG. 1A, in a bonding step, an electrolyte membrane substrate 12 is produced by bonding a pair of laminated films 5 and 5 on the front and back surfaces of a solid polymer electrolyte membrane 10.
Here, the laminated film 5 is formed by laminating the gas barrier film 1 having an adhesive layer and the plastic film 4 having an adhesive layer. The laminated film 5 is attached to the front surface and the back surface of the solid polymer electrolyte membrane 10 via the adhesive layer of the gas barrier film 1.
The electrolyte membrane substrate 12 has a configuration in which at least one side of the cross section of the solid polymer electrolyte membrane 10 is exposed without being completely covered by the laminated films 5 and 5. Further, the laminated film 5 has the catalyst layer forming portion 2 having a shape that matches the shape of the catalyst layer described later.
Next, as shown in FIG. 1B, the electrolyte membrane substrate 12 is loaded on the heating unit 20 in a state where it is held smooth.

<触媒層形成部除去工程>
次に、触媒層形成部除去工程として、図1(c)に示すように、電解質膜基材12より上面の積層フィルム5の触媒層形成部2を除去し、固体高分子電解質膜10の一部を露出させる。
<塗布工程>
次に、塗布工程として、図1(d)に示すように、塗布装置にて液状の触媒インク3を電解質膜基材12上に塗布する。
<Catalyst layer forming part removing step>
Next, as a catalyst layer forming portion removing step, as shown in FIG. 1C, the catalyst layer forming portion 2 of the laminated film 5 on the upper surface of the electrolyte membrane substrate 12 is removed to remove one of the solid polymer electrolyte membranes 10. Expose the part.
<Coating process>
Next, as a coating step, as shown in FIG. 1D, the liquid catalyst ink 3 is coated on the electrolyte membrane substrate 12 by a coating device.

<乾燥工程>
次に、乾燥工程として、加熱部20の熱により触媒インク3の揮発成分を除去する。その後、図1(e)に示すように、プラスチックフィルム4を粘着層と共に剥離することにより、所望の形状を有する触媒層50を得る。
その後、電解質膜基材12を表裏逆転させ、平滑に保持した状態で加熱部20に積載する。
次に、図1(f)に示すように、再度、電解質膜基材12より上面の積層フィルム5の触媒層形成部2を除去した後、図1(g)に示すように、塗布装置にて液状の触媒インク3を電解質膜基材12上に塗布し、加熱部20の熱により揮発成分を除去する。
次に、図1(h)に示すように、既に加工済みの反対側の面と同様にプラスチックフィルム4を剥離することで所望の形状を有する触媒層50が得られる。
<Drying process>
Next, as a drying step, the volatile components of the catalyst ink 3 are removed by the heat of the heating unit 20. After that, as shown in FIG. 1E, the plastic film 4 is peeled off together with the adhesive layer to obtain the catalyst layer 50 having a desired shape.
After that, the electrolyte membrane substrate 12 is turned upside down and loaded on the heating unit 20 in a state of being held smooth.
Next, as shown in FIG. 1( f ), after removing the catalyst layer forming portion 2 of the laminated film 5 on the upper surface of the electrolyte membrane substrate 12 again, as shown in FIG. Then, the liquid catalyst ink 3 is applied onto the electrolyte membrane substrate 12, and the volatile components are removed by the heat of the heating unit 20.
Next, as shown in FIG. 1(h), the catalyst film 50 having a desired shape is obtained by peeling off the plastic film 4 in the same manner as the already processed opposite surface.

以上の工程を経て、図1(i)に示すように、両面に触媒層50,50を有する膜電極接合体18を得る。
以上の工程は、上記塗布工程及び上記乾燥工程を、固体高分子電解質膜の表面及び裏面に順次行う例であるが、上記塗布工程及び上記乾燥工程を、固体高分子電解質膜の表面及び裏面に同時に行ってもよい。
ここで、固体高分子電解質膜10は、湿潤状態で良好なプロトン導電性を示す高分子材料である。触媒インク3は、白金又は白金と他の金属との合金からなる触媒を担持した粉末カーボンと樹脂により形成され、乾燥、固化により触媒層50を形成する。
Through the above steps, as shown in FIG. 1I, the membrane electrode assembly 18 having the catalyst layers 50, 50 on both surfaces is obtained.
The above steps are examples in which the coating step and the drying step are sequentially performed on the front surface and the back surface of the solid polymer electrolyte membrane, but the coating step and the drying step are performed on the front surface and the back surface of the solid polymer electrolyte membrane. You may go at the same time.
Here, the solid polymer electrolyte membrane 10 is a polymer material that exhibits good proton conductivity in a wet state. The catalyst ink 3 is formed of powder carbon and a resin carrying a catalyst made of platinum or an alloy of platinum and another metal, and is dried and solidified to form the catalyst layer 50.

以下、固体高分子電解質膜10、触媒層50、粘着層を有するガスバリア性フィルム1及び粘着層を有するプラスチックフィルム4を構成する材料の具体例を挙げるが、本発明はこれらに限定されない。
固体高分子電解質膜10を構成する高分子材料としては、具体的には、炭化水素系高分子電解質、フッ素系高分子電解質を用いることができる。炭化水素系高分子電解質膜としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質膜を用いることができる。フッ素系高分子電解質としては、例えば、デュポン製Nafion(登録商標)、旭硝子製Flemion(登録商標)、旭化成製Aciplex(登録商標)、ゴア製Gore Select(登録商標)などを用いることができる。炭化水素系電解質膜は、フッ素系高分子電解質に比べ、溶媒による浸透、膨潤が少ないため、触媒インクを固体電解質膜に塗布するのにより好ましい。固体高分子電解質膜10の厚みは、5μm以上100μm以下程度に形成される。
Specific examples of materials constituting the solid polymer electrolyte membrane 10, the catalyst layer 50, the gas barrier film 1 having an adhesive layer and the plastic film 4 having an adhesive layer will be given below, but the present invention is not limited thereto.
As the polymer material forming the solid polymer electrolyte membrane 10, specifically, a hydrocarbon-based polymer electrolyte or a fluorine-based polymer electrolyte can be used. As the hydrocarbon-based polymer electrolyte membrane, electrolyte membranes such as sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used. As the fluorine-based polymer electrolyte, for example, Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass, Aciplex (registered trademark) manufactured by Asahi Kasei, and Gore Select (registered trademark) manufactured by Gore can be used. Hydrocarbon-based electrolyte membranes have less penetration and swelling by a solvent than fluorine-based polymer electrolytes, and are therefore more preferable to apply the catalyst ink to the solid electrolyte membrane. The thickness of the solid polymer electrolyte membrane 10 is about 5 μm or more and 100 μm or less.

触媒層50を構成する樹脂としては、上記高分子材料と同様のものを用いることができる。
また、触媒層50を構成する触媒としては、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素のほか、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属若しくは白金とこれらの合金、又はこれらの酸化物、複酸化物などを用いることができる。その中でも、白金や白金合金がより好ましい。また、触媒の粒径は、大きすぎると触媒の活性が低下し、小さすぎると触媒の安定性が低下するため、0.5nm以上20nm以下が好ましい。
As the resin forming the catalyst layer 50, the same resin as the above polymer material can be used.
Examples of the catalyst that constitutes the catalyst layer 50 include platinum, palladium, ruthenium, iridium, rhodium, and osmium platinum group elements, as well as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, A metal such as aluminum or platinum and an alloy thereof, or an oxide or a double oxide thereof can be used. Among them, platinum and platinum alloys are more preferable. Further, the particle size of the catalyst is preferably 0.5 nm or more and 20 nm or less, because if it is too large, the activity of the catalyst decreases, and if it is too small, the stability of the catalyst decreases.

また、触媒層50を構成する粉末カーボンとしては、微粒子状で導電性を有し、触媒に侵さないものであれば特に限定されない。具体的には、カーボンブラックやグラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレンなどを用いることができる。粉末カーボンの粒径は、触媒より小さい10nm以上100nm以下程度が好適に用いられる。
触媒層50は上記材料を溶媒及び水に分散させて調合した触媒インク3を固体高分子電解質膜10上に塗布・乾燥することで得ることができる。上記溶媒は上記材料を好適に分散させるため、又、水よりも低沸点の溶媒の方が固体高分子電解質膜10に浸透し膨潤してしまう前に乾燥させることができるため、水よりも低沸点のエタノール、1−プロパノール、2−プロパノールなどの低級アルコール類を用いることがより好ましい。
In addition, the powdered carbon forming the catalyst layer 50 is not particularly limited as long as it is in the form of fine particles, has conductivity, and does not attack the catalyst. Specifically, carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, fullerene, or the like can be used. The particle size of the powder carbon is preferably 10 nm or more and 100 nm or less, which is smaller than that of the catalyst.
The catalyst layer 50 can be obtained by coating the catalyst ink 3 prepared by dispersing the above materials in a solvent and water on the solid polymer electrolyte membrane 10 and drying. The solvent is lower than water because it is suitable for dispersing the above-mentioned materials, and because a solvent having a lower boiling point than water can be dried before it penetrates the solid polymer electrolyte membrane 10 and swells. It is more preferable to use lower alcohols such as ethanol, 1-propanol, and 2-propanol having a boiling point.

さらに、触媒インク3は加熱部20上で30秒以下の速さで表面が乾燥することが好ましい。30秒を越える乾燥が必要なインクでは、含有するアルコールが固体高分子電解質膜10に浸透し、電解質膜が膨潤してしまうため、好ましくない。
ガスバリア性フィルム1及びプラスチックフィルム4の基材層は、加熱部20での加熱温度以上のガラス転移温度を有していれば特に限定されないが、例えば、ポリエチレンナフタレート、ポリエチレンテレフタラート、ポリイミド、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアクリレート等の高分子フィルムを用いることができる。また、エチレンテトラフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロパーフルオロアルキルビニルエーテル共重合体、ポリテトラフルオロエチレン等の耐熱性フッ素樹脂を用いることもできる。
Furthermore, the surface of the catalyst ink 3 is preferably dried on the heating unit 20 at a speed of 30 seconds or less. An ink that requires drying for more than 30 seconds is not preferable because the contained alcohol permeates the solid polymer electrolyte membrane 10 and the electrolyte membrane swells.
The substrate layers of the gas barrier film 1 and the plastic film 4 are not particularly limited as long as they have a glass transition temperature equal to or higher than the heating temperature in the heating section 20, and examples thereof include polyethylene naphthalate, polyethylene terephthalate, polyimide, polyparban. Polymeric films of acid aramid, polyamide (nylon), polysulfone, polyether sulfone, polyether sulfone, polyphenylene sulfide, polyether ether ketone, polyether imide, polyacrylate and the like can be used. Further, a heat resistant fluororesin such as ethylene tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroperfluoroalkyl vinyl ether copolymer, polytetrafluoroethylene or the like can be used.

ガスバリア性フィルム1の基材においては、ガスケットとして膜電極接合体になるため、ガスバリア性、耐熱性ともに考慮した場合、ポリエチレンナフタレートであることが特に好ましい。プラスチックフィルム4の基材においては、触媒インクにより侵されないこと、剥離除去してしまうことを考慮した場合、ポリエチレンテレフタラートであることが特に好ましい。
ガスバリア性フィルム1及びプラスチックフィルム4の粘着層は、アクリル系、ウレタン系、シリコーン系、ゴム系などの粘着剤であればよく、基材層及び固体高分子電解質膜10との密着性と、加熱部20における耐熱性を考慮するとアクリル系であることがより好ましい。
In the substrate of the gas barrier film 1, since it is a membrane electrode assembly as a gasket, polyethylene naphthalate is particularly preferable in view of both gas barrier properties and heat resistance. Polyethylene terephthalate is particularly preferable in consideration of the fact that the base material of the plastic film 4 is not attacked by the catalyst ink and is peeled off.
The pressure-sensitive adhesive layer of the gas barrier film 1 and the plastic film 4 may be an acrylic, urethane-based, silicone-based, or rubber-based pressure-sensitive adhesive, and the adhesion to the base material layer and the solid polymer electrolyte membrane 10 and heating Considering the heat resistance of the part 20, the acrylic type is more preferable.

積層フィルム5と塗布前に除去する触媒層形成部2の重なりや隙間の発生を抑制するには、積層フィルム5に切り込みを入れ、積層フィルム5に触媒層形成部2を付与した後、固体高分子電解質膜10と貼合し、電解質膜基材12を得ることが好ましい。これにより、触媒インク3の塗布直前まで、固体高分子電解質膜10が直接空気に触れることがないため、吸湿による寸法変化を抑制できるだけでなく、薄膜の固体高分子電解質膜10を用いた際にも剛性を担保することができる。 In order to suppress the overlap and gap between the laminated film 5 and the catalyst layer forming portion 2 to be removed before coating, a cut is made in the laminated film 5 and the catalyst layer forming portion 2 is provided to the laminated film 5, and then the solid height is increased. It is preferable to obtain the electrolyte membrane base material 12 by laminating it with the molecular electrolyte membrane 10. As a result, the solid polymer electrolyte membrane 10 does not come into direct contact with air until immediately before the application of the catalyst ink 3, so that it is possible to suppress the dimensional change due to moisture absorption, and to use the thin solid polymer electrolyte membrane 10 when using the thin solid polymer electrolyte membrane 10. Can also ensure rigidity.

更に、触媒インク3を塗布した際にも固体高分子電解質膜10の表裏面に積層フィルム5,5が存在するため、触媒インク3に触れた固体高分子電解質膜部分の寸法変化を抑制することができる。また、上記方法で付与された触媒層形成部2には重なりや隙間がないため、電解質膜基材12をロール状に巻いても、固体高分子電解質膜10に巻き跡が発生することがないため、大量に同じ品質で作製するのに適したロールtoロールで作製することが可能である。 Further, since the laminated films 5 and 5 are present on the front and back surfaces of the solid polymer electrolyte membrane 10 even when the catalyst ink 3 is applied, it is possible to suppress the dimensional change of the solid polymer electrolyte membrane portion which is in contact with the catalyst ink 3. You can Further, since there is no overlap or gap in the catalyst layer forming portion 2 provided by the above method, even when the electrolyte membrane base material 12 is wound in a roll shape, the solid polymer electrolyte membrane 10 does not have a winding mark. Therefore, it is possible to manufacture with a roll-to-roll suitable for mass-producing with the same quality.

積層フィルム5と固体高分子電解質膜10を貼合して得られる電解質膜基材12の断面において、固体高分子電解質膜10の一辺の断面が露出している。この露出部により、加熱部20における加熱乾燥、冷却時に水分の出入りが可能になり、得られる膜電極接合体18の平面性の低下を抑制することができる。
加熱部20における加熱温度は触媒インク3に含まれる溶媒の沸点程度であるため、70℃以上であることが好ましく、水を含んでいるため、加えて30秒以下で乾燥させるため、100℃以上であることがより好ましい。更に、120℃以上だと、溶媒と触媒の反応により、発火の恐れがあるため好ましくないため、120℃未満であることが好ましい。また、加熱部20は平板状またはロール状でもよく、電解質膜基材12を吸着又は張力により、平滑にすることが好ましい。
In the cross section of the electrolyte membrane substrate 12 obtained by sticking the laminated film 5 and the solid polymer electrolyte membrane 10, one side of the solid polymer electrolyte membrane 10 is exposed. By this exposed portion, it becomes possible for moisture to come in and out at the time of heating and drying in the heating portion 20, and cooling, and it is possible to suppress deterioration of the planarity of the obtained membrane electrode assembly 18.
Since the heating temperature in the heating unit 20 is about the boiling point of the solvent contained in the catalyst ink 3, it is preferably 70° C. or higher, and since it contains water and is dried in 30 seconds or less, 100° C. or higher. Is more preferable. Further, if the temperature is 120° C. or higher, the reaction between the solvent and the catalyst may cause ignition, which is not preferable. Therefore, the temperature is preferably lower than 120° C. Further, the heating unit 20 may have a flat plate shape or a roll shape, and it is preferable that the electrolyte membrane base material 12 is made smooth by adsorption or tension.

電解質膜基材12上に触媒層50を形成する塗布装置は、触媒層を均一な厚みで塗布が可能であれば良く、ダイコーター方式、ロールコーター方式等の方式を用いることができる。膜電極接合体18を得るには、固体高分子電解質膜10の表裏面に触媒層50,50を形成する必要があるが、固体高分子電解質膜10の片面ずつ順次形成でも良いが、コストダウンが可能な一度の加工で行える両面同時でも良い。
膜電極接合体製造方法は、製造効率を考慮すると全工程が連続であることが好ましいが、触媒層50の塗布工程の歩留まりを考慮すると全工程が不連続であっても良い。
The coating device for forming the catalyst layer 50 on the electrolyte membrane substrate 12 may be a coater system such as a die coater system or a roll coater system as long as it can coat the catalyst layer with a uniform thickness. In order to obtain the membrane electrode assembly 18, it is necessary to form the catalyst layers 50, 50 on the front and back surfaces of the solid polymer electrolyte membrane 10, but the solid polymer electrolyte membrane 10 may be sequentially formed on each side, but the cost is reduced. It is possible to do both at the same time on both sides.
In the method of manufacturing a membrane electrode assembly, it is preferable that all steps are continuous in consideration of manufacturing efficiency, but all steps may be discontinuous in consideration of the yield of the step of applying the catalyst layer 50.

以上説明した膜電極接合体製造方法によれば、固体高分子電解質膜10の寸法変化が抑えられるため、平面性に優れた高品質の膜電極接合体18を製造することができる。加えて、固体高分子電解質膜10の表裏面に不連続な平面を有するシートを貼合することで、シワのないロールtoロール方式で固体高分子電解質膜を使用しても不要な巻き跡の発生を抑制することができる膜電極接合体の製造方法を提供することができる。
本実施形態で得られる平面性の良好な膜電極接合体は、燃料電池における各電極に反応ガスを供給し、且つ電気化学反応により生成する水分や余剰のガスを排出するためのセパレーターを積層したときに隙間が生じることない。すなわち、本実施形態により、発電性能が低下することがない膜電極接合体を得ることができる。
According to the membrane electrode assembly manufacturing method described above, the dimensional change of the solid polymer electrolyte membrane 10 is suppressed, so that the high quality membrane electrode assembly 18 having excellent planarity can be manufactured. In addition, by sticking a sheet having a discontinuous flat surface on the front and back surfaces of the solid polymer electrolyte membrane 10, even if the solid polymer electrolyte membrane is used in a roll-to-roll system without wrinkles, unnecessary winding traces can be formed. It is possible to provide a method for producing a membrane electrode assembly that can suppress the generation.
The membrane electrode assembly having good flatness obtained in the present embodiment is provided with a separator for supplying a reaction gas to each electrode in a fuel cell and discharging moisture or excess gas generated by an electrochemical reaction. Sometimes there are no gaps. That is, according to this embodiment, it is possible to obtain a membrane electrode assembly in which the power generation performance is not deteriorated.

以下、本発明の実施例について具体的に説明する。しかし、本発明はこれらの実施例にのみ限定されるものではない。
(実施例1)
<膜電極接合体の製造>
ロールtoロール方式で、90mm幅のポリエチレンナフタレート(帝人デュポンフィルム製テオネックスQ51、厚み12μm)上にアクリル系の粘着層(厚み10μm)を形成し、セパレーターでラミネートして得たガスバリア性フィルムのポリエチレンナフタレート面と同じく90mm幅のポリエチレンテレフタラート上にアクリル系の粘着層を付与したプラスチックフィルム(きもと製プロセーブ25CBFS2)をポリエチレンテレフタラートの粘着層を介して貼合する。更に、ポリエチレンテレフタラート面に表面保護フィルム(サンエー化研製サニテクトPAC−3−60T)を貼合し、5cm×5cmの正方形形状の打抜き加工によりポリエチレンテレフタラートのセパレーター側からポリエチレンナフタレートまで切り込みを入れた後、触媒層形成部を有する積層フィルムを得た。更に、ロールtoロール方式で、この積層フィルムのポリエチレンテレフタラート上のセパレーターを剥離し、95mm幅の固体高分子電解質膜に炭化水素系フィルム(厚み11μm)の両面に位置合わせして貼合し、両面の表面保護フィルムを剥離することにより、固体高分子電解質膜の断面が露出した電解質膜基材のロールを得た。得られたロール形態の電解質膜基材を幅方向で切り出し、加熱部として100℃の吸着ステージ上で加熱した後、触媒層形成部を除去し、触媒インクをダイコーターにて塗布し、30秒間乾燥し、片面に触媒層を付与した。このとき、触媒インクの組成は、フッ素系高分子電解質膜分散溶液(旭化成イーマテリアルズ製SS700C/25)、白金触媒(田中貴金属製TEC10F50E−HT)、水、1−プロパノールからなり、水と溶媒の比率(質量比)は6:4とし、インク中の固形分濃度は8%とした。この電解質膜基材を100℃の吸着ステージ上で表裏逆転して、不連続な平面を有する積層フィルム5の触媒層形成部2を除去した後、同様にして触媒インクを塗布・乾燥し、両面に触媒層が付与された膜電極接合体を得た。得られた膜電極接合体の平面性の評価結果を表1に示す。
Hereinafter, examples of the present invention will be specifically described. However, the invention is not limited to only these examples.
(Example 1)
<Production of membrane electrode assembly>
A roll-to-roll type polyethylene naphthalate with a width of 90 mm (Teonex Q51 made by Teijin DuPont Film, thickness 12 μm), an acrylic adhesive layer (thickness 10 μm) was formed, and laminated with a separator to obtain a gas barrier film polyethylene Similarly to the naphthalate surface, a 90 mm wide polyethylene terephthalate-attached plastic film (Promoto Save 25CBFS2 made by Kimoto) having an acrylic adhesive layer is attached via the polyethylene terephthalate adhesive layer. Furthermore, a surface protection film (Sanitec PAC-3-60T manufactured by San-A Kaken) is attached to the polyethylene terephthalate surface, and a notch is made from the polyethylene terephthalate separator side to the polyethylene naphthalate by punching a 5 cm × 5 cm square shape. After that, a laminated film having a catalyst layer forming portion was obtained. Further, by a roll-to-roll method, the separator on the polyethylene terephthalate of this laminated film was peeled off, and the solid polymer electrolyte membrane having a width of 95 mm was aligned and bonded to both sides of the hydrocarbon film (thickness 11 μm), By peeling off the surface protective films on both sides, a roll of the electrolyte membrane substrate was obtained in which the cross section of the solid polymer electrolyte membrane was exposed. The obtained electrolyte membrane base material in roll form is cut out in the width direction, heated as a heating unit on an adsorption stage at 100° C., the catalyst layer forming unit is removed, and the catalyst ink is applied with a die coater for 30 seconds. After drying, a catalyst layer was provided on one side. At this time, the composition of the catalyst ink consists of a fluorine-based polymer electrolyte membrane dispersion solution (SS700C/25 manufactured by Asahi Kasei E-Materials), a platinum catalyst (TEC10F50E-HT manufactured by Tanaka Kikinzoku), water, 1-propanol, and water and a solvent. Ratio (mass ratio) was 6:4, and the solid content concentration in the ink was 8%. This electrolyte membrane substrate is turned upside down on an adsorption stage at 100° C. to remove the catalyst layer forming portion 2 of the laminated film 5 having a discontinuous flat surface, and then the catalyst ink is applied and dried in the same manner. A membrane/electrode assembly having a catalyst layer provided on the substrate was obtained. Table 1 shows the evaluation results of the planarity of the obtained membrane electrode assembly.

(実施例2)
触媒インクの水と溶媒の比率、及び乾燥完了時間を表1に示すように変更した以外は実施例1と同様の方法で実施例2の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
なお、表1中の乾燥完了時間とは、固体高分子電解質膜上の触媒インクの表面が十分に乾燥したことを目視にて確認し、その際にかかった時間を乾燥完了時間として示している。
(Example 2)
A membrane/electrode assembly of Example 2 was prepared in the same manner as in Example 1 except that the water/solvent ratio of the catalyst ink and the drying completion time were changed as shown in Table 1. Table 1 shows the evaluation results of the planarity of the obtained membrane electrode assembly.
The drying completion time in Table 1 is visually confirmed that the surface of the catalyst ink on the solid polymer electrolyte membrane was sufficiently dried, and the time taken at that time is shown as the drying completion time. ..

(実施例3)
乾燥温度及び乾燥完了時間を表1に示すように変更した以外は実施例1と同様の方法で実施例3の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
(実施例4)
触媒インク中のアルコール種のみを変更した以外は実施例1と同様の方法で実施例4の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
(比較例1)
固体高分子電解質膜の幅を80mmとし、固体高分子電解質膜の断面が露出していない電解質膜基材のロールを作製した以外は実施例1と同様の方法で比較例1の膜電極接合体を作製した。実施例1と同様の評価を行った結果を表1に示す。
(Example 3)
A membrane/electrode assembly of Example 3 was produced in the same manner as in Example 1 except that the drying temperature and the drying completion time were changed as shown in Table 1. Table 1 shows the evaluation results of the planarity of the obtained membrane electrode assembly.
(Example 4)
A membrane/electrode assembly of Example 4 was produced in the same manner as in Example 1 except that only the alcohol species in the catalyst ink was changed. Table 1 shows the evaluation results of the planarity of the obtained membrane electrode assembly.
(Comparative Example 1)
Membrane electrode assembly of Comparative Example 1 in the same manner as in Example 1 except that the width of the solid polymer electrolyte membrane was 80 mm and a roll of the electrolyte membrane base material in which the cross section of the solid polymer electrolyte membrane was not exposed was prepared. Was produced. The results of the same evaluations as in Example 1 are shown in Table 1.

(比較例2)
触媒インクの水と溶媒の比率、乾燥完了時間を表1に示すように変更した以外は実施例1と同様の方法で比較例2の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
(比較例3)
乾燥温度、乾燥完了時間を表1に示すように変更した以外は実施例1と同様の方法で比較例3の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
(比較例4)
触媒インク中のアルコール種のみを変更した以外は実施例1と同様の方法で比較例4の膜電極接合体を作製した。得られた膜電極接合体の平面性の評価結果を表1に示す。
(Comparative example 2)
A membrane/electrode assembly of Comparative Example 2 was produced in the same manner as in Example 1 except that the water/solvent ratio of the catalyst ink and the drying completion time were changed as shown in Table 1. Table 1 shows the evaluation results of the planarity of the obtained membrane electrode assembly.
(Comparative example 3)
A membrane/electrode assembly of Comparative Example 3 was produced in the same manner as in Example 1 except that the drying temperature and the drying completion time were changed as shown in Table 1. Table 1 shows the evaluation results of the planarity of the obtained membrane electrode assembly.
(Comparative example 4)
A membrane/electrode assembly of Comparative Example 4 was produced in the same manner as in Example 1 except that only the alcohol species in the catalyst ink was changed. Table 1 shows the evaluation results of the planarity of the obtained membrane electrode assembly.

Figure 0006746994
Figure 0006746994

<評価>
表1に示すように、固体高分子電解質膜と積層フィルムの貼合時に固体高分子電解質膜の断面が露出する(実施例1)ことで、平面性が低下していないことが確認された。これにより、実施例1でのみ、燃料電池の発電セルに膜電極接合体を組み込むことが容易になった。
また、実施例1、2の水と溶媒の比率では、触媒インク塗布・加熱後30秒程度で乾燥が完了しているため、固体高分子電解質膜への浸透が抑えられ、膨潤による平面性の低下も抑えられている。しかし、比較例2では、乾燥完了までに40秒となり、膜電極接合体の平面性の低下が確認された。この平面性の低下は溶媒が多くなったことによる、固体高分子電解質膜への浸透が原因である。
<Evaluation>
As shown in Table 1, it was confirmed that the cross-section of the solid polymer electrolyte membrane was exposed when the solid polymer electrolyte membrane and the laminated film were bonded (Example 1), and thus the flatness was not deteriorated. Thereby, only in Example 1, it became easy to incorporate the membrane electrode assembly into the power generation cell of the fuel cell.
Further, with the ratio of water and solvent in Examples 1 and 2, the drying was completed in about 30 seconds after the application and heating of the catalyst ink, so that the permeation into the solid polymer electrolyte membrane was suppressed and the flatness due to swelling was suppressed. The decline is also suppressed. However, in Comparative Example 2, it took 40 seconds until the drying was completed, and it was confirmed that the flatness of the membrane electrode assembly was deteriorated. This decrease in planarity is due to the permeation into the solid polymer electrolyte membrane due to the increased amount of solvent.

また、実施例1、3の乾燥温度では、触媒インク塗布・加熱後30秒程度で乾燥が完了しているため、固体高分子電解質膜への浸透が抑えられ、膨潤による平面性の低下も抑えられている。しかし、比較例3では、乾燥完了までに50秒となり、得られた膜電極接合体の平面性の低下が確認された。この平面性の低下は乾燥完了までに長い時間を要したことによる、固体高分子電解質膜への浸透が原因である。
また、実施例1、4のアルコールは、水よりも優先的に揮発するため、塗布・乾燥の間に固体高分子電解質膜への浸透が抑えられ、膨潤による平面性の低下も抑えられている。しかし、比較例4に用いた1−ブタノールは水よりも揮発性が低いため、塗布・乾燥の間に固体高分子電解質膜へ浸透してしまい、得られた膜電極接合体の平面性の低下が確認された。
Further, at the drying temperature of Examples 1 and 3, the drying was completed in about 30 seconds after the catalyst ink was applied and heated, so that the permeation into the solid polymer electrolyte membrane was suppressed and the reduction in the flatness due to the swelling was also suppressed. Has been. However, in Comparative Example 3, it took 50 seconds to complete the drying, and it was confirmed that the flatness of the obtained membrane electrode assembly was lowered. This decrease in flatness is due to the penetration into the solid polymer electrolyte membrane, which took a long time to complete the drying.
In addition, since the alcohols of Examples 1 and 4 volatilize preferentially over water, the permeation into the solid polymer electrolyte membrane is suppressed during coating and drying, and the reduction in flatness due to swelling is suppressed. .. However, since 1-butanol used in Comparative Example 4 has lower volatility than water, it penetrates into the solid polymer electrolyte membrane during coating and drying, and thus the flatness of the obtained membrane electrode assembly is deteriorated. Was confirmed.

1 ガスバリア性フィルム
2 触媒層形成部
3 触媒インク
4 プラスチックフィルム
5 積層フィルム
10 固体高分子電解質膜
12 電解質膜基材
18 膜電極接合体
20 加熱部
50 触媒層
1 Gas Barrier Film 2 Catalyst Layer Forming Part 3 Catalyst Ink 4 Plastic Film 5 Laminated Film 10 Solid Polymer Electrolyte Membrane 12 Electrolyte Membrane Base Material 18 Membrane Electrode Assembly 20 Heating Part 50 Catalyst Layer

Claims (11)

少なくとも1辺の断面が露出するように固体高分子電解質膜の表面及び裏面にそれぞれ、開口部を備えない積層フィルムを貼合する貼合工程と、
前記貼合工程後、前記積層フィルムの触媒層形成部を除去して前記固体高分子電解質膜の表面及び裏面を露出させる触媒層形成部除去工程と、
加熱部上で加熱しながら、触媒インクを、露出した前記固体高分子電解質膜の表面及び裏面に塗布する塗布工程と、
前記触媒インクを乾燥させて触媒層を形成する乾燥工程とを含み、
前記乾燥工程における乾燥時間が30秒以下であることを特徴とする燃料電池の膜電極接合体の製造方法。
A laminating step of laminating a laminated film having no opening on the front surface and the back surface of the solid polymer electrolyte membrane so that the cross section of at least one side is exposed,
After the bonding step, a catalyst layer forming portion removing step of removing the catalyst layer forming portion of the laminated film to expose the front surface and the back surface of the solid polymer electrolyte membrane,
While heating on the heating unit, a catalyst ink, a coating step of coating the exposed surface and the back surface of the solid polymer electrolyte membrane,
A drying step of drying the catalyst ink to form a catalyst layer,
The method for producing a membrane electrode assembly for a fuel cell, wherein the drying time in the drying step is 30 seconds or less.
前記塗布工程における触媒インクの揮発成分が、水、及び水より揮発性が高い溶媒であり、水と溶媒との質量比が6:4〜4:6である請求項1に記載の燃料電池の膜電極接合体の製造方法。 The fuel cell according to claim 1, wherein the volatile component of the catalyst ink in the coating step is water and a solvent having higher volatility than water, and the mass ratio of water to the solvent is 6:4 to 4:6. Method for manufacturing membrane electrode assembly. 前記塗布工程における前記加熱部による加熱温度が、70℃以上120℃未満である請求項1又は2に記載の燃料電池の膜電極接合体の製造方法。 The method for producing a membrane electrode assembly for a fuel cell according to claim 1 or 2, wherein a heating temperature by the heating unit in the coating step is 70°C or higher and lower than 120°C. 前記塗布工程及び前記乾燥工程を、固体高分子電解質膜の表面及び裏面に順次行う請求項1〜3の何れか一項に記載の燃料電池の膜電極接合体の製造方法。 The method for producing a membrane electrode assembly for a fuel cell according to claim 1, wherein the applying step and the drying step are sequentially performed on the front surface and the back surface of the solid polymer electrolyte membrane. 前記塗布工程及び前記乾燥工程を、固体高分子電解質膜の表面及び裏面に同時に行う請求項1〜3の何れか一項に記載の燃料電池の膜電極接合体の製造方法。 The method for producing a membrane electrode assembly for a fuel cell according to claim 1, wherein the applying step and the drying step are performed simultaneously on the front surface and the back surface of the solid polymer electrolyte membrane. 前記積層フィルムは、前記固体高分子電解質膜側から順に、ガスバリア性フィルムと、プラスチックフィルムとを備え、The laminated film, in order from the solid polymer electrolyte membrane side, a gas barrier film, and a plastic film,
前記乾燥工程後、前記固体高分子電解質膜側に前記ガスバリア性フィルムを残して前記プラスチックフィルムを剥離する請求項1〜5の何れか一項に記載の燃料電池の膜電極接合体の製造方法。The method for producing a membrane electrode assembly for a fuel cell according to claim 1, wherein after the drying step, the plastic film is peeled off leaving the gas barrier film on the solid polymer electrolyte membrane side.
前記積層フィルムは、前記固体高分子電解質膜側から順に、粘着層を有するガスバリア性フィルムと、粘着層を有するプラスチックフィルムとを備え、The laminated film, in order from the solid polymer electrolyte membrane side, a gas barrier film having an adhesive layer, and a plastic film having an adhesive layer,
前記ガスバリア性フィルムと前記プラスチックフィルムはそれぞれ、ポリエチレンナフタレート、ポリエチレンテレフタラート、ポリイミド、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアクリレート、エチレンテトラフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロパーフルオロアルキルビニルエーテル共重合体、またはポリテトラフルオロエチレンを含む請求項1〜6の何れか一項に記載の燃料電池の膜電極接合体の製造方法。The gas barrier film and the plastic film are respectively polyethylene naphthalate, polyethylene terephthalate, polyimide, polyparbanic acid aramid, polyamide (nylon), polysulfone, polyether sulfone, polyether sulfone, polyphenylene sulfide, polyether ether ketone, 7. Any one of claims 1 to 6 containing polyetherimide, polyacrylate, ethylene tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroperfluoroalkyl vinyl ether copolymer, or polytetrafluoroethylene. 2. The method for producing a membrane electrode assembly for a fuel cell according to item 1.
前記積層フィルムは、前記固体高分子電解質膜側から順に、粘着層を有するガスバリア性フィルムと、粘着層を有するプラスチックフィルムとを備え、The laminated film, in order from the solid polymer electrolyte membrane side, a gas barrier film having an adhesive layer, and a plastic film having an adhesive layer,
前記ガスバリア性フィルムは、ポリエチレンナフタレートで構成され、The gas barrier film is composed of polyethylene naphthalate,
前記プラスチックフィルムは、ポリエチレンテレフタラートで構成される請求項1〜6の何れか一項に記載の燃料電池の膜電極接合体の製造方法。The method for producing a membrane electrode assembly for a fuel cell according to claim 1, wherein the plastic film is made of polyethylene terephthalate.
前記粘着層は、アクリル系、ウレタン系、シリコーン系、またはゴム系の粘着剤を含む請求項7又は8に記載の燃料電池の膜電極接合体の製造方法。The method for producing a membrane electrode assembly for a fuel cell according to claim 7, wherein the adhesive layer contains an acrylic, urethane, silicone, or rubber adhesive. 前記粘着層は、アクリル系の粘着剤を含む請求項7又は8に記載の燃料電池の膜電極接合体の製造方法。The method for producing a membrane electrode assembly for a fuel cell according to claim 7, wherein the adhesive layer contains an acrylic adhesive. 前記固体高分子電解質膜の厚さは、5μm以上100μm以下の範囲内である請求項1〜10の何れか一項に記載の燃料電池の膜電極接合体の製造方法。The method for producing a membrane electrode assembly for a fuel cell according to claim 1, wherein the solid polymer electrolyte membrane has a thickness within a range of 5 μm or more and 100 μm or less.
JP2016057709A 2016-03-22 2016-03-22 Method for manufacturing membrane electrode assembly of fuel cell Active JP6746994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057709A JP6746994B2 (en) 2016-03-22 2016-03-22 Method for manufacturing membrane electrode assembly of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057709A JP6746994B2 (en) 2016-03-22 2016-03-22 Method for manufacturing membrane electrode assembly of fuel cell

Publications (2)

Publication Number Publication Date
JP2017174572A JP2017174572A (en) 2017-09-28
JP6746994B2 true JP6746994B2 (en) 2020-08-26

Family

ID=59971346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057709A Active JP6746994B2 (en) 2016-03-22 2016-03-22 Method for manufacturing membrane electrode assembly of fuel cell

Country Status (1)

Country Link
JP (1) JP6746994B2 (en)

Also Published As

Publication number Publication date
JP2017174572A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP5196717B2 (en) Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
US20140011116A1 (en) Manufacturing method and apparatus for membrane electrode assembly, and polymer electrolyte fuel cell
US20130045438A1 (en) Producing method of fuel cell membrane electrode assembly and producing apparatus of the same
WO2002005371A1 (en) Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP2009193860A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
JP2007299551A (en) Manufacturing method of membrane electrode junction for fuel cell
JP7027704B2 (en) Membrane-electrode assembly
JP6641812B2 (en) Manufacturing method of membrane electrode assembly
JP5044062B2 (en) Method for producing membrane-catalyst layer assembly
JP2016219179A (en) Membrane electrode structure and solid polymer fuel cell, and manufacturing method of membrane electrode structure
JP2015220185A (en) Device and method for manufacturing membrane electrode assembly
JP4852894B2 (en) Method for producing electrolyte membrane-electrode assembly
JP5957930B2 (en) Membrane / electrode assembly manufacturing method for polymer electrolyte fuel cell, membrane / electrode assembly manufacturing apparatus for polymer electrolyte fuel cell
JP6746994B2 (en) Method for manufacturing membrane electrode assembly of fuel cell
CN106256039A (en) Method
JP6515830B2 (en) Method of manufacturing membrane electrode assembly
JP6661979B2 (en) Membrane electrode assembly
JP6476569B2 (en) Membrane electrode assembly and solid polymer fuel cell
JP2009054600A (en) Manufacturing method of catalyst layer-electrolyte film laminate
JP2016201175A (en) Method of manufacturing catalyst layer sheet for fuel battery, catalyst layer sheet for fuel battery, membrane electrode assembly and solid polymer type fuel battery
JP2016076366A (en) Method of manufacturing fuel battery membrane - electrode assembly, and membrane - electrode assembly
JP6550917B2 (en) Membrane-electrode assembly manufacturing method and membrane-electrode assembly
WO2017154475A1 (en) Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly
KR102325913B1 (en) Method for manufacturing membrane electrode assembly for fuel cell
JP2013084427A (en) Method for manufacturing membrane-catalyst layer assembly and method for manufacturing membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6746994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250