JP2004273257A - Electrode catalyst layer for fuel cell - Google Patents

Electrode catalyst layer for fuel cell Download PDF

Info

Publication number
JP2004273257A
JP2004273257A JP2003061932A JP2003061932A JP2004273257A JP 2004273257 A JP2004273257 A JP 2004273257A JP 2003061932 A JP2003061932 A JP 2003061932A JP 2003061932 A JP2003061932 A JP 2003061932A JP 2004273257 A JP2004273257 A JP 2004273257A
Authority
JP
Japan
Prior art keywords
mass
catalyst layer
electrode catalyst
less
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003061932A
Other languages
Japanese (ja)
Other versions
JP4780902B2 (en
Inventor
Masanobu Wakizoe
雅信 脇添
Naoto Miyake
直人 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2003061932A priority Critical patent/JP4780902B2/en
Publication of JP2004273257A publication Critical patent/JP2004273257A/en
Application granted granted Critical
Publication of JP4780902B2 publication Critical patent/JP4780902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst layer for fuel cell capable of obtaining excellent output property in a wide temperature range from 0°C to 150°C. <P>SOLUTION: The electrode catalyst layer for fuel cell is characterised by containing 20,000-80,000 mass% of a composite particles holding catalyst particles on conductive particles, 19,999-60,000 mass% of a proton conductive polymer, and 0.001-20,000 mass% of a polytetrafluoroethylene. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子形燃料電池用の電極触媒層に関するものである。
【0002】
【従来の技術】
燃料電池は、電池内で、水素やメタノール等を電気化学的に酸化することにより、燃料の化学エネルギーを、直接、電気エネルギーに変換して取り出すものであり、クリーンな電気エネルギー供給源として注目されている。特に、固体高分子形燃料電池は、他と比較して低温で作動することから、自動車代替動力源や家庭用コジェネレーションシステム、携帯用発電機として期待されている。
【0003】
かかる固体高分子形燃料電池は、プロトン交換膜の両面に電極触媒層が接合してなる膜電極接合体(以下、MEAと称する)が少なくとも備えられている。尚、必要に応じて一対のガス拡散層でMEAを挟み込んだ構造のものを用いる場合もある。この場合、電極触媒層とガス拡散層の積層体をガス拡散電極と称する。従来、電極触媒層は、炭素粒子に触媒粒子が担持された複合粒子とプロトン伝導性ポリマーからなる触媒組成物を薄くシート化したものが好適に用いられている(例えば、非特許文献1参照)。
上記のMEAを備える燃料電池はアノード側のガス拡散電極に燃料(例えば水素)、カソード側のガス拡散電極に酸化剤(例えば酸素や空気)をそれぞれ供給し、両電極間を外部回路で接続することにより作動する。
【0004】
具体的には、水素を燃料とした場合、アノード触媒上にて水素が酸化されてプロトンが生じ、このプロトンがアノード触媒層内のプロトン伝導性ポリマーを通った後、プロトン交換膜内を移動し、カソード触媒層内のプロトン伝導性ポリマーを通ってカソード触媒上に達する。一方、水素の酸化によりプロトンと同時に生じた電子は外部回路を通ってカソード側ガス拡散電極に到達し、カソード触媒上にて上記プロトンと酸化剤中の酸素と反応して水が生成され、このとき電気エネルギーを取り出すことができる。
従来の固体高分子形燃料電池は、80℃近辺にて適切な加湿条件下にて運転することにより、高い発電効率と出力を得ることができるが、加湿が不十分であると、プロトン交換膜が乾燥してプロトン伝導度が著しく低下し、電池の内部抵抗が増大して出力が低下する。
【0005】
又、アノードとカソードのガス拡散電極に含有されるプロトン伝導性ポリマーが乾燥しても、過電圧が上昇して出力が低下する。特にアノード側では、プロトン交換膜中をアノード側からカソード側に向かってプロトンが移動する際に水分子を同伴するため、水分が欠乏しやすくなる。一方、カソード側では、電池反応により水が生成するとともに、プロトンの移動に伴いアノード側から水が同伴されることで、水分が過剰に存在する状態(以下、フラッディング)になりやすい。フラッディング現象は高電流密度での発電時に顕著であり、ガス供給の妨げとなり著しく出力を低下させてしまう。
ところで、固体高分子形燃料電池を自動車用途とする場合には夏場の自動車走行を想定して、高温低加湿条件下(運転温度100℃近辺で、50℃加湿(湿度12RH%に相当))で燃料電池を運転できることが望まれているが、この場合には特に上記の問題点を解決しなければならない。
【0006】
そこで、吸水性材料として微細粒子状及び/又は繊維状シリカをアノード触媒層に含有させる方法(例えば特許文献1、特許文献2参照)、吸水性材料として架橋ポリアクリル酸塩の微細粒子を触媒層に含有させる方法(例えば、特許文献3参照)が開示されている。これら電極触媒層の親水化技術を用いることにより、電極触媒層の保水性を高めることができ、高温低加湿条件下ではある程度に運転できるようになった。
しかしながら、吸水性材料の添加により電極触媒層の保水性の向上を達成できる反面、80℃以下の通常の燃料電池運転、特に高電流密度下で運転した場合、カソード側がフラッディングを起こしやすくなり、良好な出力が得られないという問題点を同時に生じている。
【0007】
【特許文献1】
特開平6−111827号公報
【特許文献2】
特開2001−11219号公報
【特許文献3】
特開平7−326361号公報)
【非特許文献1】
Journal of Applied electrochemistry, 22, p.1−7(1992)
【0008】
【発明が解決しようとする課題】
即ち、本発明の目的は、0℃以上150℃以下の幅広い温度領域において、良好な出力特性が得られる燃料電池用の電極触媒層を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、導電性粒子上に触媒粒子が担持された複合粒子を20.000質量%以上80.000質量%以下、プロトン伝導性ポリマーを19.999質量%以上60.000質量%以下、ポリテトラフルオロエチレンを0.001質量%以上20.000質量%以下含有することを特徴とする燃料電池用の電極触媒層を用いた固体高分子形燃料電池とすることで保水性を向上せしめると共に、余分な水の排出が円滑になり、0℃以上150℃以下の幅広い温度領域において、特に高電流密度下での運転時にフラッディングすることなく良好な出力特性を得られることを見出した。
【0010】
さらに、本発明者等はプロトン伝導性ポリマーの当量重量を250以上800以下に限定することで、加えて、金属酸化物を電極触媒層に含有させることで、90℃〜150℃、10RH%〜60RH%の高温低加湿条件においてもより安定した出力特性を示すことを見出し、本発明に至った。すなわち、本発明は以下の通りである。
(1) 導電性粒子上に触媒粒子が担持された複合粒子を20.000質量%以上80.000質量%以下、プロトン伝導性ポリマーを19.999質量%以上60.000質量%以下、ポリテトラフルオロエチレンを0.001質量%以上20.000質量%以下含有することを特徴とする燃料電池用の電極触媒層。
(2) 該ポリテトラフルオロエチレンが粒子状及び/又は繊維状であることを特徴とする(1)に記載の電極触媒層。
(3) 該プロトン伝導性ポリマーの当量重量(EW)が、250以上800以下であることを特徴とする(1)又は(2)に記載のいずれかに記載の電極触媒層。
(4) 該電極触媒層が、更に金属酸化物を含有することを特徴とする(1)〜(3)のいずれかに記載の電極触媒層。
(5) (1)〜(4)のいずれかに記載の電極触媒層を備えた固体高分子形燃料電池。
【0011】
以下に、本発明の燃料電池用の電極触媒層を詳細に説明する。
本発明の燃料電池用の電極触媒層は、少なくとも導電性粒子上に触媒粒子が担持された複合粒子と、プロトン伝導性ポリマーと、ポリテトラフルオロエチレンとを含有し、各々の含有率は複合粒子が20.000質量%以上80.000質量%以下、プロトン伝導性ポリマーが19.999質量%以上60質量%以下、ポリテトラフルオロエチレンが0.001質量%以上20質量%以下であり、より好ましくは、複合粒子が30.00質量%以上80.00質量%以下、プロトン伝導性ポリマーが19.99質量%以上60.00質量%以下、ポリテトラフルオロエチレン0.01質量%以上10.00質量%以下であり、さらに好ましくは、複合粒子が35.0質量%以上80.0質量%以下、プロトン伝導性ポリマーが19.9質量%以上60.0質量%以下、ポリテトラフルオロエチレン0.1質量%以上5.0質量%以下であり、最も好ましくは複合粒子が37質量%以上80質量%以下、プロトン伝導性ポリマーが19質量%以上60質量%以下、ポリテトラフルオロエチレン1質量%以上3質量%以下である。
【0012】
本発明の電極触媒層を構成する複合粒子は、導電性粒子上に触媒粒子が担持されたものであり、このような複合粒子が結着した構造を電極触媒層の基本骨格としている。
導電性粒子としては、導電性を有するものであれば何でもよく、例えばファーネスブラック、チャンネルブラック、アセチレンブラック等のカーボンブラック、活性炭、黒鉛、各種金属が用いられる。これら導電性粒子の粒子径としては、好ましくは10オングストローム以上10μm以下、より好ましくは50オングストローム以上1μm以下、最も好ましくは100オングストローム以上5000オングストローム以下である。
【0013】
一方、触媒粒子は、アノードでは燃料(例えば水素)を酸化して容易にプロトンを生ぜしめ、カソードではプロトン及び電子と酸化剤(例えば酸素や空気)を反応させて水を生成させる触媒である。触媒の種類には制限がないが、白金が好ましく用いられる。CO等の不純物に対する白金の耐性を強化するために、白金にルテニウム等を添加又は合金化した触媒が好ましく用いられる。
触媒粒子の粒子径は限定されないが、10オングストローム以上1000オングストローム以下が好ましく、より好ましくは10オングストローム以上500オングストローム以下、最も好ましくは15オングストローム以上100オングストローム以下である。
【0014】
本発明に用いる複合粒子は、導電性粒子に対して触媒粒子が、好ましくは1質量%以上99質量%以下、より好ましくは10質量%以上90質量%以下、最も好ましくは30質量%以上70質量%以下に担持されていることが好ましい。
電極面積に対する複合粒子の担持量は電極触媒層を形成した状態で、好ましくは0.001mg/cm以上10mg/cm以下、より好ましくは0.01mg/cm以上5mg/cm以下、最も好ましくは0.1mg/cm以上1mg/cm以下である。
【0015】
次に本発明の電極触媒層を構成するプロトン伝導性ポリマーについて記載する。
プロトン伝導性ポリマーは、プロトン伝導性のある官能基を有する重合体である。プロトン伝導性のある官能基としては、例えばスルホン酸基、カルボン酸基、ホスホン酸基、リン酸基等が挙げられる。ポリマーの骨格としては、例えば、ポリオレフィン、ポリスチレンのような炭化水素系重合体、パーフルオロカーボン重合体等が挙げられる。中でも、耐酸化性や耐熱性に優れた下記式(1)で表されるパーフルオロカーボン重合体が好ましい。

Figure 2004273257
(式中X,X及びXはそれぞれ独立にハロゲン元素又は炭素数1以上3以下のパーフルオロアルキル基、aは0以上20以下、bは0以上8以下の整数、cは0又は1、d,e及びfはそれぞれ独立に0以上6以下の整数(但し、d+e+fは0に等しくない)、gは1以上20以下、R及びRはそれぞれ独立にハロゲン元素、炭素数1以上10以下のパーフルオロアルキル基又はフルオロクロロアルキル基、XはCOOH,SOH,PO又はPOHである)
【0016】
このようなパーフルオロカーボン重合体の中でも、特に下記式(2)で表されるポリマーが好ましい。
−[CFCF−[CF−CF(−O−(CF−SOH)]− (2)
(式中、aは0以上20以下、gは1以上20以下)
プロトン伝導性ポリマーの当量質量EW(プロトン交換基1当量あたりのプロトン伝導性ポリマーの乾燥質量グラム数)には限定はないが、250以上2000以下が好ましく、より好ましくは250以上800以下、最も好ましくは400以上800以下である。
【0017】
このように低EW、つまりプロトン交換容量の大きいプロトン伝導性ポリマーを用いることで、高温低加湿条件においても優れたプロトン伝導性を示して燃料電池運転時に高い出力を得ることができる。
電極触媒層内に存在させるプロトン伝導性ポリマーの量には限定はないが、電極投影面積に対する担持量として、電極触媒層を形成した状態で好ましくは0.001mg/cm以上10mg/cm以下、より好ましくは0.01mg/cm以上5mg/cm以下、最も好ましくは0.1mg/cm以上2mg/cm以下である。
【0018】
また、触媒粒子の担持量に対し、質量比で好ましくは0.001以上50以下、より好ましくは0.1以上10以下、最も好ましくは0.5以上5以下である。
更に、本発明の電極触媒層はポリテトラフルオロエチレン(以下、PTFE)を含有する。PTFEの形状としては特に限定されないが、定形性のものであれば構わず、粒子状、繊維状であることが好ましく、これらが単独で使用されても混合して使用されていても構わない。
【0019】
PTFEが粒子状の場合、粒径としては好ましくは0.001μm以上100μm以下、より好ましくは0.01μm以上10μm以下、最も好ましくは0.1μm以上5μm以下である。
また、PTFEが繊維状の場合、本発明では一般的な繊維状以外にフィブリル状、針状を含む総称として繊維状と表現し、その繊維径としては好ましくは0.001μm以上10μm以下、より好ましくは0.01μm以上5μm以下、最も好ましくは0.1μm以上1μm以下である。繊維長としては、好ましくは0.001μm以上100μm以下、より好ましくは0.01μm以上10μm以下、最も好ましくは0.1μm以上5μm以下である。アスペクト比としては、好ましくは0.001以上1000以下、より好ましくは0.01以上100以下、最も好ましくは0.1以上10以下である。
【0020】
尚、上記の繊維等は電極触媒層内で網目状に交差していても分散していても本発明の効果の達成は可能である。
PTFEの分子量は特に制限されないが、10万以上2000万以下が好ましく、より好ましくは20万以上1000万以下、最も好ましくは30万以上600万以下である。PTFEの結晶性としては高い方が好ましいが、特に限定されない。
【0021】
また、該プロトン伝導性ポリマーに対するPTFEの含有率を最適化することで、より高い出力特性を得ることができ、好ましくは0.001質量%以上100質量%以下、より好ましくは0.1質量%以上30質量%以下、最も好ましくは1質量%以上10質量%以下である。また、プロトン伝導性ポリマーが含有するプロトン交換基1モル当たりのPTFEの重量を最適化することで、さらにより高い出力特性が得られ、その最適値としては好ましくは0.001g以上10g以下、より好ましくは0.05g以上5g以下、最も好ましくは0.1g以上1g以下である。
【0022】
本発明の電極触媒層は、さらに金属酸化物を含有することでより効果を奏する。金属酸化物としては特に限定はないが、Al、B、MgO、SiO、SnO、TiO、V、WO、Y、ZrO、Zr及びZrSiOからなる群から選ばれた少なくとも1つを構成要素とする金属酸化物であることが好ましい。中でもAl,SiO,TiO、ZrOであることが好ましく、SiOが特に好ましい。
【0023】
本発明で用いることができる金属酸化物は−OH基を持つのが一般的であり、例えばSiOの場合、SiO2(1−0.25X)(OH)(0≦X<4)と表されることがある。そのため、保水性が向上すると考える。
本発明の電極触媒層に金属酸化物を含有する場合の含有率としては、好ましくは0.001質量%以上20質量%以下、より好ましくは0.01質量%以上10質量%以下、最も好ましくは0.1質量%以上5質量%以下である。
【0024】
金属酸化物の形態としては、粒子状や繊維状といったものを用いても構わないが、特に非定形であることが望ましい。ここで言う非定形とは、光学顕微鏡や電子顕微鏡で観察しても、粒子状や繊維状の金属酸化物が観察されないことを言う。特に、走査型電子顕微鏡(SEM)を用いて電極触媒層を数10万倍までに拡大して観察しても、粒子状や繊維状の金属酸化物は観察されない。また、透過型電子顕微鏡(TEM)を用いて電極触媒層を数10万倍〜数100万倍に拡大して観察しても、明確に粒子状や繊維状の金属酸化物は観察することができない。このように現状の顕微鏡技術の範囲内では、金属酸化物の粒子を確認することができないことを指す。
【0025】
本発明の電極触媒層の厚みとしては、好ましくは0.01μm以上200μm以下、より好ましくは0.1μm以上100μm以下、最も好ましくは1μm以上50μm以下である。
本発明の電極触媒層の空隙率としては特に限定されないが、好ましくは1体積%以上99体積%以下、より好ましくは10体積%以上80体積%以下、最も好ましくは30体積%以上60体積%以下である。
【0026】
次に、本発明の電極触媒層の製造方法について説明する。
本発明の電極触媒層は上記した複合粒子、プロトン伝導性ポリマー、PTFEを含有する分散溶液である電極触媒組成物を、プロトン交換膜上又はPTFEシート等の他の基材上に塗布した後、乾燥、固化することで本発明の電極触媒層が形成される。
また、PTFE以外の複合粒子、プロトン伝導性ポリマーを含有する電極触媒組成物を予めプロトン交換膜上又はPRFEシート等の他の基材上に塗布した後、乾燥、固化して触媒層を形成させた後、PTFE分散液を触媒層に公知の技術により塗布もしくは浸漬させることによっても、本発明の電極触媒層を得ることができる。
【0027】
尚、本発明において電極触媒組成物の塗布は、スプレー法等の一般的に知られている各種方法を用いることが可能である。
本発明の電極触媒組成物に用いる複合粒子は本発明に記す条件を満足した導電性粒子上に触媒粒子が担持された構造を有すればよく、例えば、市販のデグッサ(株)社製F101RA/W、田中貴金属工業(株)社製TEC10E40E等を用いることができる。
【0028】
又、プロトン伝導性ポリマーは、水/アルコール混合溶媒中で1質量%以上20質量%以下に溶解されたポリマー溶液を使用するのが好ましい。このようなポリマー溶液としては、市販されているデュポン社製Nafion溶液等が代表例として挙げられる。
また、PTFEとしては、水性媒体中に分散されたPTFE分散液を用いるのが好ましい。すなわち水性媒体中で行われる懸濁重合中や乳化重合、またフロン等の溶媒の中で行われる溶液重合などの公知の手段により合成したものである。本発明においてはいずれの重合方法で作成されたものでも使用出来る。
【0029】
上記のPTFE分散液のうち溶液重合で作製されるPTFE分散液は、重合溶媒であるフッ素炭化水素を含む場合がある。含フッ素炭化水素としては、例えばトリクロロトリフルオロエタンや1112344555−デカフロロペンタンなど「フロン」と総称される化合物群を好適に使用する事が出来る。またPTFE分散液は必要に応じて界面活性剤を含有する場合がある。PTFE分散液の固形分比率としては好ましくは1質量%以上99質量%以下であり、より好ましくは10質量%以上90質量%以下、最も好ましくは20質量%以上70質量%以下である。このようなPTFE分散液としては、HCFC―141bを分散媒とする固形分比率4.6質量%のPTFE分散液(ダイキン製ルブロンLD−1E:溶液重合)、水系溶媒からなるPTFE分散液としては三井デュポンフロロケミカル(株)社製テフロン(登録商標)30−Jやダイキン工業(株)社製POLYFLON等が挙げられる
【0030】
本発明では上記のプロトン伝導性ポリマー溶液とPTFE分散液に複合粒子を混合して電極触媒組成物の分散溶液とすることも可能であるが、必要に応じてさらに溶媒を添加しても構わない。
用いることができる溶媒としては水、エタノール等の低級アルコール、エチレングリコール、プロピレングリコール、グリセリン、ジメチルスルホキシド、フロン等の単独溶媒又は複合溶媒が挙げられる。このような溶媒は電極触媒組成物が固化した時の重量に対し、好ましくは1質量%以上10000質量%以上、より好ましくは10質量%以上5000質量%以下、最も好ましくは100質量%以上2000質量%以下である。
【0031】
以上、本発明の電極触媒層の製造方法について説明したが、本発明の電極触媒層には金属酸化物を添加することでより効果を奏するので、次に、金属酸化物を含有する電極触媒層の製造方法について説明する。
本発明で電極触媒層中に金属酸化物を含有させる場合、用いる電極触媒組成物に金属酸化物を混合して上記したと同様の方法にて、プロトン交換膜上又はPTFEシート等の他の基材上に塗布した後、乾燥、固化することで電極触媒層を形成すればよい。
【0032】
このようにして電極触媒層に含有された金属酸化物は一般に定形性の粒子状、繊維状である場合が多いが、予め製造した電極触媒層に金属酸化物前駆体を含浸させ、引き続いてこれを加水分解及び重縮合反応させて含有された金属酸化物は非定形であり本発明の効果をより奏する。
そこで、予め製造された電極触媒層に金属酸化物前駆体を含浸させて得られる金属酸化物含有の電極触媒層の製造方法について以下に説明する。
【0033】
金属酸化物前駆体の種類は限定されないが、Al、B、P、Si、Ti、Zr又はYを含有するアルコキシドが好ましく、特にSiを含有するアルコキシドであるSi(OCH、Si(OC、Si(OC、Si(OC等が望ましい。
上記の金属酸化物前駆体は溶液状であるためそのまま電極触媒層に塗布・含浸させることが可能である。金属酸化物前駆体の含浸量は限定されないが、電極触媒層を構成するプロトン伝導性ポリマー中のプロトン交換基1当量に対し、好ましくは0.01当量以上1000000当量以下、より好ましくは0.05当量以上500000当量以下、最も好ましくは0.1当量以上100000当量以下、更に好ましくは0.2当量以上20000当量以下である。
【0034】
電極触媒層に含浸された金属酸化物前駆体は引き続き加水分解反応する。加水分解反応・重縮合反応を行うための水の量は限定されないが、金属酸化物前駆体1当量に対し、好ましくは0.1当量以上100当量以下、より好ましくは0.2当量以上50当量以下、最も好ましくは0.5当量以上30当量以下、更に好ましくは1当量以上10当量以下である。また、水は他の溶媒に希釈又は溶解して添加してもよい。
【0035】
なお、金属酸化物前駆体の加水分解・重縮合反応は、金属酸化物前駆体を電極触媒層に含浸させた後に水を直接添加すればよいが、予め、水を電極触媒層に含浸させた後に金属酸化物前駆体を添加する方法、水と金属酸化物前駆体を両方含む液体を電極触媒層に含浸させる方法を用いても構わない。
上記のようにして水を添加した後、80〜150℃で熱処理及び/又は80〜150℃で熱水処理することにより金属酸化物前駆体を加水分解・重縮合反応して本発明の非定形の金属酸化物とする。
【0036】
尚、上記のようにして電極触媒層に含有される金属酸化物の含有率としては、好ましくは0.001質量%以上20質量%以下、より好ましくは0.01質量%以上10質量%以下、最も好ましくは0.1質量%以上5質量%以下である。
以上、本発明の電極触媒層の製造方法について説明した。
本発明の電極触媒層は固体高分子形燃料電池として評価することでその効果が発揮される。以下にその評価方法について説明する。
【0037】
本発明の電極触媒層はプロトン交換膜を介して電極触媒層が接合したMEA(膜電極接合体)として使用され、アノード・カソードとして用いられる電極触媒層の双方あるいは少なくとも一方に使用されることで効果を奏する。なお、いずれか一方の電極に本発明の電極触媒層が用いられる場合はカソード側に用いるほうが好ましい。
本発明の評価に用いられるプロトン交換膜の種類は限定されないが、本発明の電極触媒層を構成するプロトン伝導性ポリマーと同様のパーフルオロカーボン重合体からなるプロトン交換膜が好ましい。膜厚には制限はないが、1μm以上500μm以下が好ましく、より好ましくは2μm以上100μm以下、最も好ましくは10μm以上50μm以下である。
【0038】
また、必要に応じてMEAを介して一対のガス拡散層を対向するように接合した構造にしても構わない。
MEAは先記したようにプロトン交換膜上に直接電極触媒層を形成してもよく、PTFEシート等のプロトン交換膜以外の基材上に塗布成形した後乾燥・固化して得られた電極触媒層とプロトン交換膜とを100℃〜200℃で加熱プレスして接合する方法を用いて得ることもできる。尚、ガス拡散層とMEAを接合する場合も同様に加熱プレスして得ることができる。
【0039】
以上のようにして得られたMEA、場合によってはMEAを介して一対のガス拡散電極が対向した構造のものは更にバイポーラプレート、バッキングプレートといった一般的な固体高分子形燃料電池に用いる構成成分と組み合わせて固体高分子形燃料電池を構成する。
このうちバイポーラプレートは、その表面に燃料や酸化剤等のガスを流すための溝を形成させたグラファイト又は樹脂との複合材料、金属製のプレート等のことであり、電子を外部負荷回路へ伝達する他に燃料や酸化剤を電極触媒近傍に供給する流路としての機能を持っている。こうしたバイポーラプレートの間にMEAを挿入して複数積み重ねることにより、燃料電池が作製される。燃料電池の運転は、最終的に一方の電極に水素を、他方の電極に酸素又は空気を供給することによって行われる。
【0040】
以上のようにして成る固体高分子形燃料電池を用いて本発明の電極触媒層の評価を行う。
尚、本発明の電極触媒層は、クロルアルカリ、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサー等に用いることも可能である。
【0041】
【発明の実施の形態】
本発明を実施例に基づいて具体的に説明するが、本発明は実施例に制限されるものではない。燃料電池の評価法は以下の通りである。
【0042】
【実施例1】
複合粒子としてPt担持カーボン(田中貴金属(株)社製TEC10E40E、Pt:36.4質量%)1.00gに対し、2.85gの13質量%パーフルオロスルホン酸ポリマー溶液(スルホン酸ポリマー化学式:−[CFCF1.00−[CF−CF(−O−(CF−SOH)]2.19−、スルホン酸ポリマーEW710、溶媒組成(質量比):エタノール/水=50/50)を添加してホモジナイザーでよく混合した。これにさらにPTFE分散液(三井デュポンフロロケミカル(株)社製テフロン(登録商標)30−J、固形分率53質量%)を0.04g添加して、再び混合した。このようにして得た分散液をスクリーン印刷法にてテフロン(登録商標)シート上に塗布し、室温下で1時間、空気中160℃にて1時間、乾燥を行うことにより、3.5cm角で厚み10μm程度の電極触媒層を得た。Pt担持量及びポリマー担持量が0.126mg/cmの電極触媒層をアノード側に、Pt担持量及びポリマー担持量が0.286mg/cmの電極触媒層をカソード側に用いた。
【0043】
このように共にテフロン(登録商標)シート上に製膜したアノード側の触媒層とカソード側の電極触媒層を厚みが50μmのパーフルオロスルホン酸膜(スルホン酸ポリマー化学式:−[CFCF1.00−[CF−CF(−O−(CF−SOH)]2.19−、スルホン酸ポリマーEW710)を介して向かい合わせ、180℃、圧力50kg/cmで熱プレスしてアノード側とカソード側の触媒層をテフロン(登録商標)シートからパーフルオロスルホン酸膜へ転写することによりMEAを作製した。
【0044】
このMEAとカーボンクロス(ガス拡散層)を用いて単セルを組み、燃料電池評価装置にセットした。燃料として水素ガス、酸化剤として空気ガスを用い、2気圧でガスを単セルに供給した。セル温度100℃とし、ガス加湿には水バブリング方式を用いて水素ガス及び空気ガス共に加湿温度を50℃(湿度12RH%に相当)とした。発電試験を行ったところ、高温低加湿条件にもかかわらず、電流密度0.8A/cm時に0.61Vと高い電圧が得られるとともに、安定に運転することができた。
さらに、セル温度50℃とした以外は同様な条件で発電試験を行った時においても、電流密度1A/cm時に0.60Vと高い電圧が得られるとともに、フラッディングを起こさずに安定に運転することができた。
【0045】
【発明の効果】
本発明の電極触媒層を用いることにより、50℃〜100℃の温度領域において、特に高電流密度下での運転時にフラッディングが起きなくなり、良好な出力特性が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode catalyst layer for a polymer electrolyte fuel cell.
[0002]
[Prior art]
Fuel cells convert fuel chemical energy directly into electrical energy by electrochemically oxidizing hydrogen, methanol, etc. in the battery, and are taken out as a clean electrical energy supply source. ing. In particular, polymer electrolyte fuel cells are expected to be used as alternative power sources for automobiles, cogeneration systems for home use, and portable generators because they operate at lower temperatures than others.
[0003]
Such a polymer electrolyte fuel cell includes at least a membrane electrode assembly (hereinafter, referred to as MEA) in which an electrode catalyst layer is bonded to both surfaces of a proton exchange membrane. If necessary, a structure in which the MEA is sandwiched between a pair of gas diffusion layers may be used. In this case, a laminate of the electrode catalyst layer and the gas diffusion layer is called a gas diffusion electrode. Conventionally, as the electrode catalyst layer, a thin sheet of a catalyst composition composed of a composite particle in which catalyst particles are supported on carbon particles and a proton conductive polymer is suitably used (for example, see Non-Patent Document 1). .
In the fuel cell including the MEA, fuel (eg, hydrogen) is supplied to the gas diffusion electrode on the anode side, and an oxidizing agent (eg, oxygen or air) is supplied to the gas diffusion electrode on the cathode side, and the two electrodes are connected by an external circuit. It works by doing.
[0004]
Specifically, when hydrogen is used as fuel, hydrogen is oxidized on the anode catalyst to generate protons, which pass through the proton conductive polymer in the anode catalyst layer and then move in the proton exchange membrane. And reaches the cathode catalyst through the proton conductive polymer in the cathode catalyst layer. On the other hand, the electrons generated simultaneously with the protons due to the oxidation of hydrogen reach the gas diffusion electrode on the cathode side through an external circuit, and react with the protons and oxygen in the oxidant on the cathode catalyst to produce water. When electrical energy can be extracted.
Conventional polymer electrolyte fuel cells can obtain high power generation efficiency and output by operating under appropriate humidification conditions at around 80 ° C., but if the humidification is insufficient, the proton exchange membrane Is dried, the proton conductivity is significantly reduced, the internal resistance of the battery is increased, and the output is reduced.
[0005]
Even if the proton conductive polymer contained in the anode and cathode gas diffusion electrodes dries, the overvoltage increases and the output decreases. In particular, on the anode side, water is easily deficient because water molecules accompany when protons move from the anode side to the cathode side in the proton exchange membrane. On the other hand, on the cathode side, water is generated by the battery reaction, and water is entrained from the anode side along with the transfer of protons, so that a state in which water is excessively present (hereinafter, flooding) tends to occur. The flooding phenomenon is remarkable at the time of power generation at a high current density, which hinders gas supply and significantly lowers the output.
By the way, in the case where the polymer electrolyte fuel cell is used for automobiles, under high temperature and low humidification conditions (at an operating temperature of around 100 ° C., humidification at 50 ° C. (corresponding to a humidity of 12 RH%)), assuming that the automobile is running in summer. It is desired that the fuel cell can be operated. In this case, the above-mentioned problems must be solved.
[0006]
Therefore, a method of including fine particulate and / or fibrous silica as a water-absorbing material in the anode catalyst layer (for example, see Patent Documents 1 and 2), a method in which fine particles of crosslinked polyacrylate are used as a water-absorbing material in the catalyst layer (For example, see Patent Document 3). By using these techniques for hydrophilizing the electrode catalyst layer, the water retention of the electrode catalyst layer can be increased, and the electrode catalyst layer can be operated to some extent under high temperature and low humidification conditions.
However, while the water retention of the electrode catalyst layer can be improved by the addition of the water-absorbing material, the normal fuel cell operation at 80 ° C. or lower, particularly when operated under a high current density, tends to cause flooding on the cathode side, which is favorable. At the same time, a problem that a proper output cannot be obtained.
[0007]
[Patent Document 1]
JP-A-6-11827 [Patent Document 2]
JP 2001-11219 A [Patent Document 3]
JP-A-7-326361)
[Non-patent document 1]
Journal of Applied Electrochemistry, 22, p. 1-7 (1992)
[0008]
[Problems to be solved by the invention]
That is, an object of the present invention is to provide an electrode catalyst layer for a fuel cell which can obtain good output characteristics in a wide temperature range from 0 ° C. to 150 ° C.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, found that the composite particles in which the catalyst particles are supported on the conductive particles are 20.000% by mass or more and 80.000% by mass or less, and the proton conductive polymer is A solid polymer using an electrode catalyst layer for a fuel cell, comprising from 19.999% by mass to 60.000% by mass and polytetrafluoroethylene from 0.001% by mass to 20.000% by mass. The shape of the fuel cell improves water retention and facilitates the discharge of excess water, and is good in a wide temperature range from 0 ° C to 150 ° C without flooding, especially during operation under high current density. It has been found that excellent output characteristics can be obtained.
[0010]
Furthermore, the present inventors limit the equivalent weight of the proton conductive polymer to 250 or more and 800 or less, and additionally, by adding a metal oxide to the electrode catalyst layer, 90 ° C. to 150 ° C., 10 RH% or less. The present inventors have found that even at a high temperature and a low humidification condition of 60 RH%, the output characteristics are more stable, and the present invention has been achieved. That is, the present invention is as follows.
(1) 20.000% to 80.000% by mass of composite particles in which catalyst particles are supported on conductive particles, 19.999% to 60.000% by mass of proton conductive polymer, An electrode catalyst layer for a fuel cell, comprising 0.001% by mass to 20.000% by mass of fluoroethylene.
(2) The electrode catalyst layer according to (1), wherein the polytetrafluoroethylene is in the form of particles and / or fibers.
(3) The electrode catalyst layer according to (1) or (2), wherein the proton conductive polymer has an equivalent weight (EW) of 250 or more and 800 or less.
(4) The electrode catalyst layer according to any one of (1) to (3), wherein the electrode catalyst layer further contains a metal oxide.
(5) A polymer electrolyte fuel cell comprising the electrode catalyst layer according to any one of (1) to (4).
[0011]
Hereinafter, the electrode catalyst layer for a fuel cell of the present invention will be described in detail.
The electrode catalyst layer for a fuel cell of the present invention contains at least composite particles in which catalyst particles are supported on conductive particles, a proton conductive polymer, and polytetrafluoroethylene. Is 20.000% by mass or more and 80.000% by mass or less, the proton conductive polymer is 19.999% by mass or more and 60% by mass or less, and the polytetrafluoroethylene is 0.001% by mass or more and 20% by mass or less, more preferably. Means that the composite particles are 30.00% by mass to 80.00% by mass, the proton conductive polymer is 19.99% by mass to 60.00% by mass, and the polytetrafluoroethylene is 0.01% by mass to 10.00% by mass. % Or less, more preferably 35.0% by mass or more and 80.0% by mass or less of the composite particles and 19.9% by mass of the proton conductive polymer. 60.0% by mass or less, 0.1% by mass or more and 5.0% by mass or less of polytetrafluoroethylene, most preferably 37% by mass or more and 80% by mass or less of composite particles and 19% by mass of a proton conductive polymer. Not less than 60% by mass, and not less than 1% by mass and not more than 3% by mass of polytetrafluoroethylene.
[0012]
The composite particles constituting the electrode catalyst layer of the present invention are obtained by supporting catalyst particles on conductive particles, and the structure in which such composite particles are bound is used as the basic skeleton of the electrode catalyst layer.
Any conductive particles may be used as long as they have conductivity. For example, carbon black such as furnace black, channel black, and acetylene black, activated carbon, graphite, and various metals are used. The particle size of these conductive particles is preferably from 10 Å to 10 μm, more preferably from 50 Å to 1 μm, and most preferably from 100 Å to 5000 Å.
[0013]
On the other hand, the catalyst particles are catalysts that oxidize fuel (eg, hydrogen) at the anode to easily generate protons, and generate water by reacting the protons and electrons with an oxidant (eg, oxygen or air) at the cathode. Although the type of the catalyst is not limited, platinum is preferably used. In order to enhance the resistance of platinum to impurities such as CO, a catalyst in which ruthenium or the like is added to platinum or alloyed is preferably used.
Although the particle size of the catalyst particles is not limited, it is preferably from 10 Å to 1000 Å, more preferably from 10 Å to 500 Å, most preferably from 15 Å to 100 Å.
[0014]
In the composite particles used in the present invention, the catalyst particles are preferably 1% by mass to 99% by mass, more preferably 10% by mass to 90% by mass, and most preferably 30% by mass to 70% by mass with respect to the conductive particles. % Or less.
The amount of the composite particles supported on the electrode area is preferably 0.001 mg / cm 2 or more and 10 mg / cm 2 or less, more preferably 0.01 mg / cm 2 or more and 5 mg / cm 2 or less, with the electrode catalyst layer formed. Preferably, it is 0.1 mg / cm 2 or more and 1 mg / cm 2 or less.
[0015]
Next, the proton conductive polymer constituting the electrode catalyst layer of the present invention will be described.
The proton conductive polymer is a polymer having a proton conductive functional group. Examples of the proton-conductive functional group include a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a phosphoric acid group. Examples of the polymer skeleton include hydrocarbon polymers such as polyolefin and polystyrene, and perfluorocarbon polymers. Among them, a perfluorocarbon polymer represented by the following formula (1) having excellent oxidation resistance and heat resistance is preferable.
Figure 2004273257
(Wherein X 1 , X 2 and X 3 are each independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, a is 0 to 20 and b is an integer of 0 to 8; c is 0 or 1, d, e and f are each independently an integer of 0 or more and 6 or less (however, d + e + f is not equal to 0), g is 1 or more and 20 or less, R 1 and R 2 are each independently a halogen element, and have 1 carbon atom. 10 or less perfluoroalkyl group or fluorochloroalkyl group, X 4 is COOH, SO 3 H, PO 3 H 2 or PO 3 H)
[0016]
Among such perfluorocarbon polymers, a polymer represented by the following formula (2) is particularly preferable.
- [CF 2 CF 2] a - [CF 2 -CF (-O- (CF 2) 2 -SO 3 H)] g - (2)
(Where a is 0 or more and 20 or less, g is 1 or more and 20 or less)
The equivalent weight EW of the proton conductive polymer (the number of grams of dry mass of the proton conductive polymer per equivalent of proton exchange group) is not limited, but is preferably 250 or more and 2000 or less, more preferably 250 or more and 800 or less. Is 400 or more and 800 or less.
[0017]
By using a proton conductive polymer having a low EW, that is, a large proton exchange capacity, excellent proton conductivity can be exhibited even under high temperature and low humidification conditions, and a high output can be obtained during fuel cell operation.
The amount of the proton conductive polymer present in the electrode catalyst layer is not limited, but is preferably 0.001 mg / cm 2 or more and 10 mg / cm 2 or less in a state where the electrode catalyst layer is formed, as a supported amount with respect to the projected area of the electrode. , More preferably 0.01 mg / cm 2 or more and 5 mg / cm 2 or less, and most preferably 0.1 mg / cm 2 or more and 2 mg / cm 2 or less.
[0018]
Further, the weight ratio is preferably 0.001 or more and 50 or less, more preferably 0.1 or more and 10 or less, and most preferably 0.5 or more and 5 or less with respect to the supported amount of the catalyst particles.
Further, the electrode catalyst layer of the present invention contains polytetrafluoroethylene (hereinafter, PTFE). The shape of the PTFE is not particularly limited, but any shape may be used as long as it has a regular shape, and it is preferably in the form of particles or fibers. These may be used alone or in combination.
[0019]
When the PTFE is in the form of particles, the particle size is preferably from 0.001 μm to 100 μm, more preferably from 0.01 μm to 10 μm, and most preferably from 0.1 μm to 5 μm.
Further, when the PTFE is fibrous, in the present invention, in addition to the general fibrous shape, the fibril shape is generally referred to as a fibrous shape including a needle shape, and the fiber diameter is preferably 0.001 μm or more and 10 μm or less, more preferably. Is from 0.01 μm to 5 μm, most preferably from 0.1 μm to 1 μm. The fiber length is preferably from 0.001 μm to 100 μm, more preferably from 0.01 μm to 10 μm, and most preferably from 0.1 μm to 5 μm. The aspect ratio is preferably 0.001 or more and 1000 or less, more preferably 0.01 or more and 100 or less, and most preferably 0.1 or more and 10 or less.
[0020]
Note that the effects of the present invention can be achieved even if the above-mentioned fibers and the like intersect in a mesh pattern or are dispersed in the electrode catalyst layer.
Although the molecular weight of PTFE is not particularly limited, it is preferably from 100,000 to 20,000,000, more preferably from 200,000 to 10,000,000, and most preferably from 300,000 to 6,000,000. The higher the crystallinity of the PTFE, the better, but it is not particularly limited.
[0021]
Further, by optimizing the content of PTFE with respect to the proton conductive polymer, higher output characteristics can be obtained, preferably 0.001% by mass or more and 100% by mass or less, more preferably 0.1% by mass or less. Not less than 30% by mass, most preferably not less than 1% by mass and not more than 10% by mass. Further, by optimizing the weight of PTFE per mole of proton exchange groups contained in the proton conductive polymer, even higher output characteristics can be obtained, and the optimum value thereof is preferably 0.001 g or more and 10 g or less. Preferably it is 0.05 g or more and 5 g or less, most preferably 0.1 g or more and 1 g or less.
[0022]
The electrode catalyst layer of the present invention is more effective when it further contains a metal oxide. The metal oxide is not particularly limited, but Al 2 O 3 , B 2 O 3 , MgO, SiO 2 , SnO 2 , TiO 2 , V 2 O 5 , WO 3 , Y 2 O 3 , ZrO 2 , Zr 2 It is preferable that the metal oxide be at least one selected from the group consisting of O 3 and ZrSiO 4 as a constituent element. Among them, Al 2 O 3 , SiO 2 , TiO 2 and ZrO 2 are preferable, and SiO 2 is particularly preferable.
[0023]
Metal oxides which can be used in the present invention is common to have a -OH group, for example, in the case of SiO 2, and SiO 2 (1-0.25X) (OH) X (0 ≦ X <4) May be represented. Therefore, it is considered that the water retention is improved.
When the metal oxide is contained in the electrode catalyst layer of the present invention, the content is preferably 0.001% by mass to 20% by mass, more preferably 0.01% by mass to 10% by mass, and most preferably. It is 0.1% by mass or more and 5% by mass or less.
[0024]
As the form of the metal oxide, a particulate or fibrous form may be used, but an amorphous form is particularly desirable. The term "amorphous" as used herein means that no particulate or fibrous metal oxide is observed even when observed with an optical microscope or an electron microscope. In particular, even if the electrode catalyst layer is observed up to several hundred thousand times using a scanning electron microscope (SEM), no particulate or fibrous metal oxide is observed. Further, even if the electrode catalyst layer is observed at a magnification of several hundred thousand to several million times using a transmission electron microscope (TEM), a particulate or fibrous metal oxide can be clearly observed. Can not. As described above, it means that metal oxide particles cannot be confirmed within the scope of the current microscope technology.
[0025]
The thickness of the electrode catalyst layer of the present invention is preferably 0.01 μm or more and 200 μm or less, more preferably 0.1 μm or more and 100 μm or less, and most preferably 1 μm or more and 50 μm or less.
The porosity of the electrode catalyst layer of the present invention is not particularly limited, but is preferably 1% by volume to 99% by volume, more preferably 10% by volume to 80% by volume, and most preferably 30% by volume to 60% by volume. It is.
[0026]
Next, a method for producing the electrode catalyst layer of the present invention will be described.
The electrode catalyst layer of the present invention, after applying the above-described composite particles, proton conductive polymer, and an electrode catalyst composition which is a dispersion solution containing PTFE, onto a proton exchange membrane or another substrate such as a PTFE sheet, The electrode catalyst layer of the present invention is formed by drying and solidifying.
Further, after applying a composite particle other than PTFE and an electrode catalyst composition containing a proton conductive polymer on a proton exchange membrane or another substrate such as a PRFE sheet in advance, drying and solidifying to form a catalyst layer. After that, the electrode catalyst layer of the present invention can also be obtained by applying or dipping the PTFE dispersion on the catalyst layer by a known technique.
[0027]
In the present invention, the application of the electrode catalyst composition can be performed by various commonly known methods such as a spray method.
The composite particles used in the electrode catalyst composition of the present invention may have a structure in which catalyst particles are supported on conductive particles satisfying the conditions described in the present invention. For example, commercially available F101RA / manufactured by Degussa Co., Ltd. W, TEC10E40E manufactured by Tanaka Kikinzoku Kogyo KK or the like can be used.
[0028]
In addition, it is preferable to use a polymer solution in which the proton conductive polymer is dissolved in a water / alcohol mixed solvent in an amount of 1% by mass or more and 20% by mass or less. Representative examples of such a polymer solution include a commercially available DuPont Nafion solution.
In addition, as the PTFE, it is preferable to use a PTFE dispersion liquid dispersed in an aqueous medium. That is, it is synthesized by a known means such as suspension polymerization performed in an aqueous medium or emulsion polymerization, and solution polymerization performed in a solvent such as chlorofluorocarbon. In the present invention, those prepared by any polymerization method can be used.
[0029]
Of the above PTFE dispersions, the PTFE dispersion prepared by solution polymerization may contain a fluorocarbon as a polymerization solvent. As the fluorinated hydrocarbon, for example, a compound group generally referred to as “Freon” such as trichlorotrifluoroethane or 1112344455-decafluoropentane can be suitably used. The PTFE dispersion may contain a surfactant as needed. The solid content ratio of the PTFE dispersion is preferably 1% by mass to 99% by mass, more preferably 10% by mass to 90% by mass, and most preferably 20% by mass to 70% by mass. Examples of such a PTFE dispersion include a PTFE dispersion having a solid content ratio of 4.6% by mass using HCFC-141b as a dispersion medium (Lubron LD-1E manufactured by Daikin: solution polymerization), and a PTFE dispersion comprising an aqueous solvent. Examples include Teflon (registered trademark) 30-J manufactured by Du Pont-Mitsui Fluorochemicals Co., Ltd. and POLYFLON manufactured by Daikin Industries, Ltd.
In the present invention, the proton conductive polymer solution and the PTFE dispersion may be mixed with the composite particles to form a dispersion of the electrode catalyst composition, but a solvent may be further added as necessary. .
Examples of the solvent that can be used include water, lower alcohols such as ethanol, and single or complex solvents such as ethylene glycol, propylene glycol, glycerin, dimethyl sulfoxide, and chlorofluorocarbon. Such a solvent is preferably 1% by mass or more and 10000% by mass or more, more preferably 10% by mass or more and 5000% by mass or less, and most preferably 100% by mass or more and 2000% by mass based on the weight of the solidified electrode catalyst composition. % Or less.
[0031]
As described above, the method for manufacturing the electrode catalyst layer of the present invention has been described. However, since the effect is further improved by adding a metal oxide to the electrode catalyst layer of the present invention, the electrode catalyst layer containing a metal oxide is next described. A method of manufacturing the device will be described.
When the metal oxide is contained in the electrode catalyst layer in the present invention, the metal oxide is mixed with the electrode catalyst composition to be used, and in the same manner as described above, another substrate such as a proton exchange membrane or a PTFE sheet is used. The electrode catalyst layer may be formed by drying and solidifying after coating on the material.
[0032]
In general, the metal oxide contained in the electrode catalyst layer in this manner is often in the form of particles or fibers having a regular shape.However, the metal oxide precursor is impregnated into the electrode catalyst layer manufactured in advance, and then the metal oxide precursor is formed. The metal oxide which is obtained by the hydrolysis and polycondensation reaction of is amorphous and exhibits the effects of the present invention.
Therefore, a method for producing a metal oxide-containing electrode catalyst layer obtained by impregnating a metal oxide precursor into a previously produced electrode catalyst layer will be described below.
[0033]
Although the type of the metal oxide precursor is not limited, an alkoxide containing Al, B, P, Si, Ti, Zr or Y is preferable, and in particular, Si (OCH 3 ) 4 and Si (OC 2 H 5) 4, Si ( OC 3 H 7) 4, Si (OC 4 H 9) 4 and the like are desirable.
Since the above metal oxide precursor is in the form of a solution, it can be applied and impregnated on the electrode catalyst layer as it is. The impregnation amount of the metal oxide precursor is not limited, but is preferably 0.01 to 1,000,000 equivalents, more preferably 0.05 to 1 equivalent of the proton exchange group in the proton conductive polymer constituting the electrode catalyst layer. The equivalent is from 500 to 500,000 equivalents, most preferably from 0.1 to 100,000 equivalents, more preferably from 0.2 to 20,000 equivalents.
[0034]
The metal oxide precursor impregnated in the electrode catalyst layer subsequently undergoes a hydrolysis reaction. The amount of water for performing the hydrolysis reaction / polycondensation reaction is not limited, but is preferably 0.1 equivalent to 100 equivalents, more preferably 0.2 equivalent to 50 equivalents, relative to 1 equivalent of the metal oxide precursor. Below, most preferably 0.5 equivalent or more and 30 equivalents or less, more preferably 1 equivalent or more and 10 equivalents or less. Further, water may be added after being diluted or dissolved in another solvent.
[0035]
The hydrolysis / polycondensation reaction of the metal oxide precursor may be performed by directly adding water after impregnating the metal oxide precursor into the electrode catalyst layer. A method of adding the metal oxide precursor later, or a method of impregnating the electrode catalyst layer with a liquid containing both water and the metal oxide precursor may be used.
After the addition of water as described above, the metal oxide precursor is subjected to a heat treatment at 80 to 150 ° C. and / or a hydrothermal treatment at 80 to 150 ° C. to cause a hydrolysis and polycondensation reaction of the metal oxide precursor to form the amorphous form of the present invention. Metal oxide.
[0036]
The content of the metal oxide contained in the electrode catalyst layer as described above is preferably 0.001% by mass or more and 20% by mass or less, more preferably 0.01% by mass or more and 10% by mass or less, Most preferably, it is not less than 0.1% by mass and not more than 5% by mass.
The method for producing the electrode catalyst layer of the present invention has been described above.
The effect is exhibited by evaluating the electrode catalyst layer of the present invention as a polymer electrolyte fuel cell. The evaluation method will be described below.
[0037]
The electrode catalyst layer of the present invention is used as an MEA (membrane electrode assembly) in which the electrode catalyst layers are bonded via a proton exchange membrane, and is used for both or at least one of the electrode catalyst layers used as an anode and a cathode. It works. When the electrode catalyst layer of the present invention is used for any one of the electrodes, it is preferable to use the electrode catalyst layer on the cathode side.
The type of the proton exchange membrane used in the evaluation of the present invention is not limited, but a proton exchange membrane made of the same perfluorocarbon polymer as the proton conductive polymer constituting the electrode catalyst layer of the present invention is preferable. The film thickness is not limited, but is preferably 1 μm or more and 500 μm or less, more preferably 2 μm or more and 100 μm or less, and most preferably 10 μm or more and 50 μm or less.
[0038]
Further, a structure in which a pair of gas diffusion layers are joined to face each other via an MEA as necessary may be employed.
The MEA may have an electrode catalyst layer formed directly on the proton exchange membrane as described above. The electrode catalyst obtained by coating and forming on a substrate other than the proton exchange membrane such as a PTFE sheet, followed by drying and solidification. The layer and the proton exchange membrane can also be obtained by a method of hot pressing at 100 ° C to 200 ° C and joining. When the gas diffusion layer and the MEA are joined, they can be obtained by hot pressing in the same manner.
[0039]
The MEA obtained as described above, and in some cases, a structure in which a pair of gas diffusion electrodes face each other via the MEA, further include components used for a general polymer electrolyte fuel cell such as a bipolar plate and a backing plate. A polymer electrolyte fuel cell is constituted by combining them.
Among them, the bipolar plate is a composite material with graphite or resin, a metal plate, etc., with grooves formed on the surface to allow gas such as fuel or oxidant to flow, and transmits electrons to an external load circuit. In addition, it has a function as a flow path for supplying a fuel or an oxidant to the vicinity of the electrode catalyst. By inserting MEAs between such bipolar plates and stacking a plurality of them, a fuel cell is manufactured. The operation of the fuel cell is performed by finally supplying hydrogen to one electrode and oxygen or air to the other electrode.
[0040]
The electrode catalyst layer of the present invention is evaluated using the solid polymer fuel cell constructed as described above.
The electrode catalyst layer of the present invention can be used for chloralkali, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor and the like.
[0041]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be specifically described based on examples, but the present invention is not limited to the examples. The evaluation method of the fuel cell is as follows.
[0042]
Embodiment 1
For 1.00 g of Pt-supported carbon (TEC10E40E, manufactured by Tanaka Kikinzoku Co., Ltd., Pt: 36.4% by mass) as composite particles, 2.85 g of a 13% by mass perfluorosulfonic acid polymer solution (sulfonic acid polymer chemical formula:- [CF 2 CF 2] 1.00 - [CF 2 -CF (-O- (CF 2) 2 -SO 3 H)] 2.19 -, sulfonic acid polymers EW710, solvent composition (mass ratio): ethanol / water = 50/50) and mixed well with a homogenizer. 0.04 g of a PTFE dispersion (Teflon (registered trademark) 30-J, manufactured by Du Pont-Mitsui Fluorochemicals Co., Ltd., solid content rate: 53% by mass) was further added thereto and mixed again. The dispersion thus obtained was applied on a Teflon (registered trademark) sheet by a screen printing method, and dried at room temperature for 1 hour and in air at 160 ° C. for 1 hour to form a 3.5 cm square. Thus, an electrode catalyst layer having a thickness of about 10 μm was obtained. Pt support amount and polymer loading amount on the anode side electrode catalyst layer of 0.126mg / cm 2, Pt loading amount and polymer loading amount using the electrode catalyst layer of 0.286 mg / cm 2 on the cathode side.
[0043]
In this manner, the anode-side catalyst layer and the cathode-side electrode catalyst layer formed on the Teflon (registered trademark) sheet together have a 50 μm-thick perfluorosulfonic acid membrane (sulfonic acid polymer chemical formula:-[CF 2 CF 2 ] 1.00 - [CF 2 -CF (-O- (CF 2) 2 -SO 3 H)] 2.19 -, opposed via the sulfonic acid polymer EW710), 180 ℃, heat pressure 50 kg / cm 2 The MEA was manufactured by pressing and transferring the catalyst layers on the anode and cathode sides from a Teflon (registered trademark) sheet to a perfluorosulfonic acid membrane.
[0044]
A single cell was assembled using this MEA and carbon cloth (gas diffusion layer) and set in a fuel cell evaluation device. Using hydrogen gas as a fuel and air gas as an oxidant, the gas was supplied to a single cell at 2 atm. The cell temperature was set to 100 ° C., and the gas humidification was performed by using a water bubbling method to set the humidification temperature of both hydrogen gas and air gas to 50 ° C. (corresponding to a humidity of 12 RH%). When a power generation test was performed, a high voltage of 0.61 V was obtained at a current density of 0.8 A / cm 2 , and stable operation was possible despite high temperature and low humidification conditions.
Furthermore, even when a power generation test was performed under the same conditions except that the cell temperature was set to 50 ° C., a voltage as high as 0.60 V was obtained at a current density of 1 A / cm 2 , and operation was stable without flooding. I was able to.
[0045]
【The invention's effect】
By using the electrode catalyst layer of the present invention, flooding does not occur in a temperature range of 50 ° C. to 100 ° C., particularly during operation under a high current density, and good output characteristics can be obtained.

Claims (5)

導電性粒子上に触媒粒子が担持された複合粒子を20.000質量%以上80.000質量%以下、プロトン伝導性ポリマーを19.999質量%以上60.000質量%以下、ポリテトラフルオロエチレンを0.001質量%以上20.000質量%以下含有することを特徴とする燃料電池用の電極触媒層。20.000% by mass or more and 80.000% by mass or less of the composite particles having the catalyst particles supported on the conductive particles, 19.999% by mass or more and 60.000% by mass or less of the proton conductive polymer and polytetrafluoroethylene. An electrode catalyst layer for a fuel cell, comprising from 0.001% by mass to 20.000% by mass. 該ポリテトラフルオロエチレンが粒子状及び/又は繊維状であることを特徴とする請求項1に記載の電極触媒層。The electrode catalyst layer according to claim 1, wherein the polytetrafluoroethylene is in the form of particles and / or fibers. 該プロトン伝導性ポリマーの当量重量(EW)が、250以上800以下であることを特徴とする請求項1又は2に記載のいずれかに記載の電極触媒層。3. The electrode catalyst layer according to claim 1, wherein an equivalent weight (EW) of the proton conductive polymer is 250 or more and 800 or less. 4. 該電極触媒層が、更に金属酸化物を含有することを特徴とする請求項1〜3のいずれかに記載の電極触媒層。The electrode catalyst layer according to any one of claims 1 to 3, wherein the electrode catalyst layer further contains a metal oxide. 請求項1〜4のいずれかに記載の電極触媒層を備えた固体高分子形燃料電池。A polymer electrolyte fuel cell comprising the electrode catalyst layer according to claim 1.
JP2003061932A 2003-03-07 2003-03-07 Electrocatalyst layer for fuel cells Expired - Lifetime JP4780902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061932A JP4780902B2 (en) 2003-03-07 2003-03-07 Electrocatalyst layer for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061932A JP4780902B2 (en) 2003-03-07 2003-03-07 Electrocatalyst layer for fuel cells

Publications (2)

Publication Number Publication Date
JP2004273257A true JP2004273257A (en) 2004-09-30
JP4780902B2 JP4780902B2 (en) 2011-09-28

Family

ID=33124009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061932A Expired - Lifetime JP4780902B2 (en) 2003-03-07 2003-03-07 Electrocatalyst layer for fuel cells

Country Status (1)

Country Link
JP (1) JP4780902B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311225A (en) * 2003-04-08 2004-11-04 Sony Corp Catalytic powder, catalytic electrode, and electrochemical device
JP2006179479A (en) * 2004-12-22 2006-07-06 Samsung Sdi Co Ltd Electrode for fuel cell, manufacturing method of electrode for fuel cell, and fuel cell
JP2007103083A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Transfer sheet for manufacturing catalyst layer-electrolyte film laminate for fuel cell, and catalyst layer-electrolyte film laminate
JP2008047441A (en) * 2006-08-17 2008-02-28 Fujitsu Ltd Fuel cell
JP2010225585A (en) * 2009-02-26 2010-10-07 Asahi Kasei E-Materials Corp Electrode catalyst layer for fuel cell, membrane electrode assembly, and solid polymer fuel cell
JP2011034769A (en) * 2009-07-31 2011-02-17 Asahi Glass Co Ltd Fuel cell system
US8361677B2 (en) 2006-10-23 2013-01-29 Asahi Glass Company, Limited Membrane/electrode assembly for polymer electrolyte fuel cell
WO2014155929A1 (en) * 2013-03-27 2014-10-02 Jx日鉱日石エネルギー株式会社 Method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and fuel cell
US9531025B2 (en) 2013-06-04 2016-12-27 Panasonic Intellectual Property Management Co., Ltd. Membrane-electrode assembly, manufacture method thereof, and solid polymer fuel cell
US11799092B2 (en) 2018-07-25 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Cathode catalyst layer of fuel cells, and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186882A (en) * 1997-09-01 1999-03-30 Japan Storage Battery Co Ltd Manufacture of catalyst dispersion material and solid polymer fuel cell
JP2001202970A (en) * 2000-01-17 2001-07-27 Asahi Glass Co Ltd Gas diffusion electrode for solid polymer electrolyte fuel cell and its manufacturing method
JP2002289200A (en) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd Fuel battery
JP2003051320A (en) * 2001-05-31 2003-02-21 Asahi Glass Co Ltd Membrane-electrode junction for solid polymer type fuel cell and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186882A (en) * 1997-09-01 1999-03-30 Japan Storage Battery Co Ltd Manufacture of catalyst dispersion material and solid polymer fuel cell
JP2001202970A (en) * 2000-01-17 2001-07-27 Asahi Glass Co Ltd Gas diffusion electrode for solid polymer electrolyte fuel cell and its manufacturing method
JP2002289200A (en) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd Fuel battery
JP2003051320A (en) * 2001-05-31 2003-02-21 Asahi Glass Co Ltd Membrane-electrode junction for solid polymer type fuel cell and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311225A (en) * 2003-04-08 2004-11-04 Sony Corp Catalytic powder, catalytic electrode, and electrochemical device
JP2006179479A (en) * 2004-12-22 2006-07-06 Samsung Sdi Co Ltd Electrode for fuel cell, manufacturing method of electrode for fuel cell, and fuel cell
JP4656572B2 (en) * 2004-12-22 2011-03-23 三星エスディアイ株式会社 ELECTRODE FOR FUEL CELL, METHOD FOR PRODUCING ELECTRODE FOR FUEL CELL, AND FUEL CELL
JP2007103083A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Transfer sheet for manufacturing catalyst layer-electrolyte film laminate for fuel cell, and catalyst layer-electrolyte film laminate
JP2008047441A (en) * 2006-08-17 2008-02-28 Fujitsu Ltd Fuel cell
US8361677B2 (en) 2006-10-23 2013-01-29 Asahi Glass Company, Limited Membrane/electrode assembly for polymer electrolyte fuel cell
JP2010225585A (en) * 2009-02-26 2010-10-07 Asahi Kasei E-Materials Corp Electrode catalyst layer for fuel cell, membrane electrode assembly, and solid polymer fuel cell
JP2011034769A (en) * 2009-07-31 2011-02-17 Asahi Glass Co Ltd Fuel cell system
WO2014155929A1 (en) * 2013-03-27 2014-10-02 Jx日鉱日石エネルギー株式会社 Method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and fuel cell
US9531025B2 (en) 2013-06-04 2016-12-27 Panasonic Intellectual Property Management Co., Ltd. Membrane-electrode assembly, manufacture method thereof, and solid polymer fuel cell
US10103400B2 (en) 2013-06-04 2018-10-16 Panasonic Intellectual Property Management Co., Ltd. Membrane-electrode assembly, manufacture method thereof, and solid polymer fuel cell
US11799092B2 (en) 2018-07-25 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Cathode catalyst layer of fuel cells, and fuel cell

Also Published As

Publication number Publication date
JP4780902B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4390558B2 (en) Electrocatalyst layer for fuel cells
JP4023903B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
US8007953B2 (en) Process for producing membrane/electrode assembly for polymer electrolyte fuel cell
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP5066998B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
JP4419550B2 (en) Proton-conducting electrolyte membrane manufacturing method, proton-conducting electrolyte membrane, and fuel cell using proton-conducting electrolyte membrane
JPWO2002037585A1 (en) Electrodes for polymer electrolyte fuel cells
JP2007200762A (en) Membrane electrode assembly for solid polymer fuel cell, and manufacturing method therefor
JP5233153B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
JP4090108B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
KR20090107527A (en) Gas diffusion electrode, fuel cell, and manufacturing method for the gas diffusion electrode
JPH1140172A (en) Method for producing film-electrode joined body for fuel cell
JP2006019300A (en) Electrode for fuel cell, fuel cell, and manufacturing method therefor
JP5233075B2 (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
JP2007109599A (en) Film electrode assembly for solid polymer fuel cell
JP3714766B2 (en) Electrode and membrane / electrode assembly for polymer electrolyte fuel cell
JP4780902B2 (en) Electrocatalyst layer for fuel cells
JP5601779B2 (en) Gas diffusion layer, membrane-electrode assembly and fuel cell
JP5694638B2 (en) Gas diffusion layer, membrane-electrode assembly and fuel cell
JP4025582B2 (en) High heat resistant ion exchange membrane
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP2007128665A (en) Electrode catalyst layer for fuel cell, and manufacturing method of membrane-electrode assembly using it
JP2006147278A (en) Electrolyte membrane-electrode assembly for solid fuel cell, and its manufacturing method
JP2006085984A (en) Mea for fuel cell and fuel cell using this

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term