JP4887580B2 - Gas diffusion electrode and polymer electrolyte fuel cell having the same - Google Patents

Gas diffusion electrode and polymer electrolyte fuel cell having the same Download PDF

Info

Publication number
JP4887580B2
JP4887580B2 JP2001221819A JP2001221819A JP4887580B2 JP 4887580 B2 JP4887580 B2 JP 4887580B2 JP 2001221819 A JP2001221819 A JP 2001221819A JP 2001221819 A JP2001221819 A JP 2001221819A JP 4887580 B2 JP4887580 B2 JP 4887580B2
Authority
JP
Japan
Prior art keywords
ion exchange
fluorine
exchange resin
polymer electrolyte
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001221819A
Other languages
Japanese (ja)
Other versions
JP2003036856A (en
Inventor
武 江里口
淳 渡壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001221819A priority Critical patent/JP4887580B2/en
Publication of JP2003036856A publication Critical patent/JP2003036856A/en
Application granted granted Critical
Publication of JP4887580B2 publication Critical patent/JP4887580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス拡散電極及びこれを備えた固体高分子型燃料電池に関する。
【0002】
【従来の技術】
高分子電解質膜を備える固体高分子型燃料電池は、小型軽量化が容易であることから、電気自動車などの移動車両や、小型コジェネレーションシステムの電源などとしての実用化が期待されている。しかし、固体高分子型燃料電池は作動温度が比較的低くその排熱が補機動力などに有効利用しにくいため、その実用化のためにはアノード反応ガス(水素など)の利用率及びカソード反応ガス(空気など)の利用率の高い作動条件下において、高い発電効率及び高い出力密度を得ることのできる性能が要求されている。
【0003】
固体高分子型燃料電池のアノード及びカソードは通常、触媒とイオン交換樹脂(電解質)とを含む触媒層を有している。そして、各触媒層内における電極反応は、反応ガスと触媒とイオン交換樹脂とが同時に存在する三相界面(以下、反応サイトという)において進行する。そのため、固体高分子型燃料電池においては、従来より金属触媒又は金属担持触媒(例えば、比表面積の大きなカーボンブラック担体に白金などの金属触媒を担持した金属担持カーボンなど)に高分子電解質膜と同種又は異種のイオン交換樹脂を含有して触媒層の構成材料として使用し、触媒層内の反応サイトを3次元化することにより当該反応サイトの増大化が図られている。
【0004】
上記高分子電解質膜としては、例えば旭硝子社製「フレミオン」やデュポン社製「ナフィオン」などに代表されるようなイオン導電性が高くかつ、酸化及び還元雰囲気下において化学的に安定なスルホン酸基を有するパーフルオロカーボン重合体(以下、スルホン酸型パーフルオロカーボン重合体という)からなる膜が使用されており、同様に触媒層に含まれるイオン交換樹脂としてもスルホン酸型パーフルオロカーボン重合体が使用される。
【0005】
しかし、従来のガス拡散電極の触媒層に用いられていたイオン交換樹脂はイオン伝導性と化学的安定性に優れる反面、樹脂内のガス透過性が不十分であるため、特にカソードとして使用する場合、触媒層内の酸素ガス透過性が不十分となり、カソードにおける酸素還元反応の過電圧が大きくなり、高い電極特性を得ることが困難となっていた。
【0006】
この問題を解決すべく、特開平11−354129においては、触媒層に含フッ素イオン交換樹脂に加えて含フッ素エーテル化合物を含有させることにより、カソードの触媒層における酸素ガス透過性を増加させ、カソードの過電圧の低減を図った固体高分子型燃料電池が提案されている。
【0007】
しかし、上述の固体高分子型燃料電池であっても、カソードの触媒層における酸素ガス透過性は不十分であり、カソードの過電圧を十分に低減できていないほか、カソードの触媒層の耐久性が不十分であり、電池寿命が短いという問題があった。この理由は、含フッ素エーテル化合物が低分子化合物であるため、発電中において反応生成水に徐々に溶解するか、それにともなって含フッ素イオン交換樹脂から脱離し、さらに、生成水とともに触媒層から排出されるためと考えられる。
【0008】
【発明が解決しようとする課題】
そこで本発明は、上記従来技術の有する課題に鑑み、高い電池出力を得ることのできる固体高分子型燃料電池の提供を目的として、酸素還元反応に対する優れた電極特性を有するガス拡散電極を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、触媒と含フッ素イオン交換樹脂とを含有する触媒層を備える多孔質のガス拡散電極であって、上記含フッ素イオン交換樹脂の酸素透過係数が5×10−12[cm(Normal)・cm/cm・s・Pa]以上であり、前記含フッ素イオン交換樹脂が後述する式(1)で示される繰り返し単位とCF =CF−(OCF CFX) −O −(CF −SO H(式中、mは0〜3の整数、nは1〜12の整数、pは0又は1であり、Xはフッ素原子又はトリフルオロメチル基である)で示される含フッ素ビニル化合物に基づく繰り返し単位とを含む共重合体からなることを特徴とするガス拡散電極を提供する。
【0010】
本発明のガス拡散電極は、酸素透過係数の高い含フッ素イオン交換樹脂が触媒層に含有されているので、触媒層内の反応サイト近傍の反応ガス濃度を従来よりも高くすることが可能である。その結果、電極反応における交換電流密度を増大させることができ、酸素過電圧を低減できる。すなわち、高い電極特性を得ることができる。特に、このガス拡散電極を固体高分子型燃料電池のカソードとして使用すれば、カソードの酸素還元反応の過電圧を効果的に低減できるので、カソードの電極特性が向上する。
【0011】
ここで、酸素透過係数が5×10−12[cm(Normal)・cm/cm・s・Pa]未満であると、触媒層内の反応サイト近傍の反応ガス濃度を十分に高くすることが困難となり、酸素還元反応の過電圧を十分に低減することが困難となる。本発明で用いられる含フッ素イオン交換樹脂の酸素透過係数は、5×10−12[cm(Normal)・cm/cm・s・Pa]以上であり、好ましくは、5.5×10−12[cm(Normal)・cm/cm・s・Pa]以上、さらに好ましくは、6×10−12[cm(Normal)・cm/cm・s・Pa]以上である。なお、酸素透過係数の上限は特に限定されないが、イオン伝導性が確保され、かつ、1×10−10[cm(Normal)・cm/cm・s・Pa]以上の酸素透過係数を有する含フッ素イオン交換樹脂を合成することは困難であるため、通常は1×10−10[cm(Normal)・cm/cm・s・Pa]未満である。
【0012】
なお、本発明における含フッ素イオン交換樹脂の酸素透過係数とは、当該含フッ素イオン交換樹脂から作製したキャスト膜(膜厚20〜100μm)を160℃で30分熱処理した後、等圧ガスクロマトグラフィ法(膜の一方の側には圧力10Pa、相対湿度80%の酸素を、他方の側には圧力10Pa、相対湿度80%のヘリウムを供給)に基づいて測定した80℃、圧力10Pa、相対湿度80%における酸素透過係数を示す。
【0013】
なお、酸素透過係数を測定しようとする含フッ素イオン交換樹脂からなるキャスト膜の脆性に問題があり、上記の方法による酸素透過係数の測定が困難な場合には、成形性に優れたポリマーを配合してキャスト膜を作製することにより近似的に酸素透過係数を求めることができる。その際には、含フッ素イオン交換樹脂と成形性に優れたポリマーとを様々な配合比として測定した酸素透過係数のデータに基づき、近似によって理論的に含フッ素イオン交換樹脂単独の酸素透過係数を算出することが可能である。また、含フッ素イオン交換樹脂を多孔性支持体の上に載せて単膜の酸素透過係数を評価することもできる。
【0014】
さらに、本発明は、アノードと、カソードと、上記アノードと上記カソードとの間に配置された高分子電解質膜とを備える固体高分子型燃料電池であって、カソードとして前述の本発明のガス拡散電極を備えることを特徴とする固体高分子型燃料電池を提供する。
【0015】
上記のように酸素還元反応に対して優れた電極特性を有するガス拡散電極をカソードとして備えることにより、高い電池出力を有する固体高分子型燃料電池を提供できる。
【0016】
【発明の実施の形態】
以下、本発明のガス拡散電極及びこれを備えた固体高分子型燃料電池の好適な実施形態について詳細に説明する。
【0017】
本発明の固体高分子型燃料電池におけるアノード及びカソードは、触媒層を備えるが、何れも触媒層と、該触媒層に隣接して配置されるガス拡散層とからなることが好ましい。ガス拡散層の構成材料としては、例えば、電子伝導性を有する多孔質体(例えば、カーボンクロスやカーボンペーパー)が使用される。
【0018】
カソードの触媒層には、主として酸素透過係数が5×10−12[cm(Normal)・cm/cm・s・Pa]以上である含フッ素イオン交換樹脂と触媒とが含有されており、カソードにおける酸素還元反応に対する過電圧を低減させることにより、反応速度の向上が図られている。
【0019】
本発明における高い酸素ガス透過性を示す含フッ素イオン交換樹脂は、脂肪族環構造を有する繰り返し単位を含むことが好ましい。上記繰り返し単位は、酸素ガス透過性の観点から、特に下記式(1)で示される繰り返し単位が好ましい。ただし、式(1)中、R及びRはそれぞれ独立にフッ素原子又はトリフルオロメチル基を示す。
【0020】
【化2】

Figure 0004887580
【0021】
上記繰り返し単位を含む含フッ素イオン交換樹脂は、下記式(2)で示されるモノマーと、イオン交換基又はその前駆体基(加水分解などによりイオン交換基となる基)を有するモノマーとをラジカル共重合することにより得られる。ただし、式(2)中のR及びRは式(1)と同義である。
【0022】
【化3】
Figure 0004887580
【0023】
また、本発明における含フッ素イオン交換樹脂中のイオン交換基としては、スルホン酸基、スルホンイミド基、リン酸基、カルボキシル基が例示される。特に、強酸性基であるスルホン酸基とスルホンイミド基が好ましい。なかでも、原料入手の容易性からみて、イオン交換基をスルホン酸基とする含フッ素イオン交換樹脂が好ましい。
【0024】
上記含フッ素イオン交換樹脂中のスルホン酸基を有する繰り返し単位は特に限定されないが、CF=CF−(OCFCFX)−O−(CF−SOHで示される含フッ素ビニル化合物に基づく繰り返し単位(式中、mは0〜3の整数、nは1〜12の整数、pは0又は1であり、Xはフッ素原子又はトリフルオロメチル基である)が好ましい。上記含フッ素ビニル化合物の好ましい例としては、以下(3)〜(5)の化合物が挙げられる。ただし、下記式中、qは1〜8の整数、rは1〜8の整数、tは1〜3の整数を示す。
【0025】
【化4】
Figure 0004887580
【0026】
上述のスルホン酸基(−SOH基)を有する繰り返し単位は、例えば上記式(2)で示されるモノマーと、フルオロスルホニル基(−SOF基)を有するモノマーとをラジカル共重合した後、共重合体中のフルオロスルホニル基を水酸化カリウムなどのアルカリ化合物で加水分解し、酸で処理する(以下、酸型化という)ことにより導入される。上記フルオロスルホニル基を有するモノマーとしては、CF=CF−(OCFCFX)−O−(CF−SOFで示される含フッ素ビニル化合物に基づく繰り返し単位(式中、mは0〜3の整数、nは1〜12の整数、pは0又は1であり、Xはフッ素原子又はトリフルオロメチル基である)が一般的である。
【0027】
さらに、上記含フッ素イオン交換樹脂には、テトラフルオロエチレン(以下、TFEという)に基づく繰り返し単位やヘキサフルオロプロピレンなどの含フッ素オレフィン、又はパーフルオロ(アルキルビニルエーテル)など、他のモノマーに基づく繰り返し単位が含まれていてもよい。
【0028】
本発明で用いられる含フッ素イオン交換樹脂では、繰り返し単位の配列の態様は限定されない。ランダム共重合体であってもよいが、ブロック共重合体やその他の態様を有する含フッ素イオン交換樹脂であってもよい。
【0029】
燃料電池の出力を高めるためには、電極中の含フッ素イオン交換樹脂は高ガス透過性かつ高導電性であることが好ましく、加えてイオン交換基濃度及び含水率が高いことが好ましい。そのため、分子中のイオン交換容量(以下、Aという)が0.5ミリ当量/g乾燥樹脂(以下、meq/gとする)以上、さらに好ましくは0.7meq/g以上であることが好ましい。また、水中に含フッ素イオン交換樹脂が散逸するのを防ぐためAは4meq/g以下、好ましくは2meq/g以下であり、1.7meq/g以下であることがさらに好ましい。
【0030】
ここで、含フッ素イオン交換樹脂の数平均分子量は、1000〜3000000であることが好ましく、20000〜1000000であることがより好ましい。数平均分子量が1000未満であると、長期の発電において含フッ素イオン交換樹脂が電極から脱落する可能性がある。一方、数平均分子量が3000000を超えると、含フッ素イオン交換樹脂が溶媒に溶解しにくくなり、電極作製の際に作製法が限られる。
【0031】
本発明におけるカソードの触媒層に含まれる触媒は特に限定されないが、例えば、白金などの白金族金属又はその合金などをカーボン担体に担持した触媒が好ましい。また、カーボン担体は特に限定されないが、比表面積が200m/g以上のカーボン材料が好ましく、例えば、カーボンブラックや活性炭などが好ましく使用される。さらに、カソードの触媒層において、触媒と含フッ素イオン交換樹脂との質量比の範囲は、触媒の質量(金属とカーボン担体をあわせた全質量):含フッ素イオン交換樹脂の質量=20:80〜95:5であることが好ましく、30:70〜90:10であることがより好ましい。
【0032】
ここで、含フッ素イオン交換樹脂に対する触媒の含有率が低すぎると、触媒量が不足するので反応サイトが少なくなる傾向があるほか、触媒がイオン交換樹脂により厚く被覆され、触媒層中における反応ガスの拡散速度が小さくなりやすい。さらに、反応ガスの拡散に必要な細孔が樹脂により塞がれてフラッディングの現象が生じ易くなるおそれがある。一方、含フッ素イオン交換樹脂に対する触媒の含有率が高すぎると、触媒が含フッ素イオン交換樹脂により十分に被覆されないため、反応サイトが少なくなり、白金族金属触媒を有効に用いることができなくなる。さらに、含フッ素イオン交換樹脂は、触媒層におけるバインダとして、また、触媒層と高分子電解質膜との接着剤としても機能するが、含フッ素イオン交換樹脂の量が不足するとその機能が不十分となり、触媒層構造を安定に維持できなくなるおそれがある。
【0033】
一方、本発明の燃料電池におけるアノードの触媒層の構成は特に限定されず、従来の固体高分子型燃料電池のアノードの触媒層と同様の構成にでき、本発明における含フッ素イオン交換樹脂を含有していてもよく、他の樹脂を含有していてもよい。
【0034】
本発明におけるアノード及びカソードの触媒層の層厚は、1〜500μmであることが好ましく、3〜50μmであることがより好ましい。さらに、本発明における触媒層には、必要に応じてポリテトラフルオロエチレン(以下、PTFEという)などの撥水化剤を含有させてもよい。ただし、撥水化剤は絶縁体であるためその量は少量であるほど望ましく、その添加量は30質量%以下が好ましい。
【0035】
また、本発明の固体高分子型燃料電池に使用する高分子電解質膜は、湿潤状態下で良好なイオン伝導性を示すイオン交換膜であれば特に限定されない。高分子電解質膜を構成する固体高分子材料としては、例えば、上記含フッ素イオン交換樹脂を用いてもよく、従来の固体高分子型燃料電池に使用されている含フッ素イオン交換樹脂などを用いてもよい。
【0036】
本発明のガス拡散電極は、含フッ素イオン交換樹脂と触媒とが溶媒又は分散媒に溶解又は分散した塗工液を用いて作製することが好ましい。ここで用いる溶媒又は分散媒としては、例えばアルコール、含フッ素アルコール、含フッ素エーテルなどが使用できる。そして、塗工液を高分子電解質膜又はガス拡散層となるカーボンクロスなどに塗工することにより触媒層が形成される。また、別途用意した基材に上記塗工液を塗工して塗工層を形成し、これを高分子電解質膜上に転写することによっても高分子電解質膜上に触媒層を形成できる。
【0037】
ここで、触媒層をガス拡散層上に形成した場合には、触媒層と高分子電解質膜とを接着法(特開平7−220741、特開平7−254420)やホットプレスなどにより接合することが好ましい。また、高分子電解質膜上に触媒層を形成した場合には、触媒層のみでガス拡散電極を構成してもよいが、さらに触媒層に隣接してガス拡散層を配置し、ガス拡散電極としてもよい。
【0038】
ガス拡散電極の外側には、通常ガスの流路が形成されたセパレータが配置され、当該流路にアノードには水素を含むガス、カソードには酸素を含むガスが供給されて固体高分子型燃料電池が構成される。
【0039】
【実施例】
以下、実施例及び比較例を挙げて本発明について詳しく説明するが、本発明はこれらに限定されない。なお、以下の説明において下記化合物を下記略号を用いて記載する。
PSVE:CF=CFOCFCF(CF)OCFCFSOF、
PSVE−H:CF=CFOCFCF(CF)OCFCFSOH、
PDD:パーフルオロ(2,2−ジメチル−1,3−ジオキソール)、
PPDD:パーフルオロ(2,2−ジメチル−1,3−ジオキソール)の単独重合体、
IPP:(CHCHOC(=O)OOC(=O)OCH(CH
HCFC141b:CHCClF、
HCFC225cb:CClFCFCHClF。
【0040】
[PDD/PSVE−H共重合体の合成と酸素透過係数の測定]
容積0.2Lのステンレス製オートクレーブに、PDD26.0g、PSVE127.8g、IPP0.46gを入れ、オートクレーブ内の気体を窒素によりパージした後、窒素をその分圧が0.3MPaとなるように導入した。次に、オートクレーブ内の温度を40℃として、内容物を撹拌しながら重合を開始した。重合開始から10時間後、オートクレーブ内を冷却し系内のガスをパージして重合を止め、HCFC225cbで希釈後、ヘキサンに投入することでポリマーを沈殿させ、ヘキサンで2回、さらにHCFC141bで1回洗浄した。ろ過後、80℃で16時間、真空乾燥することにより、白色のポリマー41.6gを得た。元素分析で硫黄の含有量を求め、ポリマー中のPDDに基づく繰り返し単位とPSVEに基づく繰り返し単位とのモル比(PDD/PSVE)とAとを求めたところ、PDD/PSVE=56.5/43.5であり、A=1.31meq/gであった。また、ゲル浸透クロマトグラフィ法(以下、GPCという)により、得られたポリマーの数平均分子量を測定したところ、ポリメタクリル酸メチル換算の数平均分子量は33000であった。
【0041】
次に、得られたポリマーを水酸化カリウムにより加水分解処理し、次いで、希硫酸水溶液に浸漬して酸型化処理した。次に、ポリマーをイオン交換水により洗浄し乾燥した後、エタノールに溶解してPDD/PSVE−H共重合体10質量%の透明なエタノール溶液を得た。
【0042】
なお、当該溶液から作製したキャスト膜を160℃で30分熱処理して厚さ50μmのフィルムを得た。当該フィルムについて、上述した条件及び方法に基づいて測定した酸素透過係数は、6.3×10−12[cm(Normal)・cm/cm・s・Pa]であった。
【0043】
[(PPDD)−(TFE/PSVE−H共重合体)−(PPDD)ブロックポリマーの合成と酸素透過係数の測定]
<TFE/PSVE共重合体セグメントの重合>
脱気した内容積1Lのオートクレーブに、4.15gのI(CFIと778.5gのPSVEを吸入させた後に40℃に加熱した。58gのTFEを圧入後、7.53gのIPPを78.2gのHCFC225cbに溶解した溶液6mLを圧入し、重合を開始した。圧力を一定(ゲージ圧で0.45MPa)に保ちながら重合を継続した。重合速度の低下にともない、上記IPPの溶液をさらに添加して重合を続けた。添加したIPPの総量は1.66gであった。TFEが80g入ったところで加熱を止めてTFEをパージし、重合を止めた。得られた溶液を、HCFC141bに注いで凝集後、洗浄、ろ過、乾燥することにより、室温においてエラストマー状のポリマー235gを得た。TFEとPSVEのモル比は72.1:27.9であった。得られたポリマーのイオン交換容量は1.42ミリ当量/g乾燥樹脂で、GPCにより測定したポリメタクリル酸メチル換算の数平均分子量は14500であった。
【0044】
<PPDDセグメントのブロック共重合>
500mLのガラス製のフラスコに上記TFE/PSVE共重合体50gと、250gのC13Hと25gのPDDとを入れて撹拌し、TFE/PSVE共重合体を溶解させた。これに0.082gのIPPを5gのC13Hに溶解した溶液を加え、30℃で65時間重合した。この反応液をHCFC141bに注いで凝集後、洗浄、ろ過、乾燥することにより、白色のポリマー62.9gを得た。得られたポリマー全体の平均イオン交換容量は、0.99ミリ当量/g乾燥樹脂であり、GPCにより測定したポリマー全体の数平均分子量は、ポリメタクリル酸メチル換算で20900であった。
【0045】
<ポリマーの酸型化及び溶液化>
上記の方法によりブロック共重合して合成した(PPDD)−(TFE/PSVE共重合体)−(PPDD)ブロックポリマーを空気中、250℃で一晩熱処理した。これらを水酸化カリウムで加水分解した後、硫酸水溶液に浸漬して酸型化処理した。次に、得られた酸型ポリマーをエタノールとC13Hとの混合溶媒(質量比1:1)に溶解した10質量%溶液を調製した。
【0046】
<酸素透過係数の測定>
上記溶液から作製したキャスト膜を160℃で30分熱処理して厚さ70μmのフィルムを得た。当該フィルムについて、上述した条件及び方法に基づいて測定した酸素透過係数は、6.3×10−12[cm(Normal)・cm/cm・s・Pa]であった。
【0047】
なお、上記TFE/PSVE共重合体を酸型化することによって得られるTFE/PSVE−H共重合体(A=1.1meq/g)の9質量%エタノール溶液から作製したキャスト膜を160℃で30分熱処理して厚さ40μmのフィルムを得た。当該フィルムについても同様に、上述した条件及び方法に基づいて酸素透過係数を測定したところ、4.7×10−12[cm(Normal)・cm/cm・s・Pa]を示した。
【0048】
[例1]
白金担持カーボン(白金担持量:40質量%)を、TFE/PSVE−H共重合体(A=1.1meq/g)の9質量%エタノール溶液及びエタノールと混合して分散させ、さらに水を加えて固形分濃度が8質量%となるようにアノードの触媒層形成用の塗工液(エタノールの質量:水の質量=1:1、白金担持カーボンの質量:上記共重合体の質量=7:3)を調製した。
【0049】
次に、白金担持カーボン(白金担持量:54質量%)を、PDD/PSVE−H共重合体の10質量%エタノール溶液に分散させた分散液(白金担持カーボンの質量:上記共重合体の質量=6:4)を調製した。次に、分散液を十分に撹拌した後、さらに蒸発乾固して得られる固形物を粉砕した。次に、この粉末を2,2,3,3,3−ペンタフルオロ−1−プロパノール中に再分散させ、固形分濃度が5質量%となるようにカソードの触媒層形成用の塗工液を調製した。
【0050】
また、アノード及びカソードのガス拡散層としては、撥水性カーボンクロスの片側をカーボンブラックとPTFEを含む分散液で表面処理することによって撥水性カーボン層を形成し、この撥水性カーボン層に対し、ホットプレスを施して層表面を平坦にした厚さ約340μmのものを用意した。さらに、高分子電解質膜として、スルホン酸型パーフルオロカーボン重合体からなる高分子電解質膜(商品名:フレミオンHR、旭硝子社製、A=1.1meq/g、乾燥膜厚50μm)を用意した。
【0051】
次に、アノードの触媒層形成用の塗工液を、上記の方法により調製したガス拡散層の撥水性カーボン層側の面に白金量が0.5mg/cmとなるように一回塗布し、乾燥させて触媒層を形成することによりアノードを得た。一方、カソードの触媒層形成に際してもアノードと同様の手順を用い、ガス拡散層の撥水性カーボン層側の面に、カソードの触媒層形成用の塗工液を白金量が0.35mg/cmとなるように一回塗布し、乾燥させて触媒層を形成することによりカソードを得た。
【0052】
次に、得られたアノード及びカソードを有効電極面積が25cmとなるように切り出した。そして、アノード及びカソードを、ともに触媒層側を内側に向けて対向させ、その間に高分子電解質膜を挟み込んだ状態でホットプレスすることによりアノード及びカソードの各触媒層と高分子電解質膜とを接合させ、膜・電極接合体を作製した。
【0053】
さらに、単位セル(膜・電極接合体)にガス流路が形成されたカーボン製のセパレータを装着して測定セルとし、電子負荷(高砂製作所社製,FK400L)と直流電源(高砂製作所社製,EX750L)を用いて測定セルの電池特性試験を行った。測定条件は、水素導入口圧力;0.15MPa、空気導入口圧力;0.15MPa、測定セルの作動温度;80℃とし、作動後10時間経過後、出力電流密度をそれぞれ0.3A/cm、1.0A/cmとしたときのセル電圧を測定した。なお、この作動条件において水素利用率が70%、空気利用率が40%となるように水素ガス及び空気の流量を調節した。結果を表1に示す。
【0054】
[例2]
例1で用いたPDD/PSVE−H共重合体の10質量%エタノール溶液の代わりに、上記の方法によって調製した(PPDD)−(TFE/PSVE−H共重合体)−(PPDD)ブロックポリマーをエタノールとC13Hとの混合溶媒(質量比1:1)に溶解した10質量%溶液を用いた以外は例1と同様にして膜・電極接合体を作製した。
【0055】
この膜・電極接合体を用い、例1と同様の条件で電池特性試験を行った結果を表1に示す。
【0056】
[例3(比較例)]
例1で用いたPDD/PSVE−H共重合体の10質量%エタノール溶液の代わりに、TFE/PSVE−H共重合体の9質量%エタノール溶液を用いてカソード用の触媒層形成用の塗工液(白金担持カーボンの質量:上記共重合体の質量=6:4)を調製した以外は例1と同様にして膜・電極接合体を作製した。
【0057】
この膜・電極接合体を用い、例1と同様の条件で電池特性試験を行った結果を表1に示す。
【0058】
【表1】
Figure 0004887580
【0059】
このように、酸素透過性の大きな含フッ素イオン交換樹脂をカソードに用いた例1、2においては、従来の含フッ素イオン交換樹脂をカソードに用いた比較例と比べ、カソードの過電圧が低減されて高いセル電圧が得られた。また、表1の結果は、電流密度が高い場合(1A/cm)には電流密度が小さい場合(0.3A/cm)と比べて過電圧の低減によるセル電圧の上昇幅が大きいことを示している。
【0060】
【発明の効果】
本発明によれば、酸素還元反応に対する過電圧を従来よりも低減させることができるので、酸素還元反応に対する優れた電極特性を有するガス拡散電極が得られる。また、このガス拡散電極をカソードとして使用することにより、高い電池出力が得られる固体高分子型燃料電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas diffusion electrode and a polymer electrolyte fuel cell including the gas diffusion electrode.
[0002]
[Prior art]
Since a polymer electrolyte fuel cell including a polymer electrolyte membrane is easily reduced in size and weight, it is expected to be put to practical use as a mobile vehicle such as an electric vehicle or a power source for a small cogeneration system. However, since solid polymer fuel cells have a relatively low operating temperature and their exhaust heat is difficult to use effectively for auxiliary power, etc., the utilization rate of anode reaction gas (such as hydrogen) and cathode reaction are required for practical use. There is a demand for performance capable of obtaining high power generation efficiency and high power density under operating conditions with high utilization rates of gas (such as air).
[0003]
The anode and cathode of a polymer electrolyte fuel cell usually have a catalyst layer containing a catalyst and an ion exchange resin (electrolyte). The electrode reaction in each catalyst layer proceeds at a three-phase interface (hereinafter referred to as a reaction site) where the reaction gas, the catalyst, and the ion exchange resin exist simultaneously. Therefore, in a polymer electrolyte fuel cell, conventionally, a metal catalyst or a metal-supported catalyst (for example, a metal-supported carbon in which a metal catalyst such as platinum is supported on a carbon black support having a large specific surface area) is the same as the polymer electrolyte membrane. Alternatively, different types of ion exchange resins are used as constituent materials of the catalyst layer, and the reaction sites in the catalyst layer are three-dimensionalized to increase the reaction sites.
[0004]
Examples of the polymer electrolyte membrane include a sulfonic acid group having high ionic conductivity, such as “Flemion” manufactured by Asahi Glass Co., Ltd. and “Nafion” manufactured by DuPont, which is chemically stable in an oxidizing and reducing atmosphere. A membrane made of a perfluorocarbon polymer (hereinafter, referred to as a sulfonic acid type perfluorocarbon polymer) is used. Similarly, a sulfonic acid type perfluorocarbon polymer is also used as an ion exchange resin contained in the catalyst layer. .
[0005]
However, the ion exchange resin used in the catalyst layer of the conventional gas diffusion electrode is excellent in ion conductivity and chemical stability, but has insufficient gas permeability in the resin, so it is used especially as a cathode. The oxygen gas permeability in the catalyst layer is insufficient, the overvoltage of the oxygen reduction reaction at the cathode is increased, and it is difficult to obtain high electrode characteristics.
[0006]
In order to solve this problem, in JP-A-11-354129, the catalyst layer contains a fluorine-containing ether compound in addition to the fluorine-containing ion exchange resin, thereby increasing the oxygen gas permeability in the cathode catalyst layer. There has been proposed a polymer electrolyte fuel cell in which the overvoltage is reduced.
[0007]
However, even in the polymer electrolyte fuel cell described above, the oxygen gas permeability in the cathode catalyst layer is insufficient, the cathode overvoltage cannot be sufficiently reduced, and the durability of the cathode catalyst layer is not sufficient. There was a problem that it was insufficient and the battery life was short. This is because the fluorinated ether compound is a low-molecular compound, so it gradually dissolves in the reaction product water during power generation, or is desorbed from the fluorinated ion exchange resin along with it, and is discharged from the catalyst layer together with the product water. It is thought to be done.
[0008]
[Problems to be solved by the invention]
In view of the above-described problems of the prior art, the present invention provides a gas diffusion electrode having excellent electrode characteristics for oxygen reduction reaction for the purpose of providing a polymer electrolyte fuel cell capable of obtaining a high battery output. For the purpose.
[0009]
[Means for Solving the Problems]
  The present invention is a porous gas diffusion electrode comprising a catalyst layer containing a catalyst and a fluorine-containing ion exchange resin, wherein the fluorine-containing ion exchange resin has an oxygen permeability coefficient of 5 × 10 5.-12[Cm3(Normal) · cm / cm2・ S ・ Pa] or moreThe fluorine-containing ion exchange resin has a repeating unit represented by the formula (1) described later and CF 2 = CF- (OCF 2 CFX) m -O p -(CF 2 ) n -SO 3 Based on a fluorine-containing vinyl compound represented by H (wherein m is an integer of 0 to 3, n is an integer of 1 to 12, p is 0 or 1, and X is a fluorine atom or a trifluoromethyl group). A copolymer containing repeating units.A gas diffusion electrode is provided.
[0010]
In the gas diffusion electrode of the present invention, the fluorine-containing ion exchange resin having a high oxygen permeability coefficient is contained in the catalyst layer, so that the reaction gas concentration in the vicinity of the reaction site in the catalyst layer can be made higher than before. . As a result, the exchange current density in the electrode reaction can be increased, and the oxygen overvoltage can be reduced. That is, high electrode characteristics can be obtained. In particular, when this gas diffusion electrode is used as the cathode of a polymer electrolyte fuel cell, the overvoltage of the oxygen reduction reaction at the cathode can be effectively reduced, so that the electrode characteristics of the cathode are improved.
[0011]
Here, the oxygen transmission coefficient is 5 × 10-12[Cm3(Normal) · cm / cm2If it is less than s · Pa], it becomes difficult to sufficiently increase the concentration of the reaction gas in the vicinity of the reaction site in the catalyst layer, and it becomes difficult to sufficiently reduce the overvoltage of the oxygen reduction reaction. The oxygen permeation coefficient of the fluorine-containing ion exchange resin used in the present invention is 5 × 10.-12[Cm3(Normal) · cm / cm2· S · Pa] or more, preferably 5.5 × 10-12[Cm3(Normal) · cm / cm2· S · Pa] or more, more preferably 6 × 10-12[Cm3(Normal) · cm / cm2· S · Pa] or more. The upper limit of the oxygen permeability coefficient is not particularly limited, but ion conductivity is ensured and 1 × 10 10-10[Cm3(Normal) · cm / cm2Since it is difficult to synthesize a fluorine-containing ion exchange resin having an oxygen permeability coefficient of s · Pa] or more, it is usually 1 × 10-10[Cm3(Normal) · cm / cm2· S · Pa].
[0012]
The oxygen permeation coefficient of the fluorinated ion exchange resin in the present invention refers to an isobaric gas chromatography method after heat-treating a cast membrane (film thickness 20 to 100 μm) prepared from the fluorinated ion exchange resin at 160 ° C. for 30 minutes. (Pressure 10 on one side of the membrane5Pa, oxygen with a relative humidity of 80%, pressure on the other side is 105Pa, helium having a relative humidity of 80% is supplied.)5The oxygen permeability coefficient at Pa and relative humidity 80% is shown.
[0013]
If there is a problem with the brittleness of the cast membrane made of fluorine-containing ion exchange resin to measure the oxygen permeability coefficient, and it is difficult to measure the oxygen permeability coefficient by the above method, a polymer with excellent moldability is blended. Thus, an oxygen permeation coefficient can be approximately obtained by producing a cast film. In that case, based on the oxygen permeability coefficient data measured with various blending ratios of the fluorine-containing ion exchange resin and the polymer having excellent moldability, the oxygen permeability coefficient of the fluorine-containing ion exchange resin alone is theoretically approximated. It is possible to calculate. Alternatively, the oxygen permeability coefficient of a single membrane can be evaluated by placing a fluorine-containing ion exchange resin on a porous support.
[0014]
Furthermore, the present invention is a polymer electrolyte fuel cell comprising an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode, wherein the gas diffusion according to the present invention is used as a cathode. Provided is a polymer electrolyte fuel cell comprising an electrode.
[0015]
As described above, a solid polymer fuel cell having a high battery output can be provided by providing the gas diffusion electrode having excellent electrode characteristics with respect to the oxygen reduction reaction as a cathode.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a gas diffusion electrode of the present invention and a polymer electrolyte fuel cell including the gas diffusion electrode will be described in detail.
[0017]
The anode and the cathode in the polymer electrolyte fuel cell of the present invention are each provided with a catalyst layer, and preferably both comprise a catalyst layer and a gas diffusion layer disposed adjacent to the catalyst layer. As a constituent material of the gas diffusion layer, for example, a porous body having electronic conductivity (for example, carbon cloth or carbon paper) is used.
[0018]
The cathode catalyst layer mainly has an oxygen permeability coefficient of 5 × 10-12[Cm3(Normal) · cm / cm2S · Pa] or more of the fluorine-containing ion exchange resin and the catalyst are contained, and the reaction rate is improved by reducing the overvoltage for the oxygen reduction reaction at the cathode.
[0019]
The fluorine-containing ion exchange resin exhibiting high oxygen gas permeability in the present invention preferably contains a repeating unit having an aliphatic ring structure. The repeating unit is preferably a repeating unit represented by the following formula (1) from the viewpoint of oxygen gas permeability. However, in Formula (1), R1And R2Each independently represents a fluorine atom or a trifluoromethyl group.
[0020]
[Chemical 2]
Figure 0004887580
[0021]
The fluorine-containing ion exchange resin containing the above repeating unit comprises a monomer represented by the following formula (2) and a monomer having an ion exchange group or a precursor group thereof (a group that becomes an ion exchange group by hydrolysis or the like). Obtained by polymerization. However, R in Formula (2)1And R2Is synonymous with formula (1).
[0022]
[Chemical Formula 3]
Figure 0004887580
[0023]
Moreover, as an ion exchange group in the fluorine-containing ion exchange resin in this invention, a sulfonic acid group, a sulfonimide group, a phosphoric acid group, and a carboxyl group are illustrated. In particular, a sulfonic acid group and a sulfonimide group which are strongly acidic groups are preferable. Of these, a fluorine-containing ion exchange resin having an ion exchange group as a sulfonic acid group is preferable from the viewpoint of easy availability of raw materials.
[0024]
The repeating unit having a sulfonic acid group in the fluorine-containing ion exchange resin is not particularly limited, but CF2= CF- (OCF2CFX)m-Op-(CF2)n-SO3A repeating unit based on a fluorine-containing vinyl compound represented by H (wherein m is an integer of 0 to 3, n is an integer of 1 to 12, p is 0 or 1, and X is a fluorine atom or a trifluoromethyl group. Is preferred). Preferable examples of the fluorine-containing vinyl compound include the following compounds (3) to (5). However, in the following formula, q is an integer of 1 to 8, r is an integer of 1 to 8, and t is an integer of 1 to 3.
[0025]
[Formula 4]
Figure 0004887580
[0026]
The sulfonic acid group (-SO3The repeating unit having an H group includes, for example, a monomer represented by the above formula (2), a fluorosulfonyl group (-SO2After radical copolymerization with a monomer having an F group), the fluorosulfonyl group in the copolymer is hydrolyzed with an alkali compound such as potassium hydroxide and treated with an acid (hereinafter referred to as acidification). Is done. As the monomer having a fluorosulfonyl group, CF2= CF- (OCF2CFX)m-Op-(CF2)n-SO2A repeating unit based on a fluorine-containing vinyl compound represented by F (wherein m is an integer of 0 to 3, n is an integer of 1 to 12, p is 0 or 1, and X is a fluorine atom or a trifluoromethyl group. Is common).
[0027]
Furthermore, the fluorine-containing ion exchange resin includes a repeating unit based on another monomer such as a repeating unit based on tetrafluoroethylene (hereinafter referred to as TFE), a fluorine-containing olefin such as hexafluoropropylene, or perfluoro (alkyl vinyl ether). May be included.
[0028]
In the fluorine-containing ion exchange resin used in the present invention, the arrangement of the repeating units is not limited. Although it may be a random copolymer, it may be a block copolymer or a fluorinated ion exchange resin having other embodiments.
[0029]
In order to increase the output of the fuel cell, the fluorine-containing ion exchange resin in the electrode is preferably highly gas permeable and highly conductive, and in addition, the ion exchange group concentration and water content are preferably high. Therefore, the ion exchange capacity in the molecule (hereinafter referred to as ARIs 0.5 meq / g dry resin (hereinafter referred to as meq / g) or more, more preferably 0.7 meq / g or more. In addition, in order to prevent the fluorine-containing ion exchange resin from being dissipated in water, ARIs 4 meq / g or less, preferably 2 meq / g or less, and more preferably 1.7 meq / g or less.
[0030]
Here, the number average molecular weight of the fluorinated ion exchange resin is preferably 1000 to 3000000, and more preferably 20000 to 1000000. If the number average molecular weight is less than 1000, the fluorine-containing ion exchange resin may fall off the electrode during long-term power generation. On the other hand, when the number average molecular weight exceeds 3000000, the fluorine-containing ion exchange resin is difficult to dissolve in the solvent, and the production method is limited when producing the electrode.
[0031]
The catalyst contained in the catalyst layer of the cathode in the present invention is not particularly limited. For example, a catalyst in which a platinum group metal such as platinum or an alloy thereof is supported on a carbon support is preferable. The carbon carrier is not particularly limited, but the specific surface area is 200 m.2/ G or more of carbon material is preferable, for example, carbon black or activated carbon is preferably used. Further, in the cathode catalyst layer, the range of the mass ratio of the catalyst to the fluorinated ion exchange resin is the mass of the catalyst (the total mass of the metal and the carbon support): the mass of the fluorinated ion exchange resin = 20: 80 to The ratio is preferably 95: 5, more preferably 30:70 to 90:10.
[0032]
Here, if the content of the catalyst with respect to the fluorine-containing ion exchange resin is too low, there is a tendency that the reaction site is reduced because the amount of the catalyst is insufficient, and the catalyst is thickly covered with the ion exchange resin, and the reaction gas in the catalyst layer The diffusion rate of the is likely to be small. Furthermore, the pores necessary for the diffusion of the reaction gas may be blocked by the resin, so that a flooding phenomenon is likely to occur. On the other hand, if the content of the catalyst with respect to the fluorinated ion exchange resin is too high, the catalyst is not sufficiently covered with the fluorinated ion exchange resin, resulting in fewer reaction sites, and the platinum group metal catalyst cannot be used effectively. Furthermore, the fluorine-containing ion exchange resin functions as a binder in the catalyst layer and also as an adhesive between the catalyst layer and the polymer electrolyte membrane. However, if the amount of the fluorine-containing ion exchange resin is insufficient, the function becomes insufficient. The catalyst layer structure may not be stably maintained.
[0033]
On the other hand, the structure of the anode catalyst layer in the fuel cell of the present invention is not particularly limited, and can be the same structure as the anode catalyst layer of the conventional polymer electrolyte fuel cell, and contains the fluorine-containing ion exchange resin in the present invention. And may contain other resins.
[0034]
The layer thickness of the anode and cathode catalyst layers in the present invention is preferably 1 to 500 μm, and more preferably 3 to 50 μm. Furthermore, the catalyst layer in the present invention may contain a water repellent agent such as polytetrafluoroethylene (hereinafter referred to as PTFE) as necessary. However, since the water repellent agent is an insulator, the amount thereof is preferably as small as possible, and the addition amount is preferably 30% by mass or less.
[0035]
In addition, the polymer electrolyte membrane used in the solid polymer fuel cell of the present invention is not particularly limited as long as it is an ion exchange membrane exhibiting good ion conductivity in a wet state. As the solid polymer material constituting the polymer electrolyte membrane, for example, the above-mentioned fluorine-containing ion exchange resin may be used, or the fluorine-containing ion exchange resin used in the conventional solid polymer fuel cell is used. Also good.
[0036]
The gas diffusion electrode of the present invention is preferably prepared using a coating solution in which a fluorine-containing ion exchange resin and a catalyst are dissolved or dispersed in a solvent or dispersion medium. As the solvent or dispersion medium used here, for example, alcohol, fluorine-containing alcohol, fluorine-containing ether and the like can be used. And a catalyst layer is formed by apply | coating a coating liquid to the carbon electrolyte etc. which become a polymer electrolyte membrane or a gas diffusion layer. Alternatively, the catalyst layer can be formed on the polymer electrolyte membrane by coating the coating solution on a separately prepared substrate to form a coating layer and transferring the coating layer onto the polymer electrolyte membrane.
[0037]
Here, when the catalyst layer is formed on the gas diffusion layer, the catalyst layer and the polymer electrolyte membrane may be joined by an adhesion method (Japanese Patent Laid-Open Nos. 7-220441 and 7-254420) or hot press. preferable. In addition, when a catalyst layer is formed on the polymer electrolyte membrane, the gas diffusion electrode may be constituted only by the catalyst layer, but a gas diffusion layer is further disposed adjacent to the catalyst layer, Also good.
[0038]
A separator having a normal gas flow path is disposed outside the gas diffusion electrode, and a solid polymer fuel is supplied to the flow path by supplying a gas containing hydrogen to the anode and a gas containing oxygen to the cathode. A battery is constructed.
[0039]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these. In the following description, the following compounds are described using the following abbreviations.
PSVE: CF2= CFOCF2CF (CF3OCF2CF2SO2F,
PSVE-H: CF2= CFOCF2CF (CF3OCF2CF2SO3H,
PDD: perfluoro (2,2-dimethyl-1,3-dioxole),
PPDD: homopolymer of perfluoro (2,2-dimethyl-1,3-dioxole),
IPP: (CH3)2CHOC (= O) OOC (= O) OCH (CH3)2,
HCFC141b: CH3CCl2F,
HCFC225cb: CCIF2CF2CHClF.
[0040]
[Synthesis of PDD / PSVE-H copolymer and measurement of oxygen permeability coefficient]
A stainless steel autoclave with a volume of 0.2 L was charged with 26.0 g of PDD, 127.8 g of PSVE, and 0.46 g of IPP. After purging the gas in the autoclave with nitrogen, nitrogen was introduced so that the partial pressure became 0.3 MPa. . Next, the temperature in the autoclave was set to 40 ° C., and polymerization was started while stirring the contents. After 10 hours from the start of polymerization, the inside of the autoclave was cooled and the gas in the system was purged to stop the polymerization. After dilution with HCFC225cb, the polymer was precipitated by adding it to hexane, twice with hexane, and once with HCFC141b. Washed. After filtration, it was vacuum-dried at 80 ° C. for 16 hours to obtain 41.6 g of a white polymer. The sulfur content is determined by elemental analysis, and the molar ratio of the repeating unit based on PDD and the repeating unit based on PSVE in the polymer (PDD / PSVE) and ARAnd PDD / PSVE = 56.5 / 43.5, and AR= 1.31 meq / g. Further, when the number average molecular weight of the obtained polymer was measured by gel permeation chromatography (hereinafter referred to as GPC), the number average molecular weight in terms of polymethyl methacrylate was 33,000.
[0041]
Next, the obtained polymer was hydrolyzed with potassium hydroxide, and then immersed in dilute sulfuric acid aqueous solution for acidification treatment. Next, the polymer was washed with ion-exchanged water and dried, and then dissolved in ethanol to obtain a transparent ethanol solution of 10% by mass of PDD / PSVE-H copolymer.
[0042]
In addition, the cast film | membrane produced from the said solution was heat-processed for 30 minutes at 160 degreeC, and the film of thickness 50micrometer was obtained. For the film, the oxygen permeability coefficient measured based on the conditions and methods described above was 6.3 × 10-12[Cm3(Normal) · cm / cm2· S · Pa].
[0043]
[(PPDD)-(TFE / PSVE-H Copolymer)-(PPDD) Synthesis of Block Polymer and Measurement of Oxygen Permeation Coefficient]
<Polymerization of TFE / PSVE copolymer segment>
To the degassed 1 L autoclave, 4.15 g of I (CF2)4I and 778.5 g of PSVE were inhaled and then heated to 40 ° C. After injecting 58 g of TFE, 6 mL of a solution prepared by dissolving 7.53 g of IPP in 78.2 g of HCFC225cb was injected to initiate polymerization. Polymerization was continued while keeping the pressure constant (0.45 MPa in gauge pressure). As the polymerization rate decreased, the IPP solution was further added to continue the polymerization. The total amount of IPP added was 1.66 g. When 80 g of TFE was added, the heating was stopped and the TFE was purged to stop the polymerization. The obtained solution was poured into HCFC 141b, aggregated, washed, filtered, and dried to obtain 235 g of an elastomeric polymer at room temperature. The molar ratio of TFE to PSVE was 72.1: 27.9. The obtained polymer had an ion exchange capacity of 1.42 meq / g dry resin, and the number average molecular weight in terms of polymethyl methacrylate measured by GPC was 14,500.
[0044]
<Block copolymerization of PPDD segment>
In a 500 mL glass flask, 50 g of the TFE / PSVE copolymer and 250 g of C6F13H and 25 g of PDD were added and stirred to dissolve the TFE / PSVE copolymer. Add 0.082g IPP to 5g C6F13A solution dissolved in H was added and polymerized at 30 ° C. for 65 hours. The reaction solution was poured into HCFC141b, aggregated, washed, filtered, and dried to obtain 62.9 g of a white polymer. The average ion exchange capacity of the whole polymer obtained was 0.99 meq / g dry resin, and the number average molecular weight of the whole polymer measured by GPC was 20900 in terms of polymethyl methacrylate.
[0045]
<Polymer acidification and solution>
The (PPDD)-(TFE / PSVE copolymer)-(PPDD) block polymer synthesized by block copolymerization by the above method was heat-treated in air at 250 ° C. overnight. These were hydrolyzed with potassium hydroxide and then immersed in a sulfuric acid aqueous solution for acidification treatment. Next, the obtained acid type polymer was mixed with ethanol and C6F13A 10% by mass solution dissolved in a mixed solvent with H (mass ratio 1: 1) was prepared.
[0046]
<Measurement of oxygen transmission coefficient>
The cast film produced from the above solution was heat-treated at 160 ° C. for 30 minutes to obtain a film having a thickness of 70 μm. For the film, the oxygen permeability coefficient measured based on the conditions and methods described above was 6.3 × 10-12[Cm3(Normal) · cm / cm2· S · Pa].
[0047]
The TFE / PSVE-H copolymer (A) obtained by acidifying the TFE / PSVE copolymer.R= 1.1 meq / g) A cast film prepared from a 9% by mass ethanol solution was heat-treated at 160 ° C. for 30 minutes to obtain a film having a thickness of 40 μm. Similarly, when the oxygen permeability coefficient of the film was measured based on the conditions and methods described above, 4.7 × 10-12[Cm3(Normal) · cm / cm2· S · Pa].
[0048]
[Example 1]
Platinum-supported carbon (platinum supported amount: 40% by mass) was converted into TFE / PSVE-H copolymer (AR= 1.1 meq / g) 9% by weight ethanol solution and ethanol mixed and dispersed, and water is further added to form a coating solution (ethanol for forming the anode catalyst layer so that the solid content concentration becomes 8% by weight. Mass: water mass = 1: 1, platinum-supported carbon mass: the above copolymer mass = 7: 3).
[0049]
Next, a dispersion in which platinum-supported carbon (platinum-supported amount: 54% by mass) is dispersed in a 10% by mass ethanol solution of a PDD / PSVE-H copolymer (mass of platinum-supported carbon: mass of the copolymer). = 6: 4) was prepared. Next, after sufficiently stirring the dispersion, the solid obtained by further evaporating to dryness was pulverized. Next, this powder is redispersed in 2,2,3,3,3-pentafluoro-1-propanol, and a coating solution for forming a cathode catalyst layer is prepared so that the solid content concentration is 5% by mass. Prepared.
[0050]
Further, as the gas diffusion layers of the anode and the cathode, a water-repellent carbon layer is formed by surface-treating one side of the water-repellent carbon cloth with a dispersion containing carbon black and PTFE. The thing of about 340 micrometers in thickness which gave the layer surface flat by pressing was prepared. Furthermore, as a polymer electrolyte membrane, a polymer electrolyte membrane made of a sulfonic acid type perfluorocarbon polymer (trade name: Flemion HR, manufactured by Asahi Glass Co., Ltd., AR= 1.1 meq / g, dry film thickness 50 μm).
[0051]
Next, a coating solution for forming the anode catalyst layer was prepared by applying 0.5 mg / cm of platinum on the surface of the gas diffusion layer prepared by the above method on the water repellent carbon layer side.2The anode was obtained by coating once and drying to form a catalyst layer. On the other hand, in the formation of the cathode catalyst layer, the same procedure as that for the anode was used.2The cathode was obtained by coating once and drying to form a catalyst layer.
[0052]
Next, the obtained anode and cathode have an effective electrode area of 25 cm.2It cut out so that it might become. The anode and cathode are both faced with the catalyst layer facing inward, and the anode and cathode catalyst layers and the polymer electrolyte membrane are joined by hot pressing with the polymer electrolyte membrane sandwiched therebetween. Thus, a membrane / electrode assembly was produced.
[0053]
Furthermore, a carbon separator having a gas flow path formed in a unit cell (membrane / electrode assembly) is attached to form a measurement cell, and an electronic load (manufactured by Takasago Seisakusho, FK400L) and a direct current power source (manufactured by Takasago Seisakusho, EX750L) was used to perform a battery characteristic test of the measurement cell. The measurement conditions were: hydrogen inlet pressure: 0.15 MPa, air inlet pressure: 0.15 MPa, operating temperature of the measuring cell: 80 ° C., and after 10 hours of operation, the output current density was 0.3 A / cm, respectively.21.0 A / cm2The cell voltage was measured. The flow rates of hydrogen gas and air were adjusted so that the hydrogen utilization rate was 70% and the air utilization rate was 40% under these operating conditions. The results are shown in Table 1.
[0054]
[Example 2]
Instead of the 10 mass% ethanol solution of the PDD / PSVE-H copolymer used in Example 1, the (PPDD)-(TFE / PSVE-H copolymer)-(PPDD) block polymer prepared by the above method was used. Ethanol and C6F13A membrane / electrode assembly was produced in the same manner as in Example 1 except that a 10% by mass solution dissolved in a mixed solvent with H (mass ratio 1: 1) was used.
[0055]
Table 1 shows the results of a battery characteristic test conducted under the same conditions as in Example 1 using this membrane / electrode assembly.
[0056]
[Example 3 (comparative example)]
Coating for forming a catalyst layer for a cathode using a 9 mass% ethanol solution of a TFE / PSVE-H copolymer instead of the 10 mass% ethanol solution of the PDD / PSVE-H copolymer used in Example 1 A membrane / electrode assembly was produced in the same manner as in Example 1 except that a liquid (mass of platinum-supporting carbon: mass of the above copolymer = 6: 4) was prepared.
[0057]
Table 1 shows the results of a battery characteristic test conducted under the same conditions as in Example 1 using this membrane / electrode assembly.
[0058]
[Table 1]
Figure 0004887580
[0059]
As described above, in Examples 1 and 2 in which the fluorine-containing ion exchange resin having a large oxygen permeability is used as the cathode, the cathode overvoltage is reduced compared to the comparative example in which the conventional fluorine-containing ion exchange resin is used in the cathode. A high cell voltage was obtained. The results in Table 1 show that the current density is high (1 A / cm2) When the current density is small (0.3 A / cm2) Indicates that the cell voltage increase due to the reduction of the overvoltage is larger.
[0060]
【The invention's effect】
According to the present invention, since the overvoltage for the oxygen reduction reaction can be reduced as compared with the prior art, a gas diffusion electrode having excellent electrode characteristics for the oxygen reduction reaction can be obtained. In addition, by using this gas diffusion electrode as a cathode, it is possible to provide a polymer electrolyte fuel cell capable of obtaining a high battery output.

Claims (2)

触媒と含フッ素イオン交換樹脂とを含有する触媒層を備える多孔質のガス拡散電極であって、前記含フッ素イオン交換樹脂の酸素透過係数が5×10−12[cm(Normal)・cm/cm・s・Pa]以上であり、
前記含フッ素イオン交換樹脂が下記式(1)で示される(式(1)中、R 及びR はそれぞれ独立にフッ素原子又はトリフルオロメチル基を示す)繰り返し単位とCF =CF−(OCF CFX) −O −(CF −SO H(式中、mは0〜3の整数、nは1〜12の整数、pは0又は1であり、Xはフッ素原子又はトリフルオロメチル基である)で示される含フッ素ビニル化合物に基づく繰り返し単位とを含む共重合体からなることを特徴とするガス拡散電極。
Figure 0004887580
なお、含フッ素イオン交換樹脂の酸素透過係数は、当該含フッ素イオン交換樹脂から作製したキャスト膜(膜厚20〜100μm)を160℃で30分熱処理した後、等圧ガスクロマトグラフィ法(膜の一方の側には圧力10 Pa、相対湿度80%の酸素を、他方の側には圧力10 Pa、相対湿度80%のヘリウムを供給)に基づいて測定した80℃、圧力10 Pa、相対湿度80%における酸素透過係数を示す。
A porous gas diffusion electrode including a catalyst layer containing a catalyst and a fluorine-containing ion exchange resin, wherein the oxygen-containing coefficient of the fluorine-containing ion exchange resin is 5 × 10 −12 [cm 3 (Normal) · cm / cm 2 · s · Pa] more der is,
The fluorine-containing ion exchange resin is represented by the following formula (1) (in the formula (1), R 1 and R 2 each independently represents a fluorine atom or a trifluoromethyl group) and a repeating unit of CF 2 ═CF— ( OCF 2 CFX) m -O p - (CF 2) n -SO 3 H ( wherein, m is an integer of 0 to 3, n is an integer from 1 to 12, p is 0 or 1, X is fluorine atom or a trifluoromethyl group at a) a gas diffusion electrode, characterized in Rukoto such a copolymer comprising the repeating units based on the fluorinated vinyl compound represented by the.
Figure 0004887580
The oxygen permeation coefficient of the fluorine-containing ion exchange resin is determined by isothermal gas chromatography (one side of the membrane) after heat-treating a cast membrane (film thickness 20 to 100 μm) prepared from the fluorine-containing ion exchange resin at 160 ° C. for 30 minutes. pressure 10 5 Pa on the side of the relative humidity of 80% oxygen, the other side of the pressure 10 5 Pa, 80 ° C. as measured on the basis of the supply) to a relative humidity of 80% helium, the pressure 10 5 Pa, relative The oxygen permeability coefficient at a humidity of 80% is shown.
アノードと、カソードと、前記アノードと前記カソードとの間に配置された高分子電解質膜とを備える固体高分子型燃料電池であって、前記カソードが請求項に記載のガス拡散電極からなることを特徴とする固体高分子型燃料電池。2. A polymer electrolyte fuel cell comprising an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode, wherein the cathode comprises the gas diffusion electrode according to claim 1. A polymer electrolyte fuel cell characterized by the above.
JP2001221819A 2001-07-23 2001-07-23 Gas diffusion electrode and polymer electrolyte fuel cell having the same Expired - Lifetime JP4887580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001221819A JP4887580B2 (en) 2001-07-23 2001-07-23 Gas diffusion electrode and polymer electrolyte fuel cell having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001221819A JP4887580B2 (en) 2001-07-23 2001-07-23 Gas diffusion electrode and polymer electrolyte fuel cell having the same

Publications (2)

Publication Number Publication Date
JP2003036856A JP2003036856A (en) 2003-02-07
JP4887580B2 true JP4887580B2 (en) 2012-02-29

Family

ID=19055430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001221819A Expired - Lifetime JP4887580B2 (en) 2001-07-23 2001-07-23 Gas diffusion electrode and polymer electrolyte fuel cell having the same

Country Status (1)

Country Link
JP (1) JP4887580B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243616A (en) * 2004-01-30 2005-09-08 Fuji Electric Holdings Co Ltd Electrode for solid polyelectrolyte fuel cell, and its manufacturing method
JP2005294107A (en) * 2004-04-01 2005-10-20 Toyota Motor Corp Fuel cell and fuel cell system using this
JP4910269B2 (en) * 2004-07-16 2012-04-04 旭硝子株式会社 ELECTROLYTE MATERIAL FOR SOLID POLYMER TYPE FUEL CELL, METHOD FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER FUEL CELL
JP5082470B2 (en) * 2007-01-31 2012-11-28 旭硝子株式会社 Membrane electrode assembly for polymer electrolyte fuel cells
JP2011181344A (en) * 2010-03-01 2011-09-15 Toyota Motor Corp Membrane electrode assembly and method of manufacturing the same
JP5660879B2 (en) 2010-12-20 2015-01-28 トヨタ自動車株式会社 Cathode side catalyst layer, membrane electrode assembly, polymer electrolyte fuel cell and method for producing the same
EP2656421A1 (en) * 2010-12-20 2013-10-30 E.I. Du Pont De Nemours And Company High molecular weight ionomers and ionically conductive compositions for use as one or more electrode of a fuel cell
CN103283072A (en) * 2010-12-20 2013-09-04 纳幕尔杜邦公司 Ionomers and ionically conductive compositions for use as one or more electrode of a fuel cell
JP5851150B2 (en) 2011-08-09 2016-02-03 トヨタ自動車株式会社 ELECTRODE FOR FUEL CELL, PROCESS FOR PRODUCING ELECTRODE FOR FUEL CELL AND SOLID POLYMER FUEL CELL
JP5847984B2 (en) 2013-02-28 2016-01-27 グリー株式会社 Server, server control method, and program
JP6225468B2 (en) * 2013-04-25 2017-11-08 株式会社豊田中央研究所 Fuel cell electrode
JP6096749B2 (en) * 2014-12-03 2017-03-15 トヨタ自動車株式会社 Fuel cell electrode
JP6661979B2 (en) * 2015-11-06 2020-03-11 凸版印刷株式会社 Membrane electrode assembly
JP6536477B2 (en) * 2016-05-13 2019-07-03 トヨタ自動車株式会社 Fuel cell
JP6593308B2 (en) 2016-11-17 2019-10-23 トヨタ自動車株式会社 Fuel cell catalyst layer
JP7128634B2 (en) * 2017-03-10 2022-08-31 株式会社豊田中央研究所 Ionoma-coated catalyst, manufacturing method thereof, and catalyst ink
JP7127603B2 (en) * 2019-04-15 2022-08-30 トヨタ自動車株式会社 METHOD FOR MANUFACTURING ELECTRODE CATALYST LAYER FOR FUEL CELL
WO2021132475A1 (en) * 2019-12-27 2021-07-01 Agc株式会社 Catalyst layer, liquid for forming catalyst layer, and membrane electrode assembly
US20220190353A1 (en) * 2020-12-11 2022-06-16 Sinohykey Technology Guangzhou Co. Ltd. Method for Preparing Highly Stable Catalyst Coating Slurry for Fuel Cells
JP7284776B2 (en) 2021-03-30 2023-05-31 株式会社豊田中央研究所 Mesoporous carbon, electrode catalyst and catalyst layer for fuel cell
JP7501472B2 (en) 2021-08-31 2024-06-18 トヨタ自動車株式会社 Method for producing catalyst ink for fuel cell electrodes
JP2023137120A (en) 2022-03-17 2023-09-29 株式会社豊田中央研究所 Mesoporous carbon, electrode catalyst, and catalyst layer for fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264101A (en) * 1987-04-20 1988-11-01 Asahi Glass Co Ltd Permselective membrane
JPH05144444A (en) * 1991-11-25 1993-06-11 Toshiba Corp Fuel cell and electrode manufacturing method
JPH11354129A (en) * 1998-06-05 1999-12-24 Asahi Chem Ind Co Ltd Electrode catalyst coating agent for fuel cell and membrane/electrode joint body using same coating agent

Also Published As

Publication number Publication date
JP2003036856A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
JP4887580B2 (en) Gas diffusion electrode and polymer electrolyte fuel cell having the same
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP4032738B2 (en) Solid polymer electrolyte material, liquid composition, solid polymer fuel cell, fluoropolymer and fluoropolymer
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
CA2450346C (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
US20060100294A1 (en) Partially fluorinated copolymer based on trifluorostyrene and substituted vinyl compound and ionic conductive polymer membrane formed therefrom
JP6593346B2 (en) Electrolyte material, liquid composition, and membrane electrode assembly for polymer electrolyte fuel cell
JP2007005308A (en) Polymer electrolyte membrane for fuel cell, its manufacturing method and fuel cell system including it
JP6211249B2 (en) POLYMER ELECTROLYTE, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL
JP2009021233A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
JP6536477B2 (en) Fuel cell
JP2012084398A (en) Polymer electrolyte and method for producing same, and fuel cell
JP2004273257A (en) Electrode catalyst layer for fuel cell
JPH11354129A (en) Electrode catalyst coating agent for fuel cell and membrane/electrode joint body using same coating agent
JP5614891B2 (en) Membrane electrode composite and solid polymer electrolyte fuel cell
JP2003059494A (en) Method for operating solid polymer fuel cell and fuel cell system
JPH06349498A (en) Gas diffusion electrode, connecting body, fuel cell, and manufacture thereof
JP3563374B2 (en) Electrode structure for polymer electrolyte fuel cell
JP6729664B2 (en) Fuel cell
JP2002252001A (en) Gas diffusion electrode and solid high polymer type fuel cell equipped with this
JP2008311146A (en) Membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
JP4719979B2 (en) Polymer electrolyte fuel cell
JP2004234947A (en) Direct methanol type fuel cell and manufacturing method therefor
JP7430559B2 (en) ionomer
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4887580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term