JP4271390B2 - Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell - Google Patents

Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4271390B2
JP4271390B2 JP2001242592A JP2001242592A JP4271390B2 JP 4271390 B2 JP4271390 B2 JP 4271390B2 JP 2001242592 A JP2001242592 A JP 2001242592A JP 2001242592 A JP2001242592 A JP 2001242592A JP 4271390 B2 JP4271390 B2 JP 4271390B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
electrode
electrode structure
electrode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001242592A
Other languages
Japanese (ja)
Other versions
JP2003059504A (en
Inventor
昌昭 七海
洋一 浅野
長之 金岡
浩 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001242592A priority Critical patent/JP4271390B2/en
Priority to PCT/JP2002/005728 priority patent/WO2002101860A1/en
Priority to DE10296922T priority patent/DE10296922T5/en
Priority to CA2450346A priority patent/CA2450346C/en
Priority to CA2686279A priority patent/CA2686279C/en
Priority to US10/480,375 priority patent/US7494733B2/en
Publication of JP2003059504A publication Critical patent/JP2003059504A/en
Application granted granted Critical
Publication of JP4271390B2 publication Critical patent/JP4271390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池に用いられる電極構造体の製造方法及び該製造方法により製造される電極構造体を用いる固体高分子型燃料電池に関するものである。
【0002】
【従来の技術】
石油資源が枯渇化する一方、化石燃料の消費による地球温暖化等の環境問題が深刻化しており、二酸化炭素の発生を伴わないクリーンな電動機用電力源として燃料電池が注目されて広範に開発されると共に、一部では実用化され始めている。前記燃料電池を自動車等に搭載する場合には、高電圧と大電流とが得やすいことから、高分子電解質膜を用いる固体高分子型燃料電池が好適に用いられる。
【0003】
前記固体高分子型燃料電池に用いる電極構造体として、白金等の触媒がカーボンブラック等の触媒担体に担持されイオン導伝性高分子バインダーにより一体化されることにより形成されている一対の電極触媒層を備え、両電極触媒層の間にイオン導伝可能な高分子電解質膜を挟持した構造のものが知られている。前記電極構造体は、各電極触媒層の上に拡散層を積層すると共に、さらにガス通路を兼ねたセパレータを積層することにより、固体高分子型燃料電池を構成することができる。
【0004】
前記固体高分子型燃料電池では、一方の電極触媒層を燃料極として前記拡散層を介して水素、メタノール等の還元性ガスを導入すると共に、他方の電極触媒層を酸素極として前記拡散層を介して空気、酸素等の酸化性ガスを導入する。このようにすると、燃料極側では、前記電極触媒層に含まれる触媒の作用により、前記還元性ガスからプロトン及び電子が生成し、前記プロトンは前記高分子電解質膜を介して、前記酸素極側の電極触媒層に移動する。そして、前記プロトンは、前記酸素極側の電極触媒層で、前記電極触媒層に含まれる触媒の作用により、該酸素極に導入される前記酸化性ガス及び電子と反応して水を生成する。従って、前記燃料極と酸素極とを導線により接続することにより、前記燃料極で生成した電子を前記酸素極に送る回路が形成され、電流を取り出すことができる。
【0005】
従来、前記電極構造体では、前記高分子電解質膜としてパーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))が広く利用されている。前記パーフルオロアルキレンスルホン酸高分子化合物は、スルホン化されていることにより優れたプロトン導伝性を備えると共に、フッ素樹脂としての耐薬品性とを併せ備えているが非常に高価であるという問題がある。
【0006】
そこで、前記パーフルオロアルキレンスルホン酸高分子化合物に代わる廉価な高分子電解質膜材料として、例えば、分子構造にフッ素を含まないか、フッ素含有量を低減した炭化水素系高分子化合物のスルホン化物を用いて固体高分子型燃料電池用電極構造体を構成することが検討されている。前記炭化水素系高分子化合物としては、ポリエーテルエーテルケトン、ポリベンズイミダゾール等のような複数のベンゼン環が2価の有機基を介してまたは直接結合した主鎖を備える炭化水素系重合体を挙げることができる。また、前記炭化水素系高分子化合物として、米国特許第5403675号明細書には、剛直ポリフェニレン化合物が記載されている。
【0007】
しかしながら、前記高分子電解質膜、特に炭化水素系高分子化合物からなる高分子電解質膜は、前記一対の電極触媒層に挟持させて一体化しようとすると、該高分子電解質膜と、電極触媒層との間で十分な密着性が得られにくいとの不都合がある。また、前記高分子電解質膜と電極触媒層との間の密着性が低い電極構造体では、該高分子電解質膜と電極触媒層との間におけるプロトンの授受が阻害されるために十分な発電性能が得られないとの不都合がある。
【0008】
【発明が解決しようとする課題】
本発明は、かかる不都合を解消して、高分子電解質膜と電極触媒層との間で優れた密着性を得ることができる固体高分子型燃料電池用電極構造体の製造方法を提供することを目的とする。
【0009】
また、本発明の目的は、前記高分子電解質膜と電極触媒層との密着性に優れると共に、優れた発電性能を備える固体高分子型燃料電池を提供することにもある。
【0010】
【課題を解決するための手段】
かかる目的を達成するために、本発明の固体高分子型燃料電池用電極構造体の製造方法は、一対の電極触媒層により高分子電解質膜を挟持し、両電極触媒層と高分子電解質膜とを一体化して電極構造体を形成する工程と、該電極構造体に、相対湿度60%以上の加湿環境下で、0.1A/cm2以上の電流を5時間以上供給する工程とを備えることを特徴とする。
【0011】
本発明の製造方法によれば、一対の電極触媒層により高分子電解質膜を挟持して一体化して電極構造体を形成した後、該電極構造体に相対湿度60%以上の加湿環境下で、0.1A/cm2以上の電流を5時間以上供給する。このようにすると、前記電極構造体の燃料極側では生成したプロトンが前記高分子電解質膜に侵入する。また、前記プロトンの侵入に伴って、酸素極側から前記高分子電解質膜に対して水の移動が起きる。この結果、前記各電極触媒層と高分子電解質膜との間の界面において、各電極触媒層が該高分子電解質膜側に侵入した構造となり、各電極触媒層と高分子電解質膜との密着性を向上させることができる。
【0012】
前記各電極触媒層が前記高分子電解質膜側に侵入する現象は、各電極触媒層と高分子電解質膜との界面の長さをマップメータ等により測定することにより確認することができる。本発明の製造方法により得られる電極構造体では、前記各電極触媒層と高分子電解質膜との密着性を向上させるために、各電極触媒層と高分子電解質膜との界面における任意の2点間の直線距離に対する実際の界面の長さが15%以上長い(実際の界面の長さ/直線距離≧1.15)ことが好ましい。
【0013】
前記界面の長さの測定に当たっては、前記任意の2点間の直線距離を10μm以上に設定すると共に、任意の7個所以上について測定した結果を平均することが望ましい。
【0014】
本発明の製造方法では、前記燃料極で生成するプロトンの移動を容易にするために、相対湿度60%以上の加湿環境下で前記電極構造体に電流を供給することが必要である。相対湿度が60%未満の環境下では、前記電極構造体に電流を供給しても、前記電極触媒層が高分子電解質膜側に侵入する現象が起きにくい。
【0015】
また、本発明の製造方法では、前記加湿環境下、前記電極構造体に0.1A/cm2以上、好ましくは0.1〜2A/cm2の電流を、5時間以上好ましくは8時間以上供給する。
【0016】
前記電流は、0.1A/cm2未満では前記電極触媒層と高分子電解質膜との密着性を向上させる効果が得られず、2A/cm2を超えると電極構造体の劣化が起きる。また、前記電流を供給する時間が5時間未満では、前記電極触媒層と高分子電解質膜との密着性を向上させる効果が得られない。
【0017】
本発明の製造方法は、前記高分子電解質膜がパーフルオロアルキレンスルホン酸高分子化合物である場合にも用いることができるが、前記高分子電解質膜が一般式(1)で表される第1の繰返し単位と、一般式(2)で表される第2の繰返し単位とからなる主鎖を備える炭化水素系共重合体のスルホン化物である場合に好適に用いることができる。

Figure 0004271390
(前記電子吸引性基とは、−CO−、−CONH−、−(CF p −(pは1〜10の整数)、−C(CF −、−COO−、−SO−、−SO −のハメット置換基常数がフェニル基のメタ位では0.06以上、フェニル基のパラ位では0.01以上の値となる2価の基をいう。また、前記電子供与性基とは、−O−、−S−、−CH=CH−、−C≡C−の2価の基をいう。)
【0018】
前記炭化水素系重合体としては、ポリエーテルエーテルケトン、ポリベンズイミダゾール、米国特許第5403675号明細書記載の剛直ポリフェニレン化合物等を挙げることができるが、イオン導伝率と機械的強度とに優れた高分子電解質膜を得ることができることから、一般式(1)で表される第1の繰返し単位と、一般式(2)で表される第2の繰返し単位とからなる主鎖を備える共重合体であることが好ましい。
【0020】
ここで、前記スルホン化は、電子吸引性基が結合していないベンゼン環に対してのみ起きる。従って、一般式(1)で表される第1の繰返し単位と、一般式(2)で表される第2の繰返し単位とからなる共重合体をスルホン化すると、第1の繰返し単位の主鎖となるベンゼン環と、第2の繰返し単位の各ベンゼン環にはスルホン酸基が導入されず、第1の繰返し単位の側鎖のベンゼン環にのみスルホン酸基が導入されることになる。
【0021】
また、一般式(2)で表される第2の繰返し単位は、主鎖が屈曲性構造を備えるので、前記共重合体の靱性等の機械的強度を改善することができる。
【0022】
そこで、前記共重合体では、第1の繰返し単位と第2の繰返し単位とのモル比を調整することにより、導入されるスルホン酸基の量を制御して、イオン導伝率と機械的強度とに優れた高分子電解質膜を得ることができる。
【0023】
前記共重合体において、第1の繰返し単位と第2の繰返し単位とのモル比は、第1の繰返し単位10〜80モル%、第2の繰返し単位90〜20モル%の範囲で調整することが好ましい。第1の繰返し単位が10モル%未満で、第2の繰返し単位が90モル%を超えるときには、スルホン酸基の導入量が不十分になり、前記高分子電解質膜のイオン導伝性が低くなる。また、第1の繰返し単位が80モル%を超え、第2の繰返し単位が20モル%未満であるときには、前記高分子電解質膜において十分な機械的強度を得ることができない。
【0024】
前記共重合体は、ポリマー分子量がポリスチレン換算重量平均分子量で、1万〜100万の範囲にあることが好ましい。前記ポリマー分子量が1万未満では高分子電解質膜として好適な機械的強度が得られないことがあり、100万を超えると成膜のために溶媒に溶解する際に溶解性が低くなったり、溶液の粘度が高くなり、取り扱いが難しくなる。
【0025】
また、前記共重合体は、スルホン酸基を0.5〜3.0ミリグラム当量/gの範囲で含むようにスルホン化することが好ましい。前記スルホン化物は、含有するスルホン酸基の量が0.5ミリグラム当量/g未満であるときには十分なイオン導伝率を得ることができない。また、含有するスルホン酸基の量が3.0ミリグラム当量/gを超えると十分な靱性が得られず、電極構造体を構成する際の取り扱いが難しくなる。
【0026】
本発明の製造方法により得られた電極構造体は、一方の面に酸化性ガスを供給すると共に、他方の面に還元性ガスを供給することにより発電する固体高分子型燃料電池を構成することができる。
【0027】
【発明の実施の形態】
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の製造方法により得られる電極構造体の構成を示す説明的断面図である。
【0028】
本実施形態の製造方法で得られる電極構造体は、図1示のように、一対の電極触媒層1,1と、両電極触媒層1,1に挟持された高分子電解質膜2と、各電極触媒層1,1の上に積層された拡散層3,3とからなる。
【0029】
本実施形態の製造方法では、まず、高分子電解質膜2を製造する。高分子電解質膜2を製造する際には、例えば、次式(3)で示される2,5−ジクロロ−4’−(4−フェノキシフェノキシ)ベンゾフェノンと、次式(4)で示される2−ビス〔4−{4−(4−クロロベンゾイル)フェノキシ}フェニル〕スルホンとをp/q=50:50のモル比で重合させて次式(5)で示される炭化水素系共重合体を形成する。
【0030】
【化2】
Figure 0004271390
次に、前記共重合体に濃硫酸を加えてスルホン酸基を0.5〜3.0ミリグラム当量/gの範囲で含むようにスルホン化した後、N−メチルピロリドン等の溶媒に溶解して高分子電解質溶液とし、該高分子電解質溶液からキャスト法により成膜し、オーブンにて乾燥することにより、例えば、乾燥膜厚50μmの高分子電解質膜2とする。
【0031】
本実施形態の製造方法では、次に電極触媒層1を形成する触媒粒子と、該触媒粒子を含む触媒ペーストを調製する。前記触媒粒子は、カーボンブラック(ファーネスブラック)に白金粒子を所定の重量比(例えば、カーボンブラック:白金=1:1)で担持させることにより作成する。また、前記触媒ペーストは、パーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))等のイオン導伝性高分子バインダー溶液に、前記触媒粒子を所定の重量比(例えば、触媒粒子:バインダー溶液=1:1)で均一に分散させることにより調製する。
【0032】
本実施形態の製造方法では、次に拡散層3を製造する。前記拡散層3は、カーボンペーパーと下地層とからなり、カーボンブラックとポリテトラフルオロエチレン(PTFE)粒子とを所定の重量比(例えば、カーボンブラック:PTFE粒子=4:6)で混合し、得られた混合物をエチレングリコール等の溶媒に均一に分散させたスラリーを該カーボンペーパーの片面に塗布、乾燥させて該下地層とすることにより形成する。
【0033】
そして、次に前記触媒ペーストを拡散層3上に触媒含有量が所定の量(例えば、0.5mg/cm2)となるようにスクリーン印刷し、乾燥させることにより電極触媒層1を形成する。拡散層3上にスクリーン印刷された前記触媒ペーストは、例えば60℃で10分間の乾燥を行い、次いで120℃で60分間の減圧乾燥を行うことにより乾燥する。
【0034】
次に、高分子電解質膜2を一対の電極触媒層1,1で挟持し、ホットプレスを行うことにより一体化し、図1示の電極構造体を得る。前記ホットプレスは、例えば150℃、2.5MPaで1分間行う。
【0035】
本実施形態の製造方法では、次に、相対湿度60%以上の加湿環境下で、前記電極構造体に0.1〜2A/cm2の電流を5時間以上、好ましくは8時間以上供給する。この結果、電極触媒層1,1が高分子電解質膜2に侵入して界面の長さが延長され、電極触媒層1,1と高分子電解質膜2との密着性に優れた電極構造体を得ることができる。
【0036】
本実施形態の製造方法で得られた電極構造体は、前記電流を供給する処理により、前述のように電極触媒層1,1が高分子電解質膜2に侵入して界面の長さが延長された構成となっている。従って、電極触媒層1では、燃料極側では還元性ガスからプロトン及び電子を生成し、酸素極側では前記プロトンと酸化性ガス及び電子との反応により水を生成するという電極触媒層本来の機能の他に、高分子電解質膜2中をクロスリークしてきた酸素ガスと水素ガスとの反応により水を生成するとの機能を得ることができる。この結果、前記電極構造体では、前記プロトンと酸化性ガス及び電子との反応により生成した水と、前記クロスリークにより生成した水とが効果的に高分子電解質膜2中に拡散することになり、低加湿運転が可能になるという効果を奏することができる。
【0037】
尚、図1示の電極構造体は、拡散層3,3の上にさらにガス通路を兼ねるセパレータを積層することにより、固体高分子型燃料電池を構成することができる。
【0038】
次に、本実施形態の実施例と比較例とを示す。
【0039】
【実施例1】
本実施例では、まず、前記式(3)で示される2,5−ジクロロ−4’−(4−フェノキシフェノキシ)ベンゾフェノンと、前記式(4)で示される2,2−ビス〔4−{4−(4−クロロベンゾイル)フェノキシ}フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパンとを、50:50のモル比で重合させて前記式(5)で示される共重合体を得た。
【0040】
次に、前記共重合体に濃硫酸を加えてスルホン化し、イオン交換容量2.1meq/gのスルホン化物を得た。次に、前記共重合体のスルホン化物を、N−メチルピロリドンに溶解して高分子電解質溶液とし、該高分子電解質溶液からキャスト法により成膜し、オーブンにて乾燥することにより、乾燥膜厚50μmの膜を作成し、高分子電解質膜2とした。
【0041】
次に、カーボンブラック(ファーネスブラック)に白金粒子を、カーボンブラック:白金=1:1の重量比で担持させ、触媒粒子を作成した。次に、パーフルオロアルキレンスルホン酸高分子化合物(デュポン社製ナフィオン(商品名))の溶液をイオン導伝性高分子バインダーとして、該バインダーに前記触媒粒子を、バインダー:カーボンブラック=1:1の重量比で均一に分散させ、触媒ペーストを調製した。
【0042】
次に、カーボンブラックとポリテトラフルオロエチレン(PTFE)粒子とをカーボンブラック:PTFE粒子=4:6の重量比で混合し、得られた混合物をエチレングリコール等の溶媒に均一に分散させたスラリーをカーボンペーパーの片面に塗布、乾燥させて下地層とし、該下地層とカーボンペーパーとからなる拡散層3を2つ作成した。
【0043】
次に、各拡散層3上に、前記触媒ペーストを、白金含有量が0.5mg/cm2となるようにスクリーン印刷し、乾燥させることにより電極触媒層1とし、電極触媒層1と拡散層3とからなる一対の電極を作成した。次に、高分子電解質膜2を前記電極の電極触媒層1側で挟持し、ホットプレスを行って一体化し、図1示の電極構造体を得た。
【0044】
そして、前記電極構造体に、相対湿度100%の加湿環境下で1A/cm2の電流を18時間供給し、電極構造体を完成させた。
【0045】
次に、本実施例で得られた電極構造体を単セルとし、酸素極側に空気を供給すると共に、燃料極側に純水素を供給して発電を行い、発電電位として電流密度1A/cm2でのセル電位を測定した。発電条件は、温度80℃、酸素極側の相対湿度80%、燃料極側の相対湿度50%とした。結果を表1に示す。
【0046】
【実施例2】
本実施例では、高分子電解質膜2を電極の電極触媒層1側で挟持し、ホットプレスを行うことにより一体化された電極構造体に、相対湿度80%の加湿環境下で0.8A/cm2の電流を24時間供給した以外は、実施例1と全く同一にして、電極構造体を完成させた。
【0047】
次に、本実施例で得られた電極構造体を単セルとし、実施例1と全く同一にして発電電位を測定した。結果を表1に示す。
【0048】
【実施例3】
本実施例では、高分子電解質膜2を電極の電極触媒層1側で挟持し、ホットプレスを行うことにより一体化された電極構造体に、相対湿度85%の加湿環境下で0.3A/cm2の電流を16時間供給した以外は、実施例1と全く同一にして、電極構造体を完成させた。
【0049】
次に、本実施例で得られた電極構造体を単セルとし、実施例1と全く同一にして発電電位を測定した。結果を表1に示す。
【0050】
【実施例4】
本実施例では、高分子電解質膜2を電極の電極触媒層1側で挟持し、ホットプレスを行うことにより一体化された電極構造体に、相対湿度60%の加湿環境下で0.9A/cm2の電流を24時間供給した以外は、実施例1と全く同一にして、電極構造体を完成させた。
【0051】
次に、本実施例で得られた電極構造体を単セルとし、実施例1と全く同一にして発電電位を測定した。結果を表1に示す。
【0052】
【実施例5】
本実施例では、高分子電解質膜2を電極の電極触媒層1側で挟持し、ホットプレスを行うことにより一体化された電極構造体に、相対湿度100%の加湿環境下で0.15A/cm2の電流を24時間供給した以外は、実施例1と全く同一にして、電極構造体を完成させた。
【0053】
次に、本実施例で得られた電極構造体を単セルとし、実施例1と全く同一にして発電電位を測定した。結果を表1に示す。
【0054】
【比較例1】
本比較例では、高分子電解質膜2を電極の電極触媒層1側で挟持し、ホットプレスを行うことにより一体化された電極構造体に、加湿環境下に電流を供給する処理を全く行わなかった以外は、実施例1と全く同一にして、電極構造体を完成させた。
【0055】
次に、本比較例で得られた電極構造体を単セルとし、実施例1と全く同一にして発電電位を測定した。結果を表1に示す。
【0056】
【比較例2】
本比較例では、高分子電解質膜2を電極の電極触媒層1側で挟持し、ホットプレスを行うことにより一体化された電極構造体に、相対湿度50%の加湿環境下で0.5A/cm2の電流を12時間供給した以外は、実施例1と全く同一にして、電極構造体を完成させた。
【0057】
次に、本比較例で得られた電極構造体を単セルとし、実施例1と全く同一にして発電電位を測定した。結果を表1に示す。
【0058】
【比較例3】
本比較例では、高分子電解質膜2を電極の電極触媒層1側で挟持し、ホットプレスを行うことにより一体化された電極構造体に全く電流を供給せず、該電極構造体を相対湿度90%の加湿環境下に12時間保持した以外は、実施例1と全く同一にして、電極構造体を完成させた。
【0059】
次に、本比較例で得られた電極構造体を単セルとし、実施例1と全く同一にして発電電位を測定した。結果を表1に示す。
【0060】
【表1】
Figure 0004271390
表1から、電極触媒層1,1と高分子電解質膜2とが一体化された後、相対湿度60%以上の加湿環境下で0.15〜1A/cm2の電流を16〜24時間供給する処理を行った実施例1〜5の電極構造体では、前記処理を全く行わなかった比較例1の電極構造体に比較して、優れた発電性能を得ることができ、電極触媒層1,1と高分子電解質膜2との密着性に優れていることが明らかである。
【0061】
また、前記実施例1〜5の電極構造体は、0.5A/cm2の電流を12時間供給するものの加湿条件が相対湿度60%未満である比較例2、相対湿度90%の加湿環境下に12時間保持するものの全く電流を供給しない比較例3に比較しても、優れた発電性能を得ることができ、電極触媒層1,1と高分子電解質膜2との密着性に優れていることが明らかである。
【図面の簡単な説明】
【図1】本発明の製造方法により得られる電極構造体の構成を示す説明的断面図。
【符号の説明】
1…電極触媒層、 2…高分子電解質膜。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an electrode structure used for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell using the electrode structure produced by the production method.
[0002]
[Prior art]
While petroleum resources are depleted, environmental problems such as global warming due to the consumption of fossil fuels have become serious, and fuel cells have been widely developed as a clean power source for motors without carbon dioxide generation. At the same time, some have begun to be put into practical use. When the fuel cell is mounted on an automobile or the like, a solid polymer fuel cell using a polymer electrolyte membrane is preferably used because a high voltage and a large current can be easily obtained.
[0003]
