JP4972867B2 - Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell - Google Patents

Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4972867B2
JP4972867B2 JP2005073189A JP2005073189A JP4972867B2 JP 4972867 B2 JP4972867 B2 JP 4972867B2 JP 2005073189 A JP2005073189 A JP 2005073189A JP 2005073189 A JP2005073189 A JP 2005073189A JP 4972867 B2 JP4972867 B2 JP 4972867B2
Authority
JP
Japan
Prior art keywords
cerium
membrane
polymer
compound
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005073189A
Other languages
Japanese (ja)
Other versions
JP2006260811A (en
Inventor
栄治 遠藤
純 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005073189A priority Critical patent/JP4972867B2/en
Publication of JP2006260811A publication Critical patent/JP2006260811A/en
Application granted granted Critical
Publication of JP4972867B2 publication Critical patent/JP4972867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、初期の出力電圧が高く、長期に渡って高い出力電圧を得られる固体高分子形燃料電池用の電解質膜に関する。   The present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell that has a high initial output voltage and can obtain a high output voltage over a long period of time.

燃料電池は、原料となるガスの反応エネルギーを直接電気エネルギーに変換する電池であり、水素・酸素燃料電池は、その反応生成物が原理的に水のみであり地球環境への影響がほとんどない。なかでも電解質として固体高分子膜を使用する固体高分子形燃料電池は、高いイオン導電性を有する高分子電解質膜が開発され、常温でも作動でき高出力密度が得られるため、近年のエネルギー、地球環境問題への社会的要請の高まりとともに、電気自動車用等の移動車両や、小型コージェネレーションシステムの電源として大きな期待が寄せられている。   A fuel cell is a cell that directly converts the reaction energy of a gas that is a raw material into electric energy. In a hydrogen / oxygen fuel cell, the reaction product is only water in principle and has little influence on the global environment. In particular, polymer electrolyte fuel cells that use solid polymer membranes as electrolytes have been developed for polymer electrolyte membranes with high ionic conductivity, and can operate at room temperature to obtain high output density. With increasing social demand for environmental problems, there is great expectation as a power source for mobile vehicles for electric vehicles and small cogeneration systems.

固体高分子形燃料電池では、通常、固体高分子電解質としてプロトン伝導性のイオン交換膜が使用され、特にスルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜が基本特性に優れている。固体高分子形燃料電池では、イオン交換膜の両面にガス拡散性の電極層を配置し、燃料である水素を含むガス及び酸化剤となる酸素を含むガス(空気等)を、それぞれアノード及びカソードに供給することにより発電を行う。   In a polymer electrolyte fuel cell, a proton conductive ion exchange membrane is usually used as a solid polymer electrolyte, and an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is particularly excellent in basic characteristics. In a polymer electrolyte fuel cell, gas diffusible electrode layers are arranged on both surfaces of an ion exchange membrane, and a gas containing hydrogen as a fuel and a gas containing oxygen (such as air) as an oxidant are respectively supplied to an anode and a cathode. To generate electricity.

固体高分子形燃料電池のカソードにおける酸素の還元反応は過酸化水素(H)を経由して反応が進行することから、触媒層中で生成する過酸化水素又は過酸化物ラジカルによって、電解質膜の劣化を引き起こす可能性が懸念されている。また、アノードには、カソードから酸素分子が膜内を透過してくるため、同様に過酸化水素又は過酸化物ラジカルを生成することも懸念される。特に炭化水素系膜を固体高分子電解質膜とする場合は、ラジカルに対する安定性に乏しく、長期間にわたる運転においては大きな問題となっていた。 Since the reduction reaction of oxygen at the cathode of the polymer electrolyte fuel cell proceeds via hydrogen peroxide (H 2 O 2 ), hydrogen peroxide or peroxide radicals generated in the catalyst layer There is concern about the possibility of causing deterioration of the electrolyte membrane. Moreover, since oxygen molecules permeate through the membrane from the cathode to the anode, there is a concern that hydrogen peroxide or peroxide radicals may be similarly generated. In particular, when a hydrocarbon-based membrane is used as a solid polymer electrolyte membrane, the stability against radicals is poor, which has been a serious problem in long-term operation.

例えば、固体高分子形燃料電池が初めて実用化されたのは、米国のジェミニ宇宙船の電源として採用された時であり、この時にはスチレン−ジビニルベンゼン重合体をスルホン化した膜が電解質膜として使用されたが、長期間にわたる耐久性には問題があった。このような問題を改善する技術としては、高分子電解質膜中に過酸化水素を接触分解できる遷移金属酸化物又はフェノール性水酸基を有する化合物を添加する方法(特許文献1参照)や、高分子電解質膜内に触媒金属粒子を担持し、過酸化水素を分解する方法(特許文献2参照)が知られている。しかし、これらの技術は、初期的には改善の効果があるものの、長期間にわたる耐久性には大きな問題が生じる可能性があった。またコスト的にも高くなるという問題があった。   For example, the polymer electrolyte fuel cell was first put into practical use when it was used as a power source for a Gemini spacecraft in the United States. At this time, a membrane obtained by sulfonating a styrene-divinylbenzene polymer was used as an electrolyte membrane. However, there was a problem with durability over a long period of time. As a technique for improving such a problem, a method of adding a transition metal oxide or a compound having a phenolic hydroxyl group capable of catalytic decomposition of hydrogen peroxide into a polymer electrolyte membrane (see Patent Document 1), a polymer electrolyte, A method is known in which catalytic metal particles are supported in a membrane and hydrogen peroxide is decomposed (see Patent Document 2). However, although these techniques have an improvement effect in the initial stage, there is a possibility that a serious problem may arise in durability over a long period of time. There is also a problem that the cost becomes high.

一方、上記のような炭化水素系の重合体からなる電解質膜に対し、ラジカルに対する安定性が格段に優れる重合体として、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜が知られている。近年、これらのパーフルオロカーボン重合体からなるイオン交換膜を用いた固体高分子形燃料電池は、自動車用、住宅用市場等の電源として期待され、実用化への要望が高まり開発が加速している。これらの用途では、特に高い効率での運転が要求されるため、より高い電圧での運転が望まれると同時に低コスト化が望まれている。また、燃料電池システム全体の効率の点から低加湿又は無加湿での運転が要求されることも多い。   On the other hand, an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is known as a polymer that is remarkably excellent in radical stability compared to the electrolyte membrane made of a hydrocarbon-based polymer as described above. . In recent years, polymer electrolyte fuel cells using ion-exchange membranes made of these perfluorocarbon polymers are expected to be used as power sources for automobiles and residential markets, etc. . In these applications, since operation with particularly high efficiency is required, operation at a higher voltage is desired and at the same time cost reduction is desired. In addition, from the viewpoint of the efficiency of the entire fuel cell system, operation with low or no humidification is often required.

しかし、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜を用いた燃料電池においても、高加湿下での運転では安定性が非常に高いものの、低加湿又は無加湿での運転条件においては、電圧劣化が大きいことが報告されている(非特許文献1参照)。すなわち、低加湿又は無加湿での運転条件においては、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜においても過酸化水素又は過酸化物ラジカルにより電解質膜の劣化が進行するものと考えられる。   However, even in a fuel cell using an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group, the stability is very high when operated under high humidification, but in operating conditions under low or no humidification. It has been reported that the voltage degradation is large (see Non-Patent Document 1). That is, under operating conditions with low or no humidification, it is considered that deterioration of the electrolyte membrane proceeds due to hydrogen peroxide or peroxide radicals even in an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group. .

特開2001−118591号公報(請求項1、2頁2〜9行)Japanese Patent Laid-Open No. 2001-118591 (Claims 1, 2 to 9 lines) 特開平6−103992号公報(問題を解決するための手段、2頁33〜37行)Japanese Patent Laid-Open No. 6-103992 (means for solving the problem, page 2, lines 33-37) 新エネルギー・産業技術総合開発機構主催 平成12年度固体高分子形燃料電池研究開発成果報告会要旨集、56頁16〜24行Summary of the 2000 report on research and development results on polymer electrolyte fuel cells sponsored by the New Energy and Industrial Technology Development Organization, page 56, lines 16-24

そこで本発明は、車載用、住宅用市場等への固体高分子形燃料電池の実用化において、十分に高いエネルギー効率での発電が可能であり、供給ガスの加湿温度(露点)がセル温度よりも低い低加湿又は無加湿での運転、セル温度に近い温度で加湿する高加湿での運転のどちらにおいても、高い発電性能を有し、かつ長期間にわたって安定した発電が可能な固体高分子形燃料電池用膜を提供することを目的とする。   Therefore, the present invention enables power generation with sufficiently high energy efficiency in the practical application of polymer electrolyte fuel cells for in-vehicle and residential markets, and the humidification temperature (dew point) of the supply gas is higher than the cell temperature. Solid polymer type that has high power generation performance and stable power generation over a long period of time, whether it is operated with low or no humidification, or with high humidification where the temperature is close to the cell temperature. It aims at providing the membrane for fuel cells.

本発明者らは、スルホン酸基を有する高分子化合物からなるイオン交換膜を用いた燃料電池において、低加湿又は無加湿での運転条件における膜の劣化を防止することを目的に鋭意検討し、膜中に特定のイオンと、難溶性セリウム化合物を含有させることにより電解質膜の劣化を格段に抑制でき、その効果を長期に持続できることを見出し、本発明に至った。   In the fuel cell using an ion exchange membrane made of a polymer compound having a sulfonic acid group, the present inventors diligently studied for the purpose of preventing the membrane from deteriorating under operating conditions with low or no humidity. It has been found that by containing specific ions and a hardly soluble cerium compound in the membrane, the degradation of the electrolyte membrane can be remarkably suppressed and the effect can be maintained for a long period of time.

本発明は、スルホン酸基を有する高分子化合物からなる陽イオン交換膜からなり、陽イオン交換膜中の−SO 基の0.3〜30モル%のセリウムイオンと、難溶性セリウム化合物とを含むことを特徴とする固体高分子形燃料電池用電解質膜を提供する。なお、セリウムイオンは+3価又は+4価の状態を取り得るが、本発明では特に限定されない。 The present invention comprises a cation exchange membrane made of a polymer compound having a sulfonic acid group, -SO 3 in the cation exchange membrane - and Seriumuio emissions of 0.3 to 30 mol% of the groups, and hardly soluble cerium compound An electrolyte membrane for a polymer electrolyte fuel cell is provided. In addition, although cerium ion can take the state of +3 valence or +4 valence, it is not specifically limited in this invention.

本発明の電解質膜は、電解質膜中にセリウムイオンを含むことにより、特に電解質膜のスルホン酸基の一部がセリウムイオンでイオン交換されることにより、セリウムイオンと−SO との相互作用が、過酸化水素又は過酸化物ラジカル耐性を効果的に向上させていると推定される。 The electrolyte membrane of the present invention includes the Seriumuio on to the electrolyte membrane, in particular by a portion of the sulfonic acid groups of the electrolyte membrane are ion-exchanged with Seriumuio down, Seriumuio emissions and -SO 3 - interaction with However, it is estimated that hydrogen peroxide or peroxide radical tolerance is effectively improved.

電解質膜中のセリウムイオンは、対アニオンが電解質膜のスルホン酸基であるため、電気的中性の条件を満たすためには、原理的には系外に溶出できないはずである。しかし、実際の燃料電池の運転時には、不純物アニオンとして、例えば塩化物イオン等が混入する場合が考えられる。その際は、電解質膜中のセリウムイオンは、塩化物イオンと化合して水溶性の塩化セリウムとなって系外に溶出してしまい、その結果、セリウムイオンでイオン交換された電解質膜のスルホン酸基の絶対量が減少し、長期の耐久性が損なわれるおそれがある。 Seriumuio down in the electrolyte membrane, because counter anion is a sulfonic acid group of the electrolyte membrane, in order to satisfy the condition of electrical neutrality, in principle, should not be eluted out of the system. However, when an actual fuel cell is operated, for example, chloride ions may be mixed as impurity anions. In that case, Seriumuio down in the electrolyte membrane is a water-soluble chloride cerium beam combines with the chloride ions will be eluted out of the system, sulfone result, electrolyte membrane ion-exchanged with Seriumuio down There is a risk that the absolute amount of acid groups is reduced and long-term durability is impaired.

これを防止する方策としては、初期に多量のセリウムイオンでスルホン酸基をイオン交換する手法が考えられる。しかし、多量のセリウムイオンでスルホン酸基をイオン交換してしまうと、水素イオンの十分な伝導性を確保することができず、膜抵抗が増大して発電特性が低下するおそれがある。 The measures to prevent this, a technique for early ion exchange sulfonic acid groups with a large amount of Seriumuio emissions is considered. However, if by ion exchange sulfonic acid groups with a large amount of Seriumuio down, can not be secured a sufficient hydrogen ion conductivity, the power generation characteristic film resistance is increased may be decreased.

本発明は、この膜抵抗の増大を抑えながら電解質膜に長期の耐久性を付与する方法を鋭意検討した結果、発電特性を低下させない範囲で電解質膜のスルホン酸基の一部がセリウムイオンでイオン交換された電解質膜中に、難溶性セリウム化合物を含有することで、格段に長期の耐久性を付与できることを見出したものである。 The present invention is an ion membrane resistance increases suppressed while the results of intensive studies how to impart long-term durability to the electrolyte membrane, a portion of the sulfonic acid groups of the electrolyte membrane without compromising the power generation characteristics Seriumuio down It has been found that a long-term durability can be remarkably imparted by containing a hardly soluble cerium compound in the exchanged electrolyte membrane.

すなわち、本発明においては、前述のようにセリウムイオンが水溶性の塩化セリウムとなって系外に溶出してしまっても、膜中に含有した難溶性セリウム化合物の解離平衡により、除除にセリウムイオンが膜中に溶解し、膜中にセリウムイオンを供給することにより、電解質膜に格段に長期の耐久性を付与することが可能となる。 That is, in the present invention, even if got eluted out of the system Seriumuio down becomes a water-soluble chloride cerium arm as described above, the dissociation equilibrium of a poorly soluble cerium compound contained in the film, the removal removal When cerium ions are dissolved in the membrane and cerium ions are supplied into the membrane, it becomes possible to provide the electrolyte membrane with extremely long-term durability.

さらに本発明は、上述の電解質膜を得る方法であって、スルホン酸基を有する高分子化合物の分散液中に、難溶性セリウム化合物の微粒子を添加し混合することにより前記分散液中に難溶性セリウム化合物を分散させ、得られた液を用いてキャスト製膜した後、得られた膜をセリウムイオンを含む溶液中に浸漬することを特徴とする固体高分子燃料電池用電解質膜の製造方法を提供する。 Furthermore, the present invention is a method for obtaining the above-mentioned electrolyte membrane, in which a slightly soluble cerium compound fine particle is added to and mixed with a dispersion of a polymer compound having a sulfonic acid group, and is hardly soluble in the dispersion. the cerium compound dispersed, after cast film using the resulting liquid, the production method of the polymer electrolyte fuel cell electrolyte membrane, which comprises immersing the resulting membrane in a solution containing Seriumuio down I will provide a.

さらに本発明は、上述の電解質膜を得る方法であって、スルホン酸基を有する高分子化合物と、セリウムイオンとを含む液状組成物に、難溶性セリウム化合物の微粒子を添加し混合することにより前記液状組成物に難溶性セリウム化合物を分散させ、得られた液を用いてキャスト製膜することを特徴とする固体高分子燃料電池用電解質膜の製造方法を提供する。 The present invention further provides a method of obtaining an electrolyte membrane described above, the high molecular compound having a sulfonic acid group, a liquid composition containing a Seriumuio down, by mixing the particles added thereto poorly soluble cerium compound the liquid composition is dispersed poorly soluble cerium compound, to cast film using the resulting solution to provide a method for manufacturing a polymer electrolyte fuel cell electrolyte membrane, wherein.

さらに本発明は、上述の電解質膜を得る方法であって、スルホン酸基を有する高分子化合物からなる陽イオン交換膜を、セリウムイオンを含む溶液中に浸漬してスルホン酸基の一部をセリウムイオンによりイオン交換した後、セリウムイオンと反応することにより難溶性セリウム化合物を形成する物質を含む溶液に浸漬して、膜中に難溶性セリウム化合物を形成し、次いで前記陽イオン交換膜をセリウムイオンを含む溶液中に浸漬することを特徴とする固体高分子燃料電池用電解質膜の製造方法を提供する。 Furthermore, the present invention is a method for obtaining the above-mentioned electrolyte membrane, wherein a cation exchange membrane made of a polymer compound having a sulfonic acid group is immersed in a solution containing cerium ions so that a part of the sulfonic acid group is cerium. after ion exchange the ions is immersed in a solution containing a substance which forms a poorly soluble cerium compound by reaction with cerium ions, to form a poorly soluble cerium compound in the film, then Seriumuio down the cation exchange membrane to provide a method of manufacturing a polymer electrolyte fuel cell electrolyte membrane, which comprises immersing in a solution containing.

さらに本発明は、上述の電解質膜を得る方法であって、スルホン酸基を有する高分子化合物の分散液中に、当該分散液に溶解可能なセリウム化合物を添加してスルホン酸基の一部をセリウムイオンによりイオン交換した後、セリウムイオンと反応することにより難溶性セリウム化合物を形成する物質を含む溶液又は固体を前記分散液に添加して、該分散液中に難溶性セリウム化合物を形成し、得られた液を用いてキャスト製膜した後、得られた膜をセリウムイオンを含む溶液中に浸漬することを特徴とする固体高分子燃料電池用電解質膜の製造方法を提供する。 Furthermore, the present invention is a method for obtaining the above-described electrolyte membrane, wherein a cerium compound that is soluble in the dispersion is added to the dispersion of the polymer compound having a sulfonic acid group, and a part of the sulfonic acid group is removed. After ion exchange with cerium ions, a solution or solid containing a substance that forms a sparingly soluble cerium compound by reacting with cerium ions is added to the dispersion to form a sparingly soluble cerium compound in the dispersion, after cast film using the resulting liquid, to provide a method of manufacturing a polymer electrolyte fuel cell electrolyte membrane, which comprises immersing the resulting membrane in a solution containing Seriumuio down.

本発明の電解質膜は過酸化水素又は過酸化物ラジカルに対して優れた耐性を有するため、本発明の電解質膜を有する膜電極接合体を備える固体高分子燃料電池は、耐久性に優れ、長期にわたって安定な発電が可能である。 Since the electrolyte membrane of the present invention has excellent resistance to hydrogen peroxide or peroxide radicals, the polymer electrolyte fuel cell comprising the membrane electrode assembly having the electrolyte membrane of the present invention has excellent durability, Stable power generation is possible for a long time.

スルホン酸基を有する高分子化合物に、セリウムイオン及びマンガンイオンからなる群から選ばれる1種以上を含有させる方法は特に限定されないが、セリウムイオン及びマンガンイオンからなる群から選ばれる1種以上を含む水溶性の塩や、セリウムイオン及びマンガンイオンからなる群から選ばれる1種以上を含む溶液が使用され、例えば以下の方法が挙げられる。(i)スルホン酸基を有する高分子化合物の分散液中にセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上を含む水溶性の塩を添加してセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上を分散液中に含有させた後、又はスルホン酸基を有する高分子化合物の分散液とセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上を含む溶液とを混合した後、得られた液を用いてキャスト法等により製膜する方法。(ii)スルホン酸基を有する高分子化合物からなる膜をセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上を含む溶液中に浸漬する方法。   Although the method to make the high molecular compound which has a sulfonic acid group contain 1 or more types chosen from the group which consists of a cerium ion and a manganese ion is not specifically limited, 1 type or more chosen from the group which consists of a cerium ion and a manganese ion is included A solution containing at least one selected from the group consisting of water-soluble salts and cerium ions and manganese ions is used, and examples thereof include the following methods. (I) A water-soluble salt containing at least one selected from the group consisting of cerium ions and manganese ions is added to the dispersion of the polymer compound having a sulfonic acid group and selected from the group consisting of cerium ions and manganese ions. Or a mixture of a polymer compound having a sulfonic acid group and a solution containing one or more selected from the group consisting of cerium ions and manganese ions, A method of forming a film by a casting method or the like using the obtained liquid. (Ii) A method of immersing a film made of a polymer compound having a sulfonic acid group in a solution containing one or more selected from the group consisting of cerium ions and manganese ions.

ここでセリウムイオンは+3価でも+4価でもよく、セリウムイオンを含む溶液を得るために各種の水溶性のセリウム塩が使用される。3価のセリウムイオンを含む塩を具体的に挙げると、例えば、酢酸セリウム(Ce(CHCOO)・HO)、塩化セリウム(CeCl・6HO)、硝酸セリウム(Ce(NO・6HO)、硫酸セリウム(Ce(SO・8HO)等が挙げられる。4価のセリウムイオンを含む塩としては、例えば、硫酸セリウム(Ce(SO・4HO)、硝酸二アンモニウムセリウム(Ce(NH(NO)、硫酸四アンモニウムセリウム(Ce(NH(SO)・4HO)等が挙げられる。またセリウムの有機金属錯塩としてはセリウムアセチルアセトナート(Ce(CHCOCHCOCH・3HO)等が挙げられる。なかでも特に硝酸セリウム、硫酸セリウムは取扱いが容易であり好ましい。また、これらの水溶液でスルホン酸基を有する高分子化合物をイオン交換した際に生成する硝酸又は硫酸は、容易に水溶液中に溶解し、除去できるので好ましい。 Here, the cerium ion may be +3 or +4, and various water-soluble cerium salts are used to obtain a solution containing cerium ions. Specific examples of salts containing trivalent cerium ions include cerium acetate (Ce (CH 3 COO) 3 .H 2 O), cerium chloride (CeCl 3 .6H 2 O), and cerium nitrate (Ce (NO 3) 3 · 6H 2 O) , and the like, cerium sulfate (Ce 2 (SO 4) 3 · 8H 2 O) is. Examples of the salt containing tetravalent cerium ions include cerium sulfate (Ce (SO 4 ) 2 .4H 2 O), diammonium cerium nitrate (Ce (NH 4 ) 2 (NO 3 ) 6 ), and tetraammonium cerium sulfate. (Ce (NH 4 ) 4 (SO 4 ) 4 ) · 4H 2 O) and the like. Examples of the organometallic complex salt of cerium include cerium acetylacetonate (Ce (CH 3 COCHCOCH 3 ) 3 .3H 2 O). Of these, cerium nitrate and cerium sulfate are particularly preferred because they are easy to handle. Further, nitric acid or sulfuric acid generated when ion exchange of a polymer compound having a sulfonic acid group in these aqueous solutions is preferable because it can be easily dissolved and removed in the aqueous solution.

また、マンガンイオンは+2価でも+3価でもよく、マンガンイオンを含む溶液を得るために各種の水溶性のマンガン塩が使用される。2価のマンガンイオンを含む塩を具体的に挙げると、例えば、酢酸マンガン(Mn(CHCOO)・4HO)、塩化マンガン(MnCl・4HO)、硝酸マンガン(Mn(NO・6HO)、硫酸マンガン(MnSO・5HO)等が挙げられる。3価のマンガンイオンを含む塩としては、例えば、酢酸マンガン(Mn(CHCOO)・2HO)等が挙げられる。またマンガンの有機金属錯塩としてはマンガンアセチルアセトナート(Mn(CHCOCHCOCH)等が挙げられる。なかでも特に硝酸マンガン、硫酸マンガンは取扱いが容易であり好ましい。また、これらの水溶液でスルホン酸基を有する高分子化合物をイオン交換した際に生成する硝酸又は硫酸は、容易に水溶液中に溶解し、除去できるので好ましい。 Manganese ions may be +2 or +3, and various water-soluble manganese salts are used to obtain a solution containing manganese ions. Specific examples of salts containing divalent manganese ions include manganese acetate (Mn (CH 3 COO) 2 .4H 2 O), manganese chloride (MnCl 2 .4H 2 O), manganese nitrate (Mn (NO 3) 2 · 6H 2 O) , and the like manganese sulfate (MnSO 4 · 5H 2 O) . Examples of the salt containing trivalent manganese ions include manganese acetate (Mn (CH 3 COO) 3 .2H 2 O). Examples of the organometallic complex salt of manganese include manganese acetylacetonate (Mn (CH 3 COCHCOCH 3 ) 2 ). Of these, manganese nitrate and manganese sulfate are particularly preferred because they are easy to handle. Further, nitric acid or sulfuric acid generated when ion exchange of a polymer compound having a sulfonic acid group in these aqueous solutions is preferable because it can be easily dissolved and removed in the aqueous solution.

例えばセリウムイオンが3価である場合、スルホン酸基がセリウムイオンによりイオン交換されると、3個のプロトンとセリウムイオンが置き換わり、Ce3+が3個の−SO と結合することになるが、完全にイオン交換されていなくてもよい。また、例えばマンガンイオンが+2価である場合、スルホン酸基がマンガンイオンによりイオン交換されると、2個のプロトンとマンガンイオンが置き換わり、Mn2+が2個の−SO と結合することになるが、完全にイオン交換されていなくてもよい。 For example, when the cerium ions are trivalent, the sulfonic acid groups are ion-exchanged with cerium ions, replaced the three protons and cerium ions, Ce 3+ is three -SO 3 - but it is bonded to , It may not be completely ion-exchanged. Further, for example, when the manganese ion is +2 valent, when the sulfonic acid group is ion-exchanged by the manganese ion, two protons and manganese ions are replaced, and Mn 2+ is bonded to two —SO 3 —. However, it may not be completely ion-exchanged.

本発明において、電解質膜中に含まれるセリウムイオン又はマンガンイオンは、膜中の−SO 基の0.3モル%以上である(以下、この割合を「セリウムイオン又はマンガンイオンの含有率」という。)。3価又は4価のセリウムイオンの含有率は、下限としては0.7モル%以上が好ましく、1モル%以上がより好ましく、上限としては30モル%以下が好ましく、16モル%以下がより好ましく、13モル%以下がさらに好ましい。2価又は3価のマンガンイオンの含有率は、下限としては0.5モル%以上が好ましく、1モル%以上がより好ましく、1.5モル%以上がさらに好ましく、上限としては45モル%以下が好ましく、25モル%以下がより好ましく、20モル%以下がさらに好ましい。 In the present invention, the cerium ion or manganese ion contained in the electrolyte membrane is 0.3 mol% or more of the —SO 3 group in the membrane (hereinafter, this ratio is referred to as “cerium ion or manganese ion content”). That said.) The lower limit of the content of trivalent or tetravalent cerium ions is preferably 0.7 mol% or more, more preferably 1 mol% or more, and the upper limit is preferably 30 mol% or less, more preferably 16 mol% or less. 13 mol% or less is more preferable. The content of divalent or trivalent manganese ions is preferably 0.5 mol% or more, more preferably 1 mol% or more, still more preferably 1.5 mol% or more, and the upper limit is 45 mol% or less. Is preferable, 25 mol% or less is more preferable, and 20 mol% or less is more preferable.

セリウムイオン又はマンガンイオンの含有率が上述の範囲よりも小さいと過酸化水素又は過酸化物ラジカルに対する十分な安定性が確保できないおそれがある。またセリウムイオン又はマンガンイオンの含有率が上述の範囲よりも大きいと、水素イオンの十分な伝導性を確保することができず、膜抵抗が増大して発電特性が低下するおそれがある。   If the content of cerium ions or manganese ions is smaller than the above range, sufficient stability against hydrogen peroxide or peroxide radicals may not be ensured. On the other hand, if the content of cerium ions or manganese ions is larger than the above range, sufficient conductivity of hydrogen ions cannot be ensured, resulting in an increase in membrane resistance and a decrease in power generation characteristics.

本発明における難溶性セリウム化合物とは、25℃の水に対する溶解度が、水100gに対して0.1g以下であるセリウム化合物を意味する。具体的には、リン酸第一セリウム、リン酸第二セリウム、酸化セリウム、水酸化第一セリウム、水酸化第二セリウム、炭酸セリウム、フッ化セリウム、シュウ酸セリウム、タングステン酸セリウム、ヘテロポリ酸のセリウム塩等が挙げられる。これらは無水物でもよく、結晶水又は水和水を有していてもよい。難溶性セリウム化合物のセリウムの価数は+3価でも+4価でもよい。例えば酸化セリウムの場合は、CeでもCeOでもよい。 The poorly soluble cerium compound in the present invention means a cerium compound having a solubility in water at 25 ° C. of 0.1 g or less with respect to 100 g of water. Specifically, cerium phosphate, cerium phosphate, cerium oxide, cerium hydroxide, cerium hydroxide, cerium carbonate, cerium carbonate, cerium fluoride, cerium oxalate, cerium tungstate, heteropolyacid A cerium salt etc. are mentioned. These may be anhydrous and may have water of crystallization or water of hydration. The valence of cerium of the hardly soluble cerium compound may be +3 or +4. For example, in the case of cerium oxide, Ce 2 O 3 or CeO 2 may be used.

ここで難溶性セリウム化合物の解離平衡により生じるセリウムイオン、又は膜中で難溶性セリウム化合物が除除に溶解して生成するセリウムイオンは、+3価でも+4価であってもよい。また、難溶性セリウム化合物は、充填剤としても機能し、膜の機械的強度の向上や機械的安定性を付与することにも寄与していると考えられる。   Here, the cerium ion generated by dissociation equilibrium of the hardly soluble cerium compound or the cerium ion generated by dissolving the hardly soluble cerium compound in the film may be +3 or +4. In addition, it is considered that the hardly soluble cerium compound also functions as a filler and contributes to the improvement of the mechanical strength of the film and the provision of mechanical stability.

一方、水溶性のセリウム化合物を陽イオン交換膜中に含有させた場合、発電により生成する水や、ガスの加湿により膜に供給される水によりセリウム化合物が容易にイオンに解離し、多量のセリウムイオンが生成する。その結果、すでにイオン交換されていた交換基以外に、多量のスルホン酸基がセリウムイオンによりイオン交換されることになり、水素イオンの十分な伝導性を確保することができず、膜抵抗が増大して発電特性が低下するおそれがある。   On the other hand, when a water-soluble cerium compound is contained in the cation exchange membrane, the cerium compound is easily dissociated into ions by water generated by power generation or water supplied to the membrane by gas humidification. Ions are generated. As a result, in addition to the exchange groups that have already been ion-exchanged, a large amount of sulfonic acid groups will be ion-exchanged by cerium ions, so that sufficient conductivity of hydrogen ions cannot be ensured and membrane resistance will increase. As a result, power generation characteristics may be reduced.

本発明においては、難溶性セリウム化合物を膜中に多量に存在させても極端にはプロトン伝導性を阻害しない。この理由としては、解離平衡や溶解等によりセリウムイオンが生成したとしても、これらのセリウムイオンの量はその合計の量が、陽イオン交換膜のスルホン酸基のモル数に対して0.1モル%以下になると考えられる。したがって、難溶性セリウム化合物の膜中への添加量を幅広く変えても、極端な膜抵抗増加を抑制できることから、過酸化水素又は過酸化物ラジカルに対して優れた耐性を有する膜や膜電極接合体の製造が非常に容易となる。   In the present invention, even if a poorly soluble cerium compound is present in a large amount in the membrane, it does not extremely impair proton conductivity. The reason for this is that even if cerium ions are generated due to dissociation equilibrium, dissolution, etc., the total amount of these cerium ions is 0.1 mol relative to the number of sulfonic acid groups in the cation exchange membrane. % Or less. Therefore, even if the amount of the poorly soluble cerium compound added to the film is widely changed, it is possible to suppress an extreme increase in film resistance, so that the film or membrane electrode junction has excellent resistance to hydrogen peroxide or peroxide radicals. The production of the body is very easy.

一方、難溶性セリウム化合物は一般に電気伝導度が低いため、膜中に添加した量に依存して電流遮蔽が発生する。したがって、本発明において、電解質膜中に含まれる難溶性セリウム化合物の好ましい割合としては、陽イオン交換膜全質量の0.3〜30%(質量比)であることが好ましく、より好ましくは0.4〜20%、さらに好ましくは0.5〜10%である。膜中の難溶性セリウム化合物の含有量がこの範囲よりも少ないと、長期に渡って過酸化水素又は過酸化物ラジカルに対する十分な安定性が確保できないおそれがある。また含有量がこの範囲よりも多いと、上述のように電流遮蔽が発生するため、膜抵抗が増大して発電特性が低下するおそれがある。   On the other hand, since poorly soluble cerium compounds generally have low electrical conductivity, current shielding occurs depending on the amount added to the film. Therefore, in the present invention, the preferred proportion of the poorly soluble cerium compound contained in the electrolyte membrane is preferably 0.3 to 30% (mass ratio) of the total mass of the cation exchange membrane, more preferably 0.8. 4 to 20%, more preferably 0.5 to 10%. If the content of the hardly soluble cerium compound in the film is less than this range, there is a possibility that sufficient stability against hydrogen peroxide or peroxide radicals cannot be ensured over a long period of time. On the other hand, when the content is larger than this range, current shielding occurs as described above, so that the membrane resistance increases and the power generation characteristics may be deteriorated.

難溶性セリウム化合物としてリン酸第一セリウムが電解質膜中に含まれると、電解質膜の劣化を充分に抑制できるだけでなく、リン酸第一セリウムが吸水性を有することから低加湿の発電においても膜の乾燥が抑制され、高い電圧で発電できるので好ましい。また、結晶水や水和水を有する難溶性セリウム化合物も、保水性を有する効果が高いことから好ましい。   When cerium phosphate is included in the electrolyte membrane as a poorly soluble cerium compound, not only can the electrolyte membrane be sufficiently prevented from degrading, but the membrane can also be used in power generation with low humidity because the cerium phosphate has water absorption. Is preferable because drying of the water is suppressed and power can be generated at a high voltage. In addition, a poorly soluble cerium compound having crystal water or hydrated water is also preferable because of its high effect of water retention.

スルホン酸基を有する高分子化合物中にセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上と、難溶性セリウム化合物とを含有させた本発明の電解質膜を得る方法は特に限定されないが、例えば以下の方法が挙げられる。
(1)スルホン酸基を有する高分子化合物とセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上とを含む液状組成物に難溶性セリウム化合物を分散させた後、得られた液を用いてキャスト法等により製膜する方法。
このとき難溶性セリウム化合物は該化合物を高度に分散できる溶媒(分散媒)とあらかじめ混合しておいてからスルホン酸基を有する高分子化合物の分散液と混合してもよい。
The method for obtaining the electrolyte membrane of the present invention containing at least one selected from the group consisting of cerium ions and manganese ions and a hardly soluble cerium compound in the polymer compound having a sulfonic acid group is not particularly limited. The following methods are mentioned.
(1) A poorly soluble cerium compound is dispersed in a liquid composition containing a polymer compound having a sulfonic acid group and at least one selected from the group consisting of cerium ions and manganese ions, and then the obtained liquid is used. A method for forming a film by a casting method or the like.
At this time, the hardly soluble cerium compound may be mixed in advance with a solvent (dispersion medium) capable of highly dispersing the compound and then mixed with a dispersion of a polymer compound having a sulfonic acid group.

(2)スルホン酸基を有する高分子化合物の分散液又は溶液に難溶性セリウム化合物を分散させた後、得られた液を用いてキャスト法等により製膜し、得られた膜をセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上が含まれる溶液中に浸漬しスルホン酸基の一部をイオン置換する方法。   (2) After dispersing a sparingly soluble cerium compound in a dispersion or solution of a polymer compound having a sulfonic acid group, the resulting solution is used to form a film by a casting method or the like. A method in which a part of a sulfonic acid group is ion-substituted by dipping in a solution containing at least one selected from the group consisting of manganese ions.

(3)スルホン酸基を有する高分子化合物からなる膜をセリウムイオンが含まれる溶液中に浸漬してセリウムイオンを膜中に含有させた後、リン酸、シュウ酸、NaFや水酸化ナトリウム等の、セリウムイオンと反応して難溶性セリウム化合物を形成する物質を含む溶液に浸漬して、難溶性セリウム化合物を膜中に析出させた後、該膜をセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上が含まれる溶液中に浸漬しスルホン酸基の一部をイオン置換する方法。   (3) After immersing a membrane made of a polymer compound having a sulfonic acid group in a solution containing cerium ions to contain cerium ions in the membrane, phosphoric acid, oxalic acid, NaF, sodium hydroxide, etc. The film is immersed in a solution containing a substance that reacts with cerium ions to form a hardly soluble cerium compound, and the hardly soluble cerium compound is deposited in the film, and then the film is selected from the group consisting of cerium ions and manganese ions A method in which a part of a sulfonic acid group is ion-substituted by dipping in a solution containing one or more kinds.

(4)スルホン酸基を有する高分子化合物の分散液中に当該分散液に溶解可能なセリウム化合物を添加してスルホン酸基をセリウムイオンによりイオン交換した後、該分散液にリン酸、シュウ酸、NaFや水酸化ナトリウム等の、セリウムイオンと反応して難溶性セリウム化合物を形成する物質又はそれを含む溶液を添加して、該分散液中に難溶性セリウム化合物を生成させ、得られた液を用いてキャスト法等により製膜し、得られた膜をセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上が含まれる溶液中に浸漬しスルホン酸基の一部をイオン置換する方法。   (4) A cerium compound that can be dissolved in the dispersion is added to the dispersion of the polymer compound having a sulfonic acid group, and the sulfonic acid group is ion-exchanged with cerium ions, and then phosphoric acid and oxalic acid are added to the dispersion. A solution obtained by adding a substance that reacts with cerium ions to form a hardly soluble cerium compound, such as NaF or sodium hydroxide, or a solution containing the same, to form a hardly soluble cerium compound in the dispersion. A film is formed by using a casting method or the like, and the obtained film is immersed in a solution containing one or more selected from the group consisting of cerium ions and manganese ions, and a part of the sulfonic acid group is ion-substituted.

(3)や(4)の方法では、スルホン酸基を有する高分子化合物に、一旦セリウムイオンを含有させたあと、セリウムイオンと反応して難溶性セリウム化合物を形成する物質により難溶性セリウム化合物を生成させている。ここでいうセリウムイオンも、上述した電解質膜に最終的に含まれるセリウムイオンと同様に、セリウムイオンを含む水溶性の塩を使用することにより含有させることができる。セリウムイオンを含む水溶性の塩としては、例えば酢酸セリウム(Ce(CHCOO)・HO)、塩化セリウム(CeCl・6HO)、硝酸セリウム(Ce(NO・6HO)硫酸セリウム(Ce(SO・8HO)等が挙げられる。
上記(1)〜(4)の方法において、難溶性セリウムを均一に含有させることができ、かつ簡便な方法であることから、(1)の方法が好ましい。
In the methods of (3) and (4), after a cerium ion is once contained in a polymer compound having a sulfonic acid group, a hardly soluble cerium compound is formed by a substance that reacts with cerium ions to form a hardly soluble cerium compound. It is generated. The cerium ion mentioned here can also be contained by using a water-soluble salt containing cerium ions in the same manner as the cerium ions finally contained in the electrolyte membrane. Examples of water-soluble salts containing cerium ions include cerium acetate (Ce (CH 3 COO) 3 .H 2 O), cerium chloride (CeCl 3 .6H 2 O), and cerium nitrate (Ce (NO 3 ) 3 .6H. 2 O) cerium sulfate (Ce 2 (SO 4 ) 3 · 8H 2 O) and the like.
In the above methods (1) to (4), the method (1) is preferred because it can uniformly contain hardly soluble cerium and is a simple method.

本発明の電解質膜は、セリウムイオン及びマンガンイオンからなる群から選ばれる1種以上と、難溶性セリウム化合物とを不均一に含有するように調整することもできる。例えば、2層以上の層からなる陽イオン交換膜(積層膜)であってその全ての層ではなく少なくとも1層がセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上と、難溶性セリウム化合物とを含有している、すなわち厚さ方向に不均一に、セリウムイオン及びマンガンイオンからなる群から選ばれる1種以上と、難溶性セリウム化合物とを含んでいてもよい。したがって、特にアノード側について過酸化水素又は過酸化物ラジカルに対する耐久性を高める必要がある場合は、アノードに一番近い層のみセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上と、難溶性セリウム化合物とを含有するイオン交換膜からなる層とすることもできる。セリウムイオン及びマンガンイオンからなる群から選ばれる1種以上と、難溶性セリウム化合物とが、積層膜のなかの別々の層に含まれていてもよい。   The electrolyte membrane of the present invention can also be adjusted so that it contains non-uniformly one or more selected from the group consisting of cerium ions and manganese ions and a poorly soluble cerium compound. For example, a cation exchange membrane (laminated film) composed of two or more layers, and at least one layer selected from the group consisting of cerium ions and manganese ions instead of all the layers, and a poorly soluble cerium compound 1 or more selected from the group consisting of cerium ions and manganese ions and a poorly soluble cerium compound may be included. Therefore, in particular, when it is necessary to increase the durability against hydrogen peroxide or peroxide radicals on the anode side, only the layer closest to the anode has at least one selected from the group consisting of cerium ions and manganese ions, and is hardly soluble. It can also be set as the layer which consists of an ion exchange membrane containing a cerium compound. One or more selected from the group consisting of cerium ions and manganese ions and a sparingly soluble cerium compound may be contained in separate layers of the laminated film.

ここで、本発明の電解質膜がセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上と難溶性セリウム化合物とを含む層と、含まない層とからなる積層膜からなる場合は、その作製方法としては、例えば上述の(1)〜(4)のいずれかの方法によりセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上と、難溶性セリウム化合物とを含む陽イオン交換膜を作製しておく。そして、これをセリウムイオン、マンガンイオン又は難溶性セリウム化合物を含まない陽イオン交換膜と積層する工程を経て作製することが好ましいが、特に限定されない。   Here, when the electrolyte membrane of the present invention is composed of a laminated film composed of a layer containing one or more selected from the group consisting of cerium ions and manganese ions and a hardly soluble cerium compound, and a layer not containing it, a production method thereof For example, a cation exchange membrane containing at least one selected from the group consisting of cerium ions and manganese ions and a hardly soluble cerium compound by any one of the methods (1) to (4) described above is prepared. deep. And although it is preferable to produce through the process of laminating | stacking this with the cation exchange membrane which does not contain a cerium ion, a manganese ion, or a hardly soluble cerium compound, it is not specifically limited.

本発明におけるスルホン酸基を有する高分子化合物としては特に限定されないが、イオン交換容量は0.5〜3.0ミリ当量/g乾燥樹脂であることが好ましく、特に0.7〜2.5ミリ当量/g乾燥樹脂であることが好ましい。また、耐久性の観点から当該高分子化合物は含フッ素重合体であることが好ましく、特にスルホン酸基を有するパーフルオロカーボン重合体(エーテル結合性の酸素原子を含んでいてもよい)が好ましい。上記パーフルオロカーボン重合体としては特に限定されないが、CF=CF−(OCFCFX)−O−(CF−SOHで表されるパーフルオロ化合物(mは0〜3の整数を示し、nは0〜12の整数を示し、pは0又は1を示し、n=0の場合はp=0かつm=1〜3であり、Xはフッ素原子又はトリフルオロメチル基を示す。)に基づく繰り返し単位と、テトラフルオロエチレンに基づく繰り返し単位とを含む共重合体であることが好ましい。 The polymer compound having a sulfonic acid group in the present invention is not particularly limited, but the ion exchange capacity is preferably 0.5 to 3.0 meq / g dry resin, particularly 0.7 to 2.5 mm. Equivalent / g dry resin is preferred. From the viewpoint of durability, the polymer compound is preferably a fluorine-containing polymer, and more preferably a perfluorocarbon polymer having a sulfonic acid group (which may contain an etheric oxygen atom). Is not particularly restricted but includes perfluorocarbon polymer but, CF 2 = CF- (OCF 2 CFX) m -O p - (CF 2) perfluoro compound represented by n -SO 3 H (m is 0-3 N represents an integer of 0 to 12, p represents 0 or 1, and when n = 0, p = 0 and m = 1 to 3, X represents a fluorine atom or a trifluoromethyl group. A copolymer containing a repeating unit based on tetrafluoroethylene and a repeating unit based on tetrafluoroethylene.

上記パーフルオロ化合物の好ましい例をより具体的に示すと、下記式(i)〜(iii)で表される化合物が挙げられる。ただし、下記式中、qは1〜8の整数、rは1〜8の整数、tは1〜3の整数を示す。   When the preferable example of the said perfluoro compound is shown more concretely, the compound represented by following formula (i)-(iii) will be mentioned. However, in the following formula, q is an integer of 1 to 8, r is an integer of 1 to 8, and t is an integer of 1 to 3.

Figure 0004972867
Figure 0004972867

スルホン酸基を有するパーフルオロカーボン重合体を用いる場合、重合後にフッ素化することにより重合体の末端がフッ素化処理されたものを用いてもよい。重合体の末端がフッ素化されていると、より過酸化水素や過酸化物ラジカルに対する安定性が優れるため耐久性が向上する。   When using the perfluorocarbon polymer which has a sulfonic acid group, you may use what the terminal of the polymer was fluorinated by fluorination after superposition | polymerization. When the terminal of the polymer is fluorinated, the durability against hydrogen peroxide and peroxide radicals is further improved, so that the durability is improved.

また、スルホン酸基を有する高分子化合物として、スルホン酸基を有するパーフルオロカーボン重合体以外のものも使用でき、例えば高分子の主鎖に、又は主鎖と側鎖に芳香環を有しており、該芳香環にスルホン酸基が導入された構造を有する高分子化合物であって、イオン交換容量が0.8〜3.0ミリ当量/g乾燥樹脂である高分子化合物が好ましく使用できる。具体的には、例えば下記の高分子化合物が使用できる。   Further, as the polymer compound having a sulfonic acid group, those other than the perfluorocarbon polymer having a sulfonic acid group can be used, for example, having an aromatic ring in the main chain of the polymer or in the main chain and the side chain. A polymer compound having a structure in which a sulfonic acid group is introduced into the aromatic ring and having an ion exchange capacity of 0.8 to 3.0 meq / g dry resin can be preferably used. Specifically, for example, the following polymer compounds can be used.

スルホン化ポリアリーレン、スルホン化ポリベンゾオキサゾール、スルホン化ポリベンゾチアゾール、スルホン化ポリベンゾイミダゾール、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリフェニレンスルホン、スルホン化ポリフェニレンオキシド、スルホン化ポリフェニレンスルホキシド、スルホン化ポリフェニレンサルファイド、スルホン化ポリフェニレンスルフィドスルホン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルケトンケトン、スルホン化ポリイミド等。   Sulfonated polyarylene, sulfonated polybenzoxazole, sulfonated polybenzothiazole, sulfonated polybenzimidazole, sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polyphenylenesulfone, sulfonated polyphenyleneoxide, Sulfonated polyphenylene sulfoxide, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone, sulfonated polyether ketone, sulfonated polyether ether ketone, sulfonated polyether ketone ketone, sulfonated polyimide and the like.

本発明の電解質膜を有する固体高分子形燃料電池は、例えば以下のような構成である。すなわち、本発明の電解質膜の両面に、触媒とイオン交換樹脂とを含む触媒層を有するアノード及びカソードが配置された膜電極接合体を備える。膜電極接合体のアノード及びカソードは、好ましくは触媒層の外側(膜と反対側)にカーボンクロスやカーボンペーパー等からなるガス拡散層が配置される。膜電極接合体の両面には、燃料ガス又は酸化剤ガスの通路となる溝が形成されセパレータが配置され、セパレータを介して膜電極接合体が複数積層されたスタックを構成し、アノード側には水素ガスが供給され、カソード側には酸素又は空気が供給される構成である。アノードにおいてはH→2H+2eの反応が起こり、カソードにおいては1/2O+2H+2e→HOの反応が起こり、化学エネルギーが電気エネルギーに変換される。
また、本発明の電解質膜は、アノード側に燃料ガスではなくメタノールを供給する直接メタノール燃料電池にも使用できる。
The polymer electrolyte fuel cell having the electrolyte membrane of the present invention has the following configuration, for example. That is, a membrane / electrode assembly in which an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin are arranged on both surfaces of the electrolyte membrane of the present invention is provided. The anode and cathode of the membrane electrode assembly are preferably provided with a gas diffusion layer made of carbon cloth, carbon paper or the like outside the catalyst layer (opposite the membrane). Grooves serving as fuel gas or oxidant gas passages are formed on both surfaces of the membrane electrode assembly to form a stack in which a plurality of membrane electrode assemblies are stacked via the separator. Hydrogen gas is supplied, and oxygen or air is supplied to the cathode side. A reaction of H 2 → 2H + + 2e occurs at the anode, and a reaction of 1 / 2O 2 + 2H + + 2e → H 2 O occurs at the cathode, and chemical energy is converted into electric energy.
The electrolyte membrane of the present invention can also be used in a direct methanol fuel cell in which methanol is supplied to the anode side instead of fuel gas.

上述の触媒層は通常の手法に従い、例えば以下のようにして得られる。まず、白金触媒又は白金合金触媒微粒子を担持させた導電性のカーボンブラック粉末とスルホン酸基を有するパーフルオロカーボン重合体の溶液を混合し均一な分散液を得て、例えば以下のいずれかの方法でガス拡散電極を形成して膜電極接合体を得る。   The catalyst layer described above is obtained in the following manner, for example, according to a normal method. First, a conductive carbon black powder carrying platinum catalyst or platinum alloy catalyst fine particles and a solution of a perfluorocarbon polymer having a sulfonic acid group are mixed to obtain a uniform dispersion. For example, by any of the following methods: A gas diffusion electrode is formed to obtain a membrane electrode assembly.

第1の方法は、電解質膜の両面に上記分散液を塗布し乾燥後、両面を2枚のカーボンクロス又はカーボンペーパーで密着する方法である。第2の方法は、上記分散液を2枚のカーボンクロス又はカーボンペーパー上に塗布乾燥後、分散液が塗布された面が上記電解質膜と密着するように、上記電解質膜の両面から挟みこむ方法である。なお、ここでカーボンクロス又はカーボンペーパーは触媒を含む層により均一にガスを拡散させるためのガス拡散層としての機能と集電体としての機能を有するものである。また、別途用意した基材に上記分散液を塗工して触媒層を作製し、転写等の方法により電解質膜と接合させた後に基材をはく離し、上記ガス拡散層で挟み込む方法も使用できる。   The first method is a method in which the dispersion liquid is applied to both surfaces of the electrolyte membrane, dried, and then both surfaces are adhered to each other with two carbon cloths or carbon paper. The second method is a method in which the dispersion liquid is applied onto two carbon cloths or carbon papers and then sandwiched from both surfaces of the electrolyte membrane so that the surface on which the dispersion liquid is applied is in close contact with the electrolyte membrane. It is. Here, the carbon cloth or the carbon paper has a function as a gas diffusion layer and a function as a current collector for diffusing the gas uniformly by the layer containing the catalyst. In addition, a method can be used in which a catalyst layer is prepared by applying the dispersion to a separately prepared substrate, bonded to the electrolyte membrane by a method such as transfer, and then peeled off and sandwiched between the gas diffusion layers. .

触媒層中に含まれるイオン交換樹脂は特に限定されないが、電解質膜を構成する樹脂と同様に、スルホン酸基を有するパーフルオロカーボン重合体であることが好ましい。触媒層中のイオン交換樹脂は、本発明の電解質膜と同様にセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上のイオンと、難溶性セリウム化合物とを含んでいてもよい。セリウムイオン及びマンガンイオンからなる群から選ばれる1種以上のイオンと難溶性セリウム化合物を含むイオン交換樹脂は、アノードにもカソードにも用いることができ、樹脂の分解は効果的に抑制されるので、固体高分子形燃料電池はさらに耐久性が付与される。   Although the ion exchange resin contained in the catalyst layer is not particularly limited, it is preferably a perfluorocarbon polymer having a sulfonic acid group, like the resin constituting the electrolyte membrane. The ion exchange resin in the catalyst layer may contain at least one ion selected from the group consisting of cerium ions and manganese ions and a hardly soluble cerium compound, as in the electrolyte membrane of the present invention. An ion exchange resin containing one or more ions selected from the group consisting of cerium ions and manganese ions and a sparingly soluble cerium compound can be used for both the anode and the cathode, and the decomposition of the resin is effectively suppressed. The polymer electrolyte fuel cell is further provided with durability.

触媒層中のイオン交換樹脂と電解質膜の両方にセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上のイオンと難溶性セリウム化合物とを含有させたい場合は、例えば触媒層と電解質膜との接合体をあらかじめ作製し、上述の(3)の方法で触媒層中のイオン交換樹脂及び電解質膜中にセリウムイオン及びマンガンイオンからなる群から選ばれる1種以上のイオンと難溶性セリウム化合物とを含有させることも可能である。   When it is desired to contain one or more ions selected from the group consisting of cerium ions and manganese ions and a sparingly soluble cerium compound in both the ion exchange resin and the electrolyte membrane in the catalyst layer, for example, between the catalyst layer and the electrolyte membrane A joined body is prepared in advance, and the ion exchange resin in the catalyst layer and one or more ions selected from the group consisting of cerium ions and manganese ions and a sparingly soluble cerium compound in the catalyst layer by the method of (3) above. It can also be included.

本発明の電解質膜は、一部が、セリウムイオン及びマンガンイオンからなる群から選ばれる1種以上のイオンと難溶性セリウム化合物とを含む、スルホン酸基を有する高分子化合物のみからなる膜であってもよいが、他の成分を含んでいてもよく、ポリテトラフルオロエチレンやパーフルオロアルキルエーテル等の他の樹脂等の繊維、織布、不織布、多孔体等により補強されている膜であってもよい。   The electrolyte membrane according to the present invention is a membrane that is formed only of a polymer compound having a sulfonic acid group, including one or more ions selected from the group consisting of cerium ions and manganese ions and a hardly soluble cerium compound. However, it may contain other components, and is a membrane reinforced with fibers, woven fabrics, nonwoven fabrics, porous bodies, etc., such as other resins such as polytetrafluoroethylene and perfluoroalkyl ether. Also good.

以下、本発明を具体的に実施例(例1〜3)及び比較例(例4、5)を用いて説明するが、本発明はこれらに限定されない。   Hereinafter, the present invention will be specifically described using Examples (Examples 1 to 3) and Comparative Examples (Examples 4 and 5), but the present invention is not limited thereto.

[例1]
CF=CF/CF=CFOCFCF(CF)O(CFSOH共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂)300gとエタノール420gと水280gとを2Lオートクレーブに仕込み、密閉し、ダブルヘリカル翼にて105℃で6時間混合撹拌して均一な液(以下、溶液Aという)を得た。溶液Aの固形分濃度は30%であった。
[Example 1]
CF 2 ═CF 2 / CF 2 ═CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.1 meq / g dry resin) 300 g ethanol 420 g water 280 g Was placed in a 2 L autoclave, sealed, and mixed and stirred at 105 ° C. for 6 hours with a double helical blade to obtain a uniform liquid (hereinafter referred to as “solution A”). The solid content concentration of Solution A was 30%.

300mlガラス製丸底フラスコに、上記溶液Aを100gと、硝酸セリウム(Ce(NO・6HO)1.43gとを仕込み、ポリテトラフルオロエチレン製半月板翼にて、室温で8時間撹拌し、均一な液(以下、溶液Bという)を得た。 A 300 ml glass round bottom flask was charged with 100 g of the above solution A and 1.43 g of cerium nitrate (Ce (NO 3 ) 3 .6H 2 O), and 8 ml at room temperature with a polytetrafluoroethylene meniscus blade. The mixture was stirred for a time to obtain a uniform liquid (hereinafter referred to as solution B).

ここで、高分子電解質膜に含まれることとなるセリウムイオンの含有率を測定した。上記溶液Bを100μmのエチレン/テトラフルオロエチレン共重合体からなるシート(商品名:アフレックス100N、旭硝子社製、以下、単にETFEシートともいう。)上に、ダイコータにて塗工しキャスト製膜し、80℃で10分予備乾燥した後、120℃で10分乾燥し、膜厚50μmの高分子電解質膜を得た。この高分子電解質膜から、5cm×5cmの大きさの膜を切り出し、乾燥窒素中で16時間放置した後、質量を精秤し、0.1規定の塩酸水溶液中に含浸して、セリウムイオンを完全に抽出した液を得た。この液をICP分光分析にて測定することで算出した結果、高分子電解質膜中のセリウムイオンの含有率は膜中の−SO 基の10.2モル%であった。 Here, the content rate of the cerium ion which will be contained in a polymer electrolyte membrane was measured. The above solution B is coated on a sheet (trade name: Aflex 100N, manufactured by Asahi Glass Co., Ltd., hereinafter also referred to simply as an ETFE sheet) with a die coater on a sheet of 100 μm ethylene / tetrafluoroethylene copolymer to form a cast film. Then, after preliminary drying at 80 ° C. for 10 minutes, drying was performed at 120 ° C. for 10 minutes to obtain a polymer electrolyte membrane having a thickness of 50 μm. From this polymer electrolyte membrane, a 5 cm × 5 cm size membrane was cut out and allowed to stand in dry nitrogen for 16 hours. Then, the mass was precisely weighed and impregnated in a 0.1 N aqueous hydrochloric acid solution, and cerium ions were added. A completely extracted liquid was obtained. As a result of calculating this liquid by measuring by ICP spectroscopy, the content of cerium ions in the polymer electrolyte membrane was 10.2 mol% of the —SO 3 group in the membrane.

次に、300mlガラス製丸底フラスコに、溶液B100gと、酸化セリウム微粉末(CeO、純正化学社製、平均粒径0.4μm)0.5gとを仕込んで混合した。この混合物を超音波発生ホモジナイザー(US−600T:日本精機社製)を使用してさらに混合、粉砕させ、酸化セリウム粒子が分散された半透明の分散液を得た。この溶液を同様に塗工して、キャスト製膜し、膜厚50μmで酸化セリウムの含有率が膜全質量の1.6%の高分子電解質膜を得た。 Next, 100 g of the solution B and 0.5 g of cerium oxide fine powder (CeO 2 , manufactured by Junsei Chemical Co., Ltd., average particle size 0.4 μm) were charged into a 300 ml glass round bottom flask and mixed. This mixture was further mixed and pulverized using an ultrasonic generation homogenizer (US-600T: manufactured by Nippon Seiki Co., Ltd.) to obtain a translucent dispersion in which cerium oxide particles were dispersed. This solution was applied in the same manner and cast to obtain a polymer electrolyte membrane having a thickness of 50 μm and a cerium oxide content of 1.6% of the total mass of the membrane.

次に、白金がカーボン担体(比表面積800m/g)に触媒全質量の50%含まれるように担持された触媒粉末(エヌ・イーケムキャット社製)1.0gに、蒸留水5.1gを混合した。この混合液にCF=CF/CF=CFOCFCF(CF)O(CFSOH共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂)をエタノールに分散させた固形分濃度9質量%の液5.6gを混合した。この混合物をホモジナイザー(商品名:ポリトロン、キネマチカ社製)を使用して混合、粉砕させ、触媒層形成用塗工液を作製した。 Next, 5.1 g of distilled water was added to 1.0 g of catalyst powder (manufactured by N.E. Chemcat Co.) supported by platinum so that 50% of the total mass of the catalyst was contained in a carbon support (specific surface area 800 m 2 / g). Mixed. CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.1 meq / g dry resin) is dispersed in ethanol in this mixed solution. 5.6 g of a liquid having a solid content concentration of 9% by mass was mixed. This mixture was mixed and pulverized using a homogenizer (trade name: Polytron, manufactured by Kinematica) to prepare a coating solution for forming a catalyst layer.

この塗工液を、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層を作製した。なお、触媒層形成前の基材フィルムのみの質量と触媒層形成後の基材フィルムの質量を測定することにより、触媒層に含まれる単位面積あたりの白金の量を算出したところ、0.5mg/cmであった。 This coating solution was applied onto a polypropylene base film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to produce a catalyst layer. In addition, when the amount of platinum per unit area contained in the catalyst layer was calculated by measuring the mass of only the base film before formation of the catalyst layer and the mass of the base film after formation of the catalyst layer, 0.5 mg / Cm 2 .

次に、上述のセリウムイオン及び酸化セリウムを含む高分子電解質膜を用い、この膜の両面に上述の基材フィルム上に形成された触媒層をそれぞれ配置し、ホットプレス法により触媒層を膜に転写してアノード触媒層及びカソード触媒層を高分子電解質膜の両面にそれぞれ接合した、膜触媒層接合体を得た。なお、電極面積は16cmであった。 Next, using the above-described polymer electrolyte membrane containing cerium ions and cerium oxide, the catalyst layers formed on the above-mentioned substrate film are respectively disposed on both sides of this membrane, and the catalyst layer is formed into a membrane by hot pressing. The membrane catalyst layer assembly was obtained by transferring and joining the anode catalyst layer and the cathode catalyst layer to both surfaces of the polymer electrolyte membrane. The electrode area was 16 cm 2 .

この膜触媒層接合体を厚さ350μmのカーボンクロスからなるガス拡散層2枚の間に挟んで膜電極接合体を作製し、セパレータで挟み、単セルを完成させ、加速試験として開回路試験(OCV試験)を行った。試験は、常圧で、電流密度0.2A/cmに相当する水素(利用率70%)及び空気(利用率40%)をそれぞれアノード及びカソードに供給し、セル温度は120℃、アノードガスの露点は73℃(相対湿度18%)、カソードガスの露点も73℃として、発電は行わずに開回路状態で100時間運転し、その間の電圧変化を測定した。また、試験前後にアノードに水素、カソードに窒素を供給し、膜を通してアノードからカソードにリークする水素ガス量を分析し、膜の劣化の程度を調べた。結果を表1に示す。 This membrane / catalyst layer assembly is sandwiched between two gas diffusion layers made of carbon cloth having a thickness of 350 μm to produce a membrane / electrode assembly, which is then sandwiched between separators to complete a single cell. OCV test). In the test, hydrogen (utilization rate 70%) and air (utilization rate 40%) corresponding to a current density of 0.2 A / cm 2 were supplied to the anode and the cathode, respectively, the cell temperature was 120 ° C., and the anode gas. The dew point was 73 ° C. (relative humidity 18%) and the dew point of the cathode gas was also 73 ° C. The battery was operated for 100 hours in an open circuit state without power generation, and the voltage change during that time was measured. Also, before and after the test, hydrogen was supplied to the anode and nitrogen was supplied to the cathode, and the amount of hydrogen gas leaking from the anode to the cathode through the membrane was analyzed to examine the degree of membrane degradation. The results are shown in Table 1.

次に、また上記同様に膜電極接合体を作製し、セパレータで挟み、単セルを完成させ、高温・低加湿での運転条件における耐久性試験を行った。試験条件は、アノード及びカソードとも0.2MPaに加圧し、水素(利用率50%)及び空気(利用率50%)を供給し、セル温度120℃において電流密度0.2A/cmにおける固体高分子形燃料電池の初期特性評価及び耐久性評価を実施した。アノード側は露点105℃(相対湿度60%)、カソード側も露点105℃となるようにそれぞれ水素及び空気を加湿してセル内に供給し、運転初期のセル電圧及び運転開始後の経過時間とセル電圧との関係を測定した。結果を表2に示す。 Next, a membrane electrode assembly was prepared in the same manner as described above, sandwiched between separators to complete a single cell, and a durability test was performed under operating conditions at high temperature and low humidity. The test conditions were as follows: both the anode and the cathode were pressurized to 0.2 MPa, hydrogen (utilization rate 50%) and air (utilization rate 50%) were supplied, and the solid density at a current density of 0.2 A / cm 2 at a cell temperature of 120 ° C. The initial characteristics and durability of the molecular fuel cell were evaluated. Hydrogen and air are humidified and supplied to the cell so that the anode side has a dew point of 105 ° C. (relative humidity 60%) and the cathode side also has a dew point of 105 ° C., respectively. The relationship with the cell voltage was measured. The results are shown in Table 2.

また、高加湿での耐久試験も行った。試験条件は、常圧にて、水素(利用率70%)及び空気(利用率40%)を供給し、セル温度80℃において電流密度0.2A/cmにおける固体高分子燃料電池の初期特性評価及び耐久性評価を実施した。アノード側は露点80℃(相対湿度100%)、カソード側も露点80℃としてそれぞれ水素及び空気を加湿してセル内に供給し、運転初期のセル電圧及び運転開始後の経過時間とセル電圧との関係を測定した。結果を表3に示す。 In addition, a durability test with high humidification was also performed. The test conditions are as follows: hydrogen (utilization rate 70%) and air (utilization rate 40%) are supplied at normal pressure, the initial temperature of the polymer electrolyte fuel cell at a cell temperature of 80 ° C. and a current density of 0.2 A / cm 2 Characteristic evaluation and durability evaluation were performed. The anode side has a dew point of 80 ° C. (relative humidity 100%), and the cathode side also has a dew point of 80 ° C. to humidify and supply hydrogen and air into the cell. The relationship was measured. The results are shown in Table 3.

[例2]
硝酸セリウム(Ce(NO・6HO)10.0gを500mLの蒸留水に溶解し、この中に1モル/Lのリン酸溶液を滴下し、白色の沈殿を得た。これを水洗し、pHが7になるまで水洗・濾過を繰り返し、80℃で乾燥した。この結晶を、X線回折により同定した結果、リン酸第一セリウムであることが確認された。
[Example 2]
Cerium nitrate (Ce (NO 3) 3 · 6H 2 O) 10.0g was dissolved in distilled water of 500 mL, was added dropwise phosphorus acid solution 1 mol / L therein, to give a white precipitate. This was washed with water, repeatedly washed with water and filtered until the pH reached 7, and dried at 80 ° C. As a result of identifying this crystal by X-ray diffraction, it was confirmed that it was ceric phosphate.

次に、溶液Aの100gに対して、前記リン酸第一セリウム2.00gを仕込み、ポリテトラフルオロエチレン半月板翼にて、室温で8時間撹拌してリン酸第一セリウムが分散した液状組成物を得た。次にこの液状組成物を100μmのETFEシート上に、ダイコータにて塗工して、キャスト製膜し、80℃で10分予備乾燥した後、120℃で10分乾燥し、さらに150℃で30分のアニールを施し、膜厚50μmでリン酸第一セリウムの含有率が膜全質量の6.2%の高分子電解質膜を得た。   Next, 2.00 g of the above-mentioned cerium phosphate was added to 100 g of the solution A, and the liquid composition in which the cerium phosphate was dispersed by stirring for 8 hours at room temperature with a polytetrafluoroethylene meniscus blade. I got a thing. Next, this liquid composition was coated on a 100 μm ETFE sheet with a die coater, cast into a film, pre-dried at 80 ° C. for 10 minutes, then dried at 120 ° C. for 10 minutes, and further at 150 ° C. for 30 minutes. The polymer electrolyte membrane was obtained with a film thickness of 50 μm and a cerium phosphate content of 6.2% of the total mass of the membrane.

この高分子電解質膜から、5cm×5cmの大きさの膜を切り出し、乾燥窒素中で16時間放置した後、乾燥窒素中で質量を測定したところ、0.260gであった。この膜のスルホン酸基の量は以下の式により求められる。0.260×(1−0.062)×1.1(ミリ当量/g乾燥樹脂)=0.268(ミリ当量)。   From this polymer electrolyte membrane, a membrane having a size of 5 cm × 5 cm was cut out and allowed to stand in dry nitrogen for 16 hours, and then the mass was measured in dry nitrogen to be 0.260 g. The amount of sulfonic acid groups in this membrane is determined by the following formula. 0.260 * (1-0.062) * 1.1 (milli equivalent / g dry resin) = 0.268 (milli equivalent).

次に、この高分子電解質膜のスルホン酸基量の10モル%の量に相当するセリウムイオン(+3価)を含むように、硝酸セリウム(Ce(NO・6HO)11.7mgを500mLの蒸留水に溶解した。この水溶液に、上記高分子電解質膜を浸漬し、室温で40時間、スターラーを用いて撹拌し、高分子電解質膜のスルホン酸基の一部をセリウムイオンによりイオン交換した。なお、浸漬前後の硝酸セリウム溶液をイオンクロマトグラフィーにより分析した結果、この高分子電解質膜のセリウムイオンの含有率は膜中の−SO 基の9.3モル%であることが判明した。
この膜を用いて例1と同様にして膜触媒層接合体を得た。この膜電極接合体について例1と同様の評価を行うと、表1〜3に示す結果のとおりとなった。
Next, to include the polymer electrolyte membrane of the sulfonic acid group amount of cerium corresponds to the amount of 10 mole% ionic (+3), cerium nitrate (Ce (NO 3) 3 · 6H 2 O) 11.7mg Was dissolved in 500 mL of distilled water. The polymer electrolyte membrane was immersed in this aqueous solution and stirred with a stirrer at room temperature for 40 hours to ion-exchange part of the sulfonic acid group of the polymer electrolyte membrane with cerium ions. In addition, as a result of analyzing the cerium nitrate solution before and after immersion by ion chromatography, it was found that the content of cerium ions in the polymer electrolyte membrane was 9.3 mol% of the —SO 3 group in the membrane.
Using this membrane, a membrane / catalyst layer assembly was obtained in the same manner as in Example 1. When this membrane electrode assembly was evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 were obtained.

[例3]
粒状のポリエーテルエーテルケトン(英国Victrex社製、PEEK−450P)60gを98%の硫酸1200gに室温で少量ずつ添加し、室温で60時間撹拌することで、ポリエーテルエーテルケトンにスルホン酸基が導入された高分子化合物の溶液を得た。次にこの溶液を、5Lの蒸留水に冷却しながら徐徐に滴下することで、スルホン酸基を有するポリエーテルエーテルケトンを析出させ、濾過して分離した。次いでこれを蒸留水で洗浄液が中性になるまで洗浄し、その後80℃真空下で24時間乾燥して、48gのスルホン酸基を有するポリエーテルエーテルケトンを得た。
[Example 3]
60 g of granular polyetheretherketone (Pick-450P manufactured by Victrex, UK) is added to 1200 g of 98% sulfuric acid in small portions at room temperature and stirred at room temperature for 60 hours to introduce sulfonic acid groups into the polyetheretherketone. A solution of the obtained polymer compound was obtained. Next, this solution was gradually added dropwise to 5 L of distilled water while cooling, thereby precipitating a polyether ether ketone having a sulfonic acid group, and separating by filtration. Next, this was washed with distilled water until the washing liquid became neutral, and then dried under vacuum at 80 ° C. for 24 hours to obtain 48 g of polyetheretherketone having sulfonic acid groups.

次にこの化合物約1gを精密に秤量した後、1規定の塩化ナトリウム水溶液500mL中に浸漬し、60℃で24時間反応させてスルホン酸基をナトリウムイオンによりイオン交換した。この試料を室温まで冷却した後、蒸留水で十分洗浄し、イオン交換した1規定の塩化ナトリウム水溶液中と洗浄した蒸留水を0.01規定の水酸化ナトリウムで滴定して、イオン交換容量を求めた。イオン交換容量は1.6ミリ当量/g乾燥樹脂であった。   Next, about 1 g of this compound was precisely weighed and then immersed in 500 mL of a 1N aqueous sodium chloride solution and reacted at 60 ° C. for 24 hours to ion-exchange sulfonic acid groups with sodium ions. After cooling this sample to room temperature, it was thoroughly washed with distilled water, and the ion exchange capacity was obtained by titrating the ion-exchanged 1N aqueous sodium chloride solution and the washed distilled water with 0.01N sodium hydroxide. It was. The ion exchange capacity was 1.6 meq / g dry resin.

次にこのスルホン酸基を有するポリエーテルエーテルケトン40gをN−メチル−2−ピロリドン(NMP)360gに溶解して10%の溶液とする(以下、溶液Cという)。この溶液C100gに例2で得られたリン酸第一セリウム3.1gを添加して混合し、これを室温でポリテトラフルオロエチレンからなる基材にキャスト製膜した後、窒素雰囲気で100℃で10時間乾燥してNMPを蒸発させ、厚さ50μmで膜中のリン酸セリウムの含有率が膜全質量の3.0%の高分子電解質膜を得た。この高分子電解質膜から大きさ5cm×5cmの膜を切り出し、乾燥窒素中で16時間放置した後、質量を精秤したところ、0.171gであった。この膜のスルホン酸基の量は以下の式により求められる。0.171÷1.03×1.6(1.1ミリ当量/g乾燥樹脂)=0.266(ミリ当量)。   Next, 40 g of the polyether ether ketone having a sulfonic acid group is dissolved in 360 g of N-methyl-2-pyrrolidone (NMP) to form a 10% solution (hereinafter referred to as solution C). After adding 3.1 g of the cerium phosphate obtained in Example 2 to 100 g of this solution C, this was cast on a substrate made of polytetrafluoroethylene at room temperature, and then at 100 ° C. in a nitrogen atmosphere. NMP was evaporated by drying for 10 hours to obtain a polymer electrolyte membrane having a thickness of 50 μm and a cerium phosphate content of 3.0% of the total mass of the membrane. A film having a size of 5 cm × 5 cm was cut out from the polymer electrolyte membrane, left in dry nitrogen for 16 hours, and then precisely weighed to find 0.171 g. The amount of sulfonic acid groups in this membrane is determined by the following formula. 0.171 ÷ 1.03 × 1.6 (1.1 milliequivalent / g dry resin) = 0.266 (milliequivalent).

次に、この膜のスルホン酸基量の約10モル%に相当するセリウムイオン(+3価)を含む硝酸セリウム(Ce(NO・6HO)12.0mgを500mLの蒸留水に溶解する。この水溶液に、上記高分子電解質膜を浸漬し、室温で40時間、スターラーを用いて撹拌し、セリウムイオンの含有率が膜中の−SO 基の10モル%である高分子電解質膜を得る。
この膜を用いて例1と同様にして膜触媒層接合体を得てさらに膜電極接合体を得る。この膜電極接合体について例1と同様の評価を行うと、表1〜3に示す結果のとおりとなる。
Next, dissolving the cerium nitrate containing a sulfonic acid group amount of cerium corresponds to about 10 mole% ionic (+3 valence) of the membrane (Ce (NO 3) 3 · 6H 2 O) 12.0mg of distilled water 500mL To do. The polymer electrolyte membrane is immersed in this aqueous solution and stirred with a stirrer at room temperature for 40 hours to obtain a polymer electrolyte membrane having a cerium ion content of 10 mol% of the —SO 3 group in the membrane. obtain.
Using this membrane, a membrane / catalyst layer assembly is obtained in the same manner as in Example 1 to further obtain a membrane / electrode assembly. When this membrane electrode assembly is evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 are obtained.

[例4]
高分子電解質膜として、スルホン酸基を有するパーフルオロカーボン重合体からなる厚さ50μmのイオン交換膜(商品名:フレミオン、旭硝子社製、イオン交換容量1.1ミリ当量/g乾燥樹脂)であって、大きさ5cm×5cm(面積25cm)を使用した。この膜全体の重さを乾燥窒素中で16時間放置した後、乾燥窒素中で測定したところ、0.251gであった。この膜のスルホン酸基の量は以下の式により求められる。
0.251×1.1(1.1ミリ当量/g乾燥樹脂)=0.276(ミリ当量)。
[Example 4]
As a polymer electrolyte membrane, a 50 μm-thick ion exchange membrane (trade name: Flemion, manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.1 milliequivalent / g dry resin) made of a perfluorocarbon polymer having a sulfonic acid group, , A size of 5 cm × 5 cm (area 25 cm 2 ) was used. The total weight of this film was allowed to stand in dry nitrogen for 16 hours and then measured in dry nitrogen, and it was 0.251 g. The amount of sulfonic acid groups in this membrane is determined by the following formula.
0.251 × 1.1 (1.1 milliequivalent / g dry resin) = 0.276 (milliequivalent).

次に、硝酸セリウム(Ce(NO・6HO)24.0mgを500mLの蒸留水に溶解し、この中に上記イオン交換膜を浸漬し、室温で40時間、スターラーを用いて撹拌を行ってイオン交換膜中のスルホン酸基の一部をセリウムイオンによりイオン交換した。次に、この膜を1モル/Lのリン酸水溶液に室温で60時間浸漬した。この膜を空気中120℃10時間乾燥し、その後冷却してX線回折により確認したところ、膜中にリン酸第一セリウムが析出していることが確認された。このリン酸第一セリウムの、膜の全質量に対する含有割合は5.2%であった。 Next, cerium nitrate (Ce (NO 3) 3 · 6H 2 O) 24.0mg dissolved in distilled water of 500 mL, and immersing the ion-exchange membrane in this, 40 hours at room temperature, stirred using a stirrer Then, a part of the sulfonic acid group in the ion exchange membrane was ion-exchanged with cerium ions. Next, this membrane was immersed in a 1 mol / L phosphoric acid aqueous solution at room temperature for 60 hours. This film was dried in air at 120 ° C. for 10 hours, then cooled and confirmed by X-ray diffraction. As a result, it was confirmed that cerium phosphate was precipitated in the film. The content ratio of this cerium phosphate with respect to the total mass of the film was 5.2%.

次に、この膜のスルホン酸基量の15モル%に相当するマンガンイオン(+2価)を含むように、硝酸マンガン(Mn(NO・6HO)12.0mgを500mLの蒸留水に溶解し、この中に上記イオン交換膜を浸漬し、室温で40時間、スターラーを用いて撹拌し、イオン交換膜のスルホン酸基の一部をマンガンイオンによりイオン交換した。なお、浸漬前後の硝酸マンガン溶液をイオンクロマトグラフィーにより分析した結果、このイオン交換膜のマンガンイオンの含有率は膜中の−SO 基の14モル%であることが判明した。 Next, 12.0 mg of manganese nitrate (Mn (NO 3 ) 2 .6H 2 O) was added to 500 mL of distilled water so as to contain manganese ions (+2 valence) corresponding to 15 mol% of the sulfonic acid group amount of the membrane. Then, the ion exchange membrane was immersed in this, and stirred at room temperature for 40 hours using a stirrer to ion-exchange some of the sulfonic acid groups of the ion exchange membrane with manganese ions. As a result of analyzing the manganese nitrate solution before and after immersion by ion chromatography, it was found that the content of manganese ions in this ion exchange membrane was 14 mol% of the —SO 3 group in the membrane.

この膜を用いて例1と同様にして膜触媒層接合体を得てさらに膜電極接合体を得る。この膜電極接合体について例1と同様の評価を行うと、表1〜3に示す結果のとおりとなる。   Using this membrane, a membrane / catalyst layer assembly is obtained in the same manner as in Example 1 to further obtain a membrane / electrode assembly. When this membrane electrode assembly is evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 are obtained.

[例5]
高分子電解質膜として、例4で用いたものと同じ市販のイオン交換膜を何も処理せずに用い、次に、この膜を用いて例1と同様にして膜触媒層接合体を得てさらに膜電極接合体を得た。この膜電極接合体について例1と同様の評価を行ったところ、表1〜3に示す結果のとおりとなった。
[Example 5]
As the polymer electrolyte membrane, the same commercially available ion exchange membrane as that used in Example 4 was used without any treatment. Next, a membrane-catalyst layer assembly was obtained using this membrane in the same manner as in Example 1. Further, a membrane electrode assembly was obtained. When this membrane electrode assembly was evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 were obtained.

[例6]
例3で得られた溶液Cを室温でポリテトラフルオロエチレンからなる基材にキャスト製膜した後、窒素雰囲気で100℃で10時間乾燥してNMPを蒸発させ、厚さ50μmの高分子電解質膜を得た。次いでこの膜から、大きさ5cm×5cmの膜を切り出し、例1と同様にして膜触媒層接合体を得てさらに膜電極接合体を得る。この膜電極接合体について例1と同様の評価を行うと、表1〜3に示す結果のとおりとなる。
[Example 6]
The solution C obtained in Example 3 was cast on a substrate made of polytetrafluoroethylene at room temperature, then dried at 100 ° C. for 10 hours in a nitrogen atmosphere to evaporate NMP, and a polymer electrolyte membrane having a thickness of 50 μm Got. Next, a membrane having a size of 5 cm × 5 cm is cut out from this membrane, and a membrane / catalyst layer assembly is obtained in the same manner as in Example 1 to further obtain a membrane / electrode assembly. When this membrane electrode assembly is evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 are obtained.

Figure 0004972867
Figure 0004972867

Figure 0004972867
Figure 0004972867

Figure 0004972867
Figure 0004972867

上記実施例及び比較例の結果より、加速試験である高温・低加湿の開回路試験(OCV試験)においては、従来の電解質膜は劣化して水素リークが増大していたが、本発明の電解質膜は格段に優れた耐久性を示すことが認められる。また120℃加圧(0.2MPa)の低加湿運転(相対湿度60%)においては、従来の電解質膜は100時間又は20時間で膜に孔が空き、発電不能に陥るが、本発明の電解質膜は格段に優れた耐久性を示し2000時間以上の発電が可能であった。また、80℃常圧の高加湿発電においても優れた耐久性を示すことが認められる。   From the results of the above examples and comparative examples, in the open circuit test (OCV test) of high temperature and low humidity, which is an accelerated test, the conventional electrolyte membrane deteriorated and hydrogen leakage increased, but the electrolyte of the present invention It can be seen that the membrane exhibits exceptional durability. In addition, in a low humidification operation (60% relative humidity) under 120 ° C. pressure (0.2 MPa), the conventional electrolyte membrane has pores in the membrane in 100 hours or 20 hours, and power generation is impossible. The membrane showed extremely excellent durability and was able to generate power for 2000 hours or more. In addition, it is recognized that excellent durability is exhibited even in high-humidity power generation at 80 ° C. and normal pressure.

本発明の電解質膜は、燃料電池の発電により生成される過酸化水素又は過酸化物ラジカルに対する耐久性が極めて優れている。したがって、本発明の電解質膜を有する膜電極接合体を備える固体高分子形燃料電池は、高温低加湿発電、高加湿発電のいずれにおいても長期の耐久性を有する。
The electrolyte membrane of the present invention is extremely excellent in durability against hydrogen peroxide or peroxide radicals generated by power generation of a fuel cell. Therefore, the polymer electrolyte fuel cell including the membrane electrode assembly having the electrolyte membrane of the present invention has long-term durability in both high temperature low humidification power generation and high humidification power generation.

Claims (12)

スルホン酸基を有する高分子化合物からなる陽イオン交換膜からなり、陽イオン交換膜中の−SO 基の0.3〜30モル%のセリウムイオンと、難溶性セリウム化合物とを含むことを特徴とする固体高分子形燃料電池用電解質膜。 It consists cation exchange membrane made of a polymer compound having a sulfonic acid group, -SO 3 in the cation exchange membrane - and Seriumuio emissions of 0.3 to 30 mol% of the groups, to include a sparingly soluble cerium compound An electrolyte membrane for a polymer electrolyte fuel cell. 前記難溶性セリウム化合物は、リン酸セリウム、酸化セリウム、水酸化セリウム、炭酸セリウム、シュウ酸セリウム、フッ化セリウム、タングステン酸セリウム及びヘテロポリ酸のセリウム塩からなる群から選ばれる請求項1記載の固体高分子形燃料電池用電解質膜。   2. The solid according to claim 1, wherein the hardly soluble cerium compound is selected from the group consisting of cerium phosphate, cerium oxide, cerium hydroxide, cerium carbonate, cerium oxalate, cerium fluoride, cerium tungstate and a cerium salt of heteropolyacid. Electrolyte membrane for polymer fuel cells. スルホン酸基を有する高分子化合物からなる層が2層以上積層された陽イオン交換膜からなり、前記2層以上の少なくとも1層が、セリウムイオンと、難溶性セリウム化合物とを含む請求項1又は2に記載の固体高分子形燃料電池用電解質膜。 A layer comprising a polymer compound having a sulfonic acid group is composed of laminated cation-exchange membrane two or more layers, said two or more layers at least one layer, and Seriumuio emissions, claim 1 or comprising a hardly soluble cerium compound 2. The electrolyte membrane for a polymer electrolyte fuel cell according to 2. 前記難溶性セリウム化合物は、前記陽イオン交換膜全質量の0.3〜30%含まれる請求項1〜のいずれか一項に記載の固体高分子形燃料電池用電解質膜。 The electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 1 to 3 , wherein the hardly soluble cerium compound is contained in an amount of 0.3 to 30% of the total mass of the cation exchange membrane. 前記スルホン酸基を有する高分子化合物は、スルホン酸基を有するパーフルオロカーボン重合体である請求項1〜のいずれか一項に記載の固体高分子形燃料電池用電解質膜。 The polymer membrane for a solid polymer fuel cell according to any one of claims 1 to 4 , wherein the polymer compound having a sulfonic acid group is a perfluorocarbon polymer having a sulfonic acid group. 前記パーフルオロカーボン重合体は、
CF=CF−(OCFCFX)−O−(CF−SOHで表されるパーフルオロビニル化合物(mは0〜3の整数を示し、nは0〜12の整数を示し、pは0又は1を示し、n=0の場合はp=0かつm=1〜3であり、Xはフッ素原子又はトリフルオロメチル基を示す。)に基づく繰り返し単位と、テトラフルオロエチレンに基づく繰り返し単位とを含む共重合体である請求項に記載の固体高分子形燃料電池用電解質膜。
The perfluorocarbon polymer is
CF 2 = CF- (OCF 2 CFX ) m -O p - (CF 2) a perfluorovinyl compound represented by n -SO 3 H (m is an integer of 0 to 3, n is from 0 to 12 integer P represents 0 or 1, and when n = 0, p = 0 and m = 1 to 3, and X represents a fluorine atom or a trifluoromethyl group.) 6. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 5 , which is a copolymer containing a repeating unit based on ethylene.
前記スルホン酸基を有する高分子化合物は、高分子の主鎖に、又は主鎖と側鎖に芳香環を有しており、該芳香環にスルホン酸基が導入された構造であって、イオン交換容量が0.8〜3.0ミリ当量/g乾燥樹脂である請求項1〜のいずれか一項に記載の固体高分子形燃料電池用電解質膜。 The polymer compound having a sulfonic acid group has an aromatic ring in the main chain of the polymer or in the main chain and side chain, and a structure in which the sulfonic acid group is introduced into the aromatic ring, The electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 1 to 4 , wherein the exchange capacity is 0.8 to 3.0 meq / g dry resin. 請求項1〜のいずれか一項に記載の電解質膜の製造方法であって、
スルホン酸基を有する高分子化合物と、セリウムイオンとを含む液状組成物に、
難溶性セリウム化合物の微粒子を添加し混合することにより前記液状組成物に難溶性セリウム化合物を分散させ、
得られた液を用いてキャスト製膜する
ことを特徴とする固体高分子燃料電池用電解質膜の製造方法。
It is a manufacturing method of the electrolyte membrane according to any one of claims 1 to 7 ,
A polymer compound having a sulfonic acid group, a liquid composition containing a Seriumuio down,
Disperse the hardly soluble cerium compound in the liquid composition by adding and mixing fine particles of the hardly soluble cerium compound,
Method for producing a polymer electrolyte fuel cell electrolyte membrane, characterized in that the cast film using the obtained liquid.
請求項1〜のいずれか一項に記載の電解質膜の製造方法であって、
スルホン酸基を有する高分子化合物の分散液中に、難溶性セリウム化合物の微粒子を添加し混合することにより前記分散液中に難溶性セリウム化合物を分散させ、
得られた液を用いてキャスト製膜した後、
得られた膜をセリウムイオンを含む溶液中に浸漬する
ことを特徴とする固体高分子燃料電池用電解質膜の製造方法。
It is a manufacturing method of the electrolyte membrane according to any one of claims 1 to 7 ,
In the dispersion of the polymer compound having a sulfonic acid group, the hardly soluble cerium compound is dispersed in the dispersion by adding and mixing fine particles of the hardly soluble cerium compound.
After casting a film using the obtained liquid,
Method for producing a polymer electrolyte fuel cell electrolyte membrane, which comprises immersing the resulting membrane in a solution containing Seriumuio down.
請求項1〜のいずれか一項に記載の電解質膜の製造方法であって、
スルホン酸基を有する高分子化合物からなる陽イオン交換膜を、
セリウムイオンを含む溶液中に浸漬してスルホン酸基の一部をセリウムイオンによりイオン交換した後、セリウムイオンと反応することにより難溶性セリウム化合物を形成する物質を含む溶液に浸漬して、膜中に難溶性セリウム化合物を形成し、
次いで前記陽イオン交換膜をセリウムイオンを含む溶液中に浸漬する
ことを特徴とする固体高分子燃料電池用電解質膜の製造方法。
It is a manufacturing method of the electrolyte membrane according to any one of claims 1 to 7 ,
A cation exchange membrane made of a polymer compound having a sulfonic acid group,
After immersing in a solution containing cerium ions and ion-exchanging a part of the sulfonic acid group with cerium ions, it is immersed in a solution containing a substance that forms a sparingly soluble cerium compound by reacting with cerium ions. Forms a sparingly soluble cerium compound in
Then method for producing a polymer electrolyte fuel cell electrolyte membrane, which comprises immersing the cation-exchange membrane in a solution containing Seriumuio down.
請求項1〜のいずれか一項に記載の電解質膜の製造方法であって、
スルホン酸基を有する高分子化合物の分散液中に、当該分散液に溶解可能なセリウム化合物を添加してスルホン酸基の一部をセリウムイオンによりイオン交換した後、セリウムイオンと反応することにより難溶性セリウム化合物を形成する物質を含む溶液又は固体を前記分散液に添加して、該分散液中に難溶性セリウム化合物を形成し、
得られた液を用いてキャスト製膜した後、
得られた膜をセリウムイオンを含む溶液中に浸漬する
ことを特徴とする固体高分子燃料電池用電解質膜の製造方法。
It is a manufacturing method of the electrolyte membrane according to any one of claims 1 to 7 ,
It is difficult to react with cerium ions after adding a cerium compound that can be dissolved in the dispersion of the polymer compound having a sulfonic acid group and exchanging a part of the sulfonic acid group with cerium ions. Adding a solution or solid containing a substance that forms a soluble cerium compound to the dispersion to form a sparingly soluble cerium compound in the dispersion;
After casting a film using the obtained liquid,
Method for producing a polymer electrolyte fuel cell electrolyte membrane, which comprises immersing the resulting membrane in a solution containing Seriumuio down.
触媒を含む触媒層を有するアノード及びカソードと、前記アノードと前記カソードとの間に配置される電解質膜とを備える固体高分子形燃料電池用膜電極接合体であって、前記電解質膜が請求項1〜のいずれか一項に記載の電解質膜からなることを特徴とする固体高分子形燃料電池用膜電極接合体。 A membrane electrode assembly for a polymer electrolyte fuel cell, comprising: an anode and a cathode having a catalyst layer containing a catalyst; and an electrolyte membrane disposed between the anode and the cathode, wherein the electrolyte membrane is claimed. A membrane electrode assembly for a polymer electrolyte fuel cell, comprising the electrolyte membrane according to any one of 1 to 7 .
JP2005073189A 2005-03-15 2005-03-15 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell Active JP4972867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073189A JP4972867B2 (en) 2005-03-15 2005-03-15 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073189A JP4972867B2 (en) 2005-03-15 2005-03-15 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2006260811A JP2006260811A (en) 2006-09-28
JP4972867B2 true JP4972867B2 (en) 2012-07-11

Family

ID=37099828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073189A Active JP4972867B2 (en) 2005-03-15 2005-03-15 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4972867B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095089B2 (en) * 2005-05-31 2012-12-12 株式会社豊田中央研究所 Solid polymer electrolyte, solid polymer fuel cell, and manufacturing method thereof
JP5011662B2 (en) * 2005-07-01 2012-08-29 旭硝子株式会社 Method for producing electrolyte membrane for polymer electrolyte fuel cell
US8628871B2 (en) * 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
US8367267B2 (en) 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
JP4765908B2 (en) * 2006-11-22 2011-09-07 旭硝子株式会社 Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
WO2009086354A1 (en) * 2007-12-27 2009-07-09 3M Innovative Properties Company Durable fuel cell membrane electrode assembly with combined additives
JP6916034B2 (en) 2017-05-02 2021-08-11 トヨタ自動車株式会社 Method for manufacturing membrane electrode gas diffusion layer joint body and membrane electrode gas diffusion layer joint body
JP7322896B2 (en) * 2018-12-07 2023-08-08 Agc株式会社 liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, polymer electrolyte fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3970390B2 (en) * 1997-08-22 2007-09-05 旭化成株式会社 Membrane-electrode assembly for solid polymer fuel cell
JP4271390B2 (en) * 2001-08-09 2009-06-03 本田技研工業株式会社 Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
US7112386B2 (en) * 2002-09-04 2006-09-26 Utc Fuel Cells, Llc Membrane electrode assemblies with hydrogen peroxide decomposition catalyst
JP4236449B2 (en) * 2002-11-15 2009-03-11 旭化成ケミカルズ株式会社 Fluorine ion exchange membrane
JP2004247155A (en) * 2003-02-13 2004-09-02 Asahi Glass Co Ltd Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP4326271B2 (en) * 2003-06-26 2009-09-02 株式会社豊田中央研究所 Solid polymer electrolytes containing transition metal oxides

Also Published As

Publication number Publication date
JP2006260811A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
US10916790B2 (en) Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US9455465B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
JP5247974B2 (en) Method for producing electrolyte membrane for polymer electrolyte hydrogen / oxygen fuel cell
EP1777767B2 (en) Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
JP4972867B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JPWO2007007767A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP2006099999A (en) Electrolyte membrane for solid polymer fuel cell, its manufacturing method, and membrane electrode assembly for solid polymer fuel cell
JP4765908B2 (en) Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP5286651B2 (en) Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2007031718A5 (en)
KR100970358B1 (en) Liquid composition, method for producing same, and method for producing membrane electrode assembly for solid polymer fuel cell
JP4765401B2 (en) Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2008098179A (en) Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, and membrane electrode assembly for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R151 Written notification of patent or utility model registration

Ref document number: 4972867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250