JP6661979B2 - Membrane electrode assembly - Google Patents

Membrane electrode assembly Download PDF

Info

Publication number
JP6661979B2
JP6661979B2 JP2015218277A JP2015218277A JP6661979B2 JP 6661979 B2 JP6661979 B2 JP 6661979B2 JP 2015218277 A JP2015218277 A JP 2015218277A JP 2015218277 A JP2015218277 A JP 2015218277A JP 6661979 B2 JP6661979 B2 JP 6661979B2
Authority
JP
Japan
Prior art keywords
catalyst layer
polymer electrolyte
anode
less
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015218277A
Other languages
Japanese (ja)
Other versions
JP2017091716A (en
Inventor
直紀 浜田
直紀 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2015218277A priority Critical patent/JP6661979B2/en
Publication of JP2017091716A publication Critical patent/JP2017091716A/en
Application granted granted Critical
Publication of JP6661979B2 publication Critical patent/JP6661979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体高分子形燃料電池用膜電極接合体に関する。   The present invention relates to a membrane electrode assembly for a polymer electrolyte fuel cell.

高分子電解質膜の表裏面に触媒層を形成し、その触媒層付高分子電解質膜の触媒層の上からガス拡散層でサンドイッチした構造を持つ固体高分子形燃料電池は、常温で作動し、起動時間が短いことから、自動車、定置用電源などとして期待されている。   A polymer electrolyte fuel cell with a structure in which a catalyst layer is formed on the front and back surfaces of a polymer electrolyte membrane and sandwiched by a gas diffusion layer from above the catalyst layer of the polymer electrolyte membrane with a catalyst layer, operates at room temperature, Due to the short start-up time, it is expected to be used as a car, stationary power supply, and the like.

図1は固体高分子形燃料電池の断面構造を模式的に示す概略断面図である。図1に示されるように、固体高分子形燃料電池50は、高分子電解質膜52の両面に、アノード触媒層53A及びカソード触媒層53Cを形成した触媒層付きの高分子電解質膜である膜電極接合体51を、一対のガス拡散層56及び一対のセパレータ55により挟持するように配置されている。
膜電極接合体51は、通常高分子電解質膜52に触媒インクを塗布・乾燥する方法や、触媒インクを転写基材に塗布し、その後高分子電解質膜52に転写する方法などにより製造される。
FIG. 1 is a schematic sectional view schematically showing a sectional structure of a polymer electrolyte fuel cell. As shown in FIG. 1, the polymer electrolyte fuel cell 50 has a membrane electrode which is a polymer electrolyte membrane provided with a catalyst layer in which an anode catalyst layer 53A and a cathode catalyst layer 53C are formed on both sides of a polymer electrolyte membrane 52. The joined body 51 is disposed so as to be sandwiched between the pair of gas diffusion layers 56 and the pair of separators 55.
The membrane electrode assembly 51 is usually manufactured by a method of applying and drying a catalyst ink to the polymer electrolyte membrane 52, a method of applying the catalyst ink to a transfer base material, and then transferring the catalyst ink to the polymer electrolyte membrane 52.

上記触媒層には、通常、触媒粒子として白金が用いられているが、白金は希少であり、燃料電池のコストを押し上げる大きな要因の一つとなっており、燃料電池の低価格化へ向け、白金使用量の低減に向けた開発が多岐にわたり行われている。   In the above-mentioned catalyst layer, platinum is usually used as catalyst particles. However, platinum is rare and is one of the major factors that raise the cost of a fuel cell. A wide variety of developments have been carried out to reduce usage.

例えば、特許文献1では、カソード触媒層を、白金触媒の担持密度が異なる触媒層による2層構造とし、白金触媒の利用効率を高くすることで、白金の使用量を低減し、かつ触媒層中の酸素の拡散性を向上させた反応効率の高い燃料電池膜電極接合体が提案されている。   For example, in Patent Literature 1, the cathode catalyst layer has a two-layer structure including catalyst layers having different loading densities of platinum catalysts, and by increasing the utilization efficiency of platinum catalysts, the amount of platinum used is reduced. There has been proposed a fuel cell membrane electrode assembly having a high reaction efficiency and improved oxygen diffusivity.

また、特許文献2では、触媒層を白金酸窒化物あるいは白金と白金以外の金属元素との複合酸窒化物からなる混合物を還元処理して得られる、クモの巣状構造の触媒を、少なくとも1層以上有する多層構造とすることで、触媒利用率を高める方法が提案されている。   In Patent Document 2, at least one layer of a catalyst having a web-like structure obtained by reducing a catalyst layer formed of platinum oxynitride or a mixture of platinum and a composite oxynitride of a metal element other than platinum is used. There has been proposed a method of increasing the catalyst utilization rate by forming a multilayer structure having the above structure.

上記の特許文献1、2によれば、触媒の利用率を向上させ、白金の使用量を低減させることが可能となるが、製造工程が複雑になることで、結果的に製造コストが上がることや、再現性よく量産することが難しいといった製造上の問題点を有している。   According to Patent Documents 1 and 2 described above, it is possible to improve the utilization rate of the catalyst and reduce the amount of platinum used, but the manufacturing process becomes complicated, which results in an increase in the manufacturing cost. In addition, there is a problem in manufacturing that mass production with high reproducibility is difficult.

また、触媒層の厚さを薄くすることで、白金担持量を低減する方法も考えられるが、触媒層の塗布工程が極めて難しくなることや、図1に示したアノード触媒層53Aまたはカソード触媒層53Cとガスケット54との厚みに差が出ることで、密着性の低下によるガスリークや、発電性能の低下といった問題を引き起こす虞がある。   A method of reducing the amount of supported platinum by reducing the thickness of the catalyst layer is also considered. However, the application of the catalyst layer becomes extremely difficult, and the anode catalyst layer 53A or the cathode catalyst layer shown in FIG. The difference in thickness between the gasket 53C and the gasket 53C may cause problems such as gas leakage due to a decrease in adhesion and a decrease in power generation performance.

特開2010−073419号公報JP 2010-073419 A 特開2012−178360号公報JP 2012-178360 A

本発明は上記の問題点を解決するために検討を行ってなされたものであり、量産が困難
で高コストな複雑な製造方法を用いることなく、またカソードより白金の使用量が少なくてすむアノード触媒層において、白金触媒の使用量を低減させることのできる固体高分子形燃料電池用の膜電極接合体を提供することを課題とする。
The present invention has been made in order to solve the above-mentioned problems, and has been made without using a complicated and expensive manufacturing method which is difficult to mass-produce, and which requires less platinum than the cathode. It is an object of the present invention to provide a membrane electrode assembly for a polymer electrolyte fuel cell which can reduce the amount of a platinum catalyst used in a catalyst layer.

上記の課題を解決する膜電極接合体は、白金触媒を担持させた炭素粒子と高分子電解質とを含んでいる、アノード触媒層とカソード触媒層により、プロトン伝導性の高分子電解質膜を挟持した構成の燃料電池用の膜電極接合体のアノード触媒層とカソード触媒層において、アノード触媒層に含まれる炭素粒子は、白金触媒の担持率が25wt%以上40wt%以下であり、カソード触媒層に含まれる炭素粒子は、白金触媒の担持率が50wt%以上70wt%以下であり、前記アノード触媒層中の高分子電解質の炭素粒子に対する重量比(I/C比)が0.7以上1.2以下であり、前記カソード触媒層中の高分子電解質の炭素粒子に対する重量比(I/C比)が0.8以上1.4以下であり、前記アノード触媒層中の高分子電解質のプロトン供与性基1モル当たりの乾燥質量値(当量重量;EW)が700以上1000以下であり、前記カソード触媒層中の高分子電解質のEWが400以上800以下であって、前記アノード触媒層のI/C比の方が前記カソード触媒層のI/C比より低いことを特徴とする。
A membrane electrode assembly that solves the above-described problem includes a proton conductive polymer electrolyte membrane sandwiched between an anode catalyst layer and a cathode catalyst layer, which include carbon particles carrying a platinum catalyst and a polymer electrolyte. In the anode catalyst layer and the cathode catalyst layer of the membrane electrode assembly for a fuel cell having the above structure, the carbon particles contained in the anode catalyst layer have a platinum catalyst loading of 25 wt% to 40 wt% and are contained in the cathode catalyst layer. The carbon particles used have a platinum catalyst loading of 50 wt% or more and 70 wt% or less, and a weight ratio (I / C ratio) of the polymer electrolyte to the carbon particles in the anode catalyst layer of 0.7 or more and 1.2 or less. Wherein the weight ratio (I / C ratio) of the polymer electrolyte to carbon particles in the cathode catalyst layer is 0.8 or more and 1.4 or less, and the polymer electrolyte in the anode catalyst layer is The dry mass value (equivalent weight; EW) per mole of the donor group is 700 or more and 1000 or less, and the EW of the polymer electrolyte in the cathode catalyst layer is 400 or more and 800 or less. The / C ratio is lower than the I / C ratio of the cathode catalyst layer.

また、上記の課題を解決する膜電極接合体の別態様は、前記アノード触媒層中の白金触媒量が0.02mg/cm以上0.1mg/cm以下であり、前記カソード触媒層中の白金触媒量が0.2mg/cm以上0.4mg/cm以下であり、前記アノード触媒層の厚さが3μm以上10μm以下であり、前記カソード触媒層の厚さが5μm以上15μm以下であることを特徴とする。
Another aspect of the membrane electrode assembly to solve the aforementioned problem, the platinum catalyst of the anode catalyst layer is at 0.02 mg / cm 2 or more 0.1 mg / cm 2 or less, of the cathode catalyst layer The amount of platinum catalyst is 0.2 mg / cm 2 or more and 0.4 mg / cm 2 or less, the thickness of the anode catalyst layer is 3 μm or more and 10 μm or less, and the thickness of the cathode catalyst layer is 5 μm or more and 15 μm or less. it shall be the features a.

本発明の膜電極接合体によれば、特にアノードにおいて、白金の使用量を低減させた構成においても、製造が容易であるために製造コストが増加することなく、発電性能、外観ともに問題のない固体高分子形燃料電池用の膜電極接合体を得ることが出来る。   According to the membrane / electrode assembly of the present invention, especially in the anode, even in a configuration in which the amount of platinum used is reduced, the production cost is not increased because the production is easy, and there is no problem in power generation performance and appearance. A membrane electrode assembly for a polymer electrolyte fuel cell can be obtained.

本発明に係わる固体高分子形燃料電池の内部構造の例を示す断面図である。1 is a cross-sectional view illustrating an example of the internal structure of a polymer electrolyte fuel cell according to the present invention.

以下、本発明の燃料電池用膜電極接合体の実施形態について説明する。
本発明の燃料電池用膜電極接合体は、アノード触媒層とカソード触媒層により、プロトン伝導性高分子電解質膜を挟持した燃料電池用膜電極接合体において、アノード触媒層及びカソード触媒層は、それぞれ、白金触媒を担持させた炭素粒子と、高分子電解質と、を含んでおり、アノード触媒層に含まれる炭素粒子は白金触媒の担持率が25wt%以上40wt%以下であり、カソード触媒層に含まれる炭素粒子は白金触媒の担持率が50wt%以上70wt%以下である。
Hereinafter, embodiments of the membrane electrode assembly for a fuel cell according to the present invention will be described.
The fuel cell membrane electrode assembly of the present invention is a fuel cell membrane electrode assembly in which a proton conductive polymer electrolyte membrane is sandwiched by an anode catalyst layer and a cathode catalyst layer. , Carbon particles carrying a platinum catalyst, and a polymer electrolyte, wherein the carbon particles contained in the anode catalyst layer have a platinum catalyst loading of 25 wt% to 40 wt% and are contained in the cathode catalyst layer. The carbon particles have a platinum catalyst loading of 50 wt% or more and 70 wt% or less.

以下に、本発明の膜電極接合体について、詳細に説明する。
(触媒担持炭素粒子と高分子電解質を含有する触媒インクの製造方法)
本発明の固体高分子形燃料電池用の膜電極接合体と図1に示した従来の固体高分子形燃料電池用の膜電極接合体は、構成の上では同一であるため、図1を用いて、本発明の膜電極接合体を説明する。
Hereinafter, the membrane / electrode assembly of the present invention will be described in detail.
(Production method of catalyst ink containing catalyst-supporting carbon particles and polymer electrolyte)
The membrane electrode assembly for a polymer electrolyte fuel cell of the present invention and the conventional membrane electrode assembly for a polymer electrolyte fuel cell shown in FIG. Next, the membrane electrode assembly of the present invention will be described.

先ず、本発明の固体高分子形燃料電池用の膜電極接合体51用のアノード触媒層53A、カソード53Cを形成する触媒インクの製造方法について説明する。なお、本実施形態は、以下に記載する実施の形態に限定されるものではなく、当業者の知識に基づく設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本実施形態の範囲に含まれるものである。   First, a method for producing a catalyst ink for forming the anode catalyst layer 53A and the cathode 53C for the membrane electrode assembly 51 for a polymer electrolyte fuel cell according to the present invention will be described. Note that the present embodiment is not limited to the embodiments described below, and modifications such as design changes based on the knowledge of those skilled in the art can be added, and such modifications are added. Embodiments are also included in the scope of this embodiment.

白金触媒担持炭素粒子及び高分子電解質を分散媒中に分散させ、触媒インクの製造を行った。この時アノード触媒層53A用のインクに含まれる炭素粒子は、白金触媒の担持率が25wt%以上40wt%以下のものを用い、カソード触媒層53C用のインクに含まれる炭素粒子は白金触媒の担持率が50wt%以上70wt%以下のものを用いた。アノード触媒層53Aにおいて、白金触媒の担持率が低いものを用いることで、カソードより触媒量を必要としないアノード触媒層53Aにおいて、触媒使用量を下げた場合においても、触媒層膜厚が極端に薄くならず、塗布工程を容易に行うことが可能となる。白金触媒の担持率が25wt%より小さくなる場合や、70wt%を超える場合、炭素粒子表面に白金触媒が均一に分散されず、白金触媒が凝集を起こすため、白金利用率が低下する。そのため、白金触媒の担持率は上記の範囲が好ましい。また、本実施形態では、炭素粒子として、カーボンブラックを用いた。   The platinum catalyst-supported carbon particles and the polymer electrolyte were dispersed in a dispersion medium to produce a catalyst ink. At this time, the carbon particles contained in the ink for the anode catalyst layer 53A are those having a platinum catalyst loading rate of 25 wt% to 40 wt%, and the carbon particles contained in the ink for the cathode catalyst layer 53C are loaded with the platinum catalyst. Those having a ratio of 50 wt% or more and 70 wt% or less were used. By using a catalyst having a low platinum catalyst loading rate in the anode catalyst layer 53A, even when the amount of catalyst used is reduced in the anode catalyst layer 53A that does not require a larger amount of catalyst than the cathode, the thickness of the catalyst layer becomes extremely large. The coating process can be easily performed without becoming thin. When the loading of the platinum catalyst is less than 25 wt% or more than 70 wt%, the platinum catalyst is not uniformly dispersed on the surface of the carbon particles, and the platinum catalyst is aggregated, so that the platinum utilization is reduced. Therefore, the loading ratio of the platinum catalyst is preferably in the above range. In the present embodiment, carbon black is used as the carbon particles.

触媒層用のインク中に含まれる高分子電解質のI/C比は、アノード用においては0.7以上1.2以下とし、カソード用においては0.8以上1.4以下とする。ただし、アノード用のインクのI/C比の方がカソード用のインクのI/C比より低くなるよう設定する。アノード用において、I/C比を低くすることで、本実施形態のようにアノード触媒層53Aの膜厚を厚く塗布した際においても、カソード触媒層53Cからの生成水の逆拡散によるアノードフラッディングを抑制することができ、発電性能の低下を抑制できる。アノード触媒層53A及びカソード触媒層53Cともに上記I/C比より低い場合は、触媒層の塗布膜強度が低くなり、塗布、乾燥の際クラックが発生し、発電性能や耐久性が低下する原因となる。また、上記I/C比より高い際には、フラッディングによる性能低下を引き起こす原因となる。   The I / C ratio of the polymer electrolyte contained in the catalyst layer ink is 0.7 or more and 1.2 or less for the anode, and 0.8 or more and 1.4 or less for the cathode. However, the I / C ratio of the anode ink is set to be lower than the I / C ratio of the cathode ink. For the anode, by lowering the I / C ratio, even when the anode catalyst layer 53A is thickly applied as in the present embodiment, anode flooding due to back diffusion of water generated from the cathode catalyst layer 53C is prevented. It is possible to suppress the power generation performance. When both the anode catalyst layer 53A and the cathode catalyst layer 53C are lower than the above I / C ratio, the coating film strength of the catalyst layer becomes low, cracks occur during coating and drying, and the power generation performance and durability are reduced. Become. Further, when the I / C ratio is higher than the above, the performance may be reduced due to flooding.

また、アノードの高分子のEWは700以上1000以下とし、カソード触媒層53C中の高分子電解質のEWは400以上800以下とする。ただし、カソード触媒層53CのEWの方がアノード触媒層53Aより低くなるよう設定する。アノード触媒層53AのEWを高くすることで、本実施形態のようにアノード触媒層53Aの膜厚を厚く塗布した際においても、カソード触媒層53Cからの生成水の逆拡散によるアノードフラッディングを抑制することができ、発電性能の低下を抑制できる。アノード触媒層53A及びカソード触媒層53Cともに上記EWより低い際にはフラッディングによる性能低下を引き起こす原因となる。   The EW of the polymer of the anode is 700 or more and 1000 or less, and the EW of the polymer electrolyte in the cathode catalyst layer 53C is 400 or more and 800 or less. However, the EW of the cathode catalyst layer 53C is set to be lower than that of the anode catalyst layer 53A. By increasing the EW of the anode catalyst layer 53A, even when the anode catalyst layer 53A is thickly applied as in the present embodiment, the anode flooding due to the back diffusion of the generated water from the cathode catalyst layer 53C is suppressed. And a decrease in power generation performance can be suppressed. When both the anode catalyst layer 53A and the cathode catalyst layer 53C are lower than the above-mentioned EW, they may cause performance degradation due to flooding.

高分子電解質としては、プロトン伝導性を有する高分子材料、例えばフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えばデュポン社製NAFION(登録商標)、旭硝子(株)製FLEMION(登録商標)、旭化成(株)製ACIPLEX(登録商標)、ゴア社製GORE−SELECT(登録商標)などが挙げられる。   As the polymer electrolyte, a polymer material having proton conductivity, for example, a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte can be used. Examples of the fluorine-based polymer electrolyte include NAFION (registered trademark) manufactured by DuPont, FLEMION (registered trademark) manufactured by Asahi Glass Co., Ltd., ACIPLEX (registered trademark) manufactured by Asahi Kasei Corporation, and GORE-SELECT (registered trademark) manufactured by Gore. And the like.