As an electrode structure used for the polymer electrolyte fuel cell, a pair of electrode catalysts formed by a catalyst such as platinum being supported on a catalyst carrier such as carbon black and integrated with an ion conductive polymer binder There is known a structure in which a polymer electrolyte membrane capable of conducting ions is sandwiched between both electrode catalyst layers. The electrode structure can constitute a solid polymer fuel cell by laminating a diffusion layer on each electrode catalyst layer and further laminating a separator also serving as a gas passage.
[0004]
In the polymer electrolyte fuel cell, a reducing gas such as hydrogen or methanol is introduced through the diffusion layer using one electrode catalyst layer as a fuel electrode, and the diffusion layer is formed using the other electrode catalyst layer as an oxygen electrode. An oxidizing gas such as air or oxygen is introduced. In this way, on the fuel electrode side, protons and electrons are generated from the reducing gas by the action of the catalyst contained in the electrode catalyst layer, and the protons pass through the polymer electrolyte membrane to the oxygen electrode side. To the electrode catalyst layer. The protons react with the oxidizing gas and electrons introduced into the oxygen electrode by the action of the catalyst contained in the electrode catalyst layer in the electrode catalyst layer on the oxygen electrode side to generate water. Therefore, by connecting the fuel electrode and the oxygen electrode with a conducting wire, a circuit for sending electrons generated at the fuel electrode to the oxygen electrode is formed, and a current can be taken out.
[0005]
Conventionally, perfluoroalkylenesulfonic acid polymer compounds (for example, Nafion (trade name) manufactured by DuPont) are widely used as the polymer electrolyte membrane in the electrode structure. The perfluoroalkylenesulfonic acid polymer compound has excellent proton conductivity due to being sulfonated, and also has chemical resistance as a fluororesin, but is very expensive. is there.
[0006]
Therefore, as an inexpensive polymer electrolyte membrane material that replaces the perfluoroalkylene sulfonic acid polymer compound, for example, a sulfonated hydrocarbon polymer compound that does not contain fluorine or has a reduced fluorine content is used. Therefore, it has been studied to construct an electrode structure for a polymer electrolyte fuel cell. Examples of the hydrocarbon polymer compounds include hydrocarbon polymers having a main chain in which a plurality of benzene rings such as polyether ether ketone and polybenzimidazole are bonded via a divalent organic group or directly. be able to. Further, as the hydrocarbon polymer compound, U.S. Pat. No. 5,403,675 describes a rigid polyphenylene compound.
[0007]
However, when the polymer electrolyte membrane, particularly a polymer electrolyte membrane made of a hydrocarbon polymer compound, is sandwiched between the pair of electrode catalyst layers and integrated, the polymer electrolyte membrane, the electrode catalyst layer, There is an inconvenience that sufficient adhesion is difficult to obtain. In addition, in an electrode structure with low adhesion between the polymer electrolyte membrane and the electrode catalyst layer, the generation of protons between the polymer electrolyte membrane and the electrode catalyst layer is hindered, so that sufficient power generation performance is achieved. There is an inconvenience that cannot be obtained.
[0008]
[Problems to be solved by the invention]
The present invention provides a method for producing an electrode structure for a polymer electrolyte fuel cell that can eliminate such inconvenience and obtain excellent adhesion between the polymer electrolyte membrane and the electrode catalyst layer. Objective.
[0009]
Another object of the present invention is to provide a solid polymer fuel cell having excellent adhesion between the polymer electrolyte membrane and the electrode catalyst layer and having excellent power generation performance.
[0010]
[Means for Solving the Problems]
In order to achieve this object, a method for producing an electrode structure for a polymer electrolyte fuel cell according to the present invention comprises sandwiching a polymer electrolyte membrane between a pair of electrode catalyst layers, Forming an electrode structure by integrating the above and a step of supplying a current of 0.1 A / cm 2 or more to the electrode structure for 5 hours or more in a humidified environment having a relative humidity of 60% or more. It is characterized by.
[0011]
According to the production method of the present invention, a polymer electrolyte membrane is sandwiched and integrated by a pair of electrode catalyst layers to form an electrode structure, and then the electrode structure is subjected to a humidified environment with a relative humidity of 60% or more. A current of 0.1 A / cm 2 or more is supplied for 5 hours or more. If it does in this way, the produced | generated proton will penetrate | invade into the said polymer electrolyte membrane in the fuel electrode side of the said electrode structure. Further, with the penetration of the protons, water moves from the oxygen electrode side to the polymer electrolyte membrane. As a result, at the interface between each electrode catalyst layer and the polymer electrolyte membrane, each electrode catalyst layer has a structure invading the polymer electrolyte membrane side, and the adhesion between each electrode catalyst layer and the polymer electrolyte membrane is Can be improved.
[0012]
The phenomenon in which each electrode catalyst layer enters the polymer electrolyte membrane can be confirmed by measuring the length of the interface between each electrode catalyst layer and the polymer electrolyte membrane with a map meter or the like. In the electrode structure obtained by the production method of the present invention, in order to improve the adhesion between each electrode catalyst layer and the polymer electrolyte membrane, two arbitrary points at the interface between each electrode catalyst layer and the polymer electrolyte membrane are used. It is preferable that the actual interface length is 15% or more longer than the linear distance between them (actual interface length / linear distance ≧ 1.15).
[0013]
In measuring the length of the interface, it is desirable to set the linear distance between the two arbitrary points to 10 μm or more and to average the measurement results of seven or more arbitrary points.
[0014]
In the manufacturing method of the present invention, it is necessary to supply current to the electrode structure in a humidified environment having a relative humidity of 60% or more in order to facilitate the movement of protons generated at the fuel electrode. In an environment where the relative humidity is less than 60%, even when a current is supplied to the electrode structure, the phenomenon that the electrode catalyst layer enters the polymer electrolyte membrane side hardly occurs.
[0015]
In the manufacturing method of the present invention, under the humidified environment, the electrode structure 0.1 A / cm 2 or more, preferably a current of 0.1~2A / cm 2, more than 5 hours preferably at least 8 hours supply To do.
[0016]
If the current is less than 0.1 A / cm 2 , the effect of improving the adhesion between the electrode catalyst layer and the polymer electrolyte membrane cannot be obtained, and if it exceeds 2 A / cm 2 , the electrode structure deteriorates. Moreover, if the time for supplying the current is less than 5 hours, the effect of improving the adhesion between the electrode catalyst layer and the polymer electrolyte membrane cannot be obtained.
[0017]
The production method of the present invention can also be used when the polymer electrolyte membrane is a perfluoroalkylenesulfonic acid polymer compound, but the polymer electrolyte membrane is a first compound represented by the general formula (1). It can be suitably used in the case of a sulfonated hydrocarbon copolymer having a main chain composed of a repeating unit and a second repeating unit represented by the general formula (2) .
Figure 0004271390
(Wherein the electron withdrawing group, -CO -, - CONH -, - (CF 2) p - (p is an integer of from 1 to 10), - C (CF 3) 2 -, - COO -, - SO- , —SO 2 — refers to a divalent group having a Hammett substituent constant of 0.06 or more at the meta position of the phenyl group and 0.01 or more at the para position of the phenyl group. Is a divalent group of —O—, —S—, —CH═CH—, —C≡C—.)
[0018]
Examples of the hydrocarbon polymer include polyether ether ketone, polybenzimidazole, rigid polyphenylene compound described in US Pat. No. 5,403,675, etc., which are excellent in ion conductivity and mechanical strength. Since a polymer electrolyte membrane can be obtained, a co-polymer comprising a main chain composed of a first repeating unit represented by the general formula (1) and a second repeating unit represented by the general formula (2) It is preferably a coalescence.
[0020]
Here, the sulfonation occurs only on a benzene ring to which no electron-withdrawing group is bonded. Therefore, when a copolymer comprising the first repeating unit represented by the general formula (1) and the second repeating unit represented by the general formula (2) is sulfonated, The sulfonic acid group is not introduced into the chain benzene ring and each benzene ring of the second repeating unit, and the sulfonic acid group is introduced only into the benzene ring of the side chain of the first repeating unit.
[0021]
In the second repeating unit represented by the general formula (2), since the main chain has a flexible structure, mechanical strength such as toughness of the copolymer can be improved.
[0022]
Therefore, in the copolymer, by adjusting the molar ratio of the first repeating unit and the second repeating unit, the amount of sulfonic acid group introduced is controlled, and the ion conductivity and mechanical strength are controlled. And an excellent polymer electrolyte membrane can be obtained.
[0023]
In the copolymer, the molar ratio of the first repeating unit to the second repeating unit is adjusted in the range of 10 to 80 mol% of the first repeating unit and 90 to 20 mol% of the second repeating unit. Is preferred. When the first repeating unit is less than 10 mol% and the second repeating unit exceeds 90 mol%, the amount of sulfonic acid groups introduced is insufficient, and the ion conductivity of the polymer electrolyte membrane is lowered. . Further, when the first repeating unit exceeds 80 mol% and the second repeating unit is less than 20 mol%, sufficient mechanical strength cannot be obtained in the polymer electrolyte membrane.
[0024]
The copolymer preferably has a polymer molecular weight in the range of 10,000 to 1,000,000 in terms of polystyrene-equivalent weight average molecular weight. When the polymer molecular weight is less than 10,000, mechanical strength suitable as a polymer electrolyte membrane may not be obtained. When the polymer molecular weight exceeds 1,000,000, the solubility becomes low when dissolved in a solvent for film formation. Viscosity increases and handling becomes difficult.
[0025]
The copolymer is preferably sulfonated so as to contain a sulfonic acid group in a range of 0.5 to 3.0 milligram equivalent / g. The sulfonated product cannot obtain a sufficient ion conductivity when the amount of sulfonic acid groups contained is less than 0.5 milligram equivalent / g. On the other hand, if the amount of the sulfonic acid group contained exceeds 3.0 milligram equivalent / g, sufficient toughness cannot be obtained, and handling when constructing the electrode structure becomes difficult.
[0026]
The electrode structure obtained by the production method of the present invention constitutes a polymer electrolyte fuel cell that generates electricity by supplying an oxidizing gas to one surface and supplying a reducing gas to the other surface. Can do.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory sectional view showing a configuration of an electrode structure obtained by the manufacturing method of the present embodiment.
[0028]
As shown in FIG. 1, the electrode structure obtained by the manufacturing method of this embodiment includes a pair of electrode catalyst layers 1, 1, a polymer electrolyte membrane 2 sandwiched between both electrode catalyst layers 1, 1, It consists of diffusion layers 3 and 3 laminated on the electrode catalyst layers 1 and 1.
[0029]
In the manufacturing method of this embodiment, first, the polymer electrolyte membrane 2 is manufactured. When the polymer electrolyte membrane 2 is manufactured, for example, 2,5-dichloro-4 ′-(4-phenoxyphenoxy) benzophenone represented by the following formula (3) and 2- (2) represented by the following formula (4) are used. Bis [4- {4- (4-chlorobenzoyl) phenoxy} phenyl] sulfone is polymerized at a molar ratio of p / q = 50: 50 to form a hydrocarbon copolymer represented by the following formula (5). To do.
[0030]
[Chemical formula 2]
Figure 0004271390
Next, after adding concentrated sulfuric acid to the copolymer to sulfonate the sulfonic acid group in a range of 0.5 to 3.0 milligram equivalent / g, it is dissolved in a solvent such as N-methylpyrrolidone. For example, a polymer electrolyte membrane 2 having a dry film thickness of 50 μm is obtained by forming a polymer electrolyte solution, forming a film from the polymer electrolyte solution by a casting method, and drying in an oven.
[0031]
In the manufacturing method of the present embodiment, the catalyst particles for forming the electrode catalyst layer 1 and the catalyst paste containing the catalyst particles are prepared. The catalyst particles are prepared by supporting platinum particles on carbon black (furnace black) at a predetermined weight ratio (for example, carbon black: platinum = 1: 1). In addition, the catalyst paste is prepared by adding the catalyst particles to a predetermined weight ratio (for example, an ion-conducting polymer binder solution such as Nafion (trade name) manufactured by DuPont). It is prepared by uniformly dispersing with catalyst particles: binder solution = 1: 1).
[0032]
In the manufacturing method of the present embodiment, the diffusion layer 3 is then manufactured. The diffusion layer 3 is made of carbon paper and an underlayer, and is obtained by mixing carbon black and polytetrafluoroethylene (PTFE) particles at a predetermined weight ratio (for example, carbon black: PTFE particles = 4: 6). A slurry in which the obtained mixture is uniformly dispersed in a solvent such as ethylene glycol is applied to one side of the carbon paper and dried to form the base layer.
[0033]
Then, the electrode catalyst layer 1 is formed by screen printing the catalyst paste on the diffusion layer 3 so that the catalyst content becomes a predetermined amount (for example, 0.5 mg / cm 2 ) and drying. The catalyst paste screen-printed on the diffusion layer 3 is dried by, for example, drying at 60 ° C. for 10 minutes and then drying at 120 ° C. for 60 minutes under reduced pressure.
[0034]
Next, the polymer electrolyte membrane 2 is sandwiched between the pair of electrode catalyst layers 1 and 1 and integrated by hot pressing to obtain the electrode structure shown in FIG. The hot pressing is performed at 150 ° C. and 2.5 MPa for 1 minute, for example.
[0035]
In the manufacturing method of this embodiment, next, in a humidified environment with a relative humidity of 60% or more, a current of 0.1 to 2 A / cm 2 is supplied to the electrode structure for 5 hours or more, preferably 8 hours or more. As a result, the electrode catalyst layer 1, 1 enters the polymer electrolyte membrane 2, the interface length is extended, and an electrode structure having excellent adhesion between the electrode catalyst layer 1, 1 and the polymer electrolyte membrane 2 is obtained. Obtainable.
[0036]
In the electrode structure obtained by the manufacturing method of this embodiment, the electrode catalyst layers 1 and 1 penetrate into the polymer electrolyte membrane 2 as described above, and the length of the interface is extended by the process of supplying the current. It becomes the composition. Therefore, in the electrode catalyst layer 1, the original function of the electrode catalyst layer is to generate protons and electrons from the reducing gas on the fuel electrode side, and to generate water on the oxygen electrode side by reaction of the protons, oxidizing gas and electrons. In addition, it is possible to obtain a function of generating water by a reaction between oxygen gas and hydrogen gas that have cross-leaked in the polymer electrolyte membrane 2. As a result, in the electrode structure, water generated by the reaction of the protons, oxidizing gas, and electrons and water generated by the cross leak effectively diffuse into the polymer electrolyte membrane 2. In addition, it is possible to achieve an effect that a low humidification operation is possible.
[0037]
The electrode structure shown in FIG. 1 can constitute a solid polymer fuel cell by further laminating a separator also serving as a gas passage on the diffusion layers 3 and 3.
[0038]
Next, examples of the present embodiment and comparative examples will be described.
[0039]
[Example 1]
In this example, first, 2,5-dichloro-4 ′-(4-phenoxyphenoxy) benzophenone represented by the formula (3) and 2,2-bis [4- { 4- (4-Chlorobenzoyl) phenoxy} phenyl] -1,1,1,3,3,3-hexafluoropropane is polymerized at a molar ratio of 50:50 to obtain a copolymer represented by the above formula (5). A polymer was obtained.
[0040]
Next, concentrated sulfuric acid was added to the copolymer for sulfonation to obtain a sulfonated product having an ion exchange capacity of 2.1 meq / g. Next, the sulfonated product of the copolymer is dissolved in N-methylpyrrolidone to form a polymer electrolyte solution, and a film is formed from the polymer electrolyte solution by a casting method and dried in an oven to obtain a dry film thickness. A membrane having a thickness of 50 μm was prepared as a polymer electrolyte membrane 2.
[0041]
Next, platinum particles were supported on carbon black (furnace black) at a weight ratio of carbon black: platinum = 1: 1 to prepare catalyst particles. Next, a solution of a perfluoroalkylene sulfonic acid polymer compound (Nafion (trade name) manufactured by DuPont) was used as an ion conductive polymer binder, and the catalyst particles were added to the binder with binder: carbon black = 1: 1. A catalyst paste was prepared by uniformly dispersing at a weight ratio.
[0042]
Next, a slurry in which carbon black and polytetrafluoroethylene (PTFE) particles are mixed at a weight ratio of carbon black: PTFE particles = 4: 6, and the resulting mixture is uniformly dispersed in a solvent such as ethylene glycol. The base layer was coated and dried on one side of the carbon paper, and two diffusion layers 3 composed of the base layer and the carbon paper were prepared.
[0043]
Next, the catalyst paste is screen-printed on each diffusion layer 3 so that the platinum content is 0.5 mg / cm 2 and dried to form an electrode catalyst layer 1, and the electrode catalyst layer 1 and the diffusion layer A pair of electrodes consisting of 3 was prepared. Next, the polymer electrolyte membrane 2 was sandwiched between the electrodes on the electrode catalyst layer 1 side and integrated by hot pressing to obtain the electrode structure shown in FIG.
[0044]
Then, a current of 1 A / cm 2 was supplied to the electrode structure for 18 hours in a humidified environment with a relative humidity of 100% to complete the electrode structure.
[0045]
Next, the electrode structure obtained in this example is a single cell, and air is supplied to the oxygen electrode side and pure hydrogen is supplied to the fuel electrode side to generate power, and the current density is 1 A / cm as the power generation potential. The cell potential at 2 was measured. The power generation conditions were a temperature of 80 ° C., a relative humidity of 80% on the oxygen electrode side, and a relative humidity of 50% on the fuel electrode side. The results are shown in Table 1.
[0046]
[Example 2]
In this example, the polymer electrolyte membrane 2 is sandwiched between the electrodes on the electrode catalyst layer 1 side, and the electrode structure integrated by hot pressing is set to 0.8 A / min in a humidified environment with a relative humidity of 80%. An electrode structure was completed in exactly the same manner as in Example 1 except that a current of cm 2 was supplied for 24 hours.
[0047]
Next, the electrode structure obtained in this example was a single cell, and the power generation potential was measured in exactly the same manner as in Example 1. The results are shown in Table 1.
[0048]
[Example 3]
In this example, the polymer electrolyte membrane 2 is sandwiched between the electrode catalyst layer 1 side of the electrode and hot pressing is performed to obtain an integrated electrode structure in a humidified environment with a relative humidity of 85% in a humidified environment of 0.3 A / An electrode structure was completed in exactly the same manner as in Example 1 except that a current of cm 2 was supplied for 16 hours.
[0049]
Next, the electrode structure obtained in this example was a single cell, and the power generation potential was measured in exactly the same manner as in Example 1. The results are shown in Table 1.
[0050]
[Example 4]
In this example, the polymer electrolyte membrane 2 is sandwiched between the electrode catalyst layer 1 side of the electrode, and the electrode structure integrated by hot pressing is 0.9 A / min in a humidified environment with a relative humidity of 60%. An electrode structure was completed in exactly the same manner as in Example 1 except that a current of cm 2 was supplied for 24 hours.
[0051]
Next, the electrode structure obtained in this example was a single cell, and the power generation potential was measured in exactly the same manner as in Example 1. The results are shown in Table 1.
[0052]
[Example 5]
In this example, the polymer electrolyte membrane 2 is sandwiched between the electrode catalyst layer 1 side of the electrode, and the electrode structure integrated by hot pressing is 0.15 A / min under a humidified environment of 100% relative humidity. An electrode structure was completed in exactly the same manner as in Example 1 except that a current of cm 2 was supplied for 24 hours.
[0053]
Next, the electrode structure obtained in this example was a single cell, and the power generation potential was measured in exactly the same manner as in Example 1. The results are shown in Table 1.
[0054]
[Comparative Example 1]
In this comparative example, the polymer electrolyte membrane 2 is sandwiched on the electrode catalyst layer 1 side of the electrode, and the process of supplying current to the integrated electrode structure by performing hot pressing in a humidified environment is not performed at all. Except for the above, an electrode structure was completed in exactly the same manner as in Example 1.
[0055]
Next, the electrode structure obtained in this comparative example was used as a single cell, and the power generation potential was measured in exactly the same manner as in Example 1. The results are shown in Table 1.
[0056]
[Comparative Example 2]
In this comparative example, the polymer electrolyte membrane 2 is sandwiched on the electrode catalyst layer 1 side of the electrode, and the electrode structure integrated by hot pressing is applied to a 0.5 A / hour in a humidified environment with a relative humidity of 50%. An electrode structure was completed in exactly the same manner as in Example 1 except that a current of cm 2 was supplied for 12 hours.
[0057]
Next, the electrode structure obtained in this comparative example was used as a single cell, and the power generation potential was measured in exactly the same manner as in Example 1. The results are shown in Table 1.
[0058]
[Comparative Example 3]
In this comparative example, the polymer electrolyte membrane 2 is sandwiched on the electrode catalyst layer 1 side of the electrode, and hot pressing is performed to supply no current to the integrated electrode structure. An electrode structure was completed in exactly the same manner as in Example 1 except that the electrode structure was kept for 12 hours in a 90% humidified environment.
[0059]
Next, the electrode structure obtained in this comparative example was used as a single cell, and the power generation potential was measured in exactly the same manner as in Example 1. The results are shown in Table 1.
[0060]
[Table 1]
Figure 0004271390
From Table 1, after the electrode catalyst layers 1 and 1 and the polymer electrolyte membrane 2 are integrated, a current of 0.15 to 1 A / cm 2 is supplied for 16 to 24 hours in a humidified environment with a relative humidity of 60% or more. In the electrode structures of Examples 1 to 5 that were subjected to the treatment, excellent power generation performance was obtained as compared with the electrode structure of Comparative Example 1 that was not subjected to the treatment at all. It is clear that the adhesion between the polymer electrolyte membrane 1 and the polymer electrolyte membrane 2 is excellent.
[0061]
In addition, the electrode structures of Examples 1 to 5 were supplied with a current of 0.5 A / cm 2 for 12 hours, but the humidifying condition was less than 60% relative humidity, and a humidified environment with a relative humidity of 90%. Even when compared with Comparative Example 3 in which the current is not supplied at all for 12 hours, excellent power generation performance can be obtained, and the adhesion between the electrode catalyst layers 1 and 1 and the polymer electrolyte membrane 2 is excellent. It is clear.
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view showing a configuration of an electrode structure obtained by a manufacturing method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electrode catalyst layer, 2 ... Polymer electrolyte membrane.

Claims (4)

一対の電極触媒層により高分子電解質膜を挟持し、両電極触媒層と高分子電解質膜とを一体化して電極構造体を形成する工程と、
該電極構造体に、相対湿度60%以上の加湿環境下で、0.1A/cm以上の電流を5時間以上供給する工程とを備えることを特徴とする固体高分子型燃料電池用電極構造体の製造方法。
Sandwiching the polymer electrolyte membrane between a pair of electrode catalyst layers, and integrating both electrode catalyst layers and the polymer electrolyte membrane to form an electrode structure;
And supplying the electrode structure with a current of 0.1 A / cm 2 or more for 5 hours or more in a humidified environment with a relative humidity of 60% or more for 5 hours or more. Body manufacturing method.
前記高分子電解質膜は、一般式(1)で表される第1の繰返し単位と、一般式(2)で表される第2の繰返し単位とからなる主鎖を備える炭化水素系共重合体のスルホン化物であることを特徴とする請求項1記載の固体高分子型燃料電池用電極構造体の製造方法。
Figure 0004271390
(前記電子吸引性基とは、−CO−、−CONH−、−(CF p −(pは1〜10の整数)、−C(CF −、−COO−、−SO−、−SO −のハメット置換基常数がフェニル基のメタ位では0.06以上、フェニル基のパラ位では0.01以上の値となる2価の基をいう。また、前記電子供与性基とは、−O−、−S−、−CH=CH−、−C≡C−の2価の基をいう。)
The polymer electrolyte membrane is a hydrocarbon copolymer having a main chain composed of a first repeating unit represented by the general formula (1) and a second repeating unit represented by the general formula (2). The method for producing an electrode structure for a polymer electrolyte fuel cell according to claim 1, wherein the sulfonated product of
Figure 0004271390
(Wherein the electron withdrawing group, -CO -, - CONH -, - (CF 2) p - (p is an integer of from 1 to 10), - C (CF 3) 2 -, - COO -, - SO- , —SO 2 — refers to a divalent group having a Hammett substituent constant of 0.06 or more at the meta position of the phenyl group and 0.01 or more at the para position of the phenyl group. Is a divalent group of —O—, —S—, —CH═CH—, —C≡C—.)
一対の電極触媒層により高分子電解質膜を挟持して、両電極触媒層と高分子電解質膜とを一体化した後、一体化された両電極触媒層と高分子電解質膜とに、相対湿度60%以上の加湿環境下で、0.1A/cm以上の電流を5時間以上供給することにより形成されたことを特徴とする固体高分子型燃料電池用電極構造体。A polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers, and both electrode catalyst layers and the polymer electrolyte membrane are integrated. Then, the relative humidity 60 is applied to the integrated electrode catalyst layers and the polymer electrolyte membrane. An electrode structure for a polymer electrolyte fuel cell, which is formed by supplying a current of 0.1 A / cm 2 or more for 5 hours or more in a humidified environment of at least%. 一対の電極触媒層により高分子電解質膜を挟持して、両電極触媒層と高分子電解質膜とを一体化した後、一体化された両電極触媒層と高分子電解質膜とに、相対湿度60%以上の加湿環境下で、0.1A/cm以上の電流を5時間以上供給することにより形成された電極構造体の一方の面に酸化性ガスを供給すると共に、他方の面に還元性ガスを供給することにより発電することを特徴とする固体高分子型燃料電池。A polymer electrolyte membrane is sandwiched between a pair of electrode catalyst layers, and both electrode catalyst layers and the polymer electrolyte membrane are integrated. Then, the relative humidity 60 is applied to the integrated electrode catalyst layers and the polymer electrolyte membrane. % Of the electrode structure formed by supplying an electric current of 0.1 A / cm 2 or more for 5 hours or more in a humidified environment of at least%, and reducing the other surface. A solid polymer fuel cell, characterized by generating electricity by supplying gas.
JP2001242592A 2001-06-11 2001-08-09 Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell Expired - Fee Related JP4271390B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001242592A JP4271390B2 (en) 2001-08-09 2001-08-09 Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
PCT/JP2002/005728 WO2002101860A1 (en) 2001-06-11 2002-06-10 Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
DE10296922T DE10296922T5 (en) 2001-06-11 2002-06-10 Electrode structure for polymer electrolyte fuel cells, method of manufacturing the same and polymer electrolyte fuel cell
CA2450346A CA2450346C (en) 2001-06-11 2002-06-10 Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
CA2686279A CA2686279C (en) 2001-06-11 2002-06-10 Production method for an electrode structure for a solid polymer fuel cell
US10/480,375 US7494733B2 (en) 2001-06-11 2002-06-10 Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001242592A JP4271390B2 (en) 2001-08-09 2001-08-09 Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2003059504A JP2003059504A (en) 2003-02-28
JP4271390B2 true JP4271390B2 (en) 2009-06-03

Family

ID=19072843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242592A Expired - Fee Related JP4271390B2 (en) 2001-06-11 2001-08-09 Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4271390B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972867B2 (en) * 2005-03-15 2012-07-11 旭硝子株式会社 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP4766014B2 (en) 2007-08-08 2011-09-07 トヨタ自動車株式会社 Manufacturing method of membrane electrode assembly

Also Published As

Publication number Publication date
JP2003059504A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
KR100717745B1 (en) A binder for fuel cell, compoaition for catalyst formation using the same, and a membrane electrode assembly for fuel cell, and preparation method thereof
US7494733B2 (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
US8202664B2 (en) Membrane electrode assembly, fuel cell stack and fuel cell system
JP2012069536A (en) Polymer electrolyte film for direct oxidation type fuel cell, manufacturing method therefor, and direct oxidation type fuel cell system including the same
US20060154128A1 (en) Polymer electrode membrane for fuel, and membrane-electrode assembly and fuel cell system comprising the same
JP4221164B2 (en) Polymer electrolyte fuel cell
JP3607221B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
JP3779171B2 (en) Polymer electrolyte fuel cell
JP3563374B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
KR100794382B1 (en) Electrode binders and their composition for polymer electrolyte fuel cell, electrode and membrane/electrode assembly comprising said composition and preparation method thereof
JP3467476B2 (en) Solid polymer electrolyte membrane electrode structure, method of manufacturing the same, and fuel cell using the same
JP4421264B2 (en) Method for manufacturing membrane-electrode structure
KR100683940B1 (en) Electrode composition for direct methanol fuel cell, membrane/electrode assembly comprising said composition and preparation method thereof
JP4754083B2 (en) Polymer electrolyte fuel cell
JP3563372B2 (en) Electrode structure for polymer electrolyte fuel cell
JP3563371B2 (en) Electrode structure for polymer electrolyte fuel cell
JP3878438B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4323117B2 (en) Electrode structure for polymer electrolyte fuel cell
JP3563378B2 (en) Electrode structure for polymer electrolyte fuel cell
JP2007157453A (en) Membrane catalyst layer assembly, membrane electrode assembly using same, and polymer electrolyte fuel cell
JP2021111542A (en) Membrane electrode complex
KR20130047807A (en) Electrode for fuel cell, method of fabricating the same, and membrane-electrode assembly for fuel cell and fuel cell system including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4271390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees