JP2003051320A - Membrane-electrode junction for solid polymer type fuel cell and its manufacturing method - Google Patents

Membrane-electrode junction for solid polymer type fuel cell and its manufacturing method

Info

Publication number
JP2003051320A
JP2003051320A JP2002112163A JP2002112163A JP2003051320A JP 2003051320 A JP2003051320 A JP 2003051320A JP 2002112163 A JP2002112163 A JP 2002112163A JP 2002112163 A JP2002112163 A JP 2002112163A JP 2003051320 A JP2003051320 A JP 2003051320A
Authority
JP
Japan
Prior art keywords
membrane
polymer
catalyst layer
fuel cell
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002112163A
Other languages
Japanese (ja)
Other versions
JP4218255B2 (en
Inventor
Jun Mukoyama
純 向山
Toyoaki Ishizaki
豊暁 石崎
Shinji Kinoshita
伸二 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002112163A priority Critical patent/JP4218255B2/en
Publication of JP2003051320A publication Critical patent/JP2003051320A/en
Application granted granted Critical
Publication of JP4218255B2 publication Critical patent/JP4218255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer type fuel cell having an excellent power generation characteristic and excellent durability by providing a mass-producible membrane-electrode junction having a thin electrolyte membrane and/or a catalyst layer having a uniform thickness, and is low resistance and high tear strength and easy to handle. SOLUTION: In this manufacturing method for the membrane-electrode junction used for arranging and integrating a cathode and an anode comprising electrodes having catalyst layers on/with both surfaces of a solid polymer electrolyte membrane, a cation exchange membrane and/or the catalyst layer is formed by using a dispersion liquid prepared by dispersing an ion exchanger polymer comprising a fluorine-containing polymer having a sulfonic acid group and a fibril-like fluorocarbon polymer in a dispersion medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は固体高分子型燃料電
池用膜・電極接合体、その製造方法、及び膜・電極接合
体を備える固体高分子型燃料電池に関する。
TECHNICAL FIELD The present invention relates to a membrane / electrode assembly for a polymer electrolyte fuel cell, a method for producing the same, and a polymer electrolyte fuel cell including the membrane / electrode assembly.

【0002】[0002]

【従来の技術】水素・酸素燃料電池は、その反応生成物
が原理的に水のみであり地球環境への悪影響がほとんど
ない発電システムとして注目されている。固体高分子型
燃料電池は、かつてジェミニ計画及びバイオサテライト
計画で宇宙船に搭載されたが、当時の電池出力密度は低
かった。その後、より高性能のアルカリ型燃料電池が開
発され、現在のスペースシャトルに至るまで宇宙用には
アルカリ型燃料電池が採用されている。
2. Description of the Related Art A hydrogen / oxygen fuel cell has been attracting attention as a power generation system that has a reaction product of only water in principle and has almost no adverse effect on the global environment. The polymer electrolyte fuel cell was once installed in a spacecraft under the Gemini and biosatellite projects, but the cell power density at that time was low. Later, higher performance alkaline fuel cells were developed, and alkaline fuel cells have been adopted for space use up to the present space shuttle.

【0003】ところが、近年技術の進歩により固体高分
子型燃料電池が再び注目されている。その理由として次
の2点が挙げられる。(1)固体高分子電解質として高
導電性の膜が開発された。(2)ガス拡散電極層に用い
られる触媒をカーボンに担持し、これをイオン交換樹脂
で被覆することにより、高い活性が得られるようになっ
た。
However, polymer electrolyte fuel cells have been receiving attention again due to technological progress in recent years. The reasons are as follows. (1) A highly conductive membrane has been developed as a solid polymer electrolyte. (2) By supporting the catalyst used in the gas diffusion electrode layer on carbon and coating it with an ion exchange resin, high activity can be obtained.

【0004】性能をさらに向上させるために、固体高分
子電解質膜のスルホン酸基濃度の増加と厚さの低減によ
り電気抵抗を低減させることが考えられる。しかし、ス
ルホン酸基濃度の著しい増加は電解質膜の機械的強度や
引裂強さを低下させたり、取扱の際に寸法変化を起こし
たり、長期運転において電解質膜がクリープしやすくな
り耐久性を低下させる等の問題が生じる。一方厚さの低
減は電解質膜の機械的強度及び引裂強さを低下させた
り、さらに膜をガス拡散電極と接合させる場合等の加工
性・取扱い性を低下させる等の問題が生じる。
In order to further improve the performance, it is considered that the electrical resistance is reduced by increasing the concentration of sulfonic acid groups and reducing the thickness of the solid polymer electrolyte membrane. However, a significant increase in the concentration of sulfonic acid groups reduces the mechanical strength and tear strength of the electrolyte membrane, causes dimensional changes during handling, and causes the electrolyte membrane to creep easily during long-term operation, resulting in reduced durability. Problems such as occur. On the other hand, the reduction in thickness causes problems such as reduction in mechanical strength and tear strength of the electrolyte membrane, and further deterioration in workability and handleability when the membrane is bonded to a gas diffusion electrode.

【0005】また、性能を向上させるために白金担持率
を高くして触媒層を薄くすることが試みられているが、
触媒層中の触媒の部分は脆く、また触媒層に含まれるイ
オン交換樹脂は通常塗工液を用いて形成されるため、圧
縮クリープや弾性率等の力学的特性が充分ではなく、耐
久性に問題が生じやすい。
Further, in order to improve the performance, it has been attempted to increase the platinum loading rate to make the catalyst layer thin.
The catalyst portion in the catalyst layer is brittle, and the ion-exchange resin contained in the catalyst layer is usually formed using a coating liquid, so mechanical properties such as compression creep and elastic modulus are not sufficient, and durability is improved. Problems are likely to occur.

【0006】[0006]

【発明が解決しようとする課題】上記の問題を解決する
方法として、ポリテトラフルオロエチレン(以下、PT
FEという。)多孔膜にスルホン酸基を有するフッ素系
イオン交換体ポリマーを含浸する方法が提案されている
(特公平5−75835)が、厚さは薄くできるものの
多孔体状のPTFEでは膜の電気抵抗が充分に低下しな
い問題があった。また、この方法ではPTFE多孔膜と
上記イオン交換体ポリマーの界面が完全に接着していな
いため、固体高分子型燃料電池の電解質膜として用いた
場合に、長期間使用すると接着性不良から水素ガスリー
クが増大し、電池性能が低下する問題があった。
As a method for solving the above problems, polytetrafluoroethylene (hereinafter referred to as PT
It is called FE. ) A method of impregnating a porous ion exchange polymer having a sulfonic acid group into a porous membrane has been proposed (Japanese Patent Publication No. 5-75835). However, although the thickness can be reduced, the electrical resistance of the porous PTFE is high. There was a problem that it did not fall sufficiently. Further, in this method, since the interface between the PTFE porous membrane and the ion exchange polymer is not completely adhered, when used as an electrolyte membrane of a polymer electrolyte fuel cell, hydrogen gas leaks due to poor adhesion after long-term use. However, there is a problem that the battery performance increases and the battery performance decreases.

【0007】補強された膜の電気抵抗が高いことを解決
する方法として、フィブリル状、織布状、又は不織布状
のパーフルオロカーボン重合体で補強された陽イオン交
換膜が提案された(特開平6−231779)。この膜
は抵抗は低く、この膜を用いて作製した燃料電池の発電
特性は比較的良好であったが、厚さはせいぜい100〜
200μmであり、充分に薄くなく厚さムラがあるた
め、発電特性や量産性の点で不充分であった。また、パ
ーフルオロカーボン重合体とスルホン酸基を有するフッ
素系イオン交換体ポリマーとの接着性が充分でなく、水
素ガス透過性が比較的高いため、燃料電池を構成したと
きの出力が充分でなかった。
As a method for solving the problem that the electric resistance of the reinforced membrane is high, a cation exchange membrane reinforced with a fibril-like, woven cloth-like or non-woven cloth-like perfluorocarbon polymer has been proposed (Japanese Patent Laid-Open No. Hei 6) 231779). This membrane had low resistance, and the fuel cell produced using this membrane had relatively good power generation characteristics, but the thickness was 100 to 100 at most.
Since the thickness was 200 μm, and the thickness was not sufficiently thin and the thickness was uneven, the power generation characteristics and mass productivity were insufficient. Further, the adhesion between the perfluorocarbon polymer and the fluorinated ion exchanger polymer having a sulfonic acid group was not sufficient, and the hydrogen gas permeability was relatively high, so the output when the fuel cell was constructed was insufficient. .

【0008】そこで本発明は、厚さが均一で薄く抵抗が
低く、水素ガス透過性が低く、熱や加湿による寸法変化
が小さく、かつ異方性がなくて引裂き強度が高くハンド
リング性に優れ、量産が可能な固体高分子型燃料電池用
電解質膜及び/又は触媒層を製造する方法を提供し、得
られた電解質膜及び/又は触媒層を備えることにより発
電特性及び耐久性に優れる固体高分子型燃料電池を提供
することを目的とする。
Therefore, the present invention has a uniform thickness and a low resistance, a low hydrogen gas permeability, a small dimensional change due to heat and humidification, a high anisotropy, a high tear strength and an excellent handling property. Provided is a method for producing an electrolyte membrane and / or catalyst layer for a polymer electrolyte fuel cell that can be mass-produced, and a solid polymer having excellent power generation characteristics and durability by including the obtained electrolyte membrane and / or catalyst layer. An object is to provide a type fuel cell.

【0009】[0009]

【課題を解決するための手段】本発明は、陽イオン交換
膜からなる固体高分子電解質膜の両面に、触媒を含む触
媒層を有する電極からなるカソード及びアノードを配置
し一体化させる固体高分子型燃料電池用膜・電極接合体
の製造方法において、前記陽イオン交換膜は、スルホン
酸基を有する含フッ素重合体からなるイオン交換体ポリ
マーとフィブリル状のフルオロカーボン重合体とが分散
媒に分散された分散液を用いて膜状に成形することを特
徴とする固体高分子型燃料電池用膜・電極接合体の製造
方法を提供する。
The present invention provides a solid polymer in which a cathode and an anode each having an electrode having a catalyst layer containing a catalyst are arranged and integrated on both sides of a solid polymer electrolyte membrane composed of a cation exchange membrane. In the method for producing a membrane / electrode assembly for a fuel cell, the cation exchange membrane comprises an ion exchange polymer composed of a fluoropolymer having a sulfonic acid group and a fibril-like fluorocarbon polymer dispersed in a dispersion medium. Provided is a method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell, which is characterized in that the dispersion is used to form a membrane.

【0010】また、本発明は、陽イオン交換膜からなる
固体高分子電解質膜の両面に、触媒を含む触媒層を有す
る電極からなるカソード及びアノードが配置され一体化
された固体高分子型燃料電池用膜・電極接合体の製造方
法において、前記カソードの触媒層及び/又は前記アノ
ードの触媒層は、スルホン酸基を有する含フッ素重合体
からなるイオン交換体ポリマーとフィブリル状のフルオ
ロカーボン重合体とが分散媒に分散された分散液と触媒
を混合した液を用いて形成することを特徴とする固体高
分子型燃料電池用膜・電極接合体の製造方法を提供す
る。
Further, the present invention provides a solid polymer electrolyte fuel cell in which a cathode and an anode each having an electrode having a catalyst layer containing a catalyst are arranged on both sides of a solid polymer electrolyte membrane each composed of a cation exchange membrane. In the method for producing a membrane / electrode assembly for an electrode, the cathode catalyst layer and / or the anode catalyst layer comprises an ion-exchange polymer made of a fluoropolymer having a sulfonic acid group and a fibril-like fluorocarbon polymer. Provided is a method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell, which is formed by using a liquid obtained by mixing a dispersion liquid dispersed in a dispersion medium and a catalyst.

【0011】さらに、本発明は、陽イオン交換膜からな
る固体高分子電解質膜の両面に、触媒を含む触媒層を有
する電極からなるカソード及びアノードが配置され一体
化された固体高分子型燃料電池用膜・電極接合体におい
て、前記カソードの触媒層及び/又は前記アノードの触
媒層には、スルホン酸基を有する含フッ素重合体からな
るイオン交換体ポリマーとフィブリル状のフルオロカー
ボン重合体と触媒とが含まれることを特徴とする固体高
分子型燃料電池用膜・電極接合体、及び当該膜・電極接
合体を備え、カソード及びアノードにそれぞれ酸素を含
むガス及び水素を含むガスが供給される固体高分子型燃
料電池を提供する。
Furthermore, the present invention provides a solid polymer electrolyte fuel cell in which a cathode and an anode each having an electrode having a catalyst layer containing a catalyst are arranged and integrated on both sides of a solid polymer electrolyte membrane which is a cation exchange membrane. In the membrane / electrode assembly for use in the cathode, the catalyst layer of the cathode and / or the catalyst layer of the anode contains an ion-exchange polymer made of a fluoropolymer having a sulfonic acid group, a fibril-like fluorocarbon polymer and a catalyst. A membrane / electrode assembly for a polymer electrolyte fuel cell, which is characterized by being included, and a solid high to which the membrane / electrode assembly is provided, to which a gas containing oxygen and a gas containing hydrogen are supplied to the cathode and the anode, respectively. A molecular fuel cell is provided.

【0012】本発明におけるイオン交換体ポリマーとフ
ィブリル状のフルオロカーボン重合体とが分散媒に分散
された分散液(以下、本分散液という)により形成され
たイオン交換膜は、膜の面内方向に均一にフィブリル状
フルオロカーボン重合体からなる補強材(以下、本補強
材という。)を含んでいる。通常、押出し成形により本
補強材を含む膜を作製すると、MD方向(膜の成形時に
押出す方向)にフィブリルが強く配向することによって
MD方向とTD方向(MD方向と垂直な方向)とで強度
が異なるという異方性が生じる。本分散液を用いて得ら
れたイオン交換膜ではこのような異方性を減少でき、実
質的に異方性をなくすことが可能であり、膜の引裂き強
度や引っ張り強度等の機械的強度を方向性なく向上させ
られる。
An ion exchange membrane formed by a dispersion liquid (hereinafter referred to as the present dispersion liquid) in which an ion exchange polymer and a fibrillar fluorocarbon polymer according to the present invention are dispersed in a dispersion medium is in the in-plane direction of the membrane. A reinforcing material (hereinafter referred to as the present reinforcing material) uniformly composed of a fibrillar fluorocarbon polymer is included. Normally, when a film containing the reinforcing material is produced by extrusion molding, the fibrils are strongly oriented in the MD direction (the direction of extrusion when forming the film), resulting in strength in the MD direction and the TD direction (direction perpendicular to the MD direction). Anisotropy of different values occurs. With the ion exchange membrane obtained using this dispersion, such anisotropy can be reduced, and the anisotropy can be substantially eliminated, and the mechanical strength such as tear strength and tensile strength of the membrane can be improved. It can be improved without directionality.

【0013】そのため、この膜を電解質膜として備える
膜・電極接合体はハンドリング性に優れ、熱や加湿によ
る寸法の変化をきわめて等方的で少なくできる。その結
果、従来技術では難しかった、膜厚の薄い陽イオン交換
膜を備える膜・電極接合体を容易に作製できる。
Therefore, the membrane-electrode assembly provided with this membrane as an electrolyte membrane is excellent in handleability, and the dimensional change due to heat and humidification can be extremely isotropically reduced. As a result, it is possible to easily manufacture a membrane-electrode assembly including a thin cation exchange membrane, which was difficult with the conventional technique.

【0014】さらに、本分散液を用いて作製した膜はM
D方向、TD方向の異方性なく機械的強度が高いため、
当該膜を備える膜・電極接合体の耐久性が優れている。
固体高分子型燃料電池においてアノード及びカソードに
供給されるガスは、通常、触媒層に含まれるイオン交換
体ポリマー(以下、触媒層樹脂という。)及び膜のプロ
トン伝導性を確保するために飽和水蒸気圧近くにまで加
湿されていることが多い。しかし、膜・電極接合体中の
電流密度や水蒸気濃度のシミュレーションを行うと、膜
・電極接合体のすべての面で均一な電流密度分布、温度
分布や水蒸気圧分布にはなっておらず、局所的な発熱が
起こり部分的に膜又は触媒層中の触媒層樹脂が乾燥し、
不均一で局所的な収縮又は膨潤が起こっている可能性が
高いことがわかっている。このような場合、膜中に本補
強材が均一に分散していると、局所的な収縮又は膨潤に
よる力学的な変形又はクラックが生じにくくなり、例え
ば厚さ30μm以下の膜を備える膜・電極接合体であっ
ても耐久性に優れると考えられる。
Furthermore, the film produced using this dispersion is M
Since the mechanical strength is high without anisotropy in the D and TD directions,
The durability of the membrane / electrode assembly including the membrane is excellent.
In the polymer electrolyte fuel cell, the gas supplied to the anode and the cathode is usually an ion exchanger polymer (hereinafter referred to as a catalyst layer resin) contained in the catalyst layer and saturated steam for ensuring the proton conductivity of the membrane. It is often humidified to near pressure. However, when the current density and water vapor concentration in the membrane / electrode assembly were simulated, the current density distribution, temperature distribution, and water vapor pressure distribution were not uniform on all sides of the membrane / electrode assembly, and Heat is generated and the catalyst layer resin in the membrane or catalyst layer is partially dried,
It has been found that there is a high probability of non-uniform, localized shrinkage or swelling. In such a case, if the reinforcing material is uniformly dispersed in the film, mechanical deformation or crack due to local shrinkage or swelling is less likely to occur, and for example, a film / electrode provided with a film having a thickness of 30 μm or less. It is considered that even a bonded body has excellent durability.

【0015】また、本分散液は、触媒粉末を混合するこ
とにより、触媒層の形成にも使用できる。すなわち、本
分散液と触媒粉末とを混合した液を用いれば、フィブリ
ル状のフルオロカーボン重合体からなる補強材(本補強
材)を含む触媒層を備える膜・電極接合体を形成でき
る。触媒層樹脂に本補強材を含有させることにより、触
媒層樹脂の引っ張り弾性率が向上し、触媒層樹脂の力学
的特性が向上するので、膜・電極接合体の発電時の耐久
性が向上する。
The present dispersion can also be used for forming a catalyst layer by mixing catalyst powder. That is, by using a liquid obtained by mixing the main dispersion liquid and the catalyst powder, it is possible to form a membrane / electrode assembly including a catalyst layer containing a reinforcing material (main reinforcing material) made of a fibril-like fluorocarbon polymer. By including this reinforcing material in the catalyst layer resin, the tensile elastic modulus of the catalyst layer resin is improved and the mechanical properties of the catalyst layer resin are improved, so the durability of the membrane / electrode assembly during power generation is improved. .

【0016】本発明においてフィブリル状のフルオロカ
ーボン重合体としては、PTFE及びテトラフルオロエ
チレンに基づく重合単位を95モル%以上含む共重合体
が挙げられる。共重合体の場合は、フィブリル化可能な
共重合体であることが必要であり、テトラフルオロエチ
レンと含フッ素モノマーとの共重合体が好ましく、テト
ラフルオロエチレンに基づく重合単位を99%以上含む
ことが好ましい。具体的には、PTFE、テトラフルオ
ロエチレン−ヘキサフルオロプロピレン共重合体、テト
ラフルオロエチレン−クロロトリフルオロエチレン共重
合体、テトラフルオロエチレン−パーフルオロ(2,2
−ジメチル−1,3−ジオキソール)共重合体、テトラ
フルオロエチレン−パーフルオロ(ブテニルビニルエー
テル)共重合体等のテトラフルオロエチレン−パーフル
オロ(アルキルビニルエーテル)共重合体等が挙げられ
るが、特にPTFEが好ましい。
In the present invention, examples of the fibril-like fluorocarbon polymer include copolymers containing 95 or more mol% of polymer units based on PTFE and tetrafluoroethylene. In the case of a copolymer, it must be a fibrillizable copolymer, preferably a copolymer of tetrafluoroethylene and a fluorine-containing monomer, and containing 99% or more of polymer units based on tetrafluoroethylene. Is preferred. Specifically, PTFE, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-chlorotrifluoroethylene copolymer, tetrafluoroethylene-perfluoro (2,2
-Dimethyl-1,3-dioxole) copolymers, tetrafluoroethylene-perfluoro (butenyl vinyl ether) copolymers and other tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymers, and the like, but especially PTFE Is preferred.

【0017】フィブリル状フルオロカーボン重合体は、
本分散液の固形分全質量中に0.5〜15質量%含まれ
ることが好ましい。0.5質量%未満であると補強効果
が充分に発現されず、15質量%より多いと抵抗が高く
なりやすい。フィブリル状フルオロカーボン重合体が全
固形分中の2〜10質量%の場合には、抵抗が上昇せず
かつ補強効果が充分に発現され、さらに本分散液の粘度
が高すぎることもなく電解質膜又は触媒層の形成が容易
に行えるので特に好ましい。なお、ここでいうフィブリ
ル状フルオロカーボン重合体の含有量とは、フィブリル
化している又はフィブリル化しうるフルオロカーボン重
合体すべての含有量であって、フィブリル化せずに含ま
れている重合体及びフィブリル化しかけている重合体の
量も含む。すなわち、例えば該重合体としてPTFEを
用いるなら、固形分全質量中のPTFEの含有量を示す
ものとする。
The fibrillar fluorocarbon polymer is
It is preferable that 0.5 to 15 mass% of the total solid content of the present dispersion is contained. If it is less than 0.5% by mass, the reinforcing effect is not sufficiently exhibited, and if it is more than 15% by mass, the resistance tends to increase. When the fibrillar fluorocarbon polymer is 2 to 10% by mass based on the total solid content, the resistance does not increase and the reinforcing effect is sufficiently expressed, and the viscosity of the dispersion is not too high, and the electrolyte membrane or It is particularly preferable because the catalyst layer can be easily formed. The content of the fibrillar fluorocarbon polymer referred to here is the content of all the fibrillated or fibrillizable fluorocarbon polymers, the polymer contained without fibrillation and the fibrillated It also includes the amount of polymer present. That is, for example, when PTFE is used as the polymer, it indicates the content of PTFE in the total mass of the solid content.

【0018】本発明におけるスルホン酸基を有する含フ
ッ素重合体としては、公知の重合体が広く採用される
が、一般式CF2=CF(OCF2CFX)m−Op−(C
2nSO3H(ここでXはフッ素原子又はトリフルオ
ロメチル基であり、mは0〜3の整数であり、nは0〜
12の整数であり、pは0又は1であり、n=0のとき
にはp=0である。)で表されるパーフルオロビニル化
合物に基づく重合単位とパーフルオロオレフィン又はパ
ーフルオロアルキルビニルエーテル等に基づく重合単位
とを含む共重合体が好ましい。パーフルオロビニル化合
物の具体例としては式1〜4のいずれかで表される化合
物等が挙げられる。ただし、式1〜4において、qは1
〜9の整数であり、rは1〜8の整数であり、sは0〜
8の整数であり、zは2又は3である。
As the fluorine-containing polymer having a sulfonic acid group in the present invention, well-known polymers are widely adopted, but the general formula CF 2 ═CF (OCF 2 CFX) m —O p — (C
F 2 ) n SO 3 H (wherein X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, and n is 0 to
It is an integer of 12, p is 0 or 1, and when n = 0, p = 0. A copolymer containing a polymer unit based on a perfluorovinyl compound represented by the formula (1) and a polymer unit based on a perfluoroolefin or a perfluoroalkyl vinyl ether is preferable. Specific examples of the perfluorovinyl compound include compounds represented by any one of formulas 1 to 4. However, in Formulas 1 to 4, q is 1
Is an integer of -9, r is an integer of 1-8, s is 0-
Is an integer of 8 and z is 2 or 3.

【0019】[0019]

【化1】 [Chemical 1]

【0020】スルホン酸基を有するパーフルオロビニル
化合物に基づく重合単位を含む重合体は、通常−SO2
F基を有するパーフルオロビニル化合物を用いて重合さ
れる。−SO2F基を有するパーフルオロビニル化合物
は、単独重合も可能であるが、ラジカル重合反応性が小
さいため、通常はパーフルオロオレフィン又はパーフル
オロ(アルキルビニルエーテル)等のコモノマーと共重
合して用いられる。コモノマーとなるパーフルオロオレ
フィンとしては、テトラフルオロエチレン、ヘキサフル
オロプロピレン等が挙げられるが、通常はテトラフルオ
ロエチレンが好ましく採用される。
A polymer containing polymerized units based on a perfluorovinyl compound having a sulfonic acid group is usually -SO 2
It is polymerized using a perfluorovinyl compound having an F group. The perfluorovinyl compound having a —SO 2 F group can be homopolymerized, but since it has low radical polymerization reactivity, it is usually used by copolymerizing with a comonomer such as perfluoroolefin or perfluoro (alkyl vinyl ether). To be Examples of the perfluoroolefin serving as a comonomer include tetrafluoroethylene, hexafluoropropylene and the like, and usually tetrafluoroethylene is preferably used.

【0021】コモノマーとなるパーフルオロ(アルキル
ビニルエーテル)としては、CF2=CF−(OCF2
FY)t−O−Rfで表される化合物が好ましい。ただ
し、式中、Yはフッ素原子又はトリフルオロメチル基で
あり、tは0〜3の整数であり、Rfは直鎖又は分岐鎖
のCu2u+1で表されるパーフルオロアルキル基(1≦
u≦12)である。CF2=CF−(OCF2CFY)t
−O−Rfで表される化合物の好ましい例としては、式
5〜7のいずれかで表される化合物等が挙げられる。た
だし、式5〜7中、vは1〜8の整数であり、wは1〜
8の整数であり、xは1〜3の整数である。
As perfluoro (alkyl vinyl ether) as a comonomer, CF 2 ═CF— (OCF 2 C
The compound represented by FY) t —O—R f is preferable. However, in the formula, Y is a fluorine atom or a trifluoromethyl group, t is an integer of 0 to 3, R f is a linear or branched perfluoroalkyl group represented by C u F 2u + 1. (1 ≦
u ≦ 12). CF 2 = CF- (OCF 2 CFY ) t
Preferred examples of the compound represented by —O—R f include the compounds represented by any one of formulas 5 to 7. However, in the formulas 5 to 7, v is an integer of 1 to 8 and w is 1 to
Is an integer of 8 and x is an integer of 1 to 3.

【0022】[0022]

【化2】 [Chemical 2]

【0023】また、パーフルオロオレフィンやパーフル
オロ(アルキルビニルエーテル)以外に、パーフルオロ
(3−オキサヘプタ−1,6−ジエン)等の含フッ素モ
ノマーもコモノマーとして−SO2F基を有するパーフ
ルオロビニル化合物と共重合させてもよい。
Further, in addition to perfluoroolefin and perfluoro (alkyl vinyl ether), a fluorine-containing monomer such as perfluoro (3-oxahepta-1,6-diene) has a --SO 2 F group as a comonomer. It may be copolymerized with.

【0024】本発明において、電解質膜及び/又は触媒
層樹脂を構成するスルホン酸基を有する含フッ素重合体
中のスルホン酸基の濃度、すなわちイオン交換容量とし
ては、0.5〜2.0ミリ当量/g乾燥樹脂、特に0.
7〜1.6ミリ当量/g乾燥樹脂であることが好まし
い。イオン交換容量がこの範囲より低い場合には得られ
る電解質膜及び/又は触媒層樹脂の抵抗が大きくなり、
一方高い場合には電解質膜及び/又は触媒層樹脂の機械
的強度が不充分となる。
In the present invention, the concentration of the sulfonic acid group in the fluoropolymer having a sulfonic acid group constituting the electrolyte membrane and / or the catalyst layer resin, that is, the ion exchange capacity is 0.5 to 2.0 mm. Equivalent / g dry resin, especially 0.
It is preferably 7 to 1.6 meq / g dry resin. When the ion exchange capacity is lower than this range, the resulting electrolyte membrane and / or catalyst layer resin has a large resistance,
On the other hand, when it is high, the mechanical strength of the electrolyte membrane and / or the resin of the catalyst layer becomes insufficient.

【0025】本分散液の分散媒としては、特に制限され
ないが、例えば下記のものが挙げられる。メチルアルコ
ール、エチルアルコール、n−プロピルアルコール、n
−ブチルアルコール、イソプロピルアルコール等の一価
アルコール類。エチレングリコール、プロピレングリコ
ール、グリセリン等の多価アルコール類。2,2,2−
トリフルオロエタノール、2,2,3,3,3−ペンタ
フルオロ−1−プロパノール、2,2,3,3−テトラ
フルオロ−1−プロパノール、2,2,3,4,4,4
−ヘキサフルオロ−1−ブタノール、2,2,3,3,
4,4,4−ヘプタフルオロ−1−ブタノール、1,
1,1,3,3,3−ヘキサフルオロ−2−プロパノー
ル等の含フッ素アルコール。
The dispersion medium of the present dispersion liquid is not particularly limited, but examples thereof include the following. Methyl alcohol, ethyl alcohol, n-propyl alcohol, n
-Monohydric alcohols such as butyl alcohol and isopropyl alcohol. Polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin. 2,2,2-
Trifluoroethanol, 2,2,3,3,3-pentafluoro-1-propanol, 2,2,3,3-tetrafluoro-1-propanol, 2,2,3,4,4,4
-Hexafluoro-1-butanol, 2,2,3,3,
4,4,4-heptafluoro-1-butanol, 1,
Fluorine-containing alcohols such as 1,1,3,3,3-hexafluoro-2-propanol.

【0026】パーフルオロトリブチルアミン、パーフル
オロ−2−n−ブチルテトラヒドロフラン等のパーフル
オロ含酸素又は含窒素化合物、1,1,2−トリクロロ
−1,2,2−トリフルオロエタン等のクロロフルオロ
カーボン類、3,3−ジクロロ−1,1,1,2,2−
ペンタフルオロプロパン、1,3−ジクロロ−1,1,
2,2,3−ペンタフルオロプロパン等のヒドロクロロ
フルオロカーボン類の他、N,N−ジメチルホルムアミ
ド、N,N−ジメチルアセトアミド、ジメチルスルホキ
シド、水等の極性溶媒が使用できる。これらの分散媒は
単独で用いてもよいし、2種以上混合して用いてもよ
い。
Perfluoro oxygen-containing or nitrogen-containing compounds such as perfluorotributylamine and perfluoro-2-n-butyltetrahydrofuran, chlorofluorocarbons such as 1,1,2-trichloro-1,2,2-trifluoroethane , 3,3-dichloro-1,1,1,2,2-
Pentafluoropropane, 1,3-dichloro-1,1,
In addition to hydrochlorofluorocarbons such as 2,2,3-pentafluoropropane, polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide and water can be used. These dispersion media may be used alone or in combination of two or more.

【0027】本分散液の濃度としては、イオン交換体ポ
リマーが溶液全質量の0.3〜30質量%であることが
好ましい。0.3質量%未満であると、溶媒を揮発させ
るために時間がかかったり、時間短縮しようとすると高
温加熱が必要となり、高温で加熱するとイオン交換樹脂
中のイオンクラスターが不可逆的に小さくなり、プロト
ン伝導性が低下する。30質量%を超えると本分散液の
粘度が高くなり、電解質膜や触媒層を形成する際の塗工
性が悪くなる。また、本分散液に触媒を分散させて触媒
層を作製する場合、触媒を被覆する触媒層樹脂の被覆膜
の厚さが厚くなり電池性能が低下するおそれがある。上
記濃度が5〜25質量%の場合、特に好ましい。
The concentration of the dispersion is preferably 0.3 to 30% by mass of the ion exchanger polymer based on the total mass of the solution. If it is less than 0.3% by mass, it takes time to volatilize the solvent, or high temperature heating is required to reduce the time, and if heated at a high temperature, ion clusters in the ion exchange resin become irreversibly small, Proton conductivity is reduced. When it exceeds 30% by mass, the viscosity of the present dispersion becomes high and the coatability at the time of forming the electrolyte membrane or the catalyst layer becomes poor. Further, when a catalyst is prepared by dispersing the catalyst in the present dispersion liquid, the thickness of the coating film of the catalyst layer resin that coats the catalyst may be increased and the battery performance may be deteriorated. It is particularly preferable that the concentration is 5 to 25% by mass.

【0028】本発明において触媒層に含まれる触媒とし
ては、白金又は白金合金が、比表面積50〜2000m
2/g程度のカーボンブラック、活性炭等の炭素材料に
担持された担持触媒が好ましい。上記白金合金として
は、白金族の金属(ルテニウム、ロジウム、パラジウ
ム、オスミウム、イリジウム)、金、銀、クロム、鉄、
チタン、マンガン、コバルト、ニッケル、モリブデン、
タングステン、アルミニウム、ケイ素、亜鉛、すずから
なる群から選ばれる1種以上の金属と白金との合金が好
ましく使用できる。カソードに含まれる触媒とアノード
に含まれる触媒は同じでも異なっていてもよい。
In the present invention, the catalyst contained in the catalyst layer is platinum or a platinum alloy having a specific surface area of 50 to 2000 m.
A supported catalyst supported on a carbon material such as carbon black or activated carbon of about 2 / g is preferable. As the platinum alloy, platinum group metals (ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron,
Titanium, manganese, cobalt, nickel, molybdenum,
An alloy of platinum and one or more metals selected from the group consisting of tungsten, aluminum, silicon, zinc and tin can be preferably used. The catalyst contained in the cathode and the catalyst contained in the anode may be the same or different.

【0029】本発明における触媒層と電解質膜の厚さは
特に限定されないが、電解質膜の厚さは80μm以下、
特に70μm以下、さらには50μm以下であることが
好ましい。電解質膜の厚さが80μmを超えると、アノ
ードとカソードに挟まれた電解質膜中では水蒸気量の濃
度勾配が小さくなり、電解質膜が乾燥した状態になりや
すく、電解質膜が乾燥するとプロトン導電性が低下し、
また膜抵抗そのものも大きくなり、電池としての特性が
低下するおそれがある。上記観点から電解質膜は薄いほ
ど好ましいが、薄すぎると短絡したり、水素ガスの透過
量が増大し開放電圧が低下するので、5〜70μmであ
ることがより好ましく、10〜50μmであるとさらに
好ましい。
The thickness of the catalyst layer and the electrolyte membrane in the present invention is not particularly limited, but the thickness of the electrolyte membrane is 80 μm or less,
In particular, it is preferably 70 μm or less, more preferably 50 μm or less. When the thickness of the electrolyte membrane exceeds 80 μm, the concentration gradient of the amount of water vapor becomes small in the electrolyte membrane sandwiched between the anode and the cathode, and the electrolyte membrane tends to be in a dry state. Drop,
In addition, the membrane resistance itself increases, and the characteristics of the battery may deteriorate. From the above viewpoint, it is preferable that the electrolyte membrane is thinner, but if it is too thin, a short circuit occurs, or the hydrogen gas permeation amount increases and the open circuit voltage decreases, so it is more preferably 5 to 70 μm, further 10 to 50 μm. preferable.

【0030】また、触媒層の厚さは、触媒層中のガス拡
散を容易にし、電池特性を向上させる観点から、20μ
m以下であることが好ましく、さらに均一であること、
平滑であることが好ましい。本発明の製造方法によれ
ば、厚さ20μm以下の触媒層でも均一な厚さで形成す
ることができる。触媒層の厚さを薄くすると単位面積あ
たりに存在する触媒量が少なくなって反応活性が低くな
るおそれがあるが、この場合は触媒として白金又は白金
合金が高担持率で担持された担持触媒を用いれば、薄く
ても触媒量が不足することなく電極の反応活性を高く保
てる。上記観点から、触媒層の厚さはより好ましくは1
〜15μmである。
The thickness of the catalyst layer is 20 μm from the viewpoint of facilitating gas diffusion in the catalyst layer and improving battery characteristics.
m or less, more preferably uniform,
It is preferably smooth. According to the production method of the present invention, even a catalyst layer having a thickness of 20 μm or less can be formed with a uniform thickness. If the thickness of the catalyst layer is reduced, the amount of catalyst present per unit area may decrease and the reaction activity may decrease, but in this case, a supported catalyst in which platinum or a platinum alloy is supported at a high loading rate as a catalyst is used. If used, the reaction activity of the electrode can be kept high without depleting the amount of catalyst even if it is thin. From the above viewpoint, the thickness of the catalyst layer is more preferably 1
Is about 15 μm.

【0031】本分散液を作製する方法は特に限定されな
いが、例えば以下の方法が挙げられる。−SO2F基を
有する含フッ素重合体とフィブリル化可能なフルオロカ
ーボン重合体の粉末との混合物を2軸押出し成形しペレ
ットを得る。上記フルオロカーボン重合体をよりフィブ
リル化させたい場合は、このペレットを押出し成形して
フィルム化してもよい。次いで得られたペレット又はフ
ィルムを加水分解、酸型化処理し、−SO2F基をスル
ホン酸基(−SO3H基)に変換し、これを分散媒に分
散させることにより本分散液が得られる。なお、ここで
ペレットやフィルムを分散媒に分散させる前に、凍結粉
砕機等の粉砕機で1〜500μm程度の粒径の粉末に粉
砕しておくと分散させやすく好ましい。
The method for producing the present dispersion is not particularly limited, but the following method may be mentioned, for example. A mixture of a fluorine-containing polymer having a —SO 2 F group and a powder of a fibrillatable fluorocarbon polymer is biaxially extruded to obtain pellets. When it is desired to further fibrillate the fluorocarbon polymer, the pellets may be extruded and formed into a film. Then, the obtained pellet or film is subjected to hydrolysis and acid type treatment to convert the —SO 2 F group into a sulfonic acid group (—SO 3 H group) and disperse this in a dispersion medium to obtain the present dispersion liquid. can get. Before the pellets or film are dispersed in the dispersion medium, it is preferable to grind into powder having a particle size of about 1 to 500 μm with a grinder such as a freeze grinder because the powder can be easily dispersed.

【0032】ここで、2軸押出し機で混練の際(及び押
出し成形してフィルム化する際)にフィブリル化可能な
フルオロカーボン重合体は剪断力が付与されてフィブリ
ル化する。本分散液中のフィブリル状のフルオロカーボ
ン重合体については、例えば本分散液から分散媒を除去
し、走査型電子顕微鏡(SEM)で観察することによ
り、その存在を確認できる。具体的には以下の方法によ
り確認できる。
Here, the fluorocarbon polymer which can be fibrillated at the time of kneading with a twin-screw extruder (and at the time of extrusion forming into a film) is subjected to a shearing force to be fibrillated. The presence of the fibrillar fluorocarbon polymer in the present dispersion can be confirmed by, for example, removing the dispersion medium from the present dispersion and observing it with a scanning electron microscope (SEM). Specifically, it can be confirmed by the following method.

【0033】本分散液を乾燥時の厚さがほぼ均一に約3
0μmとなるようにシャーレに滴下し、60℃のオーブ
ンで3時間保持することによりキャスト膜を形成する。
このキャスト膜をシャーレから剥離後、表面にプラズマ
エッチング処理を施し、5千〜1万倍の倍率でSEMで
観察する。上述の方法で作製した本分散液の場合、フィ
ブリル化したフルオロカーボン重合体が短繊維状の形状
となっていることが確認できる。
The thickness of this dispersion when dried is approximately uniform to about 3
A cast film is formed by dropping it on a petri dish so as to have a thickness of 0 μm and holding it in an oven at 60 ° C. for 3 hours.
After the cast film is peeled from the petri dish, the surface is subjected to plasma etching treatment and observed by SEM at a magnification of 5,000 to 10,000 times. In the case of this dispersion prepared by the above method, it can be confirmed that the fibrillated fluorocarbon polymer has a short fiber shape.

【0034】本発明の膜・電極接合体における電極は、
カソード、アノードともに触媒層のみから構成されても
よいが、膜・電極接合体の外側にガス拡散層としてカー
ボンクロスやカーボンペーパーのような導電性多孔質体
を配置し、触媒層にガスを均一に拡散させる役割と集電
体としての役割を担わせてもよい。ガス拡散層は触媒層
の外側に配置するだけでなく例えばホットプレスして触
媒層と接合してもよい。
The electrode in the membrane-electrode assembly of the present invention is
Both the cathode and anode may consist of only the catalyst layer, but a conductive porous body such as carbon cloth or carbon paper is placed as a gas diffusion layer on the outside of the membrane / electrode assembly to make the gas uniform in the catalyst layer. You may make it play the role of diffusing in and the role of a collector. The gas diffusion layer may be arranged not only on the outside of the catalyst layer but also by hot pressing, for example, to be joined to the catalyst layer.

【0035】本発明の固体高分子型燃料電池は、例え
ば、膜・電極接合体の外側にガスの流路となる溝が形成
されたセパレータを配置し、当該セパレータにカソード
側は空気など酸素を含むガスを流し、アノード側は水素
を含むガスを供給することにより発電する。セパレータ
を介して複数の膜・電極接合体を積層してスタックを構
成してもよい。
In the polymer electrolyte fuel cell of the present invention, for example, a separator having a groove serving as a gas flow path is provided outside the membrane / electrode assembly, and oxygen such as air is provided on the cathode side of the separator. A gas containing hydrogen is caused to flow, and a gas containing hydrogen is supplied to the anode side to generate electricity. A plurality of membrane / electrode assemblies may be laminated via a separator to form a stack.

【0036】本分散液を用いて膜・電極接合体を作製す
る方法は特に限定されないが、例えば別途用意した基材
に触媒と触媒層樹脂を分散させた触媒層形成用塗工液を
塗工し、その上に本分散液を塗工してイオン交換膜を形
成したものを2つ作製し、イオン交換膜どうしを内側に
向けて対向させ重ねてホットプレスすることにより、2
枚のイオン交換膜が積層されてなる膜を電解質膜とする
膜・電極接合体を得ることができる。また、基材を3枚
用意し、アノードの触媒層形成用塗工液、カソードの触
媒層形成用塗工液及び本分散液を塗工したものを1枚ず
つ作製し、アノード触媒層、カソード触媒層及びイオン
交換膜を形成し、イオン交換膜を基材から剥離した後、
アノード触媒層とカソード触媒層を対向させ、間にイオ
ン交換膜を挟んでホットプレスすることによっても得ら
れる。
The method for producing a membrane / electrode assembly using this dispersion is not particularly limited. For example, a catalyst layer-forming coating liquid in which a catalyst and a catalyst layer resin are dispersed is applied to a separately prepared base material. Then, two dispersions were applied to form the ion-exchange membrane to form the ion-exchange membrane, and the ion-exchange membranes were faced to each other so that they face each other.
It is possible to obtain a membrane / electrode assembly in which a membrane formed by laminating a plurality of ion exchange membranes is used as an electrolyte membrane. In addition, three base materials were prepared, and the coating liquid for forming the catalyst layer for the anode, the coating liquid for forming the catalyst layer for the cathode, and the main dispersion were coated one by one to prepare the anode catalyst layer and the cathode. After forming the catalyst layer and the ion exchange membrane and peeling the ion exchange membrane from the substrate,
It can also be obtained by hot pressing with the ion exchange membrane sandwiched between the anode catalyst layer and the cathode catalyst layer facing each other.

【0037】イオン交換膜、触媒層ともにフィブリル状
のフルオロカーボン重合体を含む場合は、上述の各方法
において触媒層形成用塗工液として本分散液と触媒を混
合して得られる分散液を用いればよい。また、本分散液
を用いてイオン交換膜を作製しない場合は、(1)イオ
ン交換膜の両面に本分散液を含む触媒層形成用塗工液を
塗工する方法、(2)ガス拡散層に本分散液を含む触媒
層形成用塗工液を塗工したものを2枚形成し、イオン交
換膜を間に挟んでホットプレスする方法、(3)別途用
意した基材に本分散液を含む触媒層形成用塗工液を塗工
して触媒層を形成したものを2枚用意し、イオン交換膜
を間に挟んでホットプレスすることにより触媒層をイオ
ン交換膜に転写する方法等、公知の各種の方法が採用で
きる。
When both the ion exchange membrane and the catalyst layer contain a fibrillar fluorocarbon polymer, the dispersion liquid obtained by mixing the main dispersion liquid and the catalyst can be used as the coating liquid for forming the catalyst layer in each of the above-mentioned methods. Good. When an ion exchange membrane is not produced using the dispersion, (1) a method of applying a catalyst layer-forming coating liquid containing the dispersion on both sides of the ion exchange membrane, (2) a gas diffusion layer A method of forming two sheets by applying a coating liquid for forming a catalyst layer containing the main dispersion liquid to the above and hot pressing them with an ion exchange membrane interposed therebetween, (3) applying the main dispersion liquid to a separately prepared substrate. A method of transferring two catalyst layers to an ion exchange membrane by hot pressing with an ion exchange membrane sandwiched between two prepared catalyst layer-forming coating solutions Various known methods can be adopted.

【0038】[0038]

【実施例】[例1(実施例)]テトラフルオロエチレン
に基づく重合単位とCF2=CF−OCF2CF(C
3)O(CF22SO2Fに基づく重合単位とからなる
共重合体粉末(イオン交換容量1.1ミリ当量/グラム
乾燥樹脂、以下、共重合体Aという。)9730gとP
TFE粉末(商品名:フルオンCD−1、旭硝子社製)
270gとを混合し、2軸押出し成形によりペレット化
したもの(9500g)を得た。このペレットを、凍結
粉砕機で粉砕した後、溶液全体の質量の30%のジメチ
ルスルホキシドと溶液全体の質量の15%の水酸化カリ
ウムを含む水溶液中で加水分解し、1モル/Lの塩酸に
室温にて16時間浸漬して−SO2F基を酸型(スルホ
ン酸基)に変換し、水洗乾燥した。
EXAMPLES [Example 1 (Example)] Tetrafluoroethylene
Based polymerized units and CF2= CF-OCF2CF (C
F 3) O (CF2)2SO2Consisting of polymerized units based on F
Copolymer powder (ion exchange capacity 1.1 meq / g
Dry resin, hereinafter referred to as copolymer A. ) 9730g and P
TFE powder (trade name: Fluon CD-1, manufactured by Asahi Glass Co., Ltd.)
270g is mixed and pelletized by biaxial extrusion molding
What was done (9500 g) was obtained. Freeze this pellet
After crushing with a crusher, 30% of the total mass of the solution
15% by weight of the total solution of potassium sulfoxide and potassium hydroxide
Hydrolyze in an aqueous solution containing um to give 1 mol / L hydrochloric acid
Immerse at room temperature for 16 hours-SO2The F group is in the acid form (sulfo
Acid group), washed with water and dried.

【0039】これを、エタノールに分散し、分散質濃度
が分散液全体の質量の10%であり、フィブリル状のフ
ルオロカーボン重合体(溶質全体の2.7%)とスルホ
ン酸基を含有するパーフルオロカーボン重合体とからな
るフィブリル状フルオロカーボン重合体含有イオン交換
体ポリマー分散液(以下、分散液aという。)を得た。
This was dispersed in ethanol, the dispersoid concentration was 10% of the total mass of the dispersion, and the fibril-like fluorocarbon polymer (2.7% of the total solute) and perfluorocarbon containing sulfonic acid groups. A fibrillar fluorocarbon polymer-containing ion-exchanger polymer dispersion (hereinafter referred to as dispersion a) containing a polymer was obtained.

【0040】テトラフルオロエチレンに基づく重合単位
とCF2=CF−OCF2CF(CF 3)O(CF22
3Hに基づく重合単位とからなる共重合体と白金ルテ
ニウム合金(白金:ルテニウムがモル比で4:6)担持
カーボン(カーボン:合金が質量比で1:1)とを5:
9の質量比で含み、エタノールに溶解又は分散させた固
形分濃度10質量%の液をアノード触媒層形成用分散液
とした。
Polymerized units based on tetrafluoroethylene
And CF2= CF-OCF2CF (CF 3) O (CF2)2S
O3Copolymer consisting of polymerized units based on H and platinum ruthe
Supporting a nickel alloy (platinum: ruthenium in a molar ratio of 4: 6)
Carbon (carbon: alloy is 1: 1 by mass ratio) and 5:
9 in a mass ratio of 9 and solids dissolved or dispersed in ethanol.
Dispersion liquid for forming anode catalyst layer having a concentration of 10 mass%
And

【0041】さらに、上記共重合体と白金担持カーボン
(白金:カーボンが質量比で1:1)を1:2の質量比
で含み、エタノールを分散媒とする固形分濃度13.7
質量%の分散液をカソード触媒層形成用分散液とした。
Further, the above-mentioned copolymer and platinum-supporting carbon (platinum: carbon in a mass ratio of 1: 1) are contained in a mass ratio of 1: 2, and a solid content concentration of ethanol is 13.7.
The dispersion liquid of mass% was used as the dispersion liquid for forming the cathode catalyst layer.

【0042】アノード触媒層形成用分散液を、厚さ50
μmのポリプロピレン(以下、PPという。)フィルム
からなる基材の片面に、白金ルテニウム付着量が0.5
0mg/cm2となるようにダイコート法で塗工し、乾
燥することによりアノード触媒層を形成した。同様にカ
ソード触媒層形成用分散液を上述のPPフィルムとは別
の厚さ50μmのPPフィルムからなる基材の片面に白
金付着量が0.40mg/cm2となるようにダイコー
ト法で塗工し、乾燥することによりカソード触媒層を形
成した。
A dispersion liquid for forming an anode catalyst layer was formed to a thickness of 50.
The amount of platinum ruthenium deposited on one surface of a substrate made of a polypropylene (hereinafter referred to as PP) film having a thickness of 0.5 μm is 0.5.
The anode catalyst layer was formed by coating by a die coating method so as to be 0 mg / cm 2 and drying. Similarly, the cathode catalyst layer-forming dispersion liquid was applied to one surface of a base material made of a PP film having a thickness of 50 μm, which was different from the above PP film, by a die coating method so that the amount of platinum deposited was 0.40 mg / cm 2. Then, the cathode catalyst layer was formed by drying.

【0043】次に上述のPPフィルムとは別のPPフィ
ルム上に分散液aをダイコート法で塗工し、80℃のオ
ーブンで10分間乾燥してフィブリル状フルオロカーボ
ン重合体からなる補強材を含む厚さ30μmのイオン交
換膜を形成した。
Next, the dispersion a is applied onto a PP film other than the above-mentioned PP film by a die coating method, and dried in an oven at 80 ° C. for 10 minutes to obtain a thickness containing a reinforcing material composed of a fibril-like fluorocarbon polymer. An ion exchange membrane having a thickness of 30 μm was formed.

【0044】上記で得られたカソード触媒層が片面に形
成されたPPフィルムとアノード触媒層が形成されたP
Pフィルムとを、触媒層が形成された面を内側に向けて
対向させ、あらかじめPPフィルムを剥離しておいた上
記イオン交換膜を電解質膜としてそれらの間に挟んでホ
ットプレスを行った。ホットプレスの条件は130℃、
3MPaで4分間とし、ホットプレス後、カソード、ア
ノードともにPPフィルムを触媒層から剥離することで
触媒層を膜に転写し、触媒層とイオン交換膜とからなる
膜・電極接合体を得た。
The PP film having the cathode catalyst layer obtained above on one surface and the P film having the anode catalyst layer formed thereon
The P film was made to face with the surface on which the catalyst layer was formed facing inward, and the above ion exchange membrane from which the PP film had been peeled off was sandwiched between them as an electrolyte membrane to perform hot pressing. Hot press conditions are 130 ℃,
The pressure was set to 3 MPa for 4 minutes, and after hot pressing, the catalyst layer was transferred to the membrane by peeling the PP film from the catalyst layer for both the cathode and the anode, to obtain a membrane / electrode assembly including the catalyst layer and the ion exchange membrane.

【0045】上記で得られた膜・電極接合体を有効電極
面積が25cm2となるように切り抜き、電池性能測定
用セルに組み込み、アノードに水素ガス、カソードに空
気をそれぞれ供給し、セル温度80℃にて発電試験を行
った。このときの電流密度0.2A/cm2における初
期の出力電圧と1000時間連続運転した後の出力電圧
を測定した。結果を表1に示す。
The membrane / electrode assembly obtained above was cut out so that the effective electrode area was 25 cm 2, and incorporated into a cell for measuring battery performance. Hydrogen gas was supplied to the anode and air was supplied to the cathode, and the cell temperature was set to 80. A power generation test was conducted at ° C. The initial output voltage at a current density of 0.2 A / cm 2 and the output voltage after continuous operation for 1000 hours were measured. The results are shown in Table 1.

【0046】[例2(実施例)]ペレット化するのに使
用した共重合体A粉末の量を9600gに変更し、PT
FE粉末の量を400gに変更した以外は例1と同様に
して分散液(以下、分散液bという。)を得た。分散液
aのかわりにこの分散液bを用いてイオン交換膜を作製
した以外は例1と同様にして膜・電極接合体を得た。得
られた膜・電極接合体を、例1と同様に電池性能測定用
セルに組み込み、例1と同様に試験を行った。結果を表
1に示す。
Example 2 (Example) The amount of the copolymer A powder used for pelletizing was changed to 9600 g, and PT
A dispersion liquid (hereinafter referred to as dispersion liquid b) was obtained in the same manner as in Example 1 except that the amount of FE powder was changed to 400 g. A membrane / electrode assembly was obtained in the same manner as in Example 1 except that an ion exchange membrane was prepared using this dispersion liquid b instead of the dispersion liquid a. The obtained membrane-electrode assembly was incorporated into a cell for measuring battery performance in the same manner as in Example 1 and tested in the same manner as in Example 1. The results are shown in Table 1.

【0047】[例3(実施例)]ペレット化するのに使
用した共重合体A粉末の量を9300gに変更し、PT
FE粉末の量を700gに変更した以外は例1と同様に
して分散液を得た。分散液aのかわりにこの分散液を用
いてイオン交換膜を作製した以外は例1と同様にして膜
・電極接合体を得た。得られた膜・電極接合体を、例1
と同様に電池性能測定用セルに組み込み、例1と同様に
試験を行った。結果を表1に示す。
Example 3 (Example) The amount of the copolymer A powder used for pelletization was changed to 9300 g, and PT
A dispersion liquid was obtained in the same manner as in Example 1 except that the amount of FE powder was changed to 700 g. A membrane / electrode assembly was obtained in the same manner as in Example 1 except that an ion exchange membrane was prepared using this dispersion instead of the dispersion a. The obtained membrane-electrode assembly was used in Example 1
It was incorporated into a cell for measuring battery performance in the same manner as above and tested in the same manner as in Example 1. The results are shown in Table 1.

【0048】[例4(実施例)]フィブリル状フルオロ
カーボン重合体とイオン交換体ポリマーとの合量と白金
担持カーボンとが質量比で1:2となるように、分散液
aに例1で使用したものと同じ白金担持カーボンを分散
させ、エタノールを溶媒とする固形分濃度13.7質量
%の分散液を得た。これをカソード触媒層形成用分散液
としてカソードの触媒層を形成した以外は例1と同様に
して膜・電極接合体を得た。上記で得られた膜・電極接
合体を例1と同様に電池性能測定用セルに組み込み、例
1と同様に試験を行った。結果を表1に示す。
Example 4 (Example) Used in Dispersion a in Example 1 such that the total amount of the fibrillar fluorocarbon polymer and the ion-exchanger polymer and the platinum-carrying carbon were in a mass ratio of 1: 2. The same platinum-carrying carbon as described above was dispersed to obtain a dispersion liquid having ethanol as a solvent and having a solid content concentration of 13.7% by mass. A membrane / electrode assembly was obtained in the same manner as in Example 1 except that this was used as a dispersion liquid for forming a cathode catalyst layer to form a cathode catalyst layer. The membrane / electrode assembly obtained above was incorporated into a cell for measuring battery performance in the same manner as in Example 1, and the same test as in Example 1 was conducted. The results are shown in Table 1.

【0049】[例5(比較例)]例1で用いたアノード
触媒層形成用分散液を厚さ50μmのPPフィルムから
なる基材の片面に、白金ルテニウム付着量が0.50m
g/cm2となるようにダイコート法で塗工し、乾燥す
ることでアノード触媒層を形成した。同様にカソード触
媒分散液を用いてカソード触媒層を上述のPPフィルム
とは別の厚さ50μmのPPフィルムからなる基材の片
面に白金付着量が0.40mg/cm2となるようにダ
イコート法で塗工し、乾燥することでカソード触媒層を
形成した。
[Example 5 (Comparative Example)] The anode catalyst layer-forming dispersion liquid used in Example 1 was coated on one side of a 50-μm-thick PP film substrate with platinum ruthenium adhesion of 0.50 m.
The anode catalyst layer was formed by coating by a die coating method so as to be g / cm 2 and drying. Similarly, using a cathode catalyst dispersion liquid, a cathode catalyst layer was formed by a die coating method so that the platinum deposition amount was 0.40 mg / cm 2 on one surface of a base material made of a PP film having a thickness of 50 μm different from the above PP film. Was coated and dried to form a cathode catalyst layer.

【0050】上記で得られた2枚のシートを、触媒層が
形成された面を内側に向けて対向させ、間に固体高分子
電解質膜としてスルホン酸型パーフルオロカーボン重合
体からなるイオン交換膜(商品名:フレミオンHR、旭
硝子社製、イオン交換容量:1.1ミリ当量/g乾燥樹
脂、乾燥膜厚30μm)を挟んで、ホットプレスを行っ
た。ホットプレスの条件は130℃、3MPaで4分間
とし、ホットプレス後、カソード、アノードともに基材
シートを触媒層から剥離することで触媒層を膜に転写
し、触媒層と膜からなる膜・電極接合体を得た。
The two sheets obtained as described above are made to face each other with the surface on which the catalyst layer is formed facing inward, and an ion exchange membrane made of a sulfonic acid type perfluorocarbon polymer as a solid polymer electrolyte membrane is provided therebetween ( Product name: Flemion HR, manufactured by Asahi Glass Co., Ltd., ion exchange capacity: 1.1 meq / g dry resin, dry film thickness 30 μm) were sandwiched and hot pressed. The conditions of hot pressing are 130 ° C. and 3 MPa for 4 minutes, and after hot pressing, the catalyst layer is transferred to the membrane by peeling the base material sheet from the catalyst layer for both the cathode and the anode, and the membrane / electrode composed of the catalyst layer and the membrane. A joined body was obtained.

【0051】得られた膜・電極接合体を、例1と同様に
電池性能測定用セルに組み込み、例1と同様に試験を行
った。結果を表1に示す。
The obtained membrane-electrode assembly was incorporated into a cell for measuring battery performance in the same manner as in Example 1 and tested in the same manner as in Example 1. The results are shown in Table 1.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【発明の効果】本発明によれば、厚さが均一に薄くて抵
抗が低くかつ引裂き強度が高い電解質膜及び/又は触媒
層を備える膜・電極接合体が得られるので、当該膜・電
極接合体を備える固体高分子型燃料電池は、発電特性及
び耐久性に優れている。さらに、本発明の製造方法は、
量産にも適している。
EFFECTS OF THE INVENTION According to the present invention, a membrane / electrode assembly including an electrolyte membrane and / or a catalyst layer having a uniformly thin thickness, a low resistance and a high tear strength can be obtained. The polymer electrolyte fuel cell including the body has excellent power generation characteristics and durability. Furthermore, the manufacturing method of the present invention,
Suitable for mass production.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS01 BB01 BB03 BB05 BB06 BB08 BB11 BB12 BB13 BB16 EE03 EE05 EE10 EE18 EE19 HH05 5H026 AA06 BB08 CX05 EE19 HH05   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H018 AA06 AS01 BB01 BB03 BB05                       BB06 BB08 BB11 BB12 BB13                       BB16 EE03 EE05 EE10 EE18                       EE19 HH05                 5H026 AA06 BB08 CX05 EE19 HH05

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】陽イオン交換膜からなる固体高分子電解質
膜の両面に、触媒を含む触媒層を有する電極からなるカ
ソード及びアノードを配置し一体化させる固体高分子型
燃料電池用膜・電極接合体の製造方法において、前記陽
イオン交換膜は、スルホン酸基を有する含フッ素重合体
からなるイオン交換体ポリマーとフィブリル状のフルオ
ロカーボン重合体とが分散媒に分散された分散液を用い
て膜状に形成することを特徴とする固体高分子型燃料電
池用膜・電極接合体の製造方法。
1. A membrane-electrode junction for a polymer electrolyte fuel cell, in which a cathode and an anode composed of electrodes having a catalyst layer containing a catalyst are arranged and integrated on both sides of a solid polymer electrolyte membrane composed of a cation exchange membrane. In the method for producing a body, the cation exchange membrane is a membrane using a dispersion liquid in which an ion exchange polymer composed of a fluoropolymer having a sulfonic acid group and a fibril-like fluorocarbon polymer are dispersed in a dispersion medium. A method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell, which comprises:
【請求項2】陽イオン交換膜からなる固体高分子電解質
膜の両面に、触媒を含む触媒層を有する電極からなるカ
ソード及びアノードを配置し一体化させる固体高分子型
燃料電池用膜・電極接合体の製造方法において、前記カ
ソードの触媒層及び/又は前記アノードの触媒層は、ス
ルホン酸基を有する含フッ素重合体からなるイオン交換
体ポリマーとフィブリル状のフルオロカーボン重合体と
が分散媒に分散された分散液と触媒を混合した液を用い
て層状に形成することを特徴とする固体高分子型燃料電
池用膜・電極接合体の製造方法。
2. A membrane / electrode junction for a polymer electrolyte fuel cell in which a cathode and an anode each having an electrode having a catalyst layer containing a catalyst are arranged and integrated on both sides of a solid polymer electrolyte membrane made of a cation exchange membrane. In the method for producing a body, in the catalyst layer of the cathode and / or the catalyst layer of the anode, an ion-exchange polymer composed of a fluoropolymer having a sulfonic acid group and a fibril-like fluorocarbon polymer are dispersed in a dispersion medium. A method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell, which comprises forming a layered structure by using a liquid obtained by mixing the dispersion liquid and the catalyst.
【請求項3】前記陽イオン交換膜は、スルホン酸基を有
する含フッ素重合体からなるイオン交換体ポリマーとフ
ィブリル状のフルオロカーボン重合体とが分散媒に分散
された分散液を用いて膜状に形成する請求項2に記載の
固体高分子型燃料電池用膜・電極接合体の製造方法。
3. The cation exchange membrane is formed into a film by using a dispersion liquid in which an ion exchange polymer composed of a fluoropolymer having a sulfonic acid group and a fibril-like fluorocarbon polymer are dispersed in a dispersion medium. The method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell according to claim 2, which is formed.
【請求項4】前記フィブリル状のフルオロカーボン重合
体は、前記分散液中に、前記分散液の固形分の全質量の
0.5〜15質量%含まれる請求項1〜3のいずれかに
記載の固体高分子型燃料電池用膜・電極接合体の製造方
法。
4. The fibril-like fluorocarbon polymer is contained in the dispersion liquid in an amount of 0.5 to 15% by mass based on the total mass of the solid content of the dispersion liquid. A method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell.
【請求項5】前記フィブリル状のフルオロカーボン重合
体は、ポリテトラフルオロエチレン又はテトラフルオロ
エチレンに基づく重合単位を95モル%以上含む共重合
体からなる請求項1〜4のいずれかに記載の固体高分子
型燃料電池用膜・電極接合体の製造方法。
5. The solid polymer according to claim 1, wherein the fibril-like fluorocarbon polymer comprises a polytetrafluoroethylene or a copolymer containing 95 mol% or more of polymer units based on tetrafluoroethylene. A method for producing a membrane-electrode assembly for a molecular fuel cell.
【請求項6】前記スルホン酸基を有する含フッ素重合体
は、テトラフルオロエチレンに基づく重合単位とCF2
=CF(OCF2CFX)m−Op−(CF2nSO3Hに
基づく重合単位(ここでXはフッ素原子又はトリフルオ
ロメチル基であり、Aはスルホン酸基又はその前駆体基
であり、mは0〜3の整数であり、nは0〜12の整数
であり、pは0又は1であり、nが0のときにはpも0
である。)とからなる共重合体である請求項1〜5のい
ずれかに記載の固体高分子型燃料電池用膜・電極接合体
の製造方法。
6. The fluorinated polymer having a sulfonic acid group comprises a polymer unit based on tetrafluoroethylene and CF 2
= CF (OCF 2 CFX) m -O p - (CF 2) n SO 3 H in based polymer units (wherein X is a fluorine atom or a trifluoromethyl group, A is sulfonic acid group or a precursor group Yes, m is an integer of 0 to 3, n is an integer of 0 to 12, p is 0 or 1, and when n is 0, p is also 0.
Is. 6. The method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the method is a copolymer consisting of
【請求項7】陽イオン交換膜からなる固体高分子電解質
膜の両面に、触媒を含む触媒層を有する電極からなるカ
ソード及びアノードが配置され一体化された固体高分子
型燃料電池用膜・電極接合体において、前記カソードの
触媒層及び/又は前記アノードの触媒層には、スルホン
酸基を有する含フッ素重合体からなるイオン交換体ポリ
マーとフィブリル状のフルオロカーボン重合体と触媒と
が含まれることを特徴とする固体高分子型燃料電池用膜
・電極接合体。
7. A membrane / electrode for a polymer electrolyte fuel cell in which a cathode and an anode each having an electrode having a catalyst layer containing a catalyst are arranged and integrated on both sides of a solid polymer electrolyte membrane made of a cation exchange membrane. In the joined body, the cathode catalyst layer and / or the anode catalyst layer may contain an ion exchanger polymer made of a fluorinated polymer having a sulfonic acid group, a fibril-like fluorocarbon polymer, and a catalyst. Characteristic membrane-electrode assembly for polymer electrolyte fuel cells.
【請求項8】前記フィブリル状のフルオロカーボン重合
体は、前記カソードの触媒層及び/又は前記アノードの
触媒層中に、前記スルホン酸基を有する含フッ素重合体
との合量の0.5〜15質量%含まれる請求項7に記載
の固体高分子型燃料電池用膜・電極接合体。
8. The fibril-like fluorocarbon polymer is contained in the catalyst layer of the cathode and / or the catalyst layer of the anode in a total amount of 0.5 to 15 with the fluoropolymer having a sulfonic acid group. The membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 7, wherein the membrane / electrode assembly is contained in an amount of mass%.
【請求項9】前記陽イオン交換膜は、スルホン酸基を有
する含フッ素重合体からなるイオン交換体ポリマーとフ
ィブリル状のフルオロカーボン重合体とを含む請求項7
又は8に記載の固体高分子型燃料電池用膜・電極接合
体。
9. The cation exchange membrane contains an ion exchange polymer comprising a fluorinated polymer having a sulfonic acid group and a fibril-like fluorocarbon polymer.
Alternatively, the membrane / electrode assembly for a polymer electrolyte fuel cell according to item 8.
【請求項10】前記フィブリル状のフルオロカーボン重
合体は、ポリテトラフルオロエチレン又はテトラフルオ
ロエチレンに基づく重合単位を95モル%以上含む共重
合体からなる請求項7〜9のいずれかに記載の固体高分
子型燃料電池用膜・電極接合体。
10. The solid polymer according to claim 7, wherein the fibril-like fluorocarbon polymer comprises polytetrafluoroethylene or a copolymer containing 95 mol% or more of polymer units based on tetrafluoroethylene. Membrane / electrode assembly for molecular fuel cells.
【請求項11】請求項7〜10のいずれかに記載の膜・
電極接合体を備え、カソード及びアノートにはそれぞれ
酸素を含むガス及び水素を含むガスが供給されることを
特徴とする固体高分子型燃料電池。
11. The film according to any one of claims 7 to 10.
A polymer electrolyte fuel cell, comprising an electrode assembly, wherein a gas containing oxygen and a gas containing hydrogen are supplied to the cathode and the anode, respectively.
JP2002112163A 2001-05-31 2002-04-15 Method for producing membrane / electrode assembly for polymer electrolyte fuel cell Expired - Fee Related JP4218255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112163A JP4218255B2 (en) 2001-05-31 2002-04-15 Method for producing membrane / electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-164820 2001-05-31
JP2001164820 2001-05-31
JP2002112163A JP4218255B2 (en) 2001-05-31 2002-04-15 Method for producing membrane / electrode assembly for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2003051320A true JP2003051320A (en) 2003-02-21
JP4218255B2 JP4218255B2 (en) 2009-02-04

Family

ID=26616098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112163A Expired - Fee Related JP4218255B2 (en) 2001-05-31 2002-04-15 Method for producing membrane / electrode assembly for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4218255B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011535A1 (en) * 2002-07-26 2004-02-05 Asahi Glass Company, Limited Polymer film, process for producing the same, and united membrane electrode assembly for solid polymer type fuel cell
JP2004273257A (en) * 2003-03-07 2004-09-30 Asahi Kasei Corp Electrode catalyst layer for fuel cell
JP2005174861A (en) * 2003-12-15 2005-06-30 Asahi Glass Co Ltd Manufacturing method for membrane electrode assembly for solid polymer fuel cell
JPWO2004102713A1 (en) * 2003-05-14 2006-07-13 東レ株式会社 Membrane electrode composite and polymer electrolyte fuel cell using the same
US8795923B2 (en) 2007-04-19 2014-08-05 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly
US8802314B2 (en) 2008-10-17 2014-08-12 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same
JPWO2016021399A1 (en) * 2014-08-05 2017-05-18 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011535A1 (en) * 2002-07-26 2004-02-05 Asahi Glass Company, Limited Polymer film, process for producing the same, and united membrane electrode assembly for solid polymer type fuel cell
US7311989B2 (en) 2002-07-26 2007-12-25 Asahi Glass Company, Limited Polymer membrane, process for its production and membrane-electrode assembly for solid polymer electrolyte fuel cells
JP2004273257A (en) * 2003-03-07 2004-09-30 Asahi Kasei Corp Electrode catalyst layer for fuel cell
JPWO2004102713A1 (en) * 2003-05-14 2006-07-13 東レ株式会社 Membrane electrode composite and polymer electrolyte fuel cell using the same
JP4904812B2 (en) * 2003-05-14 2012-03-28 東レ株式会社 Membrane electrode composite and polymer electrolyte fuel cell using the same
JP2005174861A (en) * 2003-12-15 2005-06-30 Asahi Glass Co Ltd Manufacturing method for membrane electrode assembly for solid polymer fuel cell
US8795923B2 (en) 2007-04-19 2014-08-05 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly
US8802314B2 (en) 2008-10-17 2014-08-12 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same
JPWO2016021399A1 (en) * 2014-08-05 2017-05-18 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same

Also Published As

Publication number Publication date
JP4218255B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
US20030008198A1 (en) Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production
US6692858B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and producing method thereof
JP5277740B2 (en) Method for forming catalyst layer and method for producing membrane electrode assembly for polymer electrolyte fuel cell
US8202570B2 (en) Process for producing membrane/electrode assembly for polymer electrolyte fuel cell and process for producing polymer electrolyte fuel cell
US20100314038A1 (en) Process for producing membrane/electrode assembly for polymer electrolyte fuel cell
JP2009193860A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
KR20160091386A (en) Polymer electrolyte membrane
JP2010146965A (en) Membrane-electrode assembly for solid polymer fuel cell, coating liquid for forming catalyst layer of solid polymer fuel cell, and manufacturing method for membrane-electrode assembly of solid polymer fuel cell
CN109790244B (en) Polymer, solid polymer electrolyte membrane, and membrane electrode assembly
WO2001006587A1 (en) Solid polymer electrolyte type fuel cell and method for manufacturing the same
JPH06231779A (en) Solid high polymer electrolytic type fuel cell
EP4050041A1 (en) Fluorosulfonyl group-containing fluoropolymer and method for producing same, sulfonic acid group-containing fluoropolymer and method for producing same, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
US7857935B2 (en) Process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US6914111B2 (en) Ion exchange polymer dispersion and process for its production
JP2002025583A (en) Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method
JP2004178995A (en) Electrolyte film for solid polymer fuel cell and its manufacturing method
JP4218255B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JP2003197218A (en) Manufacturing method of film electrode junction for solid high polymer fuel cell
JP2003055568A (en) Ion exchanger resin dispersion and method for producing the same
JP5676615B2 (en) Improved catalyst coated membrane with composite, thin film, and thin cathode for direct methanol fuel cells
JP2002158014A (en) Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell
JP4867081B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same
JP2001345111A (en) Electrolyte membrane for solid polymer fuel cell and method of manufacturing it
JP2012018871A (en) Method of manufacturing membrane electrode assembly for solid polymer fuel cell
JP5228378B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees