JP2006244840A - Gas diffusion electrode, its manufacturing method, and electrode-electrolyte membrane laminate - Google Patents

Gas diffusion electrode, its manufacturing method, and electrode-electrolyte membrane laminate Download PDF

Info

Publication number
JP2006244840A
JP2006244840A JP2005058459A JP2005058459A JP2006244840A JP 2006244840 A JP2006244840 A JP 2006244840A JP 2005058459 A JP2005058459 A JP 2005058459A JP 2005058459 A JP2005058459 A JP 2005058459A JP 2006244840 A JP2006244840 A JP 2006244840A
Authority
JP
Japan
Prior art keywords
catalyst layer
catalyst
gas diffusion
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005058459A
Other languages
Japanese (ja)
Other versions
JP4693442B2 (en
Inventor
Rei Hiromitsu
礼 弘光
Hironobu Nishimura
浩宣 西村
Hidenori Asai
秀紀 浅井
Takanori Oboshi
隆則 大星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005058459A priority Critical patent/JP4693442B2/en
Publication of JP2006244840A publication Critical patent/JP2006244840A/en
Application granted granted Critical
Publication of JP4693442B2 publication Critical patent/JP4693442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas diffusion electrode with a catalyst layer for manufacturing a fuel cell having high performance. <P>SOLUTION: The gas diffusion electrode has a water repellent layer, a first catalyst layer, and a second catalyst layer sequentially formed on one surface of a porous gas diffusion substrate, the water repellent layer comprises a carbon material and a water-repellent material, the first catalyst layer comprises catalyst-carrying carbon, a hydrogen ion conductive electrolyte, the carbon material, and the water-repellent material, and the second catalyst layer comprises the catalyst-carrying carbon and the hydrogen ion conductive electrolyte, and the first catalyst layer is formed thinner than the second catalyst layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガス拡散電極、その製造方法及び電極−電解質膜積層体に関する。   The present invention relates to a gas diffusion electrode, a manufacturing method thereof, and an electrode-electrolyte membrane laminate.

燃料電池は、電解質膜の両面に触媒層を配置し、水素と酸素の電気化学反応により発電する発電するシステムであり、発電時に発生するのは水のみである。従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しない為、次世代のクリーンエネルギーシステムとして注目されている。   A fuel cell is a system that generates electricity by an electrochemical reaction between hydrogen and oxygen by arranging catalyst layers on both sides of an electrolyte membrane, and only water is generated during power generation. Unlike conventional internal combustion engines, it does not generate environmentally harmful gases such as carbon dioxide, and is therefore attracting attention as a next-generation clean energy system.

固体高分子型燃料電池は、電解質膜層として水素イオン伝導性高分子電解質膜を用い、その両面に触媒層を配置し、ついでその両面に、電極基材を配置し、更にこれをセパレータで挟んだ構造をしている。電解質膜層の両面に触媒層を配置し、ついでその両面に電極基材を配置したもの(即ち、電極基材/触媒層/電解質膜/触媒層/の層構成のもの)は、電極−電解質膜接合体と称されている。ここで電極基材の一方は燃料極、他方は酸化剤極(空気極)となるものである。   A polymer electrolyte fuel cell uses a hydrogen ion conductive polymer electrolyte membrane as an electrolyte membrane layer, a catalyst layer is arranged on both sides thereof, an electrode substrate is arranged on both sides thereof, and this is further sandwiched between separators. It has a structure. A catalyst layer is arranged on both sides of an electrolyte membrane layer, and then an electrode substrate is arranged on both sides (that is, electrode substrate / catalyst layer / electrolyte membrane / catalyst layer / layer structure) is an electrode-electrolyte. It is called a membrane assembly. Here, one of the electrode base materials is a fuel electrode, and the other is an oxidant electrode (air electrode).

電気化学反応は、酸化剤極側及び燃料極側でそれぞれ起こる。特に酸化剤極側と燃料極側のガス拡散の程度及び、反応速度の程度が電池出力特性に大きく影響する。   Electrochemical reactions occur on the oxidant electrode side and the fuel electrode side, respectively. In particular, the degree of gas diffusion between the oxidant electrode side and the fuel electrode side and the degree of reaction rate greatly affect the battery output characteristics.

例えば、酸化剤極側で起こる電気化学反応の反応速度は遅く、酸化剤極の触媒層を構成する触媒は白金が最も有効であることが知られている。触媒層中に含まれる白金量を増やすことにより反応速度を向上させることができるが、コスト高になり、実用性に乏しい。白金量を増加させずに反応速度を向上させる方法として、例えば、(1)担持活性金属の異なる触媒粒子を用いて白金触媒層を多層化する技術(特許文献1)、(2)単一元素もしくは二つ以上の元素を含む触媒材料をスパッタリング法、蒸着法等を適用して触媒層を形成させる技術(特許文献2)等が知られている。   For example, the reaction rate of the electrochemical reaction that occurs on the oxidant electrode side is slow, and it is known that platinum is the most effective catalyst that constitutes the catalyst layer of the oxidant electrode. The reaction rate can be improved by increasing the amount of platinum contained in the catalyst layer, but the cost is high and the practicality is poor. As a method for improving the reaction rate without increasing the amount of platinum, for example, (1) a technique of multilayering a platinum catalyst layer using catalyst particles of different supported active metals (Patent Document 1), (2) a single element Or the technique (patent document 2) etc. which form a catalyst layer by applying sputtering method, vapor deposition method, etc. about the catalyst material containing two or more elements are known.

しかしながら、(1)の技術では、電池反応に関与する反応点が電解質−触媒層の界面又はその近傍であるため、多層化により、全触媒量のうち反応に関与する触媒量は少なくなり、触媒利用率が低い。(2)の技術では、触媒層の形成を溶剤を用いることなく、スパッタリング、蒸着等の工程にて行うため、触媒層形成作業が煩雑である。従って、これらの方法も、実用性に乏しい。
特開平8−148151号公報 特開2002−289206
However, in the technique (1), since the reaction point involved in the battery reaction is at or near the electrolyte-catalyst interface, the amount of catalyst involved in the reaction is reduced out of the total catalyst amount due to the multilayering. The utilization rate is low. In the technique (2), since the formation of the catalyst layer is performed by a process such as sputtering or vapor deposition without using a solvent, the work of forming the catalyst layer is complicated. Therefore, these methods are also not practical.
JP-A-8-148151 JP 2002-289206 A

本発明は、発電時に生成する水を効率的に排出する機能を有すると共に、触媒利用率の高いガス拡散電極を備えた燃料電池を提供することを課題とする。   An object of the present invention is to provide a fuel cell having a function of efficiently discharging water generated during power generation and including a gas diffusion electrode having a high catalyst utilization rate.

本発明者は、上記課題を解決するために鋭意研究を重ねてきた。その結果、多孔質のガス拡散基材の一方面上に、撥水層、第一触媒層及び第二触媒層が順次形成させたガス拡散電極を用いることにより、所望の性能を備えた燃料電池を製造できることを見い出した。本発明は、斯かる知見に基づき完成されたものである。   The present inventor has intensively studied to solve the above problems. As a result, a fuel cell having desired performance is obtained by using a gas diffusion electrode in which a water repellent layer, a first catalyst layer, and a second catalyst layer are sequentially formed on one surface of a porous gas diffusion substrate. Found that can be manufactured. The present invention has been completed based on such findings.

本発明は、下記1〜5に示すガス拡散電極、その製造方法及び電極−電解質膜積層体を提供する。
1.多孔質のガス拡散基材の一方面上に、撥水層、第一触媒層及び第二触媒層が順次形成されているガス拡散電極であって、
撥水層が、炭素材料及び撥水性物質からなり、
第一触媒層が、触媒担持炭素、水素イオン伝導性電解質、炭素材料及び撥水性物質からなり、
第二触媒層が、触媒担持炭素及び水素イオン伝導性電解質からなり、
第一触媒層の厚さが、第二触媒層の厚さよりも薄い、
ガス拡散電極。
2.第一触媒層の厚さが1〜10μm、第二触媒層の厚さが10〜20μmである上記1に記載の電極。
3.第一触媒層中に含まれる触媒担持炭素の触媒金属が、白金と金属酸化物との複合物である上記1に記載の電極。
4.第一触媒層の空孔率が第二触媒層の空孔率よりも大きい上記1に記載の電極。
5.多孔質のガス拡散基材の一方面上に、炭素材料及び撥水性物質からなる撥水層、触媒担持炭素、水素イオン伝導性電解質、炭素材料及び撥水性物質からなる第一触媒層並びに触媒担持炭素及び水素イオン伝導性電解質からなる第二触媒層が順次形成されているガス拡散電極の製造方法であって、
ガス拡散基材の一方面上に撥水層を形成する工程、
撥水層上に第一触媒層を形成させる工程、及び
第一触媒層上に第二の触媒層を形成させる工程
を含む、ガス拡散電極の製造方法。
6.上記1に記載のガス拡散電極を用いて製造される電極−電解質膜積層体。
The present invention provides a gas diffusion electrode, a manufacturing method thereof, and an electrode-electrolyte membrane laminate shown in the following 1 to 5.
1. A gas diffusion electrode in which a water repellent layer, a first catalyst layer, and a second catalyst layer are sequentially formed on one surface of a porous gas diffusion substrate,
The water repellent layer is made of a carbon material and a water repellent material,
The first catalyst layer is made of catalyst-supporting carbon, hydrogen ion conductive electrolyte, carbon material and water repellent material,
The second catalyst layer is composed of catalyst-supported carbon and hydrogen ion conductive electrolyte,
The thickness of the first catalyst layer is thinner than the thickness of the second catalyst layer,
Gas diffusion electrode.
2. 2. The electrode according to 1 above, wherein the first catalyst layer has a thickness of 1 to 10 μm and the second catalyst layer has a thickness of 10 to 20 μm.
3. 2. The electrode according to 1 above, wherein the catalyst metal of the catalyst-supporting carbon contained in the first catalyst layer is a composite of platinum and a metal oxide.
4). 2. The electrode according to 1 above, wherein the porosity of the first catalyst layer is larger than the porosity of the second catalyst layer.
5. On one surface of a porous gas diffusion substrate, a water repellent layer composed of a carbon material and a water repellent material, a catalyst-supporting carbon, a hydrogen ion conductive electrolyte, a first catalyst layer composed of a carbon material and a water repellent material, and a catalyst support A method for producing a gas diffusion electrode in which a second catalyst layer comprising a carbon and hydrogen ion conductive electrolyte is sequentially formed,
Forming a water repellent layer on one side of the gas diffusion substrate;
A method for producing a gas diffusion electrode, comprising: a step of forming a first catalyst layer on a water repellent layer; and a step of forming a second catalyst layer on the first catalyst layer.
6). An electrode-electrolyte membrane laminate produced using the gas diffusion electrode according to 1 above.

触媒層付きガス拡散電極
本発明の触媒層付きガス拡散電極は、多孔質のガス拡散基材の一方面上に、撥水層、第一触媒層及び第二触媒層が順次形成されてなるものである。前記撥水層は、炭素材料及び撥水性物質からなり、第一触媒層は、触媒担持炭素、水素イオン伝導性電解質、炭素材料及び撥水性物質からなり、第二触媒層は、触媒担持炭素及び水素イオン伝導性電解質からなっている。
Gas diffusion electrode with catalyst layer The gas diffusion electrode with catalyst layer of the present invention comprises a water repellent layer, a first catalyst layer, and a second catalyst layer sequentially formed on one surface of a porous gas diffusion substrate. It is. The water repellent layer is composed of a carbon material and a water repellent substance, the first catalyst layer is composed of catalyst supported carbon, a hydrogen ion conductive electrolyte, a carbon material and a water repellent substance, and the second catalyst layer is composed of catalyst supported carbon and It consists of a hydrogen ion conductive electrolyte.

本発明の触媒層付きガス拡散電極の一例を図1に示す。図1は、本発明ガス拡散電極の断面図である。多孔質のガス拡散基材1の一方面上に、撥水層2が形成され、該撥水層2の上に第一触媒層3が形成され、該第一触媒層3の上に第二触媒層4が形成されている。   An example of the gas diffusion electrode with a catalyst layer of the present invention is shown in FIG. FIG. 1 is a cross-sectional view of the gas diffusion electrode of the present invention. A water repellent layer 2 is formed on one surface of the porous gas diffusion substrate 1, a first catalyst layer 3 is formed on the water repellent layer 2, and a second catalyst layer 3 is formed on the first catalyst layer 3. A catalyst layer 4 is formed.

ガス拡散基材
ガス拡散基材は、多孔質基材から構成されている。多孔質基材は公知のものである。多孔質基材は、導電性を備えていることが好ましく、導電性の炭素紙からなるカーボンペーパー、カーボンフェルト、カーボンクロス等を使用することができる。具体例としては、東レ社製のカーボンペーパー「TGP−H」シリーズ、SGLカーボンジャパン社製のカーボンフェルト「SIGRACTE GDL」シリーズ等を挙げることができる。
Gas diffusion base material The gas diffusion base material is composed of a porous base material. The porous substrate is a known one. The porous substrate preferably has conductivity, and carbon paper made of conductive carbon paper, carbon felt, carbon cloth, or the like can be used. Specific examples include carbon paper “TGP-H” series manufactured by Toray Industries, Inc., carbon felt “SIGRATETE GDL” series manufactured by SGL Carbon Japan.

ガス拡散基材の膜厚は、通常20〜400μm程度、好ましくは100〜300μm程度である。   The film thickness of the gas diffusion substrate is usually about 20 to 400 μm, preferably about 100 to 300 μm.

撥水層
撥水層は、炭素材料及び撥水性物質から構成されている。
Water-repellent layer The water-repellent layer is composed of a carbon material and a water-repellent substance.

炭素材料は、特に制限されず、公知のものを用いることができる。例えば、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラック等のカーボンブラック、黒鉛、活性炭、カーボン繊維、カーボンナノチューブ等が挙げられる。これらの炭素材料は、1種単独で又は二種以上混合して使用される。   A carbon material in particular is not restrict | limited, A well-known thing can be used. Examples thereof include carbon black such as channel black, furnace black, ketjen black, acetylene black, and lamp black, graphite, activated carbon, carbon fiber, and carbon nanotube. These carbon materials are used individually by 1 type or in mixture of 2 or more types.

炭素材料のストラクチャー、表面形状等は、特に制限されず、目的に応じて適宜選択して使用される。炭素材料の形状も特に制限されず、例えばビーズ状、ペレット状、粉状、フレーク状等が挙げられる。これらの中では、粉状が好ましい。   The structure, surface shape and the like of the carbon material are not particularly limited and are appropriately selected and used according to the purpose. The shape of the carbon material is not particularly limited, and examples thereof include beads, pellets, powders, and flakes. In these, a powder form is preferable.

炭素材料の平均一次粒子径(レーザー回折法による)としては、1〜200nm程度、好ましくは10nm〜100nm、より好ましくは10nm〜50nm程度である。   The average primary particle size (by laser diffraction method) of the carbon material is about 1 to 200 nm, preferably 10 nm to 100 nm, more preferably about 10 nm to 50 nm.

撥水性物質としては、特に限定されないが、シリコーン系、含フッ素系の樹脂が好ましい。具体的には、ポリビニルフッカデン(PvdF)、ポリテトラフルオロエチレン(PTFE)等のフッ化樹脂が挙げられる。これら撥水性物質は、1種単独で又は二種以上混合して使用される。   The water-repellent substance is not particularly limited, but silicone-based and fluorine-containing resins are preferable. Specific examples include fluorinated resins such as polyvinyl fucaden (PvdF) and polytetrafluoroethylene (PTFE). These water repellent materials are used singly or in combination of two or more.

撥水層中における炭素材料及び撥水性物質の割合は、通常炭素材料1重量部当たり、撥水性物質が0.05〜0.5重量部程度、好ましくは0.1〜0.4重量部程度である。   The ratio of the carbon material and the water repellent substance in the water repellent layer is usually about 0.05 to 0.5 parts by weight, preferably about 0.1 to 0.4 parts by weight of the water repellent substance per part by weight of the carbon material. It is.

ガス拡散基材上に撥水層を形成するに当たっては、所定割合の炭素材料及び撥水性物質を適当な溶剤に配合した撥水層形成用ペーストを、形成される撥水層が所望の膜厚になるように、公知の塗布方法に従いガス拡散基材に塗布し、乾燥すればよい。   In forming a water-repellent layer on a gas diffusion substrate, a water-repellent layer-forming paste in which a predetermined proportion of a carbon material and a water-repellent substance are blended in an appropriate solvent is formed into a desired film thickness. Then, it may be applied to a gas diffusion substrate according to a known application method and dried.

上記溶剤としては、例えば、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水又はこれらの混合物等が挙げられる。   Examples of the solvent include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof.

撥水層形成用ペーストの塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   The application method of the paste for forming the water repellent layer is not particularly limited. For example, knife coater, bar coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, screen printing, etc. Applicable.

撥水層形成用ペーストを塗布した後、乾燥することにより、撥水層が形成される。乾燥温度は、通常80〜300℃程度、好ましくは100〜150℃程度である。乾燥時間は、乾燥温度により異なり一概には言えないが、通常5分〜2時間程度、好ましくは30分〜1時間程度である。   After applying the water repellent layer forming paste, the water repellent layer is formed by drying. A drying temperature is about 80-300 degreeC normally, Preferably it is about 100-150 degreeC. The drying time varies depending on the drying temperature and cannot be generally specified, but is usually about 5 minutes to 2 hours, preferably about 30 minutes to 1 hour.

撥水層の厚さは、0.5〜10μm程度が好ましく、1〜5μm程度がより好ましい。   The thickness of the water repellent layer is preferably about 0.5 to 10 μm, more preferably about 1 to 5 μm.

第一触媒層
第一触媒層は、触媒担持炭素、水素イオン伝導性電解質、炭素材料及び撥水性物質から構成されている。
First catalyst layer The first catalyst layer is composed of catalyst-supporting carbon, a hydrogen ion conductive electrolyte, a carbon material, and a water-repellent substance.

炭素材料及び撥水性物質は、撥水層の形成に使用される炭素材料及び撥水性物質と同じものを使用することができる。   As the carbon material and the water repellent substance, the same carbon material and water repellent substance used for forming the water repellent layer can be used.

触媒担持炭素は、上記炭素材料に下記の触媒活性成分が担持しているものである。   The catalyst-supporting carbon is one in which the following catalytically active component is supported on the carbon material.

触媒活性成分は、燃料電池の燃料極又は空気極における反応を起こすものであれば特に制限されず、例えば、白金、白金化合物等、好ましくは白金化合物が挙げられる。白金化合物としては、例えば、白金とルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属との合金、白金と酸化チタン、酸化モリブデン、セラミクス等の金属酸化物との複合物(具体的には、Pt/TiO2、Pt/MoO3、Pt/Sr0.95La0.05/TiO2 等)等を挙げることができる。 The catalytically active component is not particularly limited as long as it causes a reaction at the fuel electrode or air electrode of the fuel cell, and examples thereof include platinum and platinum compounds, preferably platinum compounds. Examples of the platinum compound include alloys of at least one metal selected from the group consisting of platinum and ruthenium, palladium, nickel, molybdenum, iridium, iron, and the like, and metal oxides such as platinum and titanium oxide, molybdenum oxide, and ceramics. (Specifically, Pt / TiO 2 , Pt / MoO 3 , Pt / Sr 0.95 La 0.05 / TiO 2, etc.) and the like.

触媒活性成分の平均粒子径(レーザー回折法)としては、通常1nm〜20nm程度、好ましくは1nm〜10nm程度、より好ましくは1nm〜5nm程度である。   The average particle diameter (laser diffraction method) of the catalytically active component is usually about 1 nm to 20 nm, preferably about 1 nm to 10 nm, more preferably about 1 nm to 5 nm.

水素イオン伝導性電解質としては、この分野で公知のものを広く使用することができる。例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、炭化水素系の電解質等が挙げられる。   As the hydrogen ion conductive electrolyte, those known in this field can be widely used. Examples thereof include perfluorosulfonic acid-based fluorine ion exchange resins, hydrocarbon-based electrolytes, and the like.

第一触媒層中における触媒担持炭素、水素イオン伝導性電解質、炭素材料及び撥水性物質の割合は、通常触媒担持炭素1重量部当たり、水素イオン伝導性電解質0.05〜10重量部程度、好ましくは0.1〜3重量部程度、炭素材料が0.01〜10重量部程度、好ましくは0.1〜5重量部程度、撥水性物質0.01〜10重量部程度、好ましくは0.01〜5重量部程度である。   The ratio of the catalyst-carrying carbon, hydrogen ion conductive electrolyte, carbon material and water-repellent substance in the first catalyst layer is usually about 0.05 to 10 parts by weight of hydrogen ion conductive electrolyte per 1 part by weight of catalyst-carrying carbon, preferably Is about 0.1 to 3 parts by weight, the carbon material is about 0.01 to 10 parts by weight, preferably about 0.1 to 5 parts by weight, and the water repellent substance is about 0.01 to 10 parts by weight, preferably 0.01. About 5 parts by weight.

撥水層上に第一触媒層を形成するに当たっては、所定割合の触媒担持炭素、水素イオン伝導性電解質、炭素材料及び撥水性物質を適当な溶剤に配合した第一触媒層形成用ペーストを、形成される第一触媒層が所望の膜厚になるように、公知の塗布方法に従い撥水層に塗布し、乾燥すればよい。   In forming the first catalyst layer on the water-repellent layer, a paste for forming the first catalyst layer in which a predetermined ratio of catalyst-supporting carbon, hydrogen ion conductive electrolyte, carbon material, and water-repellent substance is blended in an appropriate solvent, What is necessary is just to apply | coat to a water-repellent layer according to a well-known coating method, and to dry so that the formed 1st catalyst layer may become a desired film thickness.

上記溶剤としては、例えば、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水又はこれらの混合物等が挙げられる。   Examples of the solvent include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof.

第一触媒層形成用ペーストの塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   The method for applying the first catalyst layer forming paste is not particularly limited. For example, knife coater, bar coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, screen printing, etc. General methods can be applied.

第一触媒層形成用ペーストを塗布した後、乾燥することにより、第一触媒層が形成される。乾燥温度は、通常40〜100℃程度、好ましくは60〜80℃程度である。乾燥時間は、乾燥温度により異なり一概には言えないが、通常5分〜2時間程度、好ましくは30分〜1時間程度である。   After applying the first catalyst layer forming paste, the first catalyst layer is formed by drying. A drying temperature is about 40-100 degreeC normally, Preferably it is about 60-80 degreeC. The drying time varies depending on the drying temperature and cannot be generally specified, but is usually about 5 minutes to 2 hours, preferably about 30 minutes to 1 hour.

第一触媒層の厚さは、1〜10μm(1μm以上10μm未満)程度が好ましく、1〜5μm程度がより好ましい。   The thickness of the first catalyst layer is preferably about 1 to 10 μm (1 μm or more and less than 10 μm), and more preferably about 1 to 5 μm.

第二触媒層
第二触媒層は、触媒担持炭素及び水素イオン伝導性電解質から構成されている。
Second catalyst layer The second catalyst layer is composed of catalyst-supporting carbon and a hydrogen ion conductive electrolyte.

触媒担持炭素及び水素イオン伝導性電解質は、第一触媒層の形成に使用される触媒担持炭素及び水素イオン伝導性電解質と同じものを使用することができる。触媒活性成分は、白金が好ましい。   The same catalyst-supporting carbon and hydrogen ion conductive electrolyte used for forming the first catalyst layer can be used as the catalyst-supporting carbon and hydrogen ion conductive electrolyte. The catalytically active component is preferably platinum.

第二触媒層中における触媒担持炭素及び水素イオン伝導性電解質の割合は、通常触媒担持炭素1重量部当たり、水素イオン伝導性電解質0.05〜10重量部程度、好ましくは0.1〜3重量部程度である。   The ratio of the catalyst-supported carbon and the hydrogen ion conductive electrolyte in the second catalyst layer is usually about 0.05 to 10 parts by weight, preferably 0.1 to 3 parts by weight, per 1 part by weight of the catalyst support carbon. About a part.

第一触媒層上に第二触媒層を形成するに当たっては、所定割合の触媒担持炭素及び水素イオン伝導性電解質を適当な溶剤に配合した第二触媒層形成用ペーストを、形成される第二触媒層が所望の膜厚になるように、公知の塗布方法に従い撥水層に塗布し、乾燥すればよい。   In forming the second catalyst layer on the first catalyst layer, a second catalyst layer forming paste is prepared by mixing a predetermined ratio of catalyst-supporting carbon and hydrogen ion conductive electrolyte in an appropriate solvent. What is necessary is just to apply | coat to a water-repellent layer according to a well-known coating method, and to dry so that a layer may become a desired film thickness.

上記溶剤としては、例えば、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水又はこれらの混合物等が挙げられる。   Examples of the solvent include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof.

第二触媒層形成用ペーストの塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   The method for applying the second catalyst layer forming paste is not particularly limited, and examples thereof include knife coaters, bar coaters, sprays, dip coaters, spin coaters, roll coaters, die coaters, curtain coaters, and screen printing. General methods can be applied.

第二触媒層形成用ペーストを塗布した後、乾燥することにより、第二触媒層が形成される。乾燥温度は、通常40〜100℃程度、好ましくは60〜80℃程度である。乾燥時間は、乾燥温度により異なり一概には言えないが、通常5分〜2時間程度、好ましくは30分〜1時間程度である。   The second catalyst layer is formed by applying the second catalyst layer forming paste and then drying. A drying temperature is about 40-100 degreeC normally, Preferably it is about 60-80 degreeC. The drying time varies depending on the drying temperature and cannot be generally specified, but is usually about 5 minutes to 2 hours, preferably about 30 minutes to 1 hour.

第二触媒層の厚さは、10〜20μm程度が好ましく、10〜15μm程度がより好ましい。   The thickness of the second catalyst layer is preferably about 10 to 20 μm, and more preferably about 10 to 15 μm.

第一触媒層の空孔率は、30〜80%(好ましくは60〜80%)であり、第二触媒層の空孔率は、20〜70%(好ましくは50〜60%)の範囲であり、第一触媒層の空孔率が第二触媒層の空孔率よりも大きいことが好ましい。空孔率は、第一触媒層及び第二触媒層をカーボンペーパー上に形成後、50×50mmに切り出し、水銀ポロシメータを用い、0.10から60000Psiaの圧力範囲で測定することにより求めた。   The porosity of the first catalyst layer is 30 to 80% (preferably 60 to 80%), and the porosity of the second catalyst layer is 20 to 70% (preferably 50 to 60%). It is preferable that the porosity of the first catalyst layer is larger than the porosity of the second catalyst layer. The porosity was determined by forming the first catalyst layer and the second catalyst layer on carbon paper, cutting them out to 50 × 50 mm, and measuring them in a pressure range of 0.10 to 60000 Psia using a mercury porosimeter.

第一触媒層及び第二触媒層の空孔率は、これら触媒層中に含まれる炭素粒子の平均一次粒子径及び触媒活性成分の平均粒子径を適宜選択することにより、所望の数値になるように調節することができる。   The porosity of the first catalyst layer and the second catalyst layer is set to a desired numerical value by appropriately selecting the average primary particle diameter of the carbon particles and the average particle diameter of the catalytically active component contained in these catalyst layers. Can be adjusted to.

図2は、本発明ガス拡散電極の各層における空孔の状態の一例を示す拡大断面図である。   FIG. 2 is an enlarged cross-sectional view showing an example of the state of pores in each layer of the gas diffusion electrode of the present invention.

第一触媒層の空孔率を第二触媒層の空孔率よりも大きくすることで、ガスの利用率を高めると共に、第一触媒層に含まれる撥水性物質の作用により燃料電池反応時に発生した水を効果的に排出できるようになる。   By making the porosity of the first catalyst layer larger than the porosity of the second catalyst layer, the gas utilization rate is increased and the action of the water-repellent substance contained in the first catalyst layer causes it during the fuel cell reaction. Water can be discharged effectively.

電極−電解質膜積層体
本発明の触媒層付きガス拡散電極が積層された電解質膜(電極−電解質膜積層体)は、例えば、本発明の触媒層付きガス拡散電極の触媒層面が電解質膜面に対面するように触媒層付きガス拡散電極を配置し、加圧することにより製造される。この操作を2回繰り返すことにより、触媒層面が電解質膜の両面に積層された触媒層−電解質膜積層体が製造される。
Electrode-electrolyte membrane laminate The electrolyte membrane (electrode-electrolyte membrane laminate) in which the gas diffusion electrode with catalyst layer of the present invention is laminated is, for example, the catalyst layer surface of the gas diffusion electrode with catalyst layer of the present invention on the electrolyte membrane surface. The gas diffusion electrode with a catalyst layer is disposed so as to face each other, and is manufactured by pressurization. By repeating this operation twice, a catalyst layer-electrolyte membrane laminate in which the catalyst layer surface is laminated on both surfaces of the electrolyte membrane is produced.

作業性を考慮すると、触媒層面を電解質膜の両面に同時に積層するのがよい。この場合には、例えば、本発明ガス拡散電極の触媒層面が電解質膜の両面に対面するように触媒層付きガス拡散電極を配置し、加圧すればよい。   In consideration of workability, the catalyst layer surface is preferably laminated on both surfaces of the electrolyte membrane at the same time. In this case, for example, the gas diffusion electrode with a catalyst layer may be disposed and pressurized so that the catalyst layer surface of the gas diffusion electrode of the present invention faces both surfaces of the electrolyte membrane.

使用される電解質膜は公知のものである。電解質膜の膜厚は通常20〜250μm程度、好ましくは20〜80μm程度である。電解質膜の具体例としては、デュポン社製の「Nafion」膜、旭硝子(株)製の「Flemion」膜、旭化成(株)製の「Aciplex」膜、ゴア(Gore)社製の「GoreSelect」膜等が挙げられる。   The electrolyte membrane used is a known one. The thickness of the electrolyte membrane is usually about 20 to 250 μm, preferably about 20 to 80 μm. Specific examples of the electrolyte membrane include “Nafion” membrane manufactured by DuPont, “Flemion” membrane manufactured by Asahi Glass Co., Ltd., “Aciplex” membrane manufactured by Asahi Kasei Co., Ltd., and “GoreSelect” membrane manufactured by Gore. Etc.

加圧レベルは、転写不良を避けるために、通常0.5〜20MPa程度、好ましくは1〜10MPa程度がよい。また、この加圧操作の際に、転写不良を避けるために加圧面を加熱するのが好ましい。加熱温度は、電解質膜の破損、変性等を避けるために、通常200℃以下、好ましくは150℃以下がよい。   The pressure level is usually about 0.5 to 20 MPa, preferably about 1 to 10 MPa in order to avoid transfer failure. Further, it is preferable to heat the pressing surface during this pressing operation in order to avoid transfer failure. The heating temperature is usually 200 ° C. or lower, preferably 150 ° C. or lower in order to avoid breakage, modification, etc. of the electrolyte membrane.

本発明の電極−電解質膜積層体の一例を図3に示す。図3において、1はガス拡散基材、2は撥水層、3は第一触媒層、4は第二触媒層、5は電解質膜である。   An example of the electrode-electrolyte membrane laminate of the present invention is shown in FIG. In FIG. 3, 1 is a gas diffusion substrate, 2 is a water repellent layer, 3 is a first catalyst layer, 4 is a second catalyst layer, and 5 is an electrolyte membrane.

本発明の触媒層付きガス拡散電極を使用すれば、第一触媒層の存在によりガス拡散電極と触媒層との密着性が良好になり、電気抵抗値を低く抑えることが可能になり、その結果、燃料電池として安定した発電性能を得ることができる。   If the gas diffusion electrode with a catalyst layer of the present invention is used, the adhesion between the gas diffusion electrode and the catalyst layer is improved due to the presence of the first catalyst layer, and the electrical resistance value can be suppressed to a low value. As a fuel cell, stable power generation performance can be obtained.

また、第一触媒層中に存在する撥水性物質の作用により、生成した水を効率的にガス拡散基材側に排出でき、フラッディングの発生を防ぐことができる。   In addition, due to the action of the water repellent substance present in the first catalyst layer, the generated water can be efficiently discharged to the gas diffusion substrate side, and the occurrence of flooding can be prevented.

また、第一触媒層の存在により全体的な白金量を削減することが可能になると共に、触媒層中に含まれる酸化物により、触媒反応、特にカソード側における酸素の還元反応を効率よく行うことができる。   In addition, the total amount of platinum can be reduced due to the presence of the first catalyst layer, and the oxide contained in the catalyst layer can efficiently perform the catalytic reaction, particularly the oxygen reduction reaction on the cathode side. Can do.

更に、第一触媒層の空孔率が第二の触媒層の空孔率よりも大きい場合には、ガスの利用率を向上させることができ、その結果、燃料電池の発電効率をより一層高めることができる。   Furthermore, when the porosity of the first catalyst layer is larger than the porosity of the second catalyst layer, the gas utilization rate can be improved, and as a result, the power generation efficiency of the fuel cell is further increased. be able to.

従って、本発明の電極−電解質膜接合体を使用すれば、優れた電池性能を備えた高品質の燃料電池を製造することができる。   Therefore, if the electrode-electrolyte membrane assembly of the present invention is used, a high-quality fuel cell having excellent battery performance can be produced.

以下に実施例を掲げて、本発明をより一層明らかにする。   The present invention will be further clarified by the following examples.

実施例1
撥水層形成用ペーストの調製
平均一次粒子径40nm程度のケッチェンブラック粒子(商品名:EC、ライオン社製)1g、ポリテトラフルオロエチレン(PTFE、商品名:TritonX−100、ダイキン工業社製)0.5g及びN−メチルピロリドン(NMP)5g及び水5gからなる撥水層形成用ペーストを調製した。
Example 1
Preparation of paste for forming water repellent layer Ketjen black particles (trade name: EC, manufactured by Lion Corporation) having an average primary particle size of about 40 nm, polytetrafluoroethylene (PTFE, trade name: Triton X-100, manufactured by Daikin Industries, Ltd.) A paste for forming a water repellent layer comprising 0.5 g, 5 g of N-methylpyrrolidone (NMP) and 5 g of water was prepared.

撥水層の形成
上記で調製した撥水層形成用ペーストを、ガス拡散電極であるカーボンペーパー(TGP−H−090、東レ(株)製、厚さ270μm、)上に、ドクターブレードにより乾燥後の重量が3g/m2となるように塗布し、これを大気雰囲気中90℃で30分間乾燥させ、撥水層を形成した。
Formation of water repellent layer The water repellent layer forming paste prepared above was dried on a carbon paper (TGP-H-090, manufactured by Toray Industries, Inc., thickness 270 μm) as a gas diffusion electrode by a doctor blade. Was applied at a weight of 3 g / m 2 and dried in an air atmosphere at 90 ° C. for 30 minutes to form a water-repellent layer.

第一触媒層形成用ペーストの調製
PTFEを付着させた炭素粒子は、PTFEの60%ディスパージョン溶液に平均一次粒子径40nmのケッチェンブラックを含浸後、350℃にて焼成し、細かく破砕することにより調製した。PTFEとケッチェンブラックとの使用割合は、PTFE0.5重量部に対してケッチェンブラック1重量部である。
Preparation of First Catalyst Layer Forming Paste Carbon particles with PTFE attached are impregnated with Ketjen Black having an average primary particle size of 40 nm in a 60% dispersion solution of PTFE, then calcined at 350 ° C. and finely crushed. It was prepared by. The usage ratio of PTFE and ketjen black is 1 part by weight of ketjen black to 0.5 parts by weight of PTFE.

20wt%Pt/TiO2複合物担持炭素10g、5wt%Nafion溶液(Dupont社製、溶剤プロパノール)100g及び上記PTFEを付着させた炭素粒子1gを、1−プロパノール100gに混合し、分散機を用いて攪拌することにより、第一触媒層形成用ペーストを調製した。 10 g of 20 wt% Pt / TiO 2 composite-supported carbon, 100 g of 5 wt% Nafion solution (manufactured by Dupont, solvent propanol) and 1 g of carbon particles with PTFE attached thereto were mixed with 100 g of 1-propanol, and a disperser was used. By stirring, a first catalyst layer forming paste was prepared.

第一触媒層の形成
上記で調製した第一触媒層形成用ペーストを、撥水層を形成したガス拡散用電極の撥水層上にドクターブレードにより乾燥後の金属の重量が1g/m2となるように塗布し、これを大気雰囲気中90℃で30分間乾燥させ、第一触媒層を形成した。
Formation of First Catalyst Layer The weight of the metal after drying the first catalyst layer forming paste prepared above with a doctor blade on the water repellent layer of the gas diffusion electrode formed with the water repellent layer was 1 g / m 2 . This was applied and dried at 90 ° C. for 30 minutes in an air atmosphere to form a first catalyst layer.

第二触媒層形成用ペーストの調製
白金担持炭素10g(Pt:50wt%、田中貴金属工業製 TEC10E50E)及び5wt%Nafion溶液(Dupont社製、溶剤プロパノール)100gを分散機にて攪拌混合することにより、第二触媒層形成用ペーストを調製した。
Preparation of paste for forming second catalyst layer By stirring and mixing 10 g of platinum-supporting carbon (Pt: 50 wt%, TEC10E50E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and 100 g of 5 wt% Nafion solution (manufactured by Dupont, solvent propanol), A paste for forming a second catalyst layer was prepared.

第二触媒層の形成
上記で調製した第二触媒層形成用ペーストを、ガス拡散用電極の第一触媒層の上にドクターブレードにより乾燥後の白金の重量が3g/m2となるように塗布し、これを大気雰囲気中90℃で30分間乾燥させ、ガス拡散電極/撥水層/第一触媒層/第二触媒層からなる触媒層付きガス拡散電極を形成した。
Formation of second catalyst layer The second catalyst layer forming paste prepared above was applied onto the first catalyst layer of the gas diffusion electrode by a doctor blade so that the weight of platinum after drying was 3 g / m 2. This was dried at 90 ° C. for 30 minutes in an air atmosphere to form a gas diffusion electrode with a catalyst layer comprising a gas diffusion electrode / water repellent layer / first catalyst layer / second catalyst layer.

電極−電解質膜積層体の製造
上記で製造した触媒層付きガス拡散電極を空気極として、該ガス拡散電極の触媒層面が、水素イオン伝導性高分子電解質膜(Nafion112、デュポン社製)の一方面と接触するように配置した。対極の燃料極には、撥水層及び第一触媒層を形成しないで第二触媒層のみを形成したガス拡散電極を使用し、この第二触媒層面が水素イオン伝導性高分子電解質膜の反対面と接触するように配置した。次に、空気極/水素イオン伝導性高分子電解質膜/燃料極を150℃、5MPaの条件でプレスすることにより、本発明の電極−電解質膜積層体を製造した。
Production of electrode-electrolyte membrane laminate Using the gas diffusion electrode with catalyst layer produced above as an air electrode, the catalyst layer surface of the gas diffusion electrode is one side of a hydrogen ion conductive polymer electrolyte membrane (Nafion 112, manufactured by DuPont). Placed in contact with. A gas diffusion electrode in which only the second catalyst layer is formed without forming the water repellent layer and the first catalyst layer is used as the counter electrode, and the second catalyst layer surface is opposite to the hydrogen ion conductive polymer electrolyte membrane. Placed in contact with the surface. Next, the electrode-electrolyte membrane laminate of the present invention was manufactured by pressing the air electrode / hydrogen ion conductive polymer electrolyte membrane / fuel electrode under conditions of 150 ° C. and 5 MPa.

試験例
実施例1で製造した電極−電解質膜積層体をエレクトロケム社製の単セル(50×50mm)に組み込み、燃料ガスとして水素ガス、酸化剤ガスとして空気を用い、電流300mAの定電流にて500時間の連続運転を行い、電池性能を調べた。その結果、500時間を超える長時間の連続運転によっても、電池性能の低下は認められなかった。
Test Example The electrode-electrolyte membrane laminate produced in Example 1 was incorporated into a single cell (50 × 50 mm) manufactured by Electrochem, and hydrogen gas was used as the fuel gas and air was used as the oxidant gas, with a constant current of 300 mA. The battery performance was examined by continuously operating for 500 hours. As a result, no deterioration in battery performance was observed even after continuous operation over 500 hours.

図1は、本発明ガス拡散電極の断面図である。FIG. 1 is a cross-sectional view of the gas diffusion electrode of the present invention. 図2は、本発明ガス拡散電極の空孔の状態を示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view showing a state of holes in the gas diffusion electrode of the present invention. 図3は、本発明電極−電解質膜積層体の断面図である。FIG. 3 is a cross-sectional view of the electrode-electrolyte membrane laminate of the present invention.

符号の説明Explanation of symbols

1 ガス拡散基材
2 撥水層
3 第一触媒層
4 第二触媒層
5 電解質膜
DESCRIPTION OF SYMBOLS 1 Gas diffusion base material 2 Water repellent layer 3 First catalyst layer 4 Second catalyst layer 5 Electrolyte membrane

Claims (6)

多孔質のガス拡散基材の一方面上に、撥水層、第一触媒層及び第二触媒層が順次形成されているガス拡散電極であって、
撥水層が、炭素材料及び撥水性物質からなり、
第一触媒層が、触媒担持炭素、水素イオン伝導性電解質、炭素材料及び撥水性物質からなり、
第二触媒層が、触媒担持炭素及び水素イオン伝導性電解質からなり、
第一触媒層の厚さが、第二触媒層の厚さよりも薄い、
ガス拡散電極。
A gas diffusion electrode in which a water repellent layer, a first catalyst layer, and a second catalyst layer are sequentially formed on one surface of a porous gas diffusion substrate,
The water repellent layer is made of a carbon material and a water repellent material,
The first catalyst layer is made of catalyst-supporting carbon, hydrogen ion conductive electrolyte, carbon material and water repellent material,
The second catalyst layer is composed of catalyst-supported carbon and hydrogen ion conductive electrolyte,
The thickness of the first catalyst layer is thinner than the thickness of the second catalyst layer,
Gas diffusion electrode.
第一触媒層の厚さが1〜10μm、第二触媒層の厚さが10〜20μmである請求項1に記載の電極。   The electrode according to claim 1, wherein the first catalyst layer has a thickness of 1 to 10 μm, and the second catalyst layer has a thickness of 10 to 20 μm. 第一触媒層中に含まれる触媒担持炭素の触媒金属が、白金と金属酸化物との複合物である請求項1に記載の電極。   The electrode according to claim 1, wherein the catalyst metal of the catalyst-supporting carbon contained in the first catalyst layer is a composite of platinum and a metal oxide. 第一触媒層の空孔率が第二触媒層の空孔率よりも大きい請求項1に記載の電極。   The electrode according to claim 1, wherein the porosity of the first catalyst layer is larger than the porosity of the second catalyst layer. 多孔質のガス拡散基材の一方面上に、炭素材料及び撥水性物質からなる撥水層、触媒担持炭素、水素イオン伝導性電解質、炭素材料及び撥水性物質からなる第一触媒層並びに触媒担持炭素及び水素イオン伝導性電解質からなる第二触媒層が順次形成されているガス拡散電極の製造方法であって、
ガス拡散基材の一方面上に撥水層を形成する工程、
撥水層上に第一触媒層を形成させる工程、及び
第一触媒層上に第二の触媒層を形成させる工程
を含む、ガス拡散電極の製造方法。
On one surface of a porous gas diffusion substrate, a water repellent layer composed of a carbon material and a water repellent material, a catalyst-supporting carbon, a hydrogen ion conductive electrolyte, a first catalyst layer composed of a carbon material and a water repellent material, and a catalyst support A method for producing a gas diffusion electrode in which a second catalyst layer comprising a carbon and hydrogen ion conductive electrolyte is sequentially formed,
Forming a water repellent layer on one side of the gas diffusion substrate;
A method for producing a gas diffusion electrode, comprising: forming a first catalyst layer on a water repellent layer; and forming a second catalyst layer on the first catalyst layer.
請求項1に記載のガス拡散電極を用いて製造される電極−電解質膜積層体。   An electrode-electrolyte membrane laminate produced using the gas diffusion electrode according to claim 1.
JP2005058459A 2005-03-03 2005-03-03 Gas diffusion electrode, manufacturing method thereof, and electrode-electrolyte membrane laminate Expired - Fee Related JP4693442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058459A JP4693442B2 (en) 2005-03-03 2005-03-03 Gas diffusion electrode, manufacturing method thereof, and electrode-electrolyte membrane laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058459A JP4693442B2 (en) 2005-03-03 2005-03-03 Gas diffusion electrode, manufacturing method thereof, and electrode-electrolyte membrane laminate

Publications (2)

Publication Number Publication Date
JP2006244840A true JP2006244840A (en) 2006-09-14
JP4693442B2 JP4693442B2 (en) 2011-06-01

Family

ID=37051051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058459A Expired - Fee Related JP4693442B2 (en) 2005-03-03 2005-03-03 Gas diffusion electrode, manufacturing method thereof, and electrode-electrolyte membrane laminate

Country Status (1)

Country Link
JP (1) JP4693442B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245897A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing the same
JP2009266774A (en) * 2008-04-30 2009-11-12 Toppan Printing Co Ltd Method for manufacturing membrane-electrode assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2015046002A1 (en) * 2013-09-25 2015-04-02 株式会社デンソー Anode for fuel cells and single cell of fuel cells using same
US9180714B2 (en) 2011-09-27 2015-11-10 Toppan Printing Co., Ltd. Heat-sensitive transfer recording medium
WO2019189891A1 (en) * 2018-03-30 2019-10-03 凸版印刷株式会社 Catalyst layer, membrane-electrode assembly, and solid polymer fuel cell
JP2019186193A (en) * 2018-11-27 2019-10-24 凸版印刷株式会社 Catalyst layer, membrane electrode assembly, and solid polymer fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296818A (en) * 1994-04-22 1995-11-10 Japan Gore Tex Inc Polymer solid electrolyte fuel cell electrode and joint of same with polymer solid electrolyte
JPH10270057A (en) * 1997-03-21 1998-10-09 Toshiba Corp Solid high molecular fuel cell
JP2002246033A (en) * 2001-02-14 2002-08-30 Toshiba Corp Electrode, electrode composition, fuel cell using the same and electrode producing method
JP2004186049A (en) * 2002-12-04 2004-07-02 Honda Motor Co Ltd Electrode structure for solid polymer fuel cell and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296818A (en) * 1994-04-22 1995-11-10 Japan Gore Tex Inc Polymer solid electrolyte fuel cell electrode and joint of same with polymer solid electrolyte
JPH10270057A (en) * 1997-03-21 1998-10-09 Toshiba Corp Solid high molecular fuel cell
JP2002246033A (en) * 2001-02-14 2002-08-30 Toshiba Corp Electrode, electrode composition, fuel cell using the same and electrode producing method
JP2004186049A (en) * 2002-12-04 2004-07-02 Honda Motor Co Ltd Electrode structure for solid polymer fuel cell and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245897A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and method of manufacturing the same
JP2009266774A (en) * 2008-04-30 2009-11-12 Toppan Printing Co Ltd Method for manufacturing membrane-electrode assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
US9180714B2 (en) 2011-09-27 2015-11-10 Toppan Printing Co., Ltd. Heat-sensitive transfer recording medium
WO2015046002A1 (en) * 2013-09-25 2015-04-02 株式会社デンソー Anode for fuel cells and single cell of fuel cells using same
JP2015065014A (en) * 2013-09-25 2015-04-09 株式会社デンソー Anode for fuel cell and single fuel cell
WO2019189891A1 (en) * 2018-03-30 2019-10-03 凸版印刷株式会社 Catalyst layer, membrane-electrode assembly, and solid polymer fuel cell
JP2019186193A (en) * 2018-11-27 2019-10-24 凸版印刷株式会社 Catalyst layer, membrane electrode assembly, and solid polymer fuel cell

Also Published As

Publication number Publication date
JP4693442B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP2006054165A (en) Polymer fuel electrolyte cell and manufacturing method of polymer electrolyte fuel cell
JP2006012832A (en) Electrode for fuel cell, membrane for fuel cell-electrode assembly including this, fuel cell, and manufacturing method of electrode for fuel cell
JP2008243732A (en) Direct methanol type fuel cell
JP3778506B2 (en) Electrode for polymer electrolyte fuel cell
Zhuo et al. Electrode structure optimization combined with water feeding modes for Bi-Functional Unitized Regenerative Fuel Cells
JP4693442B2 (en) Gas diffusion electrode, manufacturing method thereof, and electrode-electrolyte membrane laminate
US20200335808A1 (en) Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell
JP5126812B2 (en) Direct oxidation fuel cell
JP2006318707A (en) Electrode structure of solid polymer fuel cell
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
KR101881139B1 (en) Microporous layer used for fuel cell, gas diffusion layer comprising the same and fuel cell comprising the same
JP2005528763A (en) Manufacture of gas diffusion electrodes
JP3812901B2 (en) Electrode structure for polymer electrolyte fuel cell
JP2006134752A (en) Solid polymer fuel cell and vehicle
KR100578969B1 (en) Electrode for fuel cell and fuel cell comprising same
JP5354982B2 (en) Direct oxidation fuel cell
JP6345663B2 (en) ELECTRODE FOR FUEL CELL, MANUFACTURING METHOD THEREOF, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL
JP2005294175A (en) Electrode catalyst layer and its manufacturing method
JP2007128665A (en) Electrode catalyst layer for fuel cell, and manufacturing method of membrane-electrode assembly using it
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP2007115637A (en) Noble metal catalyst for fuel cell, electrode catalyst for fuel cell, manufacturing method of electrode catalyst for fuel cell, and membrane electrode assembly for fuel cell
JP2005243295A (en) Gas diffusion layer, and mea for fuel cell using the same
JP2005108827A (en) Ink for catalyst layer formation and electrode using the same and membrane electrode junction
TWI398982B (en) Modified carbonized substrate and its manufacturing method and use
JP2009211953A (en) Electrode base, electrode, membrane electrode assembly, fuel cell, and manufacturing method of electrode base material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees