JPS63264101A - Permselective membrane - Google Patents

Permselective membrane

Info

Publication number
JPS63264101A
JPS63264101A JP62095217A JP9521787A JPS63264101A JP S63264101 A JPS63264101 A JP S63264101A JP 62095217 A JP62095217 A JP 62095217A JP 9521787 A JP9521787 A JP 9521787A JP S63264101 A JPS63264101 A JP S63264101A
Authority
JP
Japan
Prior art keywords
membrane
fluorine
ring structure
polymer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62095217A
Other languages
Japanese (ja)
Inventor
Hide Nakamura
秀 中村
Hirotsugu Yamamoto
博嗣 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62095217A priority Critical patent/JPS63264101A/en
Publication of JPS63264101A publication Critical patent/JPS63264101A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain the title permselective membrane having high oxygen permeation coefficient, oxygen separation coefficient, gaseous carbon dioxide permeation coefficient, and gaseous carbon dioxide separation coefficient, capable of being easily formed, and having high heat resistance by using a fluorine-contg. polymer having a cyclic structure in the principal chain. CONSTITUTION:For example, a polymerization initiator is added to perfluoroallyl vinyl ether, and the mixture is frozen, deaerated, and then polymerized to obtain the fluorine-contg. polymer. The polymer is dissolved in a solvent to obtain a coating soln., and the soln. is coated on the supporting membrane, etc., coated with the intermediate layer of polydimethylsiloxane to obtain a composite membrane. The membrane thus obtained is useful as an oxygen enriching membrane and a gaseous carbon dioxide-methane separation membrane.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は1選択透過膜に関し、更に詳しく言えば、1鎖
に環構造を有する特定の含フッ素ポリマーからなる選択
透過膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a selectively permeable membrane, and more specifically, to a selectively permeable membrane made of a specific fluorine-containing polymer having a ring structure in one chain.

[従来の技術及び問題点] 高分子物質を通しての分子の透過速度の差を分離操作に
利用して、高分子物質からなる選択透過膜を介して混合
物中の特定成分の濃縮を行なう手法は知られており、空
気からの酸素富化空気の回収あるいは炭酸ガス/メタン
の混合物からのメタンの濃縮などに利用されている。
[Prior Art and Problems] There is no known method for concentrating a specific component in a mixture through a selectively permeable membrane made of a polymeric material by utilizing the difference in the permeation rate of molecules through a polymeric material in a separation operation. It is used for recovering oxygen-enriched air from air or concentrating methane from carbon dioxide/methane mixtures.

分子の透過性は選択透過膜の材質に固有のものであり、
効率のよい分離操作を行なうためには、着目成分と共存
成分との透過性の差が大きく、かつ着目成分の透過性が
大きい材質を選定することが必要となる。しかしながら
、一般には、透過性の差の大きいものでは着目成分の透
過性が小さく、逆に着目成分の透過性が大きいものでは
透過性の差が小さいという傾向が認められ1両方の特性
を満足する材質は稀であった。
Molecular permeability is specific to the material of the selectively permeable membrane;
In order to perform an efficient separation operation, it is necessary to select a material that has a large difference in permeability between the component of interest and the coexisting component, and has a large permeability of the component of interest. However, in general, there is a tendency that when the difference in permeability is large, the permeability of the component of interest is small, and conversely, when the permeability of the component of interest is large, the difference in permeability is small. The material was rare.

また、選択透過収用の材質として求められるものは、薄
膜化可能であるということである。
Moreover, what is required as a material for selective permeation is that it can be made into a thin film.

膜の透過速度はその厚みに反比例し、薄くてかつ実質的
に無欠陥の膜にし得る材質も稀であった。
The permeation rate of a membrane is inversely proportional to its thickness, and materials that can be made into thin and virtually defect-free membranes are rare.

例えば、空気から酸素富化空気の回収に際しては、酸素
透過係数(以下、PO□と略記することがある)が高く
、その窒素透過係数(以下、PNllと略記することが
ある)に対する比(r’o*/r+Ns  :以下、a
 (ox、N2)と略記することがある)が大きい素材
が望まれる。さらに、膜としては膜厚が薄く酸素透過速
度(以下、qO2と略記することがある)が高いものが
望ましい。
For example, when recovering oxygen-enriched air from air, the oxygen permeability coefficient (hereinafter sometimes abbreviated as PO□) is high, and the ratio (r 'o*/r+Ns: Hereinafter, a
(sometimes abbreviated as ox, N2)) is desired. Furthermore, it is desirable that the membrane be thin and have a high oxygen permeation rate (hereinafter sometimes abbreviated as qO2).

従来の膜としては、例えばスチレン系高分子とa、ω−
2官能性ポリシロキサンから得られる架橋型共重合体(
特開昭56−26506)。
Conventional films include, for example, styrene polymers and a, ω-
Crosslinked copolymer obtained from difunctional polysiloxane (
Japanese Patent Publication No. 56-26506).

環構造を有する炭化水素系ポリマー(特開昭6O−24
1903)、ポリ−4−メチル−ペンテン−1及びポリ
フェニルレンオキシドなどが知られているものの、これ
らの素材はあるものはa(口a、 Ntl が不十分で
ある。あるものは溶媒に溶けにくい、製膜性に劣る、特
殊な製膜法しか用いることができない、耐熱性が劣るな
どのさまざまの欠点を有している。
Hydrocarbon polymer having a ring structure (JP-A-6O-24
1903), poly-4-methyl-pentene-1, and polyphenylene oxide, but some of these materials have insufficient a (a, Ntl), and some are soluble in solvents. It has various drawbacks, such as being difficult to form, having poor film-forming properties, requiring only special film-forming methods, and having poor heat resistance.

また1例えばガス田から得られる炭酸ガス/メタンの混
合物からメタンを濃縮するプロセスにおいても膜性な適
応できる。この場合も酸素富化空気の回収の場合と同様
に高い炭酸ガス透過速度(以下、0CO2と略記するこ
とがある)と高い炭酸ガス分離係数(以下、a (CO
x、CIL−と略記することがある)が求められる。さ
らにガス田から得られるガスには前記成分以外の成分が
含まれているので、耐薬品性が求められる。
Furthermore, the membrane-based method can also be applied to a process for concentrating methane from a carbon dioxide/methane mixture obtained from a gas field, for example. In this case as well, as in the case of recovering oxygen-enriched air, there is a high carbon dioxide permeation rate (hereinafter sometimes abbreviated as 0CO2) and a high carbon dioxide separation coefficient (hereinafter a (CO2)).
x, sometimes abbreviated as CIL-) is calculated. Furthermore, since gas obtained from gas fields contains components other than the above-mentioned components, chemical resistance is required.

従来の膜としては5例えばポリスルホン及びセルロース
アセテートが知られているものの、これらを素材とした
選択透過膜のQ (COx、 C114)はかならずし
も十分でなく、かつ高圧の炭酸ガス、メタンガス、混合
ガスに対してはa (CO,。
For example, polysulfone and cellulose acetate are known as conventional membranes, but the Q (COx, C114) of selectively permeable membranes made from these materials is not always sufficient and is difficult to handle when exposed to high pressure carbon dioxide, methane gas, or mixed gases. For a (CO,.

C11,)はさらに低下する。又これらの素材は、製膜
時に使用する溶媒が多孔質支持体を溶かすことから2複
合膜にするのが困難である。なお、上記特開昭60−2
41903の如き環構造を有する炭化水素系ポリマーか
らなる膜についても、炭化水素系であるが由にメタンガ
スなどに対する親和性が大きく、同様の難点が認められ
る。
C11,) further decreases. Furthermore, it is difficult to form a two-composite membrane using these materials because the solvent used during membrane formation dissolves the porous support. In addition, the above-mentioned Japanese Patent Application Laid-Open No. 60-2
A membrane made of a hydrocarbon-based polymer having a ring structure such as No. 41903 has a similar difficulty because it has a high affinity for methane gas and the like because it is a hydrocarbon-based material.

[問題点を解決するだめの手段] 本発明者は、上記問題点の認識のもとに鋭怠研究を重ね
た結果、主鎖に環構造を有する含フッ素ポリマーが高い
G (ox、 Ni1のみならず、高いQ (CL、C
I+41をも有し、かつ高いP口2及びPCO□を有し
、さらに良好な溶解性、製膜性を有し1選択透過膜とし
て極めてずi用であることを見い出した。
[Means for Solving the Problems] The present inventors have been aware of the above problems, and as a result of intensive research, the inventor has found that fluorine-containing polymers having a ring structure in the main chain have a high G (ox, Ni1 only). high Q (CL, C
It has been found that it also has I+41, high P2 and PCO□, and further has good solubility and film forming properties, and is extremely useful as a selectively permeable membrane.

かくして1本発明は上記知見に基いて完成されたもので
あり、主鎖に環構造を有する含フッ素ポリマーからなる
選択透過膜を新規に提供するものである。
Thus, the present invention has been completed based on the above findings, and provides a novel permselective membrane made of a fluorine-containing polymer having a ring structure in its main chain.

本発明において、主鎖に環構造を有する含フッ素ポリマ
ーとしては1例えば一般式 %式%) CF2     (ただし、o、 p、 qの如き環構
造を有するものが挙げられる。これらの内、次の如き環
構造を有するポリマーが代表的である。ただし、本発明
の内容はこれらのみに限定されるものではない。
In the present invention, examples of fluorine-containing polymers having a ring structure in the main chain include those having ring structures such as o, p, and q. Typical examples include polymers having a ring structure such as the following.However, the content of the present invention is not limited to these.

CFa (:)’3               LVI、1
これら中介体の製造法を示すと、次の2通りである。た
だし、これら製造法に限定されるものではない。
CFa (:)'3 LVI, 1
There are two methods for producing these intermediates: However, it is not limited to these manufacturing methods.

1、環化重合によるもの +11  CF、−C−F−ローCFt−CF!−0−
CF−CF!+US+’ 34111303. GO1
106344など)+2) CF、・C)−CFa−C
FCI−CF2−CF龜cFsFCI (USP 3202643など) (3)CFi”CF−0−Ch−CF”CFiO−CF
1. By cyclization polymerization +11 CF, -C-F-rhoCFt-CF! -0-
CF-CF! +US+' 34111303. GO1
106344 etc.) +2) CF, ・C) -CFa-C
FCI-CF2-CF龜cFsFCI (USP 3202643 etc.) (3) CFi”CF-0-Ch-CF”CFiO-CF
.

2、環状モノマーを使用するも+7) (USP 39
78030)また、これらの成分の本質を損なわない程
度に共重合成分な使ハ1することは何ら差し支えがない
2. Using cyclic monomers +7) (USP 39)
78030) Furthermore, there is no problem in using copolymerized components to the extent that the essence of these components is not impaired.

共重合せしめる他のJii fi体としては、ラジカル
重合性を有する千ツマ−であれば、特に限定 ゛されず
に含フッ素系、炭化水素系その他が広範囲にわたって例
示され得る。当然のことであるが、これら他の単量体は
一種単独でii′i1記の如き特定環構造を1鎖に導入
可能なモノマーとラジカル共重合せしめても良く、ある
いは適宜の2種類以上を併用して上記共重合反応を行な
わせても良い0本発明においては1通常は他の単も1体
としてフルオロオレフィン、フルオロビニルエーテルな
どの含フッ素系千ツマ−を選定するのが望ましい0例え
ば、テトラフルオロエチレン、パーフルオロメチルビニ
ルエーテル、パーフルオロプロピルビニルエーテル、あ
るいはカルボン酸基やスルホン酸基の如き官能基を含有
するパーフルオロビニルエーテルなどは好適な具体例で
あり、弗化ビニリデン、弗化ビニル、クロロトリフルオ
ロエチレンなども例示され得る。
Other JII fi substances to be copolymerized are not particularly limited as long as they have radical polymerizability, and include a wide range of fluorine-containing compounds, hydrocarbon compounds, and others. Of course, these other monomers may be used alone by radical copolymerization with a monomer capable of introducing a specific ring structure as described in ii'i1 into one chain, or two or more of these monomers may be used as appropriate. They may be used together to carry out the above copolymerization reaction.In the present invention, it is usually desirable to select a fluorine-containing polymer such as a fluoroolefin or fluorovinyl ether as the other monomer.For example, Tetrafluoroethylene, perfluoromethyl vinyl ether, perfluoropropyl vinyl ether, or perfluorovinyl ether containing functional groups such as carboxylic acid groups or sulfonic acid groups are preferred examples, and vinylidene fluoride, vinyl fluoride, chloro Trifluoroethylene and the like may also be exemplified.

共重合体組成としては、溶解性、製膜性および選択透過
特性などを生かすために、環状構造の組成が20%以上
が好ましく、更に好ましくは40%以上であることが望
ましい。
As for the copolymer composition, in order to take advantage of solubility, film-forming properties, permselective properties, etc., the composition of the cyclic structure is preferably 20% or more, more preferably 40% or more.

これらポリマーを膜にするのには特に限定はないが、プ
レス製膜法及び溶媒を用いる製膜法を用いることができ
る。支持股上にgJ膜するのには後者が有利である。用
いられる溶媒としては、上記ポリマーを溶解するもので
あれば限定はないが、パーフルオロベンゼン、“アフル
ード″(商品名:旭硝子社製のフッ素系溶剤)、゛フロ
リナート#(商品名:3M社製のパーフルオロ(2−ブ
チルテトラヒドロフラン)を含んだ液体)、トリクロロ
トリフルオ゛ロエタン笠が好適である。当然のことであ
るが、適宜の2種類以上を併用して溶媒として用いるこ
とができる。
Although there are no particular limitations on how to form a film from these polymers, a press film forming method or a film forming method using a solvent can be used. The latter is advantageous for forming a gJ film on the support crotch. The solvent to be used is not limited as long as it dissolves the above polymer, but examples include perfluorobenzene, "Afluid" (trade name: fluorinated solvent manufactured by Asahi Glass Co., Ltd.), "Fluorinert #" (trade name: manufactured by 3M Company). Liquids containing perfluoro(2-butyltetrahydrofuran)) and trichlorotrifluoroethane are suitable. As a matter of course, two or more appropriate types can be used in combination as a solvent.

特に混合溶媒の場合、炭化水素系、塩化炭化水素、弗塩
化炭化水素、アルコール、その他の有機溶媒も併用でき
る。溶液濃度はO,(l1wt%〜50wt%で、好ま
しくは0.1wt%〜20wL%である。溶媒を用いる
製膜方法は、上記の溶液を用い、ロールコータ−法、キ
ャスト法、ディッピング法、スピンコード法、水上キャ
スト法、ラングミュア・プロジェット法等の溶液から膜
を形成させる方法であれば特に限定はない。
Particularly in the case of a mixed solvent, hydrocarbons, chlorinated hydrocarbons, fluorochlorinated hydrocarbons, alcohols, and other organic solvents can also be used in combination. The solution concentration is O, (l1wt% to 50wt%, preferably 0.1wt% to 20wL%. Film forming methods using a solvent include a roll coater method, a casting method, a dipping method, using the above solution, There is no particular limitation as long as it is a method of forming a film from a solution such as a spin code method, a water casting method, a Langmuir-Prodgett method, or the like.

本発明の特定含フッ素ポリマーを使用して選択透過膜を
製造するのには、前記の製膜法で支持膜上に膜を形成す
るのが透過速度を増大できるので好ましい。支持膜とし
ては、一方の表面の平均細孔径が5〜500人で他方の
表面の平均孔径が前記孔径よりも大きい非対称構造を有
する膜厚5〜500μの多孔質支持膜又は該多孔質支持
膜」二に本発明の特定含フッ素ポリマーよりも選択透過
させる分子の透過係数が大きい材質からなる膜厚0.0
5〜5μの膜を中間層とした支持膜が好ましい。
In order to manufacture a selectively permeable membrane using the specific fluorine-containing polymer of the present invention, it is preferable to form the membrane on a support membrane by the above-mentioned membrane forming method because the permeation rate can be increased. As the support membrane, a porous support membrane having a thickness of 5 to 500μ or the porous support membrane has an asymmetric structure in which one surface has an average pore diameter of 5 to 500 pores and the other surface has an average pore diameter larger than the above pore diameter. "Secondly, a film thickness of 0.0 made of a material having a larger permeability coefficient for selectively permeable molecules than the specific fluorine-containing polymer of the present invention.
A support membrane with a 5-5μ membrane as an intermediate layer is preferred.

多孔質支持膜を製造するのには、特に限定はないが、「
O3訃リサーチ・アンド・ディベロップメント・プログ
レス・レポートJ No、359T1968)に記載さ
れた方法に従って製造される。
There are no particular limitations to producing a porous support membrane, but there are
It is manufactured according to the method described in O3 Research and Development Progress Report J No. 359T1968).

その素材にはポリスルホン、ポリエーテルスルホン、エ
チルセルロース、酢酸セルロース、ポリ塩化ビニル、塩
素化ポリ塩化ビニル、ポリビニリデンフルオライド等の
ホモポリマーあるいはブレンドしたものが例示される。
Examples of the material include homopolymers or blends of polysulfone, polyethersulfone, ethyl cellulose, cellulose acetate, polyvinyl chloride, chlorinated polyvinyl chloride, polyvinylidene fluoride, and the like.

選択透過させる分子の透過係数が大きい材質としては、
特に限定されないが、シリコーン、フルオロシリコーン
、ホスファセン及びポリトリアルキルシリルプロピン等
が例示される。
Materials with high permeability coefficients for molecules that selectively permeate include:
Examples include, but are not limited to, silicone, fluorosilicone, phosphacene, polytrialkylsilylpropyne, and the like.

膜の形状は平膜、チューブラ−1中空糸等が例示される
Examples of membrane shapes include flat membranes and tubular-1 hollow fibers.

該ポリマーは前記製膜方法で支持股上に製膜できる。膜
厚としては0.01〜5μが好ましい。
The polymer can be formed into a film on the support crotch using the above film forming method. The film thickness is preferably 0.01 to 5 μm.

0、旧μよりも薄いと膜に大きい欠陥が生じるおそれが
あり、5μより厚いと透過速度が低下する。
If it is thinner than 0 or old μ, large defects may occur in the membrane, and if it is thicker than 5 μ, the permeation rate will decrease.

[作用] 本発明において、主鎖に環構造を有する含フッ素ポリマ
ーが選択透過膜として優れている理由はシーずしも明確
でないが、以下のことが考えられる。
[Function] In the present invention, the reason why the fluorine-containing polymer having a ring structure in the main chain is excellent as a selectively permeable membrane is not clear at all, but the following may be considered.

1、該ポリマーは主鎖に環構造を有していることから非
晶質となり、分子の透過を妨げる結晶部分がない。
1. Since the polymer has a ring structure in its main chain, it is amorphous and has no crystalline portions that prevent the passage of molecules.

2、該ポリマーは主鎖に環構造を有しており、かつフッ
素を含有していることにより主鎖が剛直になり、分子直
径の異なる透過物間の分離係数が大きい。
2. The polymer has a ring structure in its main chain and contains fluorine, which makes the main chain rigid and provides a large separation coefficient between permeate substances with different molecular diameters.

3、該ポリマーは主鎖にフッ素を含有していることによ
り、メタン及びエタン等の炭化水素に対する親和性が低
く、ヘリウム/メタン、水素/メタン、炭酸ガス/メタ
ンの分離係数が大きい。
3. Since the polymer contains fluorine in its main chain, it has a low affinity for hydrocarbons such as methane and ethane, and has a large separation coefficient for helium/methane, hydrogen/methane, and carbon dioxide/methane.

なお、かかる説明は本発明の理解の助けとするものであ
り、本発明を何ら限定するものでないことは勿論である
It should be noted that this explanation is provided to assist in understanding the present invention, and is not intended to limit the present invention in any way.

[実施例] 次に1本発明の実施例について史に具体的に説明するが
、かかる説明によって本発明が何ら限定されるものでな
いことは勿論である。
[Example] Next, an example of the present invention will be specifically explained, but it goes without saying that the present invention is not limited to this explanation in any way.

実施例1 パーフルオロアリルビニルニーデルの30g及び1合合
開始剤ジイソプロピルパーオキシジカーボネートの0.
3gをl Occの硝子コルベンに入れた。凍結脱気を
2回繰り返した後に25℃で16時間−1合した。重合
中の圧力は大気圧よりも低かった6重合の結果、ポリマ
ーを4.5g得た。
Example 1 30 g of perfluoroallyl vinyl needle and 0.0 g of the polymerization initiator diisopropyl peroxydicarbonate.
3 g was placed in a glass Kolben of 1 Occ. After repeating freezing and degassing twice, the mixture was incubated at 25° C. for 16 hours. As a result of 6 polymerizations in which the pressure during polymerization was lower than atmospheric pressure, 4.5 g of polymer was obtained.

この小1合体の赤外線吸収スペクトルを測定したところ
、千ツマ−にあった二重結合に起因する1790cm−
’付近の吸収はなかった。また、このポリマーをパーフ
ルオロベンセンに溶解しIFのNMRスペクトルを測定
したところ、以下の繰り返し構造を示すスペクトルが得
られた。
When the infrared absorption spectrum of this small 1 coalescence was measured, it was found that 1790cm-
'There was no nearby absorption. Further, when this polymer was dissolved in perfluorobenzene and an IF NMR spectrum was measured, a spectrum showing the following repeating structure was obtained.

0−CF。0-CF.

このポリマーの固有粘度[η]は、′フロリナート“F
C−75(商品名:3M社製のパーフルオロ(2−ブチ
ルテトラヒドロフラン)を主成分とした液体、以下、F
C−75と略記する)中30Cて0.50であり、重合
度の高いことが判った。
The intrinsic viscosity [η] of this polymer is
C-75 (Product name: Liquid whose main component is perfluoro(2-butyltetrahydrofuran) manufactured by 3M Company, hereinafter referred to as F
It was found that the polymerization degree was 0.50 at 30C (abbreviated as C-75), indicating a high degree of polymerization.

このポリマーの各種の気体の透過係数を測定した。以下
に測定結果と透過係数比を示す。
The permeability coefficients of various gases of this polymer were measured. The measurement results and transmission coefficient ratios are shown below.

測定結果より、このポリマーがヘリウム/メタン、ヘリ
ウム/窒素、炭酸ガス/メタン、水素/窒素及び酸素/
窒素分離膜用の素材として有用であることが判った。
The measurement results show that this polymer contains helium/methane, helium/nitrogen, carbon dioxide/methane, hydrogen/nitrogen, and oxygen/
It was found to be useful as a material for nitrogen separation membranes.

次にこのポリマー2gを350gのFC−75に溶解し
、コーティング用の溶液とした。この溶液を参考例Iの
ポリジメチルシロキサン中間層をコートシた支持膜上に
0.5m/minの速度で2回ディップフートした。得
られた複合膜の気体透過速度を測定した。以下に測定結
果と分離係数を示す。
Next, 2 g of this polymer was dissolved in 350 g of FC-75 to prepare a coating solution. This solution was dip-footed twice at a speed of 0.5 m/min onto the support membrane coated with the polydimethylsiloxane intermediate layer of Reference Example I. The gas permeation rate of the resulting composite membrane was measured. The measurement results and separation coefficients are shown below.

測定結果より、この膜は酸素富化膜及び炭酸ガス/メタ
ン分離膜として極めてn用であることが判った。
From the measurement results, it was found that this membrane is extremely useful as an oxygen enrichment membrane and a carbon dioxide/methane separation membrane.

上記の複合膜を真空下50℃で34日間保仔した後、再
度気体透過速度を測定した。その結果実質的な透過速度
及び分離係数の低下がなかった。よって耐久性、耐熱性
に優れていることが判った。
After the above composite membrane was incubated under vacuum at 50° C. for 34 days, the gas permeation rate was measured again. As a result, there was no substantial decrease in permeation rate or separation coefficient. Therefore, it was found to have excellent durability and heat resistance.

実施例2 ′A施例1のコーティング溶液を参考例1で用いたポリ
スルホンの多孔質支持膜上にI m/minの速度で3
回ディップコートした。得られた複合膜の気体透過速度
を測定した。以下に測定結果と分離係数を示す。
Example 2 'A The coating solution of Example 1 was applied onto the polysulfone porous support membrane used in Reference Example 1 at a speed of 3 m/min.
Dip coated twice. The gas permeation rate of the resulting composite membrane was measured. The measurement results and separation coefficients are shown below.

実施例3 ポリパーフルオロ(2,2−ジメチル−1,3−ジオキ
ソール)の0.7wt%溶液を参考例1のポリジメチル
シロキサンをコートした支持膜上に0.6m/+++i
nの速度でディップコートした。得られた膜の0CO3
は0.18m’/m”hr−aLmであり、a  (C
O,。
Example 3 A 0.7 wt% solution of polyperfluoro(2,2-dimethyl-1,3-dioxole) was placed on the polydimethylsiloxane-coated support film of Reference Example 1 at 0.6 m/+++i.
Dip coating was performed at a speed of n. 0CO3 of the obtained film
is 0.18 m'/m"hr-aLm, and a (C
O.

C11,)は32であった。C11,) was 32.

実施例4 FCI るポリ4−クロロパーフルオロへブタジェンの0、8w
L%のパーフルオロベン七ン溶液を参考例1のポリジメ
チルシロキサンをコートした支持股上に0.5m/mi
nの速度で3回ディップコートした。得られた膜の口C
O,は0.14m”7m”hr・aLmであり、a (
COi、 C114)は34であった。
Example 4 0,8w of FCI poly-4-chloroperfluorohebutadiene
L% perfluoroben7ine solution was applied to the support crotch coated with polydimethylsiloxane of Reference Example 1 at a rate of 0.5 m/mi.
Dip coated three times at a speed of n. Mouth C of the obtained membrane
O, is 0.14m"7m"hr・aLm, and a (
COi, C114) was 34.

参考例1 (支持膜の製造) ポリエステル不織布を裏打ちした表面細孔径約50人、
裏面孔径的1μのポリスルホン製(乾燥状態での酸素ガ
ス透過速度が9f1m”7m”・h「・a Lm)非対
称多孔質支持膜(全膜厚240μ)を用い。
Reference Example 1 (Manufacture of support membrane) Surface pore size of approximately 50 pores lined with polyester nonwoven fabric,
An asymmetric porous support membrane (total membrane thickness 240 μm) made of polysulfone (oxygen gas permeation rate in a dry state of 9 f1 m"7 m"・h "・a Lm) with a back pore diameter of 1 μm was used.

これにポリジメチルシロキサン(重合度!000)のト
リクロロトリフルオロエタン0.5%溶液な流延、乾燥
し、複合膜を得た。得られ 複合膜は厚み0.3μのポ
リシロキサン層を有し、酸素透過速度0口z1.4m″
/m”h「・aLm(S’rP)、酸ふ/窒素透過速度
比a=2.0を示した。
A 0.5% solution of polydimethylsiloxane (degree of polymerization: !000) in trichlorotrifluoroethane was cast onto this and dried to obtain a composite membrane. The resulting composite membrane has a polysiloxane layer with a thickness of 0.3μ, and an oxygen permeation rate of 0x1.4m''
/m"h"・aLm(S'rP), acid/nitrogen permeation rate ratio a=2.0.

[9,明の効果] 本発明は、環構造を有する含フッ素ポリマーを用いて高
透過性、高分離性、高耐久性、高耐熱性及び間装膜性の
選択透過膜が得られるという優れた効果を有している。
[9. Effect of light] The present invention has the advantage that a selectively permeable membrane having high permeability, high separation property, high durability, high heat resistance, and interlayer performance can be obtained using a fluorine-containing polymer having a ring structure. It has a certain effect.

この選択透過膜を用いて、特に酸素/窒素、炭酸ガス/
メタン、ヘリウム/メタン、ヘリウム/空気、ヘリウム
/窒素、水素/窒素、水素/メタン、水素/−酸化炭素
などの気体の分離なイ■利に行なえるという効果なイf
している。
Using this selectively permeable membrane, oxygen/nitrogen, carbon dioxide/
An effective method for conveniently separating gases such as methane, helium/methane, helium/air, helium/nitrogen, hydrogen/nitrogen, hydrogen/methane, and hydrogen/carbon oxide.
are doing.

さらに、本発明のポリマーはフッ素を含何しているため
に常圧あるいは高圧の炭酸ガス、メタン、エタン、エチ
レンなどの炭素を含むガスあるいは液体に対して耐性が
認められ、これまで困難であった分離対象にも適応しつ
るという効果を有している。また、本発明のポリマーは
溶解性が良く、製膜性が良いというだけでなく、溶解す
る溶媒が通常用いられる多孔質支持膜を溶解させない溶
媒であるので平膜及び中空糸などの複合膜を容易に製造
できるという効果も認められる。
Furthermore, since the polymer of the present invention contains fluorine, it is resistant to carbon-containing gases or liquids such as carbon dioxide gas, methane, ethane, and ethylene at normal or high pressures, which has been difficult until now. It has the effect of adapting to separated targets. In addition, the polymer of the present invention not only has good solubility and good film-forming properties, but also the solvent in which it is dissolved is a solvent that does not dissolve commonly used porous support membranes, so it can be used for composite membranes such as flat membranes and hollow fibers. The effect of easy production is also recognized.

Claims (1)

【特許請求の範囲】 1、主鎖に環構造を有する含フッ素ポリマーからなる選
択透過膜。 2、環構造が含フッ素環構造である特許請求の範囲第1
項記載の選択透過膜。 3、環構造がエーテル結合含有含フッ素環構造である特
許請求の範囲第1項又は第2項記載の選択透過膜。 4、含フッ素ポリマーがパーフルオロポリマーである特
許請求の範囲第1項〜第3項のいずれか一項に記載の選
択透過膜。 5、一方の表面の平均細孔径が5〜500Åで他方の表
面の平均孔径が前記孔径よりも大きい非対称構造を有す
る膜厚5〜500μの多孔質膜を支持層とし、主鎖に環
構造を有する含フッ素ポリマーの薄膜層が膜厚0.01
〜5μで前記支持層上に形成されている特許請求の範囲
第1項〜第4項のいずれか一項に記載の選択透過膜。 6、一方の表面の平均細孔径が5〜500Åで他方の表
面の平均孔径が前記孔径よりも大きい非対称構造を有す
る膜厚5〜500μの多孔質膜を支持層とし、その上に
選択透過させる分子の透過係数が後記含フッ素ポリマー
よりも大きい材質からなる膜厚0.05〜5μの中間層
を形成し、該中間層上に主鎖に環構造を有する含フッ素
ポリマーの薄膜層が膜厚0.01〜5μで形成されてい
る特許請求の範囲第1項〜第5項のいずれか一項に記載
の選択透過膜。
[Claims] 1. A selectively permeable membrane made of a fluorine-containing polymer having a ring structure in its main chain. 2. Claim 1 in which the ring structure is a fluorine-containing ring structure
The selectively permeable membrane described in Section 1. 3. The selectively permeable membrane according to claim 1 or 2, wherein the ring structure is a fluorine-containing ring structure containing an ether bond. 4. The selectively permeable membrane according to any one of claims 1 to 3, wherein the fluorine-containing polymer is a perfluoropolymer. 5. A porous membrane with a thickness of 5 to 500 μ, which has an asymmetric structure in which the average pore diameter on one surface is 5 to 500 Å and the average pore diameter on the other surface is larger than the pore diameter, is used as the support layer, and the main chain has a ring structure. The thin film layer of the fluorine-containing polymer has a thickness of 0.01
The permselective membrane according to any one of claims 1 to 4, which is formed on the support layer with a thickness of 5 μm. 6. A porous membrane with a thickness of 5 to 500 μm, which has an asymmetric structure with an average pore diameter of 5 to 500 Å on one surface and a larger average pore diameter on the other surface, is used as a support layer, and selective permeation is performed on the support layer. Form an intermediate layer with a thickness of 0.05 to 5μ made of a material with a molecular permeability coefficient larger than that of the fluoropolymer described below, and on the intermediate layer, a thin film layer of a fluoropolymer having a ring structure in the main chain with a thickness of 0.05 to 5 μm. The permselective membrane according to any one of claims 1 to 5, which is formed with a thickness of 0.01 to 5μ.
JP62095217A 1987-04-20 1987-04-20 Permselective membrane Pending JPS63264101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62095217A JPS63264101A (en) 1987-04-20 1987-04-20 Permselective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62095217A JPS63264101A (en) 1987-04-20 1987-04-20 Permselective membrane

Publications (1)

Publication Number Publication Date
JPS63264101A true JPS63264101A (en) 1988-11-01

Family

ID=14131579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62095217A Pending JPS63264101A (en) 1987-04-20 1987-04-20 Permselective membrane

Country Status (1)

Country Link
JP (1) JPS63264101A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015662A1 (en) * 1989-06-15 1990-12-27 Du Pont Canada Inc. Perfluorodioxole membranes
EP0461853A2 (en) * 1990-06-13 1991-12-18 Du Pont Canada Inc. Residential furnaces, air-intake system therefor, and method of operating them
US5288304A (en) * 1993-03-30 1994-02-22 The University Of Texas System Composite carbon fluid separation membranes
EP0649676A1 (en) * 1993-10-20 1995-04-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fluoropolymer posttreatment of gas separation membranes
JP2003036856A (en) * 2001-07-23 2003-02-07 Asahi Glass Co Ltd Gas diffusion electrode and polymer electrolyte fuel cell having its electrode
KR100447931B1 (en) * 2001-10-24 2004-09-08 한국화학연구원 The super water-repellent organic/inorganic composite membrane
WO2007093443A2 (en) * 2006-02-17 2007-08-23 Boehringer Ingelheim Microparts Gmbh Membrane structure for gas separation
US7811359B2 (en) 2007-01-18 2010-10-12 General Electric Company Composite membrane for separation of carbon dioxide
JP2011514833A (en) * 2007-05-23 2011-05-12 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード System and method for recovery and reuse of xenon from ventilators
CN110935328A (en) * 2019-11-12 2020-03-31 南京工业大学 Preparation method of organic fluorine-containing polymer doped perovskite hollow fiber oxygen permeable membrane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015662A1 (en) * 1989-06-15 1990-12-27 Du Pont Canada Inc. Perfluorodioxole membranes
EP0461853A2 (en) * 1990-06-13 1991-12-18 Du Pont Canada Inc. Residential furnaces, air-intake system therefor, and method of operating them
US5288304A (en) * 1993-03-30 1994-02-22 The University Of Texas System Composite carbon fluid separation membranes
EP0649676A1 (en) * 1993-10-20 1995-04-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fluoropolymer posttreatment of gas separation membranes
JP2003036856A (en) * 2001-07-23 2003-02-07 Asahi Glass Co Ltd Gas diffusion electrode and polymer electrolyte fuel cell having its electrode
KR100447931B1 (en) * 2001-10-24 2004-09-08 한국화학연구원 The super water-repellent organic/inorganic composite membrane
WO2007093443A2 (en) * 2006-02-17 2007-08-23 Boehringer Ingelheim Microparts Gmbh Membrane structure for gas separation
WO2007093443A3 (en) * 2006-02-17 2007-12-06 Boehringer Ingelheim Micropart Membrane structure for gas separation
US7811359B2 (en) 2007-01-18 2010-10-12 General Electric Company Composite membrane for separation of carbon dioxide
JP2011514833A (en) * 2007-05-23 2011-05-12 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード System and method for recovery and reuse of xenon from ventilators
CN110935328A (en) * 2019-11-12 2020-03-31 南京工业大学 Preparation method of organic fluorine-containing polymer doped perovskite hollow fiber oxygen permeable membrane
CN110935328B (en) * 2019-11-12 2022-02-11 南京工业大学 Preparation method of organic fluorine-containing polymer doped perovskite hollow fiber oxygen permeable membrane

Similar Documents

Publication Publication Date Title
US5288304A (en) Composite carbon fluid separation membranes
JP6165999B2 (en) Gas separation membranes based on perfluoropolymers
CA2055446C (en) Perfluorodioxole membranes
US10596527B2 (en) Amorphous fluorinated copolymer gas separation membranes
JP6774966B2 (en) Thin film composite film for separation of alkenes from alkanes
US20110266220A1 (en) Separations with highly selective fluoropolymer membranes
EP0649676A1 (en) Fluoropolymer posttreatment of gas separation membranes
US9636632B2 (en) Gas separation membranes based on fluorinated and perfluorinated polymers
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPS63264101A (en) Permselective membrane
US4710204A (en) Polyphosphazene gas separation membranes
CA1294093C (en) Polyphosphazene fluid separation membranes
JP4996784B2 (en) (Per) fluorinated amorphous polymer film
AU2019264627B2 (en) Gas separation membranes based on fluorinated and perfluorinated polymers
JPH07251044A (en) Method for treating gas separation membrane
JP2023530810A (en) Gas separation articles comprising amorphous crosslinked fluorocopolymers and methods of making and using the same
JPS62286503A (en) Porous hollow yarn composite membrane and its production
JP3299298B2 (en) Gas selective permeable composite membrane
JPH03193123A (en) Manufacture of gas selective separation membrane
JPH0423570B2 (en)
JPH03229623A (en) Permselective membrane
JPS59203606A (en) Permselective membrane
JPH03229624A (en) Permselective membrane
JPH02174922A (en) Gas separation membrane
JPS62204823A (en) Gas separation element with high selective permeability