分散媒としては、例えば、メタノール、エタノール、1−プロパノ―ル、2−プロパノ
―ル、1−ブタノ−ル、2−ブタノ−ル、イソブチルアルコール、tert−ブチルアルコール、ペンタノ−ル等のアルコール類の中から選ばれることが望ましい。また、上述した溶剤のうち二種以上が混合された分散媒を用いることが可能である。分散には、プラネタリーミキサー、ディゾルバー、ビーズミル等が使用できるが、中でもビーズミルが好ましい。
Examples of the dispersion medium include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, and pentanole. It is desirable to be selected from the following. It is also possible to use a dispersion medium in which two or more of the above-mentioned solvents are mixed. For dispersion, a planetary mixer, a dissolver, a bead mill or the like can be used, and among them, a bead mill is preferable.

(膜電極接合体の製造方法)
上記の方法により製造を行った各触媒インクを転写基材に塗布、乾燥させ、各触媒層を形成した後、高分子電解質膜52に転写する方法や、高分子電解質膜52に直接上記触媒インクを塗布、乾燥させることで膜電極接合体51が製造出来る。この時、塗布方式としては、ダイコート法、ドクターブレード法、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などを用いることが出来る。
(Method of manufacturing membrane electrode assembly)
Each catalyst ink produced by the above method is applied to a transfer base material and dried to form each catalyst layer and then transferred to the polymer electrolyte membrane 52, or the catalyst ink is directly applied to the polymer electrolyte membrane 52. Is applied and dried, whereby the membrane electrode assembly 51 can be manufactured. At this time, as a coating method, a die coating method, a doctor blade method, a dipping method, a screen printing method, a roll coating method, a spray method, or the like can be used.

転写基材は、触媒層を剥離可能な材料からなるシートである。例えば、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂の他、ポリスチレン系耐熱フィルム等を用いることができる。   The transfer substrate is a sheet made of a material from which the catalyst layer can be peeled. For example, fluorine such as ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), and polytetrafluoroethylene (PTFE) In addition to the resin, a polystyrene heat-resistant film or the like can be used.

高分子電解質膜52は、プロトン伝導性を有する高分子膜で、この高分子電解質膜52の材料としては、例えばフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えばデュポン社製NAFION(登録商標)、旭硝子(株)製FLEMION(登録商標)、旭化成(株)製ACIPLEX(登録商標)、ゴア社製GORE−SELECT(登録商標)を用いることができる。炭化水素系高分子電解質としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質を用いることができる。   The polymer electrolyte membrane 52 is a polymer membrane having proton conductivity. As a material of the polymer electrolyte membrane 52, for example, a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte can be used. Examples of the fluorine-based polymer electrolyte include NAFION (registered trademark) manufactured by DuPont, FLEMION (registered trademark) manufactured by Asahi Glass Co., Ltd., ACIPLEX (registered trademark) manufactured by Asahi Kasei Corporation, and GORE-SELECT (registered trademark) manufactured by Gore. Can be used. As the hydrocarbon-based polymer electrolyte, electrolytes such as sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.

上記膜電極接合体51を製造するにあたり、アノード触媒層53A中の白金触媒量は0.02mg/cm以上0.1mg/cm以下とし、カソード触媒層53C中の白金触媒量は0.2mg/cm以上0.4mg/cm以下とし、アノード触媒層53Aの厚さが3μm以上10μm以下、カソード触媒層53Cの厚さ5μm以上15μm以下となるよう調節し塗布、乾燥を行う。アノード触媒層53Aの白金触媒量が上記範囲より低い際には、膜厚が極端に薄くなり塗布が困難となり、カソード触媒層53Cにおいて、上記白金触媒量より低い際には、発電に必要な触媒量が不足し、発電性能の低下を引き起こす要因となる。また、アノード触媒層53A、カソード触媒層53Cにおいて上記白金触媒量を超す場合においては、発電に寄与しない触媒量が増えることや、触媒層膜厚が厚くなり、塗布の際クラック等が発生しやすくなるため、上記白金触媒量の範囲内とすることが好ましい。 In producing the membrane electrode assembly 51, the platinum catalyst amount in the anode catalyst layer 53A is set to 0.02 mg / cm 2 or more 0.1 mg / cm 2 or less, the platinum catalyst of the cathode catalyst layer 53C is 0.2mg / Cm 2 to 0.4 mg / cm 2, the thickness of the anode catalyst layer 53A is adjusted to 3 μm to 10 μm, and the thickness of the cathode catalyst layer 53C is adjusted to 5 μm to 15 μm, and coating and drying are performed. When the amount of the platinum catalyst in the anode catalyst layer 53A is lower than the above range, the film thickness becomes extremely thin and coating becomes difficult. When the amount of the platinum catalyst in the cathode catalyst layer 53C is lower than the above platinum catalyst amount, the catalyst required for power generation is used. Insufficient quantity may cause deterioration of power generation performance. When the amount of the platinum catalyst exceeds the amount of the platinum catalyst in the anode catalyst layer 53A and the cathode catalyst layer 53C, the amount of the catalyst that does not contribute to power generation increases, and the thickness of the catalyst layer increases, so that cracks and the like easily occur during coating. Therefore, it is preferable that the amount is within the above range of the platinum catalyst amount.

<実施例1>
以下、本発明の実施例を説明する。
<Example 1>
Hereinafter, embodiments of the present invention will be described.

(触媒担持炭素粒子と高分子電解質を含有する触媒インクの製造方法)
白金を30wt%担持したアセチレンブラックとEW1000の高分子電解質を、I/C比が0.8となるよう1−プロパノール中に加えビーズミルにより分散を行いアノード触媒層用のインクを製造した。
(Production method of catalyst ink containing catalyst-supporting carbon particles and polymer electrolyte)
Acetylene black carrying 30 wt% of platinum and a polymer electrolyte of EW1000 were added to 1-propanol so that the I / C ratio became 0.8, and dispersed by a bead mill to produce an ink for an anode catalyst layer.

次に白金を50wt%担持したアセチレンブラックとEW700の高分子電解質をI/
C比が1.0となるよう1−プロパノール中に加えビーズミルにより分散を行いカソード触媒層用のインクを製造した。
Next, acetylene black carrying 50 wt% of platinum and a polymer electrolyte of EW700 were mixed with I / O.
It was added to 1-propanol so as to have a C ratio of 1.0 and dispersed by a bead mill to produce an ink for a cathode catalyst layer.

(膜電極接合体の製造)
次いで、上記のアノード触媒層用のインクとカソード触媒層用のインクの各触媒インクをダイコーティング法により転写シートにそれぞれ塗布し、転写シート上に塗布された各触媒インクを、温度80℃の大気雰囲気中で5分間乾燥させることにより、各触媒層を得た。この際、白金触媒量がアノード触媒層で0.05mg/cm、カソード触媒層で0.3mg/cmとなるように、各触媒層の厚さを調節した。
(Manufacture of membrane electrode assembly)
Next, the respective catalyst inks of the ink for the anode catalyst layer and the ink for the cathode catalyst layer are respectively applied to a transfer sheet by a die coating method, and each of the catalyst inks applied on the transfer sheet is heated to an air temperature of 80 ° C. Each catalyst layer was obtained by drying in an atmosphere for 5 minutes. At this time, 0.05 mg / cm 2 platinum catalyst amount in the anode catalyst layer, so that a 0.3 mg / cm 2 at the cathode catalyst layer was adjusted to the thickness of each catalyst layer.

上記方法により製造した各触媒層を、高分子電解質膜を挟んで両面から転写することで、膜電極接合体を製造した。上記方法にて製造した膜電極接合体を用いた燃料電池では、触媒層の外観、発電性能共に良好な結果が得られた。   The membrane electrode assembly was manufactured by transferring each catalyst layer manufactured by the above method from both sides with the polymer electrolyte membrane interposed therebetween. In the fuel cell using the membrane / electrode assembly manufactured by the above method, good results were obtained in both the appearance of the catalyst layer and the power generation performance.

<実施例2>
高分子電解質のI/C比をアノード触媒層で1.0、カソード触媒層で1.2としたこと以外は、実施例1と同様として、実施例2の膜電極接合体を得た。実施例2の方法により製造した膜電極接合体を用いた燃料電池では、触媒層の外観、発電性能共に良好な結果が得られた。
<Example 2>
A membrane electrode assembly of Example 2 was obtained in the same manner as in Example 1, except that the I / C ratio of the polymer electrolyte was set to 1.0 for the anode catalyst layer and 1.2 for the cathode catalyst layer. In the fuel cell using the membrane electrode assembly manufactured by the method of Example 2, good results were obtained in both the appearance of the catalyst layer and the power generation performance.

<実施例3>
アノード触媒層中での高分子電解質のEWを700としたこと以外は、実施例1と同様として、実施例3の膜電極接合体を得た。実施例3の方法により製造した膜電極接合体を用いた燃料電池では、触媒層の外観、発電性能共に良好な結果が得られた。
<Example 3>
A membrane electrode assembly of Example 3 was obtained in the same manner as in Example 1, except that the EW of the polymer electrolyte in the anode catalyst layer was set to 700. In the fuel cell using the membrane electrode assembly manufactured by the method of Example 3, good results were obtained in both the appearance of the catalyst layer and the power generation performance.

<比較例1>
白金を50wt%担持したアセチレンブラックをアノード触媒層として用いたこと以外は、実施例1と同様として、比較例1の膜電極接合体を得た。比較例1の方法により製造した膜電極接合体を用いた燃料電池では、アノード触媒層膜厚が3μmより薄くなったため、アノード触媒層塗布膜の外観を良好に塗布することが不可能であった。そのため、正常な構造を持った燃料電池を作製できず、燃料電池の特性を測定することができなかった。
<Comparative Example 1>
A membrane electrode assembly of Comparative Example 1 was obtained in the same manner as in Example 1, except that acetylene black carrying 50 wt% of platinum was used as the anode catalyst layer. In the fuel cell using the membrane electrode assembly manufactured by the method of Comparative Example 1, since the anode catalyst layer thickness was thinner than 3 μm, it was impossible to apply the appearance of the anode catalyst layer coating film well. . Therefore, a fuel cell having a normal structure cannot be manufactured, and characteristics of the fuel cell cannot be measured.

<比較例2>
高分子電解質のI/C比をアノードで1.4としたこと以外は、実施例1と同様として、比較例2の膜電極接合体を得た。比較例2の方法により製造した膜電極接合体を用いた燃料電池では、アノードフラッディングに起因する発電性能の低下が生じた。アノード触媒層塗布膜の外観を良好に塗布することは可能であった。
<Comparative Example 2>
A membrane / electrode assembly of Comparative Example 2 was obtained in the same manner as in Example 1, except that the I / C ratio of the polymer electrolyte was set to 1.4 at the anode. In the fuel cell using the membrane electrode assembly manufactured by the method of Comparative Example 2, the power generation performance was reduced due to anode flooding. It was possible to satisfactorily apply the appearance of the anode catalyst layer coating film.

<比較例3>
カソードにおける高分子電解質のI/Cを0.7、EWを1000としたこと以外は、実施例1と同様として、比較例3の膜電極接合体を得た。比較例3の方法により製造した膜電極接合体を用いた燃料電池では、カソード触媒層塗布膜の強度が弱く、外観を良好に塗布することが不可能であった。そのため、正常な構造を持った燃料電池を作製できず、燃料電池の特性を測定することができなかった。
<Comparative Example 3>
A membrane / electrode assembly of Comparative Example 3 was obtained in the same manner as in Example 1, except that the I / C of the polymer electrolyte at the cathode was 0.7 and the EW was 1,000. In the fuel cell using the membrane / electrode assembly manufactured by the method of Comparative Example 3, the strength of the coating film of the cathode catalyst layer was low, and it was impossible to apply the external appearance well. Therefore, a fuel cell having a normal structure cannot be manufactured, and characteristics of the fuel cell cannot be measured.

以上の結果を、表1にまとめて示した。
The above results are summarized in Table 1.

50…固体高分子形燃料電池
51…膜電極接合体
52…高分子電解質膜
53A…アノード触媒層
53C…カソード触媒層
54…ガスケット(シール材)
55…セパレータ
56…ガス拡散層
Reference Signs List 50 solid polymer fuel cell 51 membrane electrode assembly 52 polymer electrolyte membrane 53A anode catalyst layer 53C cathode catalyst layer 54 gasket (sealant)
55 ... separator 56 ... gas diffusion layer

Claims (2)

白金触媒を担持させた炭素粒子と高分子電解質とを含んでいる、アノード触媒層とカソード触媒層により、プロトン伝導性の高分子電解質膜を挟持した構成の燃料電池用の膜電極接合体のアノード触媒層とカソード触媒層において、
アノード触媒層に含まれる炭素粒子は、白金触媒の担持率が25wt%以上40wt%以下であり、
カソード触媒層に含まれる炭素粒子は、白金触媒の担持率が50wt%以上70wt%以下であり、
前記アノード触媒層中の高分子電解質の炭素粒子に対する重量比(I/C比)が0.7以上1.2以下であり、
前記カソード触媒層中の高分子電解質の炭素粒子に対する重量比(I/C比)が0.8以上1.4以下であり、
前記アノード触媒層中の高分子電解質のプロトン供与性基1モル当たりの乾燥質量値(当量重量;EW)が700以上1000以下であり、
前記カソード触媒層中の高分子電解質のEWが400以上800以下であって、
前記アノード触媒層のI/C比の方が前記カソード触媒層のI/C比より低いことを特徴とする膜電極接合体。

An anode of a membrane electrode assembly for a fuel cell having a structure in which a proton conductive polymer electrolyte membrane is sandwiched between an anode catalyst layer and a cathode catalyst layer containing carbon particles carrying a platinum catalyst and a polymer electrolyte. In the catalyst layer and the cathode catalyst layer,
The carbon particles contained in the anode catalyst layer have a platinum catalyst loading of 25 wt% or more and 40 wt% or less,
Cathode carbon particles contained in the catalyst layer, Ri 70 wt% der less loading of more than 50 wt% of the platinum catalyst,
A weight ratio (I / C ratio) of the polymer electrolyte to the carbon particles in the anode catalyst layer is 0.7 or more and 1.2 or less;
A weight ratio (I / C ratio) of the polymer electrolyte to the carbon particles in the cathode catalyst layer is 0.8 or more and 1.4 or less;
A dry mass value (equivalent weight; EW) per mole of the proton donating group of the polymer electrolyte in the anode catalyst layer is 700 or more and 1000 or less;
EW of the polymer electrolyte in the cathode catalyst layer is 400 or more and 800 or less,
A membrane electrode assembly, wherein the I / C ratio of the anode catalyst layer is lower than the I / C ratio of the cathode catalyst layer .

前記アノード触媒層中の白金触媒量が0.02mg/cm以上0.1mg/cm以下であり、
前記カソード触媒層中の白金触媒量が0.2mg/cm以上0.4mg/cm以下であり、
前記アノード触媒層の厚さが3μm以上10μm以下であり、
前記カソード触媒層の厚さが5μm以上15μm以下であることを特徴とする請求項1に記載の膜電極接合体。
Platinum catalyst amount of the anode catalyst layer is at 0.02 mg / cm 2 or more 0.1 mg / cm 2 or less,
The amount of platinum catalyst in the cathode catalyst layer is 0.2 mg / cm 2 or more and 0.4 mg / cm 2 or less;
The thickness of the anode catalyst layer is 3 μm or more and 10 μm or less,
The membrane electrode assembly according to claim 1, wherein the thickness of the cathode catalyst layer is 5 µm or more and 15 µm or less.
JP2015218277A 2015-11-06 2015-11-06 Membrane electrode assembly Active JP6661979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015218277A JP6661979B2 (en) 2015-11-06 2015-11-06 Membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218277A JP6661979B2 (en) 2015-11-06 2015-11-06 Membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2017091716A JP2017091716A (en) 2017-05-25
JP6661979B2 true JP6661979B2 (en) 2020-03-11

Family

ID=58770887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218277A Active JP6661979B2 (en) 2015-11-06 2015-11-06 Membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP6661979B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727266B2 (en) * 2018-09-18 2020-07-22 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell using the same
CN117476952B (en) * 2023-12-28 2024-04-09 中石油深圳新能源研究院有限公司 Catalytic membrane, preparation method thereof, membrane electrode and fuel cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887580B2 (en) * 2001-07-23 2012-02-29 旭硝子株式会社 Gas diffusion electrode and polymer electrolyte fuel cell having the same
JP4276035B2 (en) * 2003-09-17 2009-06-10 株式会社豊田中央研究所 Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
WO2006088194A1 (en) * 2005-02-21 2006-08-24 Nissan Motor Co., Ltd. Electrode catalyst and method for producing same
JP2006294313A (en) * 2005-04-07 2006-10-26 Toyota Motor Corp Electrode for fuel cell, and fuel cell
JP5266749B2 (en) * 2007-12-21 2013-08-21 旭硝子株式会社 Membrane electrode assembly for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell
JP5805924B2 (en) * 2009-08-06 2015-11-10 日産自動車株式会社 Electrolyte membrane-electrode assembly
JP6675705B2 (en) * 2014-02-07 2020-04-01 日産自動車株式会社 Anode electrode catalyst, electrode catalyst layer using the catalyst, membrane electrode assembly, and fuel cell

Also Published As

Publication number Publication date
JP2017091716A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP2009193860A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
JP7027704B2 (en) Membrane-electrode assembly
US20150044593A1 (en) Polymer electrolyte fuel cell
KR20110043908A (en) Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell
JP5153130B2 (en) Membrane electrode assembly
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
JP5230064B2 (en) Electrode catalyst layer, catalyst layer-electrolyte membrane laminate production transfer sheet and catalyst layer-electrolyte membrane laminate
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
KR100832213B1 (en) Direct oxidation fuel cell and production method thereof
JP6661979B2 (en) Membrane electrode assembly
WO2017154475A1 (en) Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly
JP2006244840A (en) Gas diffusion electrode, its manufacturing method, and electrode-electrolyte membrane laminate
JP2009043692A (en) Manufacturing method and membrane electrode assembly for fuel cell, and membrane electrode assembly
JP2008305610A (en) Conductive porous sheet and method of manufacturing the same
JP6897017B2 (en) Catalyst ink for forming electrode catalyst layer of polymer electrolyte fuel cell, its manufacturing method, electrode catalyst layer of polymer electrolyte fuel cell and polymer electrolyte fuel cell
CN104838527B (en) The manufacture method of electrode for fuel cell piece
WO2015146980A1 (en) Membrane electrode assembly and solid polymer fuel cell
JP6354126B2 (en) Membrane electrode assembly and manufacturing method thereof
JP2009048936A (en) Repair method of electrolyte membrane with catalyst layer, and transcription film for repair
JP6746977B2 (en) Method for producing catalyst ink
JP5634013B2 (en) Method for producing catalyst layer for fuel cell, catalyst layer transfer sheet, and catalyst layer-electrolyte membrane laminate
JP5501044B2 (en) Membrane electrode assembly and fuel cell
JP7384263B2 (en) catalyst ink
JP2013084427A (en) Method for manufacturing membrane-catalyst layer assembly and method for manufacturing membrane electrode assembly
EP2306576B1 (en) Direct oxidation fuel cell with reduced fuel crossover

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R150 Certificate of patent or registration of utility model

Ref document number: 6661979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250