JP2002025583A - Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method - Google Patents

Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method

Info

Publication number
JP2002025583A
JP2002025583A JP2001119895A JP2001119895A JP2002025583A JP 2002025583 A JP2002025583 A JP 2002025583A JP 2001119895 A JP2001119895 A JP 2001119895A JP 2001119895 A JP2001119895 A JP 2001119895A JP 2002025583 A JP2002025583 A JP 2002025583A
Authority
JP
Japan
Prior art keywords
film
polymer
sulfonic acid
fuel cell
acid group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001119895A
Other languages
Japanese (ja)
Inventor
Yoshiaki Higuchi
義明 樋口
Ichiro Terada
一郎 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001119895A priority Critical patent/JP2002025583A/en
Publication of JP2002025583A publication Critical patent/JP2002025583A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a solid high polymer molecule fuel cell excellent in stability of initial performance and long-term performance, having a positive ion exchange film which has low resistance, high hardness, and hydrogen gas leakage as an electrolyte. SOLUTION: The solid high polymer molecule fuel cell consists of a film laminated with two or more layers of perfluorocarbon polymer containing a sulfonic group. One or more of the above layers are reinforced with a fibril-like fluorocarbon polymer, and one or more of the layers consists of the positive ion exchange film as an electrolyte which are not substantially reinforced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池用電解質膜に関する。
The present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】水素・酸素燃料電池は、その反応生成物
が原理的に水のみであり地球環境への悪影響がほとんど
ない発電システムとして注目されている。固体高分子型
燃料電池は、かつてジェミニ計画及びバイオサテライト
計画で宇宙船に搭載されたが、当時の電池出力密度は低
かった。その後、より高性能のアルカリ型燃料電池が開
発され、現在のスペースシャトルに至るまで宇宙用には
アルカリ型燃料電池が採用されている。
2. Description of the Related Art A hydrogen / oxygen fuel cell has attracted attention as a power generation system whose reaction product is only water in principle and has almost no adverse effect on the global environment. Solid polymer fuel cells were once mounted on spacecraft in the Gemini and Biosatellite programs, but the power density at that time was low. Since then, higher performance alkaline fuel cells have been developed, and up to the present space shuttle, alkaline fuel cells have been adopted for space applications.

【0003】ところが、近年技術の進歩により固体高分
子型燃料電池が再び注目されている。その理由として次
の2点が挙げられる。(1)固体高分子電解質として高
導電性の膜が開発された。(2)ガス拡散電極層に用い
られる触媒をカーボンに担持し、これをイオン交換樹脂
で被覆することにより、高い活性が得られるようになっ
た。
However, in recent years, polymer electrolyte fuel cells have attracted attention again due to technological advances. The reasons are as follows. (1) A highly conductive film was developed as a solid polymer electrolyte. (2) By supporting a catalyst used for the gas diffusion electrode layer on carbon and coating the same with an ion exchange resin, high activity can be obtained.

【0004】性能をさらに向上させるために、固体高分
子電解質膜のスルホン酸基濃度の増加と厚さの低減によ
り電気抵抗を低減させることが考えられる。しかし、ス
ルホン酸基濃度の著しい増加は電解質膜の機械的強度や
引裂強さを低下させたり、取り扱いの際に寸法変化を起
こしたり、長期運転において電解質膜がクリープしやす
くなり耐久性を低下させる等の問題が生じる。一方厚さ
の低減は電解質膜の機械的強度及び引裂強さを低下させ
たり、さらに膜をガス拡散電極と接合させる場合等の加
工性・取り扱い性を低下させる等の問題が生じる。
In order to further improve the performance, it is conceivable to reduce the electric resistance by increasing the sulfonic acid group concentration and reducing the thickness of the solid polymer electrolyte membrane. However, a remarkable increase in the sulfonic acid group concentration decreases the mechanical strength and tear strength of the electrolyte membrane, causes dimensional changes during handling, and reduces the durability of the electrolyte membrane due to long-term operation due to easy creep of the electrolyte membrane. And the like. On the other hand, a reduction in thickness causes problems such as a decrease in mechanical strength and tear strength of the electrolyte membrane, and a decrease in workability and handleability when the membrane is bonded to a gas diffusion electrode.

【0005】[0005]

【発明が解決しようとする課題】上記の問題を解決する
方法として、ポリテトラフルオロエチレン(以下、PT
FEという。)多孔膜にスルホン酸基を有するフッ素系
イオン交換ポリマーを含浸する方法が提案されている
(特公平5−75835)が、厚さは薄くできるものの
多孔体状のPTFEでは膜の電気抵抗が充分に低下しな
い問題があった。また、この方法ではPTFE多孔膜と
上記イオン交換ポリマーの界面が完全に接着していない
ため、固体高分子型燃料電池の電解質膜として用いた場
合に、長期間使用すると接着性不良から水素ガスリーク
が増大し、電池性能が低下する問題があった。
As a method for solving the above problem, polytetrafluoroethylene (hereinafter, referred to as PT) is used.
It is called FE. ) A method of impregnating a porous membrane with a fluorinated ion exchange polymer having a sulfonic acid group has been proposed (Japanese Patent Publication No. 5-75835). However, although the thickness can be reduced, the electrical resistance of the porous PTFE membrane is sufficient. There was a problem that did not decrease. Also, in this method, since the interface between the porous PTFE membrane and the ion exchange polymer is not completely adhered, when used as an electrolyte membrane of a polymer electrolyte fuel cell, hydrogen gas leaks due to poor adhesion when used for a long time due to poor adhesion. There is a problem that the battery performance increases and the battery performance decreases.

【0006】膜の電気抵抗が高いことを解決する方法と
して、フィブリル状、織布状、又は不織布状のパーフル
オロカーボン重合体で補強された陽イオン交換膜が提案
された(特開平6−231779)。この膜は抵抗は低
く、この膜を用いて作製した燃料電池の発電特性は比較
的良好であったが、厚さはせいぜい100〜200μm
であり、充分に薄くなく厚さムラがあるため、発電特性
や量産性の点で不充分であった。また、パーフルオロカ
ーボン重合体とスルホン酸基を有するフッ素系イオン交
換ポリマーとの接着性が充分でなく、水素ガス透過性が
比較的高いため、燃料電池を構成したときの出力が充分
でなかった。
As a method of solving the high electric resistance of the membrane, a cation exchange membrane reinforced with a fibril-like, woven-like or non-woven-like perfluorocarbon polymer has been proposed (JP-A-6-231779). . This membrane has low resistance, and the power generation characteristics of a fuel cell produced using this membrane were relatively good, but the thickness was at most 100 to 200 μm.
However, since the thickness was not sufficiently thin and the thickness was uneven, the power generation characteristics and mass productivity were insufficient. Further, the adhesion between the perfluorocarbon polymer and the fluorinated ion exchange polymer having a sulfonic acid group was not sufficient, and the hydrogen gas permeability was relatively high, so that the output when a fuel cell was constructed was not sufficient.

【0007】そこで本発明は、厚さが薄くて均一でかつ
水素ガス透過性の低い補強薄膜であって量産が可能な陽
イオン交換膜を固体高分子型燃料電池用電解質膜として
提供すること、及び該電解質膜を備えることにより発電
特性に優れる固体高分子型燃料電池を提供することを目
的とする。
Accordingly, the present invention provides a cation exchange membrane which is a thin, uniform and low hydrogen gas-permeable reinforcing thin film which can be mass-produced, as an electrolyte membrane for a polymer electrolyte fuel cell. It is another object of the present invention to provide a polymer electrolyte fuel cell having excellent power generation characteristics by including the electrolyte membrane.

【0008】[0008]

【課題を解決するための手段】本発明は、スルホン酸基
を有するパーフルオロカーボン重合体からなる陽イオン
交換層の2層以上の積層体からなり、前記陽イオン交換
層の1層以上はフィブリル状のフルオロカーボン重合体
からなる補強材で補強されており、前記陽イオン交換層
の1層以上は実質的に補強材で補強されていないことを
特徴とする固体高分子型燃料電池用電解質膜、その製造
方法及び該電解質膜を有する固体高分子型燃料電池を提
供する。
According to the present invention, there is provided a laminate comprising at least two layers of a cation exchange layer composed of a perfluorocarbon polymer having a sulfonic acid group, wherein at least one of the cation exchange layers has a fibril shape. An electrolyte membrane for a polymer electrolyte fuel cell, wherein the electrolyte membrane is reinforced with a reinforcing material composed of a fluorocarbon polymer, and at least one of the cation exchange layers is not substantially reinforced with a reinforcing material. A manufacturing method and a polymer electrolyte fuel cell having the electrolyte membrane are provided.

【0009】[0009]

【発明の実施の形態】本明細書において、スルホン酸基
の前駆体基とは、加水分解、酸型化処理等を行うことに
よりスルホン酸基(−SO3H基)に変換し得る基をい
う。具体的には、−SO2F基、−SO2Cl基等が挙げ
られる。
DETAILED DESCRIPTION OF THE INVENTION In the present specification, the term "precursor group of sulfonic acid group" refers to a group which can be converted to a sulfonic acid group (--SO 3 H group) by performing hydrolysis, acidification treatment and the like. Say. Specifically, a —SO 2 F group, a —SO 2 Cl group, and the like can be given.

【0010】本発明において、フィブリル状のフルオロ
カーボン重合体からなる補強材(以下、フィブリル状補
強材という。)は、陽イオン交換膜に含有させた場合、
膜中に含まれる量が少なくても、引裂強さを高める、寸
法変化を少なくする等の補強効果を発現できる。また、
フィブリル状補強材を含有させることによる膜の抵抗上
昇も小さくできるので、有効な補強材である。
In the present invention, when a reinforcing material comprising a fibril-like fluorocarbon polymer (hereinafter referred to as a fibril-like reinforcing material) is contained in a cation exchange membrane,
Even if the amount contained in the film is small, a reinforcing effect such as increasing the tear strength and reducing the dimensional change can be exhibited. Also,
Since the increase in the resistance of the membrane due to the inclusion of the fibril-like reinforcing material can be reduced, it is an effective reinforcing material.

【0011】このフィブリル状補強材で補強されたスル
ホン酸基を有するパーフルオロカーボン重合体(以下、
スルホン酸型パーフルオロカーボン重合体という。)か
らなる膜は電気抵抗が低く、機械的強度も高いので有用
な膜である。しかし、フィブリル状補強材が含まれてい
ないスルホン酸型パーフルオロカーボン重合体からなる
膜と比較すると、水素ガス透過性が高い。そのため、燃
料電池用の電解質膜として使用した場合、アノードに供
給された水素がカソードに透過し、カソード触媒上でカ
ソードに供給された酸素と直接反応するので、水素と酸
素の無駄な消費が多くなり燃料電池の出力が低くなる。
A perfluorocarbon polymer having a sulfonic acid group reinforced by the fibril-like reinforcing material (hereinafter referred to as a perfluorocarbon polymer)
It is called a sulfonic acid type perfluorocarbon polymer. ) Is a useful film because of its low electric resistance and high mechanical strength. However, as compared with a membrane made of a sulfonic acid type perfluorocarbon polymer containing no fibril-like reinforcing material, hydrogen gas permeability is higher. Therefore, when used as an electrolyte membrane for a fuel cell, the hydrogen supplied to the anode permeates the cathode and directly reacts with the oxygen supplied to the cathode on the cathode catalyst. And the output of the fuel cell decreases.

【0012】そこで本発明ではフィブリル状補強材で補
強されたスルホン酸型パーフルオロカーボン重合体から
なる陽イオン交換層(以下、フィブリル補強層という)
とフィブリル状補強材で補強されていないスルホン酸型
パーフルオロカーボン重合体からなる陽イオン交換層
(以下、無補強層という)とからなる積層膜を燃料電池
用の電解質膜としている。その結果、水素ガス透過性を
低くできる。
Therefore, in the present invention, a cation exchange layer comprising a sulfonic acid type perfluorocarbon polymer reinforced with a fibril-like reinforcing material (hereinafter referred to as a fibril reinforcing layer).
A cation exchange layer made of a sulfonic acid-type perfluorocarbon polymer that is not reinforced with a fibril-like reinforcing material (hereinafter referred to as a non-reinforced layer) is used as an electrolyte membrane for a fuel cell. As a result, hydrogen gas permeability can be lowered.

【0013】本発明の電解質膜は、フィブリル補強層と
無補強層が、各層とも1層以上が積層されており、フィ
ブリル補強層のみの積層体や無補強層のみの積層体では
ない。電解質膜は、膜の取り扱い性や温度、湿度変化に
対する膜の寸法変化等を考慮すると、厚さ方向に対称構
造となるように積層されていることが好ましい。例え
ば、3層の場合は、フィブリル補強層/無補強層/フィ
ブリル補強層、無補強層/フィブリル補強層/無補強
層、5層の場合は、フィブリル補強層/無補強層/フィ
ブリル補強層/無補強層/フィブリル補強層、無補強層
/フィブリル補強層/無補強層/フィブリル補強層/無
補強層等の構成が挙げられる。
The electrolyte membrane of the present invention has at least one fibril reinforcing layer and one non-reinforcing layer laminated on each layer, and is not a laminate of only fibril reinforcing layers or a laminate of only non-reinforcing layers. The electrolyte membrane is preferably laminated so as to have a symmetrical structure in the thickness direction in consideration of the handleability of the membrane, the dimensional change of the membrane with respect to changes in temperature and humidity, and the like. For example, in the case of three layers, fibril reinforcement layer / non-reinforcement layer / fibril reinforcement layer, and in the case of five layers, fibril reinforcement layer / non-reinforcement layer / fibril reinforcement layer / Examples of the configuration include a non-reinforced layer / fibril reinforcing layer, a non-reinforced layer / fibril reinforcing layer / non-reinforced layer / fibril reinforcing layer / non-reinforced layer, and the like.

【0014】また、5層以上の場合は、異なる組成のフ
ィブリル補強層を用いてもよいし、異なる組成の無補強
層を用いてもよい。例えば、フィブリル補強層1/無補
強層/フィブリル補強層2/無補強層/フィブリル補強
層1、無補強層1/フィブリル補強層/無補強層2/フ
ィブリル補強層/無補強層1等の構成とできる。
In the case of five or more layers, a fibril reinforcing layer having a different composition may be used, or an unreinforced layer having a different composition may be used. For example, the configuration of fibril reinforcing layer 1 / no reinforcing layer / fibril reinforcing layer 2 / no reinforcing layer / fibril reinforcing layer 1, no reinforcing layer 1 / fibril reinforcing layer / no reinforcing layer 2 / fibril reinforcing layer / no reinforcing layer 1, etc. And can be.

【0015】本発明で使用される電解質膜の全体の厚さ
は3〜70μmであることが好ましい。3μmより薄い
と電極を接合する際に欠陥が発生しやすくなり、70μ
mより厚いと膜抵抗が増大する。特に厚さが10〜30
μmであると、膜抵抗も低く欠陥発生もなく、さらに燃
料電池に組込んで評価を行うと発電特性が良好で安定し
ており好ましい。
The total thickness of the electrolyte membrane used in the present invention is preferably 3 to 70 μm. If the thickness is less than 3 μm, defects are likely to occur when joining the electrodes,
If the thickness is larger than m, the film resistance increases. Especially the thickness is 10-30
When the thickness is μm, the film resistance is low, no defects are generated, and the power generation characteristics are favorable and stable when incorporated in a fuel cell and evaluated.

【0016】また、電解質膜を構成するフィブリル補強
層及び無補強層の1層あたりの厚さは、それぞれ0.5
〜50μm及び0.3〜50μm、特に3〜30μm及
び1〜30μmであることが好ましい。フィブリル補強
層の1層あたりの厚さが0.5μmより薄いと、フィブ
リル補強層を作製する際に大きな欠陥が発生しやすくな
り、またフィブリル補強材による補強効果が低減しやす
い。フィブリル補強層の1層あたりの厚さが50μmよ
り厚いと得られる膜の抵抗が大きくなる。無補強層の1
層あたりの厚さが0.3μmより薄いとフィブリル補強
層と積層するときに欠陥が発生しやすくなり、50μm
より厚いと得られる膜の抵抗が大きくなる。
The thickness of each of the fibril reinforcing layer and the non-reinforcing layer constituting the electrolyte membrane is 0.5
It is preferably from 50 to 50 μm and from 0.3 to 50 μm, particularly preferably from 3 to 30 μm and from 1 to 30 μm. If the thickness per layer of the fibril reinforcing layer is less than 0.5 μm, large defects are likely to be generated when producing the fibril reinforcing layer, and the reinforcing effect of the fibril reinforcing material tends to be reduced. When the thickness per fibril reinforcing layer is greater than 50 μm, the resistance of the obtained film increases. No reinforcement layer 1
If the thickness per layer is less than 0.3 μm, defects are likely to occur when laminated with the fibril reinforcing layer,
The thicker the film, the greater the resistance of the resulting film.

【0017】本発明におけるフィブリル補強層中の、フ
ィブリル状補強材となるフルオロカーボン重合体は、フ
ィブリル補強層全質量中に0.5〜15%含まれること
が好ましい。0.5%より少ないと補強効果が充分に発
現されず、15%より多いと抵抗が高くなりやすい。2
〜8%の場合には、抵抗が上昇せずかつ補強効果が充分
に発現され、さらに成形性も良好であるので特に好まし
い。
In the fibril reinforcing layer of the present invention, the fibril-like reinforcing material of the fluorocarbon polymer is preferably contained in an amount of 0.5 to 15% based on the total mass of the fibril reinforcing layer. If it is less than 0.5%, the reinforcing effect is not sufficiently exhibited, and if it is more than 15%, the resistance tends to increase. 2
The case of 8% is particularly preferable because the resistance does not increase, the reinforcing effect is sufficiently exhibited, and the moldability is also good.

【0018】本発明において補強材として用いられるフ
ルオロカーボン重合体としては、PTFE及びテトラフ
ルオロエチレンと少量のフッ素系モノマーとの共重合体
が例示される。その具体例としては、PTFE、テトラ
フルオロエチレン−ヘキサフルオロプロピレン共重合
体、テトラフルオロエチレン−クロロトリフルオロエチ
レン共重合体、テトラフルオロエチレン−パーフルオロ
(2,2−ジメチル−1,3−ジオキソール)共重合
体、テトラフルオロエチレン−パーフルオロ(ブテニル
ビニルエーテル)共重合体等のテトラフルオロエチレン
−パーフルオロ(アルキルビニルエーテル)共重合体等
が挙げられるが、特にPTFEが好ましい。共重合体の
場合は、テトラフルオロエチレンに基づく重合単位以外
の重合単位が5モル%以下、特に1モル%以下であるこ
とが好ましい。
Examples of the fluorocarbon polymer used as a reinforcing material in the present invention include a copolymer of PTFE and tetrafluoroethylene with a small amount of a fluorine-based monomer. Specific examples thereof include PTFE, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-chlorotrifluoroethylene copolymer, tetrafluoroethylene-perfluoro (2,2-dimethyl-1,3-dioxole) Examples include a copolymer, a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer such as a tetrafluoroethylene-perfluoro (butenyl vinyl ether) copolymer, and PTFE is particularly preferred. In the case of a copolymer, the amount of polymerized units other than the polymerized unit based on tetrafluoroethylene is preferably 5 mol% or less, particularly preferably 1 mol% or less.

【0019】本発明におけるスルホン酸型パーフルオロ
カーボン重合体としては、公知の重合体が広く採用され
る。好ましい重合体としては、一般式CF2=CF(O
CF2CFX)m−Op−(CF2nSO3H(ここでXは
フッ素原子又はトリフルオロメチル基であり、mは0〜
3の整数であり、nは0〜12の整数であり、pは0又
は1であり、n=0のときにはp=0である。)で表さ
れるパーフルオロビニル化合物とパーフルオロオレフィ
ン又はパーフルオロアルキルビニルエーテル等との共重
合体が例示される。前記パーフルオロビニル化合物の具
体例としては式1〜式4の化合物等が挙げられる。ただ
し、式1〜式4において、qは1〜9の整数であり、r
は1〜8の整数であり、sは0〜8の整数であり、zは
2又は3である。
Known polymers are widely used as the sulfonic acid type perfluorocarbon polymer in the present invention. Preferred polymers include those of the general formula CF 2 CFCF (O
CF 2 CFX) m -O p - (CF 2) n SO 3 H ( wherein X is a fluorine atom or a trifluoromethyl group, m is 0
3 is an integer, n is an integer of 0 to 12, p is 0 or 1, and when n = 0, p = 0. )) And a copolymer of a perfluorovinyl compound represented by the formula (1) with a perfluoroolefin or a perfluoroalkylvinyl ether. Specific examples of the perfluorovinyl compound include compounds represented by Formulas 1 to 4. However, in the formulas 1 to 4, q is an integer of 1 to 9;
Is an integer of 1 to 8, s is an integer of 0 to 8, and z is 2 or 3.

【0020】[0020]

【化1】 Embedded image

【0021】スルホン酸基を有するパーフルオロビニル
化合物に基づく重合単位を含む重合体は、通常−SO2
F基を有するパーフルオロビニル化合物を用いて重合さ
れる。−SO2F基を有するパーフルオロビニル化合物
は、単独重合も可能であるが、ラジカル重合反応性が小
さいため、通常は上記のようにパーフルオロオレフィン
又はパーフルオロ(アルキルビニルエーテル)等のコモ
ノマーと共重合して用いられる。コモノマーとなるパー
フルオロオレフィンとしては、テトラフルオロエチレ
ン、ヘキサフルオロプロピレン等が挙げられるが、通常
はテトラフルオロエチレンが好ましく採用される。
A polymer containing a polymerized unit based on a perfluorovinyl compound having a sulfonic acid group is usually -SO 2
It is polymerized using a perfluorovinyl compound having an F group. The perfluorovinyl compound having a —SO 2 F group can be homopolymerized, but has low radical polymerization reactivity. Therefore, it is usually used together with a comonomer such as perfluoroolefin or perfluoro (alkyl vinyl ether) as described above. Used after polymerization. Examples of the perfluoroolefin to be a comonomer include tetrafluoroethylene, hexafluoropropylene, and the like, but usually tetrafluoroethylene is preferably employed.

【0022】コモノマーとなるパーフルオロ(アルキル
ビニルエーテル)としては、CF2=CF−(OCF2
FY)t−O−Rfで表される化合物が好ましい。ただ
し、式中、Yはフッ素原子又はトリフルオロメチル基で
あり、tは0〜3の整数である。Rfは直鎖又は分岐鎖
のCu2u+1で表されるパーフルオロアルキル基(1≦
u≦12)である。
As the perfluoro (alkyl vinyl ether) serving as a comonomer, CF 2 CFCF— (OCF 2 C
FY) a compound represented by t -O-R f are preferred. Here, in the formula, Y is a fluorine atom or a trifluoromethyl group, and t is an integer of 0 to 3. R f is a straight or C u F 2u + 1 perfluoroalkyl group (1 ≦ represented branched
u ≦ 12).

【0023】CF2=CF−(OCF2CFY)t−O−
fで表される化合物の好ましい例としては、式5〜式
7の化合物が挙げられる。ただし、式5〜式7中、vは
1〜8の整数であり、wは1〜8の整数であり、xは1
〜3の整数である。
CF 2 CFCF— (OCF 2 CFY) t —O—
Preferred examples of the compound represented by R f include compounds of formulas 5 to 7. Here, in Formulas 5 to 7, v is an integer of 1 to 8, w is an integer of 1 to 8, and x is 1
-3.

【0024】[0024]

【化2】 Embedded image

【0025】また、パーフルオロオレフィンやパーフル
オロ(アルキルビニルエーテル)以外に、パーフルオロ
(3−オキサヘプタ−1,6−ジエン)等の含フッ素モ
ノマーもコモノマーとして−SO2F基を有するパーフ
ルオロビニル化合物と共重合させてもよい。
In addition to perfluoroolefins and perfluoro (alkyl vinyl ethers), fluorine-containing monomers such as perfluoro (3-oxahepta-1,6-diene) are also perfluorovinyl compounds having -SO 2 F groups as comonomers. May be copolymerized.

【0026】本発明において、電解質膜を構成するスル
ホン酸型パーフルオロカーボン重合体中のスルホン酸基
の濃度、すなわちイオン交換容量としては、0.5〜
2.0ミリ当量/g乾燥樹脂、特に0.7〜1.6ミリ
当量/g乾燥樹脂であることが好ましい。イオン交換容
量がこの範囲より低い場合には得られる電解質膜の抵抗
が大きくなり、一方高い場合には電解質膜の機械的強度
が不充分となりやすい。
In the present invention, the concentration of the sulfonic acid group in the sulfonic acid type perfluorocarbon polymer constituting the electrolyte membrane, that is, the ion exchange capacity is 0.5 to 0.5.
It is preferably 2.0 meq / g dry resin, especially 0.7 to 1.6 meq / g dry resin. When the ion exchange capacity is lower than this range, the resistance of the obtained electrolyte membrane increases, while when it is high, the mechanical strength of the electrolyte membrane tends to be insufficient.

【0027】本発明の電解質膜は、引裂強さがどの方向
について測定しても1N/mm以上であることが好まし
い。また、引裂強さが最も高い方向の引裂強さと最も低
い方向の引裂強さとの比が1:1〜10:1であること
が好ましい。例えば電解質膜が1軸押出し成形によりフ
ィルム状に成形されたものである場合は、通常フィブリ
ルの配向により1軸押出し機を通した方向(以下、MD
方向という。)の引裂強さが最も低く、MD方向に垂直
な方向(以下、TD方向という。)の引裂強さが最も高
くなる。
The electrolyte membrane of the present invention preferably has a tear strength of 1 N / mm or more in any direction. The ratio of the tear strength in the direction with the highest tear strength to the tear strength in the lowest direction is preferably 1: 1 to 10: 1. For example, when the electrolyte membrane is formed into a film by single-screw extrusion, the direction through a single-screw extruder (hereinafter MD
It is called direction. ) Has the lowest tear strength, and the direction perpendicular to the MD direction (hereinafter referred to as the TD direction) has the highest tear strength.

【0028】上記引裂強さは、本発明では以下のよう
に、JIS−K7128に準ずる方法で測定する。膜を
90℃の純水中に16時間浸漬した後、幅5cm、長さ
15cmの短冊状サンプルを切り出し、引裂強さを測定
したい方向を長さ方向とする。各サンプルは、長さ方向
に沿って2等分するように、短辺の中央から長さ15c
mの半分の7.5cmまで切れ目を入れる。次いで切れ
目部分から引き裂かれるように切れ端の一方を引張り試
験機の上部チャックに、もう一方を下部チャックに取り
付け、25℃にて200mm/分の速度でチャック間を
広げ、引裂荷重を測定する。引裂強さは引裂荷重をサン
プルの厚さで除した値(N/mm)として算出する。各
方向について5〜10サンプル程度測定し、その平均値
を引裂強さとする。
In the present invention, the tear strength is measured by the method according to JIS-K7128 as follows. After immersing the film in 90 ° C. pure water for 16 hours, a strip sample having a width of 5 cm and a length of 15 cm is cut out, and the direction in which the tear strength is to be measured is defined as the length direction. Each sample has a length of 15c from the center of the short side so as to be bisected along the length direction.
Make a cut to 7.5 cm, half of m. Next, one of the cut ends is attached to the upper chuck of the tensile tester and the other is attached to the lower chuck so as to be torn from the cut portion, and the distance between the chucks is increased at a speed of 200 mm / min at 25 ° C., and the tear load is measured. The tear strength is calculated as a value (N / mm) obtained by dividing the tear load by the thickness of the sample. About 5 to 10 samples are measured in each direction, and the average value is defined as the tear strength.

【0029】本発明の電解質膜の製造方法は、スルホン
酸基の前駆体基を有するパーフルオロカーボン重合体
(以下、スルホン酸基前駆体型パーフルオロカーボン重
合体という)とフィブリル化可能なフルオロカーボン重
合体との混合物をフィルム状に成形し、得られたフィル
ム(以下、フィルムAという。)を延伸することにより
得られるフィルム(以下、フィブリル補強フィルムとい
う。)でフィブリル補強層を構成することを特徴として
いる。なお、フィルムAにおいてもフィブリル化可能な
フルオロカーボン重合体は少なくとも一部がフィブリル
化する場合はあるが、本明細書において製造方法を説明
する場合、延伸処理後のものをフィブリル補強フィルム
といい、延伸処理前のものはフィルムAというものとす
る。
The method for producing an electrolyte membrane according to the present invention is a method for producing a perfluorocarbon polymer having a sulfonic acid group precursor group (hereinafter referred to as a sulfonic acid group precursor type perfluorocarbon polymer) and a fibrillable fluorocarbon polymer. It is characterized in that the fibril reinforcing layer is constituted by a film (hereinafter, referred to as a fibril reinforcing film) obtained by forming the mixture into a film and stretching the obtained film (hereinafter, referred to as film A). In the film A, the fibrillable fluorocarbon polymer may be at least partially fibrillated.However, in the description of the production method in the present specification, the film after the stretching treatment is referred to as a fibril-reinforced film. The film before processing is referred to as film A.

【0030】上記の延伸の工程は、フィルムAの少なく
とも片面に延伸補助フィルムを積層した後、加熱下で行
うことが好ましい。延伸はMD方向又はTD方向にのみ
延伸する1軸延伸でもよいし、MD方向とTD方向の両
方に延伸する2軸延伸でもよいが、2軸延伸を行うこと
が好ましい。1軸延伸の場合は、得られる膜の機械的特
性(引裂強さ)をMD方向とTD方向でほぼ均一にする
ために、TD方向に延伸することが好ましい。2軸延伸
の場合は、MD方向とTD方向を同時に延伸してもよい
し、逐次的に延伸してもよい。
The above-mentioned stretching step is preferably carried out under heating after laminating the stretching auxiliary film on at least one side of the film A. The stretching may be uniaxial stretching in which stretching is performed only in the MD direction or TD direction, or biaxial stretching in which stretching is performed in both the MD direction and TD direction, but biaxial stretching is preferably performed. In the case of uniaxial stretching, it is preferable to stretch in the TD direction in order to make the mechanical properties (tear strength) of the obtained film almost uniform in the MD and TD directions. In the case of biaxial stretching, the stretching may be performed simultaneously in the MD and TD directions, or may be performed sequentially.

【0031】この延伸の操作は、フィルムAを無補強層
を構成するフィルム(以下、無補強フィルムという。)
と積層する前に行っても積層した後に行ってもよい。積
層した後に行う場合は、上記フィルムAと延伸補助フィ
ルムは隣接して積層されていなくてもよい。
In the stretching operation, the film A is a film constituting a non-reinforced layer (hereinafter referred to as a non-reinforced film).
May be performed before or after lamination. When performing after lamination, the film A and the stretching auxiliary film may not be laminated adjacent to each other.

【0032】フィルムA又はフィルムAと無補強フィル
ムとの積層フィルムを延伸する場合、これらのフィルム
のみを延伸すると破れやすく均一に薄くすることが困難
であるが、延伸補助フィルムを積層して延伸すると、均
一に厚さの薄いフィルムが得られる。すなわち本発明に
おける延伸補助フィルムは、フィブリル補強フィルムの
延伸を補助するために積層されるフィルムである。
When the film A or a laminated film of the film A and the non-reinforced film is stretched, if only these films are stretched, it is difficult to make them thin evenly. A film having a uniform thickness can be obtained. That is, the stretching auxiliary film in the present invention is a film laminated to assist the stretching of the fibril reinforcing film.

【0033】本発明の電解質膜は、具体的には以下の手
順で作製することが好ましい。 (1)フィブリル化可能なフルオロカーボン重合体とス
ルホン酸基前駆体型パーフルオロカーボン重合体との混
合。 (2)(1)で得られた混合物の2軸押出し成形による
混練、ペレット化。 (3)(2)で得られたペレットを用いて1軸押出し成
形によるフィルム化及びフィルム平滑化によるフィルム
Aの作製。 (4)延伸補助フィルムをフィルムAに積層後、延伸、
熱処理し、フィブリル補強フィルムの作製。 (5)スルホン酸基前駆体型パーフルオロカーボン重合
体の1軸押出し成形による無補強フィルムの作製。 (6)フィルムA又はフィブリル補強フィルムと無補強
フィルムとの積層。 (7)加水分解、酸型化処理、洗浄、乾燥。
Specifically, it is preferable that the electrolyte membrane of the present invention is prepared by the following procedure. (1) Mixing of a fibrillable fluorocarbon polymer and a sulfonic acid group precursor type perfluorocarbon polymer. (2) Kneading and pelletizing the mixture obtained in (1) by twin-screw extrusion. (3) Using the pellets obtained in (2), forming a film by uniaxial extrusion and producing a film A by smoothing the film. (4) After laminating the stretching auxiliary film on film A, stretching,
Heat treated to produce fibril reinforced film. (5) Preparation of a non-reinforced film by uniaxial extrusion of a sulfonic acid group precursor type perfluorocarbon polymer. (6) Lamination of film A or fibril reinforced film and non-reinforced film. (7) Hydrolysis, acidification treatment, washing and drying.

【0034】上記(1)〜(7)の工程をさらに具体的
に説明する。フィブリル状補強材は、フィブリル化可能
なフルオロカーボン重合体粉末に剪断力を付与すること
により得られるので、まず上記フルオロカーボン重合体
を用いてフィブリル状補強材のみを作製し、スルホン酸
基前駆体型パーフルオロカーボン重合体と混合し、又は
スルホン酸基前駆体型パーフルオロカーボン重合体の溶
液中にフィブリル状補強材を分散し、キャスト製膜して
補強されたフィルムを作製することもできる。
The steps (1) to (7) will be described more specifically. Since the fibril-like reinforcing material is obtained by applying a shearing force to the fibrillable fluorocarbon polymer powder, first, only the fibril-like reinforcing material is prepared using the above fluorocarbon polymer, and the sulfonic acid group precursor type perfluorocarbon is prepared. It is also possible to prepare a reinforced film by mixing with a polymer or dispersing a fibril-like reinforcing material in a solution of a sulfonic acid group precursor-type perfluorocarbon polymer, and forming a cast film.

【0035】しかし、フィルム中にフィブリル状補強材
を均一に分散させるためには、上記フルオロカーボン重
合体粉末とスルホン酸基前駆体型パーフルオロカーボン
重合体粉末を混合した後に((1)の工程)、混練して
上記フルオロカーボン重合体粉末をフィブリル化させる
((2)の工程)方法が好ましく、本発明の方法ではこ
の方法を採用している。また、(1)の工程はフルオロ
カーボン重合体粉末をスルホン酸基前駆体型パーフルオ
ロカーボン重合体を重合した後の重合溶液に混合分散さ
せることにより行い、その後、凝集させ、洗浄、乾燥し
てから混練((2)の工程)してもよい。
However, in order to uniformly disperse the fibril-like reinforcing material in the film, the above-mentioned fluorocarbon polymer powder and sulfonic acid group precursor type perfluorocarbon polymer powder are mixed (step (1)), and then kneaded. Then, the method of fibrillating the fluorocarbon polymer powder (step (2)) is preferable, and this method is employed in the method of the present invention. The step (1) is performed by mixing and dispersing the fluorocarbon polymer powder in a polymerization solution obtained by polymerizing the sulfonic acid group precursor type perfluorocarbon polymer, and thereafter, aggregating, washing, drying, and kneading ( (Step (2)).

【0036】このとき、スルホン酸基前駆体型パーフル
オロカーボン重合体と上記フルオロカーボン重合体粉末
との混合物を2軸押出し成形してペレット化することに
より混練される。また、先に上記混合物を混練しておい
てから2軸押出し成形してもよい。
At this time, the mixture of the sulfonic acid group precursor type perfluorocarbon polymer and the fluorocarbon polymer powder is kneaded by twin-screw extrusion molding and pelletizing. Alternatively, the mixture may be kneaded first and then subjected to twin-screw extrusion.

【0037】次いで得られたペレットは、(3)の工程
で、好ましくは加熱下で1軸押出し成形されフィルム化
される。また、(2)のペレット化する工程を経ずに、
上記混合物を直接1軸押出し成形し、この1軸押出し成
形の工程でフィルム化すると同時に上記フルオロカーボ
ン重合体をフィブリル化してもよい。加熱下で1軸押出
し成形する場合は、フィルムの温度が200〜270℃
程度となるように成形することが好ましい。フィルム温
度が200℃未満の場合は、吐出圧力が高くなりすぎ、
生産性が低下するおそれがある。フィルム温度が270
℃を超えると得られるフィルムの表面が荒れて厚さが不
均一になるので好ましくない。
Next, the obtained pellets are uniaxially extruded and formed into a film in step (3), preferably under heating. Also, without going through the pelletizing step (2),
The mixture may be directly uniaxially extruded and formed into a film in the uniaxial extrusion molding step, and the fluorocarbon polymer may be fibrillated at the same time. In the case of uniaxial extrusion molding under heating, the temperature of the film is 200 to 270 ° C.
It is preferable to mold to such an extent. If the film temperature is less than 200 ° C., the discharge pressure becomes too high,
Productivity may be reduced. Film temperature is 270
If the temperature exceeds ℃, the surface of the obtained film becomes rough and the thickness becomes non-uniform, which is not preferable.

【0038】このようにして(3)の工程を終えて得ら
れるフィルムの厚さは80〜500μm程度となる。
(3)の工程で得られたフィルムAは、フィブリル状補
強材の量が増大すると表面の平滑性が低下してくるの
で、必要であれば加熱プレスにより平滑化を行う。
The thickness of the film obtained after completing the step (3) is about 80 to 500 μm.
Since the surface smoothness of the film A obtained in the step (3) decreases as the amount of the fibril-like reinforcing material increases, the film A is smoothed by a hot press if necessary.

【0039】次に、このフィルムAの少なくとも片面に
延伸補助フィルムを積層し、必要に応じて数回延伸、好
ましくは2軸延伸を行い、厚さ0.5〜50μmに調製
したフィブリル補強フィルムを得る((4)の工程)。
具体的には、フィルムAに延伸補助フィルムを例えば7
0〜100℃程度に加熱したロールプレスを用いて加熱
積層し、加熱下で2軸延伸し、延伸補助フィルムを剥が
すことにより厚さ0.5〜50μmのフィブリル補強フ
ィルムを得る。フィブリル補強材量が多くなると2軸延
伸により欠陥が発生する場合もあるので、(4)の工程
の後に加熱プレスにより熱処理することが好ましい。
Next, a stretching aid film is laminated on at least one side of the film A, and if necessary, stretched several times, preferably biaxially, to obtain a fibril reinforcing film having a thickness of 0.5 to 50 μm. (Step (4)).
Specifically, for example, a film A is
The laminate is heated and laminated using a roll press heated to about 0 to 100 ° C., biaxially stretched under heating, and the stretching auxiliary film is peeled to obtain a fibril reinforcing film having a thickness of 0.5 to 50 μm. If the amount of the fibril reinforcing material increases, a defect may occur due to biaxial stretching. Therefore, it is preferable to perform a heat treatment by a hot press after the step (4).

【0040】一方、スルホン酸基前駆体型パーフルオロ
カーボン重合体のみを用いて1軸押出し成形によるフィ
ルム化を行い、好ましくは3〜50μmの無補強フィル
ムを別に調製する((5)の工程)。この無補強フィル
ムと上記フィブリル補強フィルムとを例えば100〜2
50℃程度に加熱したロールプレスを用いて加熱積層
し、3〜70μm程度の積層フィルムを作製する
((6)の工程)。次いで積層フィルムを加水分解、酸
型化処理、乾燥((7)の工程)することにより、スル
ホン酸基の前駆体基がスルホン酸基に変換され、フィブ
リル補強層と無補強層とにより構成される薄膜が得られ
る。
On the other hand, a film is formed by uniaxial extrusion using only the sulfonic acid group precursor type perfluorocarbon polymer, and a non-reinforced film of preferably 3 to 50 μm is separately prepared (step (5)). The unreinforced film and the fibril-reinforced film are, for example, 100 to 2
Heat lamination using a roll press heated to about 50 ° C. to produce a laminated film of about 3 to 70 μm (step (6)). Next, the precursor film of the sulfonic acid group is converted into a sulfonic acid group by hydrolysis, acidification treatment and drying (step (7)) of the laminated film, and the fibril reinforcing layer and the non-reinforcing layer are formed. A thin film is obtained.

【0041】(4)の延伸工程において、1回の延伸操
作における延伸倍率は、使用するスルホン酸型パーフル
オロカーボン重合体の種類により異なるが、面積倍率で
30倍以下の倍率とすることが好ましい。上記延伸は、
何度繰り返し行ってもよく、繰り返し行うことで1μm
未満の薄膜も得ることができる。
In the stretching step (4), the stretching ratio in one stretching operation varies depending on the type of the sulfonic acid type perfluorocarbon polymer used, but is preferably 30 times or less in area ratio. The above stretching is
It may be repeated any number of times.
Thin films of less than can also be obtained.

【0042】上記の(6)の積層工程は、(4)の延伸
工程の前に行ってもよく、その場合はフィブリル補強フ
ィルムの前駆体であるフィルムAと無補強フィルムとを
積層する。しかし、(6)の積層工程を(4)の延伸工
程の前に行う場合、フィブリル含有率が高くなると延伸
工程で無補強層に欠陥が発生するおそれがあるため、
(6)の積層工程は(4)の延伸工程の後に行うことが
好ましい。また、上記の加水分解、酸型化処理の(7)
の工程は(6)の積層工程の前に行ってもよい。すなわ
ち、フィブリル補強フィルム、無補強フィルムそれぞれ
のスルホン酸基の前駆体をスルホン酸基に変換した後
に、フィブリル補強フィルムと無補強フィルムとを積層
してもよい。
The laminating step (6) may be performed before the stretching step (4). In this case, the film A, which is a precursor of the fibril reinforcing film, and the non-reinforced film are laminated. However, when the laminating step (6) is performed before the stretching step (4), if the fibril content increases, a defect may occur in the unreinforced layer in the stretching step.
The laminating step (6) is preferably performed after the stretching step (4). In addition, the above hydrolysis and acidification treatment (7)
May be performed before the laminating step (6). That is, the fibril reinforced film and the non-reinforced film may be laminated after the sulfonic acid group precursor of each of the fibril reinforced film and the non-reinforced film is converted into a sulfonic acid group.

【0043】通常は、上記工程を経て本発明の電解質膜
が得られるが、本発明の電解質膜は、無補強層のキャス
ト製膜により得ることもできる。すなわち、(1)〜
(3)の工程を行った後、得られたフィルムに延伸補助
フィルムを加熱積層して加熱下で延伸((4)の工程)
した後、(7)の工程を行って酸型化されたフィブリル
補強フィルムを得て、(5)及び(6)の工程は行わず
にフィブリル補強フィルム上にスルホン酸型パーフルオ
ロカーボン重合体の溶液を用いてキャスト製膜する。ま
た、ここで(7)の工程は、2軸延伸の操作を行う前に
行ってもよい。
Usually, the electrolyte membrane of the present invention is obtained through the above steps, but the electrolyte membrane of the present invention can also be obtained by casting a non-reinforced layer. That is, (1)-
After performing the step (3), a stretching auxiliary film is laminated on the obtained film by heating and stretched under heating (step (4)).
After that, the step (7) is performed to obtain an acidified fibril reinforcing film, and the solution of the sulfonic acid type perfluorocarbon polymer is formed on the fibril reinforcing film without performing the steps (5) and (6). Cast film is formed using Here, the step (7) may be performed before performing the biaxial stretching operation.

【0044】また、スルホン酸型パーフルオロカーボン
重合体の溶液を用いて別途用意した基材にキャスト製膜
し、無補強層を形成した後、上記のフィブリル補強フィ
ルムに無補強層を積層しても、フィブリル補強層と無補
強層とからなる電解質膜が得られる。すなわち、上述と
同様にして得た酸型化されたフィブリル補強フィルムの
少なくとも片面に、キャスト製膜して無補強層が形成さ
れた基材を、前記無補強層が形成された面がフィブリル
補強フィルムと接するようにして積層し、例えばホット
プレスすることにより無補強層をフィブリル補強フィル
ム上に転写した後、基材を剥離することでフィブリル補
強層と無補強層とからなる電解質膜が得られる。
Further, a cast film is formed on a separately prepared base material using a solution of a sulfonic acid type perfluorocarbon polymer to form a non-reinforcing layer, and then a non-reinforcing layer is laminated on the fibril reinforcing film. Thus, an electrolyte membrane comprising a fibril reinforcing layer and a non-reinforcing layer is obtained. That is, at least one surface of the acid-converted fibril reinforcing film obtained in the same manner as described above, the base material on which the non-reinforcement layer is formed by casting is formed, and the surface on which the non-reinforcement layer is formed is fibril-reinforced. Laminated in contact with the film, after transferring the non-reinforcement layer onto the fibril reinforcement film by hot pressing, for example, an electrolyte membrane comprising a fibril reinforcement layer and a non-reinforcement layer is obtained by peeling the substrate. .

【0045】ここでスルホン酸型パーフルオロカーボン
重合体の溶液によりキャスト製膜する基材は、ホットプ
レス後に無補強層から容易に剥離できるものであれば特
に限定されず、例えばポリエステルフィルムが使用でき
る。
Here, the substrate to be formed into a film by casting with a solution of the sulfonic acid type perfluorocarbon polymer is not particularly limited as long as it can be easily peeled off from the non-reinforced layer after hot pressing. For example, a polyester film can be used.

【0046】(4)の工程において使用される延伸補助
フィルムは、延伸可能であれば特に限定されないが、例
えば、ポリエチレンテレフタレートフィルム、ポリブチ
レンテレフタレートフィルム、ポリエチレンフィルム、
エチレン−α−オレフィン共重合体フィルム、エチレン
−ビニルアルコール共重合体フィルム、エチレン−酢酸
ビニル共重合体フィルム、エチレン−酢酸ビニル−塩化
ビニル共重合体フィルム、エチレン−塩化ビニル共重合
体フィルム、ポリプロピレンフィルム、ポリ塩化ビニル
フィルム、ポリアミドフィルム、ポリビニルアルコール
フィルム等が挙げられる。なかでもポリエチレンテレフ
タレートフィルム又はポリプロピレンフィルムが好まし
い。
The stretching auxiliary film used in the step (4) is not particularly limited as long as it can be stretched. For example, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyethylene film,
Ethylene-α-olefin copolymer film, ethylene-vinyl alcohol copolymer film, ethylene-vinyl acetate copolymer film, ethylene-vinyl acetate-vinyl chloride copolymer film, ethylene-vinyl chloride copolymer film, polypropylene Film, polyvinyl chloride film, polyamide film, polyvinyl alcohol film and the like. Among them, a polyethylene terephthalate film or a polypropylene film is preferable.

【0047】特にアモルファス状態のポリエチレンテレ
フタレートフィルム及びキャスト製膜したポリプロピレ
ンフィルムは、比較的低温で延伸でき延伸性も良好であ
るので好ましい。2軸延伸の際の温度は延伸補助フィル
ムの種類により異なるが、40〜150℃の温度範囲が
延伸性の観点から好ましい。
Particularly, an amorphous polyethylene terephthalate film and a cast polypropylene film are preferred because they can be stretched at a relatively low temperature and have good stretchability. The temperature at the time of biaxial stretching varies depending on the type of the stretching auxiliary film, but a temperature range of 40 to 150 ° C. is preferable from the viewpoint of stretchability.

【0048】本発明の固体高分子型燃料電池は、通常の
手法に従い、例えば以下のようにして得られる。まず、
白金触媒微粒子を担持させた導電性のカーボンブラック
粉末とスルホン酸型パーフルオロカーボン重合体の溶液
を混合し均一分散液を得て、以下のいずれかの方法でガ
ス拡散電極を形成して膜電極接合体を得る。膜はフィブ
リル状補強材で補強されたスルホン酸型パーフルオロカ
ーボン重合体からなる陽イオン交換膜を用いる。
The polymer electrolyte fuel cell of the present invention can be obtained according to a usual method, for example, as follows. First,
A solution of a conductive carbon black powder carrying platinum catalyst fine particles and a solution of a sulfonic acid type perfluorocarbon polymer are mixed to obtain a uniform dispersion, and a gas diffusion electrode is formed by any of the following methods to form a membrane electrode junction. Get the body. As the membrane, a cation exchange membrane made of a sulfonic acid type perfluorocarbon polymer reinforced with a fibril-like reinforcing material is used.

【0049】第1の方法は、上記陽イオン交換膜の両面
に上記均一分散液を塗布し乾燥後、両面を2枚のカーボ
ンクロス又はカーボンペーパーで密着する方法である。
第2の方法は、上記均一分散液を2枚のカーボンクロス
又はカーボンペーパー上に塗布乾燥後、均一分散液が塗
布された面が上記陽イオン交換膜と密着するように、上
記陽イオン交換膜の両面から挟みこむ方法である。
The first method is a method in which the uniform dispersion is applied to both surfaces of the cation exchange membrane, dried, and then adhered to both surfaces with two carbon cloths or carbon papers.
In the second method, the uniform dispersion is applied to two carbon cloths or carbon papers and dried, and then the cation exchange membrane is applied so that the surface coated with the uniform dispersion adheres to the cation exchange membrane. It is a method of sandwiching from both sides.

【0050】得られた膜電極接合体は、燃料ガス又は酸
化剤ガスの通路となる溝が形成され導電性カーボン板か
らなるセパレータの間に挟まれ、セルに組み込まれて固
体高分子型燃料電池が得られる。
The obtained membrane / electrode assembly is provided with a groove serving as a passage for a fuel gas or an oxidizing gas, sandwiched between separators made of a conductive carbon plate, and incorporated in a cell to be incorporated into a cell. Is obtained.

【0051】上記のようにして得られる固体高分子型燃
料電池では、アノード側には水素ガスが供給され、カソ
ード側には酸素又は空気が供給される。アノードにおい
てはH2→2H++2e-の反応が起こり、カソードにお
いては1/2O2+2H++2e-→H2Oの反応が起こ
り、化学エネルギが電気エネルギに変換される。
In the polymer electrolyte fuel cell obtained as described above, hydrogen gas is supplied to the anode side, and oxygen or air is supplied to the cathode side. At the anode, a reaction of H 2 → 2H + + 2e occurs, and at the cathode, a reaction of 1 / 2O 2 + 2H + + 2e → H 2 O occurs, whereby chemical energy is converted into electric energy.

【0052】[0052]

【実施例】[例1]テトラフルオロエチレンに基づく重
合単位とCF2=CF−OCF2CF(CF 3)O(C
22SO2Fに基づく重合単位とからなる共重合体粉
末(酸型に変換して測定したときのイオン交換容量1.
1ミリ当量/グラム乾燥樹脂、以下共重合体Aとい
う。)9600gとPTFE粉末(商品名:フルオンC
D−1、旭硝子社製)400gとを混合し、2軸押出し
成形によりペレット9500gを得た。得られたペレッ
トを1軸押出し機によりフィルム化し、厚さ150μm
のフィルムを得た。得られたフィルムを一旦220℃の
温度にて加熱ロールプレスして表面を平滑化した後、延
伸補助フィルムとして厚さ200μmのアモルファスポ
リエチレンテレフタレートフィルム2枚で両側から挟
み、80℃で加熱ロールプレスして延伸補助フィルムが
積層されたフィルムを得た。
EXAMPLES Example 1 Weight Based on Tetrafluoroethylene
Combined unit and CFTwo= CF-OCFTwoCF (CF Three) O (C
FTwo)TwoSOTwoCopolymer powder comprising polymer units based on F
Powder (ion exchange capacity when converted to acid form and measured)
1 meq / g dry resin, hereinafter referred to as copolymer A
U. ) 9600 g and PTFE powder (trade name: Fluon C)
D-1, manufactured by Asahi Glass Co., Ltd.) and extruded
9500 g of pellets were obtained by molding. The obtained peret
Into a film with a single-screw extruder and a thickness of 150 μm
Was obtained. Once the obtained film is
After smoothing the surface with a hot roll press at temperature,
200μm thick amorphous film
Sandwiched between both sides by two ethylene terephthalate films
, And hot roll press at 80 ° C.
A laminated film was obtained.

【0053】この積層フィルムに対し85℃で、1軸押
出し機を通した方向(MD方向)に1.4倍、MD方向
に垂直な方向(TD方向)に7倍の2軸延伸を行い(面
積延伸倍率10倍)、さらに200℃で加熱ロールプレ
スして、厚さ15μmの延伸フィルムを得た。一方、共
重合体Aのみを用いて2軸押出し成形によりペレット化
した後、1軸押出し成形して厚さ5μmのフィルムを得
た。
The laminated film was biaxially stretched at 85 ° C. by 1.4 times in the direction (MD direction) through a single screw extruder and 7 times in the direction perpendicular to the MD direction (TD direction) ( (Area stretch ratio 10 times) and further subjected to a hot roll press at 200 ° C. to obtain a stretched film having a thickness of 15 μm. On the other hand, pellets were formed by twin-screw extrusion using only the copolymer A, and then uniaxially extruded to obtain a film having a thickness of 5 μm.

【0054】上記の厚さ15μmの延伸フィルムの両側
に厚さ5μmの無補強フィルムを180℃で加熱ロール
プレスで積層し、フィブリル補強層と無補強層が積層さ
れた厚さ25μmの3層フィルムを得た。得られた3層
フィルムをジメチルスルホキシドと水酸化カリウムを含
む水溶液を用いて加水分解し、塩酸で酸型化処理し、洗
浄、乾燥して厚さ25μmの膜(積層膜)とした。得ら
れた膜の厚さを5cm間隔で10点測定したが、厚さの
バラツキは±3μmの範囲であった。
A 5 μm thick non-reinforced film is laminated on both sides of the 15 μm thick stretched film by a hot roll press at 180 ° C., and a fibril reinforcing layer and a non-reinforcing layer are laminated to form a 25 μm thick three-layer film. I got The resulting three-layer film was hydrolyzed using an aqueous solution containing dimethyl sulfoxide and potassium hydroxide, acidified with hydrochloric acid, washed and dried to form a 25 μm-thick film (laminated film). The thickness of the obtained film was measured at 10 points at intervals of 5 cm, and the thickness variation was in a range of ± 3 μm.

【0055】[積層膜の引裂強さ測定]上記積層膜を、
90℃の純水中に16時間浸漬した後、幅5cm、長さ
15cmの短冊状サンプルを切り出した。このサンプル
は、長さ方向がMD方向と一致するサンプルと、長さ方
向がTD方向と一致するサンプルとを各5サンプルとし
た。各サンプルは、長さ方向に沿って2等分するよう
に、短辺の中央から長さ15cmの半分の7.5cmま
で切れ目を入れた。切れ目部分から引き裂かれるように
切れ端の一方を引張り試験機の上部チャックに、もう一
方を下部チャックに取り付け、25℃にて200mm/
分の速度でチャック間を広げ、引裂荷重を測定した。引
裂強さは引裂荷重をサンプルの厚さで除して算出し、5
サンプルの平均値をとった。得られた積層膜の引裂強さ
はMD方向が2.0N/mm、TD方向が7.5N/m
mであった。
[Measurement of tear strength of laminated film]
After being immersed in pure water at 90 ° C. for 16 hours, a strip sample having a width of 5 cm and a length of 15 cm was cut out. As for this sample, a sample whose length direction coincides with the MD direction and a sample whose length direction coincides with the TD direction were each 5 samples. Each sample was cut from the center of the short side to 7.5 cm, which is half the length of 15 cm, so as to be bisected along the length direction. One of the cut pieces was attached to the upper chuck of the tensile tester and the other was attached to the lower chuck so that the cut piece was torn from the cut portion.
The space between the chucks was spread at a speed of one minute, and the tear load was measured. The tear strength is calculated by dividing the tear load by the sample thickness.
The average value of the sample was taken. The tear strength of the obtained laminated film was 2.0 N / mm in the MD direction and 7.5 N / m in the TD direction.
m.

【0056】[積層膜の抵抗測定]上記積層膜から5m
m幅の短冊状膜サンプルを作製し、その表面に白金線
(直径:0.2mm)を幅方向と平行になるように5m
m間隔に5本押し当て、80℃、相対湿度95%の恒温
・恒湿装置中にサンプルを保持し、交流10kHzにお
ける白金線間の交流インピーダンスを測定することによ
り交流比抵抗を求めた。5mm間隔に白金線を5本押し
当てているため、極間距離を5、10、15、20mm
に変化させることができるので、各極間距離における交
流抵抗を測定し、極間距離と抵抗の勾配から膜の比抵抗
を算出することで白金線と膜との間の接触抵抗の影響を
除外した。極間距離と抵抗測定値との間には良い直線関
係が得られ、勾配と厚さから次式により比抵抗を算出し
た。 比抵抗ρ(Ω・cm)=サンプルの幅(cm)×サンプ
ルの厚さ(cm)×抵抗極間勾配(Ω/cm) 得られた積層膜の比抵抗は6Ω・cmであった。
[Measurement of Resistance of Laminated Film] 5 m from the above laminated film
A strip-shaped membrane sample having a width of m was prepared, and a platinum wire (diameter: 0.2 mm) was formed on the surface of the strip-shaped film sample for 5 m in parallel with the width direction.
Five samples were pressed at m intervals, the sample was held in a constant temperature and humidity apparatus at 80 ° C. and a relative humidity of 95%, and the AC impedance between the platinum wires at an AC of 10 kHz was measured to determine the AC specific resistance. Since five platinum wires are pressed at 5 mm intervals, the distance between the electrodes is 5, 10, 15, 20 mm
The effect of contact resistance between the platinum wire and the film is excluded by measuring the AC resistance at each distance between the electrodes and calculating the specific resistance of the film from the gradient of the distance and the resistance. did. A good linear relationship was obtained between the distance between the electrodes and the measured resistance, and the specific resistance was calculated from the gradient and the thickness by the following equation. Specific resistance ρ (Ω · cm) = sample width (cm) × sample thickness (cm) × resistance electrode gradient (Ω / cm) The specific resistance of the obtained laminated film was 6 Ω · cm.

【0057】[積層膜の水素ガス透過性測定]得られた
積層膜を、70℃のガス透過装置用セルに組み込み、片
側に加湿水素、もう一方に加湿アルゴンガスを流し、セ
ル有効ガス透過面積3.3cm2、ガス流量30cm3
minにて透過してくる水素ガスをガスクロマトグラフ
ィで検出し膜の水素ガス透過性を算出した。水素ガス透
過性は、標準状態(0℃、1気圧)で膜面積1cm2
たりに1秒間に透過ガスの圧力差1Paあたりに透過す
るガスの流量を求め、厚さ1cmの膜の場合に換算した
数値とした。70℃、相対湿度95%における積層膜の
水素ガス透過性は、6.9×10-12cm3(STP)・
cm・cm-2・s-1・Pa-1であった。
[Measurement of Hydrogen Gas Permeability of Laminated Film] The obtained laminated film was incorporated into a cell for a gas permeation device at 70 ° C., and humidified hydrogen was supplied to one side and humidified argon gas was supplied to the other side. 3.3 cm 2 , gas flow 30 cm 3 /
The hydrogen gas permeating in min was detected by gas chromatography and the hydrogen gas permeability of the membrane was calculated. The hydrogen gas permeability was determined by measuring the flow rate of gas permeating per 1 Pa of pressure of the permeated gas per 1 cm 2 per 1 cm 2 of the membrane area under a standard condition (0 ° C., 1 atm) and converting it to a 1 cm thick membrane. It was a numerical value. The hydrogen gas permeability of the laminated film at 70 ° C. and 95% relative humidity was 6.9 × 10 −12 cm 3 (STP) ·
cm · cm −2 · s −1 · Pa −1 .

【0058】[燃料電池の作製及び評価]燃料電池セル
は以下のようにして組み立てた。テトラフルオロエチレ
ンに基づく重合単位とCF2=CF−OCF2CF(CF
3)O(CF22SO3Hに基づく重合単位とからなる共
重合体粉末(イオン交換容量1.1ミリ当量/グラム乾
燥樹脂)と白金担持カーボンとを1:3の質量比で含み
エタノールを分散媒とする塗工液を、カーボンクロス上
にダイコート法で塗工し、乾燥して厚さ10μm、白金
担持量0.5mg/cm2のガス拡散電極層を形成し
た。
[Production and Evaluation of Fuel Cell] A fuel cell was assembled as follows. Polymerized units based on tetrafluoroethylene and CF 2 CFCF—OCF 2 CF (CF
3 ) A copolymer powder composed of polymerized units based on O (CF 2 ) 2 SO 3 H (ion exchange capacity: 1.1 meq / g dry resin) and platinum-supported carbon in a mass ratio of 1: 3. A coating liquid containing ethanol as a dispersion medium was applied on a carbon cloth by a die coating method, and dried to form a gas diffusion electrode layer having a thickness of 10 μm and a platinum carrying amount of 0.5 mg / cm 2 .

【0059】上記カーボンクロス2枚を、それぞれのガ
ス拡散電極層が内側を向くように対向させ、その間に上
記積層膜を挟み、平板プレス機を用いてプレスして膜電
極接合体を作製した。この膜電極接合体の両外側にガス
通路用の細溝をジグザグ状に切削加工したカーボン板製
のセパレータ、さらにその外側にヒータを配置し、有効
膜面積25cm2の燃料電池を組み立てた。
The two carbon cloths were opposed to each other so that the respective gas diffusion electrode layers faced inward, the laminated film was sandwiched between them, and pressed using a flat plate press to produce a membrane electrode assembly. A fuel cell having an effective membrane area of 25 cm 2 was assembled by disposing a separator made of a carbon plate in which narrow grooves for gas passages were cut in a zigzag shape on both outer sides of the membrane electrode assembly and a heater on the outside thereof.

【0060】燃料電池の温度を80℃に保ち、カソード
に空気、アノードに水素をそれぞれ1.5気圧で供給し
た。電流密度1A/cm2のときの端子電圧を測定した
ところ、端子電圧は0.63Vであった。さらに、上記
の燃料電池を80℃、電流密度1A/cm2で連続運転
を行った。1000時間後の端子電圧は0.63Vであ
り、変化がなかった。
The temperature of the fuel cell was maintained at 80 ° C., and air was supplied to the cathode and hydrogen was supplied to the anode at 1.5 atm. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.63 V. Further, the above fuel cell was continuously operated at 80 ° C. and a current density of 1 A / cm 2 . The terminal voltage after 1000 hours was 0.63 V, and there was no change.

【0061】[例2]共重合体A粉末を9730gに変
更し、PTFE粉末を270gに変更した以外は例1と
同様にしてペレットを得た後にフィルム化し、厚さ25
0μmのフィルムを得た。このフィルムに対して例4と
同様にして延伸補助フィルムを積層して積層フィルムを
得た。この積層フィルムに対し85℃で各軸方向(MD
方向及びTD方向)に対しそれぞれ2.5倍の2軸延伸
を行い(面積延伸倍率6.3倍)、延伸補助フィルムを
剥がして、厚さ40μmのフィブリル補強フィルムを得
た。
[Example 2] A pellet was obtained after forming a film in the same manner as in Example 1 except that the copolymer A powder was changed to 9730 g and the PTFE powder was changed to 270 g.
A 0 μm film was obtained. A stretch assisting film was laminated on this film in the same manner as in Example 4 to obtain a laminated film. At 85 ° C., each axial direction (MD
(Direction and TD direction), each of which was biaxially stretched 2.5 times (area stretching ratio: 6.3 times), and the stretching auxiliary film was peeled off to obtain a fibril reinforcing film having a thickness of 40 μm.

【0062】一方、共重合体Aのみからなる無補強フィ
ルムは、厚さを40μmとした以外は例1と同様にして
得た。この無補強フィルムの両側に厚さ40μmの上記
フィブリル補強フィルムを加熱ロールプレスにて積層
し、3層フィルムを得た。得られた3層フィルムをジメ
チルスルホキシドと水酸化カリウムを含む水溶液を用い
て加水分解し、塩酸で酸型化処理し、洗浄、乾燥して厚
さ120μmの膜とした。
On the other hand, a non-reinforced film consisting of the copolymer A alone was obtained in the same manner as in Example 1 except that the thickness was 40 μm. The fibril reinforced film having a thickness of 40 μm was laminated on both sides of the non-reinforced film by a heated roll press to obtain a three-layer film. The obtained three-layer film was hydrolyzed using an aqueous solution containing dimethyl sulfoxide and potassium hydroxide, acidified with hydrochloric acid, washed and dried to form a film having a thickness of 120 μm.

【0063】この膜を再び延伸補助フィルムとして厚さ
200μmのアモルファスポリエチレンテレフタレート
フィルムで両側から挟んで上記同様に加熱積層し、85
℃でMD方向及びTD方向に対して2倍の2軸延伸を行
い(面積延伸倍率4倍)、延伸補助フィルムを剥がして
厚さ30μmの積層膜を得た。得られた膜の厚さを5c
m間隔で10点測定したが、厚さのバラツキは±3μm
の範囲であった。
This film was again sandwiched from both sides with an amorphous polyethylene terephthalate film having a thickness of 200 μm as a stretching auxiliary film, and heated and laminated in the same manner as described above.
Biaxial stretching was performed twice in the MD and TD directions at a temperature of 4 ° C. (area stretching ratio: 4), and the stretching auxiliary film was peeled off to obtain a 30 μm-thick laminated film. The thickness of the obtained film is 5c
The measurement was performed at 10 points at m intervals, and the thickness variation was ± 3 μm.
Was in the range.

【0064】得られた積層膜を例1と同様にして評価し
たところ、引裂強さはMD方向が1.4N/mm、TD
方向が9.5N/mmであり、交流比抵抗は5Ω・cm
であり、水素ガス透過性は、6.4×10-12cm3(S
TP)・cm・cm-2・s-1・Pa-1であった。
When the obtained laminated film was evaluated in the same manner as in Example 1, the tear strength was 1.4 N / mm in the MD direction and TD.
Direction is 9.5N / mm, AC specific resistance is 5Ω · cm
And the hydrogen gas permeability is 6.4 × 10 −12 cm 3 (S
TP) .cm.cm -2 .s -1 .Pa -1 .

【0065】上記積層膜を用いて例1と同様にして燃料
電池セルを組み立て、例1と同様にして発電特性を評価
した。電流密度1A/cm2のときの端子電圧を測定し
たところ、端子電圧は0.65Vであった。また、10
00時間後の端子電圧は0.65Vであり、変化がなか
った。
A fuel cell was assembled in the same manner as in Example 1 using the above laminated film, and the power generation characteristics were evaluated in the same manner as in Example 1. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.65 V. Also, 10
The terminal voltage after 00 hours was 0.65 V, and there was no change.

【0066】[例3]共重合体粉末を9600gに変更
し、PTFE粉末を400gに変更した以外は例2と同
様にしてペレットを得た後にフィルム化し、厚さ250
μmのフィルムを得た。フィブリル補強層を作製するた
めのフィルムとしてこのフィルムを用いて例2と同様に
して積層、延伸等の処理を行い、厚さ30μmの積層膜
を得た。得られた膜の厚さのバラツキを例1と同様に測
定したところ、±3μmの範囲であった。
[Example 3] A pellet was obtained and then formed into a film in the same manner as in Example 2, except that the copolymer powder was changed to 9600 g and the PTFE powder was changed to 400 g.
A μm film was obtained. Using this film as a film for producing a fibril reinforcing layer, processing such as lamination and stretching was performed in the same manner as in Example 2 to obtain a laminated film having a thickness of 30 μm. When the thickness variation of the obtained film was measured in the same manner as in Example 1, it was in the range of ± 3 μm.

【0067】得られた積層膜を例1と同様にして評価し
たところ、引裂強さは、MD方向が8.8N/mm、T
D方向が13N/mmであり、交流比抵抗は6Ω・cm
であった。また、70℃、相対湿度95%におけるこの
積層膜の水素ガス透過性は、6.2×10-12cm3(S
TP)・cm・cm-2・s-1・Pa-1であった。
When the obtained laminated film was evaluated in the same manner as in Example 1, the tear strength was 8.8 N / mm in the MD direction and T
D direction is 13 N / mm, AC specific resistance is 6 Ω · cm
Met. The hydrogen gas permeability of this laminated film at 70 ° C. and 95% relative humidity was 6.2 × 10 −12 cm 3 (S
TP) .cm.cm -2 .s -1 .Pa -1 .

【0068】上記積層膜を用いて例1と同様にして燃料
電池セルを組み立て、例1と同様にして発電特性を評価
した。電流密度1A/cm2のときの端子電圧を測定し
たところ、端子電圧は0.64Vであった。また、10
00時間後の端子電圧は0.64Vであり、変化がなか
った。
A fuel cell was assembled in the same manner as in Example 1 using the above laminated film, and the power generation characteristics were evaluated in the same manner as in Example 1. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.64 V. Also, 10
The terminal voltage after 00 hours was 0.64 V, and there was no change.

【0069】[例4]共重合体A粉末を9400gに変
更し、PTFE粉末を600gに変更した以外は例1と
同様にしてペレットを得た後にフィルム化し、厚さ20
0μmのフィルムを得た。このフィルムを用いて例1と
同様にして延伸補助フィルムを積層し、延伸倍率を各軸
方向に対し3.3倍(面積延伸倍率10倍)とした以外
は例1と同様にして厚さ20μmのフィブリル補強フィ
ルムを得た。
[Example 4] A pellet was obtained in the same manner as in Example 1 except that the amount of the copolymer A was changed to 9400 g and the amount of the PTFE powder was changed to 600 g.
A 0 μm film was obtained. Using this film, a stretching auxiliary film was laminated in the same manner as in Example 1, and the thickness was 20 μm in the same manner as in Example 1 except that the stretching ratio was 3.3 times in each axial direction (area stretching ratio was 10 times). Was obtained.

【0070】一方、共重合体Aを加水分解、酸型化処理
して得られたポリマーをエタノールに加熱下で溶解し、
固形分濃度が全質量の9%の溶液を得た。この溶液を用
いて上記延伸フィルムの両面にキャスト製膜してそれぞ
れ厚さ5μmの層を形成し、厚さ30μmの積層膜を得
た。得られた膜の厚さのバラツキを例1と同様に測定し
たところ、±3μmの範囲であった。
On the other hand, the polymer obtained by hydrolyzing the copolymer A and converting it into an acid form is dissolved in ethanol under heating,
A solution having a solid content of 9% of the total mass was obtained. Using this solution, cast films were formed on both sides of the stretched film to form layers each having a thickness of 5 μm, and a laminated film having a thickness of 30 μm was obtained. When the thickness variation of the obtained film was measured in the same manner as in Example 1, it was in the range of ± 3 μm.

【0071】得られた積層膜を例1と同様にして評価し
たところ、引裂強さは、MD方向が10N/mm、TD
方向が17N/mmであり、交流比抵抗は7Ω・cmで
あった。また、70℃、相対湿度95%におけるこの積
層膜の水素ガス透過性は、6.8×10-12cm3(ST
P)・cm・cm-2・s-1・Pa-1であった。
When the obtained laminated film was evaluated in the same manner as in Example 1, the tear strength was 10 N / mm in the MD direction and TD.
The direction was 17 N / mm, and the AC specific resistance was 7 Ω · cm. The hydrogen gas permeability of this laminated film at 70 ° C. and 95% relative humidity was 6.8 × 10 −12 cm 3 (ST
P) · cm · cm −2 · s −1 · Pa −1 .

【0072】上記積層膜を用いて例1と同様にして燃料
電池セルを組み立て、例1と同様にして発電特性を評価
した。電流密度1A/cm2のときの端子電圧を測定し
たところ、端子電圧は0.62Vであった。また、10
00時間後の端子電圧は0.62Vであり、変化がなか
った。
A fuel cell was assembled in the same manner as in Example 1 using the above laminated film, and the power generation characteristics were evaluated in the same manner as in Example 1. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.62 V. Also, 10
The terminal voltage after 00 hours was 0.62 V, and there was no change.

【0073】[例5(比較例)]例2におけるフィブリ
ル補強層作製の途中で得られた延伸していない厚さ25
0μmのフィルムを用い、180℃の温度で加熱ロール
プレス装置を用いてロール圧延成形することにより膜の
厚さを薄くし、厚さ100μmのフィブリル補強膜を得
た。この膜を例1と同様に加水分解、酸型化、洗浄、乾
燥して厚さ100μmのフィブリル補強膜を得た。得ら
れた膜の厚さのバラツキを例1と同様に測定したとこ
ろ、±15μmのバラツキがあった。
Example 5 (Comparative Example) The unstretched thickness 25 obtained during the preparation of the fibril reinforcing layer in Example 2
Using a 0 μm film, the film was roll-rolled at 180 ° C. using a heated roll press to reduce the thickness of the film to obtain a 100 μm thick fibril reinforced film. This film was hydrolyzed, acidified, washed and dried in the same manner as in Example 1 to obtain a fibril-reinforced film having a thickness of 100 μm. When the variation in the thickness of the obtained film was measured in the same manner as in Example 1, there was a variation of ± 15 μm.

【0074】上記フィブリル補強膜を積層等の操作をす
ることなく例1と同様に評価したところ、引裂強さは、
MD方向が1.6N/mm、TD方向が10N/mmで
あり、交流比抵抗は5Ω・cmであった。また水素ガス
透過性は、12.6×10-1 2cm3(STP)・cm・
cm-2・s-1・Pa-1であった。
When the fibril reinforcing film was evaluated in the same manner as in Example 1 without performing operations such as lamination, the tear strength was as follows:
The MD direction was 1.6 N / mm, the TD direction was 10 N / mm, and the AC specific resistance was 5 Ω · cm. The hydrogen gas permeability, 12.6 × 10 -1 2 cm 3 (STP) · cm ·
cm -2 · s -1 · Pa -1 .

【0075】上記フィブリル補強膜を用いて例1と同様
にして燃料電池セルを組み立て、例1と同様にして発電
特性を評価した。電流密度1A/cm2のときの端子電
圧を測定したところ、端子電圧は0.54Vであった。
また、1000時間後の端子電圧は0.52Vであっ
た。
Using the fibril reinforcing film, a fuel cell was assembled in the same manner as in Example 1, and the power generation characteristics were evaluated in the same manner as in Example 1. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.54 V.
The terminal voltage after 1000 hours was 0.52V.

【0076】[例6(比較例)]共重合体Aのみを用
い、例1と同様にしてフィルム化し、厚さ50μmの、
フィブリル状補強材を含有しない膜を作製した。この膜
を例1と同様に加水分解、酸型化処理、洗浄、乾燥して
厚さ50μmの膜とした。得られた膜の厚さのバラツキ
を例1と同様に測定したところ、±5μmの範囲であっ
た。
Example 6 (Comparative Example) A film was formed in the same manner as in Example 1 except that only the copolymer A was used.
A membrane containing no fibril-like reinforcement was produced. This film was hydrolyzed, acidified, washed and dried in the same manner as in Example 1 to obtain a film having a thickness of 50 μm. When the thickness variation of the obtained film was measured in the same manner as in Example 1, it was in the range of ± 5 μm.

【0077】上記膜を積層等の操作をすることなく例1
と同様に評価したところ、引裂強さは、MD方向が0.
4N/mm、TD方向が0.6N/mmであり、交流比
抵抗は5Ω・cmであった。また水素ガス透過性は、
6.0×10-12cm3(STP)・cm・cm-2・s-1
・Pa-1であった。上記膜を用いて例1と同様にして燃
料電池セルを組み立て、例1と同様にして発電特性を評
価した。電流密度1A/cm2のときの端子電圧を測定
したところ、端子電圧は0.53Vであった。また、1
000時間後の端子電圧は0.50Vであった。
Example 1 without performing operations such as laminating the above films
When the tear strength was evaluated in the same manner as in the above, the tear strength was 0.
4 N / mm, the TD direction was 0.6 N / mm, and the AC specific resistance was 5 Ω · cm. The hydrogen gas permeability is
6.0 × 10 −12 cm 3 (STP) · cm · cm −2 · s −1
-It was Pa- 1 . A fuel cell was assembled using the above membrane in the same manner as in Example 1, and the power generation characteristics were evaluated in the same manner as in Example 1. When the terminal voltage at a current density of 1 A / cm 2 was measured, the terminal voltage was 0.53 V. Also, 1
The terminal voltage after 000 hours was 0.50V.

【0078】[0078]

【発明の効果】本発明によれば、従来膜にない低い電気
抵抗と高い機械的強度を有し、厚さのバラツキが少な
く、かつ水素ガス透過性が低い陽イオン交換膜を固体高
分子電解質としているので、初期性能に優れかつ長期的
性能の安定性にも優れた固体高分子型燃料電池が得られ
る。
According to the present invention, a cation exchange membrane having a low electric resistance and a high mechanical strength which are not present in conventional membranes, a small variation in thickness, and a low hydrogen gas permeability is provided by a solid polymer electrolyte. Thus, a polymer electrolyte fuel cell having excellent initial performance and excellent long-term performance stability can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29C 55/02 B29C 55/02 4J100 C08F 214/26 C08F 214/26 5H026 C08J 5/04 C08J 5/04 5/22 101 5/22 101 CEW CEW C08L 27/12 C08L 27/12 H01M 8/10 H01M 8/10 // B29K 23:00 B29K 23:00 27:12 27:12 67:00 67:00 B29L 7:00 B29L 7:00 9:00 9:00 31:34 31:34 Fターム(参考) 4D006 GA47 JA02 MA03 MA06 MA31 MB06 MC23 MC28 MC30 MC48 MC74 NA36 NA48 PC80 4F071 AA26 AA26X AA27 AA27C AA27X AH15 BA01 BB06 BB07 BC01 FA02 FA05 FB01 FC02 FC03 FC06 FD02 4F072 AA04 AA08 AB04 AD07 AK05 AK16 AK20 AL11 4F210 AA11 AA16 AA24 AG01 AG03 AH33 AR06 QC05 QG01 QG15 QG18 4J002 BD12W BD15W BD15X FA04X FD01X GQ00 GQ02 4J100 AC26P AE38Q BA56Q CA04 DA56 JA45 5H026 AA06 BB01 BB02 CC03 CX05 EE19 HH00 HH03 HH05 HH08──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B29C 55/02 B29C 55/02 4J100 C08F 214/26 C08F 214/26 5H026 C08J 5/04 C08J 5/04 5 / 22 101 5/22 101 CEW CEW C08L 27/12 C08L 27/12 H01M 8/10 H01M 8/10 // B29K 23:00 B29K 23:00 27:12 27:12 67:00 67:00 B29L 7: 00 B29L 7:00 9:00 9:00 31:34 31:34 F term (reference) 4D006 GA47 JA02 MA03 MA06 MA31 MB06 MC23 MC28 MC30 MC48 MC74 NA36 NA48 PC80 4F071 AA26 AA26X AA27 AA27C AA27X AH15 BA01 BB06 BB07 BC01 FA02 FA05 FB01 FC02 FC03 FC06 FD02 4F072 AA04 AA08 AB04 AD07 AK05 AK16 AK20 AL11 4F210 AA11 AA16 AA24 AG01 AG03 AH33 AR06 QC05 QG01 QG15 QG18 4J002 BD12W BD15W BD15X FA04X FD01X GQ00 GQ02 4 AC26P AE38Q BA56Q CA04 DA56 JA45 5H026 AA06 BB01 BB02 CC03 CX05 EE19 HH00 HH03 HH05 HH08

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】スルホン酸基を有するパーフルオロカーボ
ン重合体からなる陽イオン交換層の2層以上の積層体か
らなり、前記陽イオン交換層の1層以上はフィブリル状
のフルオロカーボン重合体からなる補強材で補強されて
おり、前記陽イオン交換層の1層以上は実質的に補強材
で補強されていないことを特徴とする固体高分子型燃料
電池用電解質膜。
1. A reinforcing material comprising a laminate of two or more cation exchange layers comprising a perfluorocarbon polymer having a sulfonic acid group, wherein at least one of said cation exchange layers comprises a fibril-like fluorocarbon polymer. And wherein at least one of the cation exchange layers is not substantially reinforced with a reinforcing material.
【請求項2】厚さが3〜70μmである請求項1に記載
の固体高分子型燃料電池用電解質膜。
2. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 1, which has a thickness of 3 to 70 μm.
【請求項3】前記補強材で補強された陽イオン交換層全
質量中に、前記補強材となるフルオロカーボン重合体は
0.5〜15%含まれる請求項1又は2に記載の固体高
分子型燃料電池用電解質膜。
3. The solid polymer type according to claim 1, wherein the fluorocarbon polymer serving as the reinforcing material is contained in the total mass of the cation exchange layer reinforced with the reinforcing material in an amount of 0.5 to 15%. Electrolyte membrane for fuel cells.
【請求項4】スルホン酸基を有するパーフルオロカーボ
ン重合体が、CF2=CF2に基づく重合単位とCF2
CF(OCF2CFX)m−Op−(CF2nSO3Hに基
づく重合単位(ここでXはフッ素原子又はトリフルオロ
メチル基であり、mは0〜3の整数であり、nは0〜1
2の整数であり、pは0又は1であり、n=0のときに
はp=0である。)とからなる共重合体である請求項
1、2又は3に記載の固体高分子型燃料電池用電解質
膜。
4. A perfluorocarbon polymer having a sulfonic acid group, CF 2 = polymerized units based on CF 2 and CF 2 =
CF (OCF 2 CFX) m -O p - a (CF 2) n SO 3 X polymerized units (here based on H fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is 0-1
Is an integer of 2, p is 0 or 1, and when n = 0, p = 0. 4. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 1, which is a copolymer comprising:
【請求項5】請求項1、2、3又は4に記載の電解質膜
の製造方法であって、前記補強材で補強された陽イオン
交換層は、スルホン酸基の前駆体基を有するパーフルオ
ロカーボン重合体とフィブリル化可能なフルオロカーボ
ン重合体との混合物をフィルム状に成形し、得られたフ
ィルムを延伸することにより得ることを特徴とする固体
高分子型燃料電池用電解質膜の製造方法。
5. The method for producing an electrolyte membrane according to claim 1, wherein the cation exchange layer reinforced with the reinforcing material has a sulfonic acid group precursor group. A method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising: forming a mixture of a polymer and a fibrillable fluorocarbon polymer into a film and stretching the resulting film.
【請求項6】スルホン酸基の前駆体基を有するパーフル
オロカーボン重合体とフィブリル化可能なフルオロカー
ボン重合体との混合物をフィルム状に成形して得られる
フィルムと、スルホン酸基の前駆体基を有するパーフル
オロカーボン重合体をフィルム状に成形して得られるフ
ィルムとを積層した後、得られた積層フィルムの少なく
とも片面に延伸補助フィルムを積層し、加熱下で2軸延
伸する請求項5に記載の固体高分子型燃料電池用電解質
膜の製造方法。
6. A film obtained by molding a mixture of a perfluorocarbon polymer having a precursor group of a sulfonic acid group and a fluorocarbon polymer capable of fibrillation into a film, and a film having a precursor group of a sulfonic acid group. The solid according to claim 5, wherein after laminating a film obtained by molding the perfluorocarbon polymer into a film, a stretching auxiliary film is laminated on at least one surface of the obtained laminated film, and biaxially stretched under heating. A method for producing an electrolyte membrane for a polymer fuel cell.
【請求項7】スルホン酸基の前駆体基を有するパーフル
オロカーボン重合体とフィブリル化可能なフルオロカー
ボン重合体との混合物をフィルム状に成形して得られる
フィルムの少なくとも片面に延伸補助フィルムを積層
し、加熱下で2軸延伸した後、得られたフィルムに対し
て、スルホン酸基の前駆体基を有するパーフルオロカー
ボン重合体をフィルム状に成形して得られるフィルムを
積層する請求項5に記載の固体高分子型燃料電池用電解
質膜の製造方法。
7. A film obtained by molding a mixture of a perfluorocarbon polymer having a precursor group of a sulfonic acid group and a fluorocarbon polymer capable of fibrillation into a film, and a stretching auxiliary film is laminated on at least one surface of the film. The solid according to claim 5, wherein after biaxial stretching under heating, a film obtained by forming a perfluorocarbon polymer having a sulfonic acid group precursor group into a film shape is laminated on the obtained film. A method for producing an electrolyte membrane for a polymer fuel cell.
【請求項8】スルホン酸基の前駆体基を有するパーフル
オロカーボン重合体とフィブリル化可能なフルオロカー
ボン重合体との混合物をフィルム状に成形して得られる
フィルムの少なくとも片面に延伸補助フィルムを積層
し、加熱下で2軸延伸した後、スルホン酸基の前駆体基
をスルホン酸基に変換し、次いで得られたフィルムに対
してスルホン酸基を有するパーフルオロカーボン重合体
からなるフィルムを積層する請求項5に記載の固体高分
子型燃料電池用電解質膜の製造方法。
8. A film obtained by molding a mixture of a perfluorocarbon polymer having a precursor group of a sulfonic acid group and a fibrilable fluorocarbon polymer into a film shape, and laminating a stretching auxiliary film on at least one surface of the film. After biaxially stretching under heating, a precursor group of a sulfonic acid group is converted into a sulfonic acid group, and then a film made of a perfluorocarbon polymer having a sulfonic acid group is laminated on the obtained film. 3. The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to item 1.
【請求項9】前記延伸補助フィルムはポリエチレンテレ
フタレートフィルム又はポリプロピレンフィルムからな
り、延伸は40〜200℃の温度で行う請求項6、7又
は8に記載の固体高分子型燃料電池用電解質膜の製造方
法。
9. The method according to claim 6, wherein the stretching auxiliary film is made of a polyethylene terephthalate film or a polypropylene film, and the stretching is performed at a temperature of 40 to 200 ° C. Method.
【請求項10】請求項1、2、3又は4に記載の電解質
膜の両面にガス拡散電極が配置されていることを特徴と
する固体高分子型燃料電池。
10. A polymer electrolyte fuel cell, wherein gas diffusion electrodes are arranged on both surfaces of the electrolyte membrane according to claim 1, 2, 3 or 4.
JP2001119895A 2000-04-18 2001-04-18 Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method Pending JP2002025583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119895A JP2002025583A (en) 2000-04-18 2001-04-18 Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000116215 2000-04-18
JP2000-116215 2000-04-18
JP2001119895A JP2002025583A (en) 2000-04-18 2001-04-18 Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002025583A true JP2002025583A (en) 2002-01-25

Family

ID=26590295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119895A Pending JP2002025583A (en) 2000-04-18 2001-04-18 Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002025583A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071361A (en) * 2002-08-06 2004-03-04 Asahi Kasei Corp Fluorine-based ion exchange membrane
WO2005091409A1 (en) * 2004-03-19 2005-09-29 Toagosei Co., Ltd. Electrolyte film and fuel cell
JP2005302612A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Solid electrolyte membrane
JP2005310454A (en) * 2004-04-20 2005-11-04 Toyota Central Res & Dev Lab Inc Electrolyte and electrolyte film
JPWO2004011535A1 (en) * 2002-07-26 2005-11-24 旭硝子株式会社 POLYMER MEMBRANE, METHOD FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL
JP2006179273A (en) * 2004-12-22 2006-07-06 Asahi Kasei Corp Composite steam-permeable film
US7488788B2 (en) 2003-05-13 2009-02-10 Asahi Glass Company, Limited Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
JP2009064777A (en) * 2007-08-10 2009-03-26 Japan Gore Tex Inc Reinforced solid polymer electrolyte composite membrane, membrane-electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
DE112007000960T5 (en) 2006-04-19 2009-04-02 Toyota Jidosha Kabushiki Kaisha, Toyota-shi A porous material for an electrolyte membrane of a fuel cell, a method of manufacturing the same, an electrolyte membrane for a solid polymer fuel cell, a membrane-electrode assembly (MEA), and a fuel cell
JP2009172475A (en) * 2008-01-22 2009-08-06 Sumitomo Electric Ind Ltd Gas decomposing element
JP2009178642A (en) * 2008-01-30 2009-08-13 Sumitomo Electric Ind Ltd Gas decomposition component
JP2009289573A (en) * 2008-05-29 2009-12-10 Toyota Motor Corp Composite type electrolyte film, and fuel cell equipped with the same
JP2010045041A (en) * 2002-08-21 2010-02-25 Three M Innovative Properties Co Adjusting method of multi-layer proton exchanging membrane and membrane electrode assembly
WO2014027441A1 (en) * 2012-08-14 2014-02-20 トヨタ自動車株式会社 Electrolyte membrane for fuel cells and method for producing same
JP2014522552A (en) * 2011-06-16 2014-09-04 エルジー ケム. エルティーディ. Polymer electrolyte membrane for fuel cell, membrane electrode assembly including the same, and fuel cell

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004011535A1 (en) * 2002-07-26 2005-11-24 旭硝子株式会社 POLYMER MEMBRANE, METHOD FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL
JP4613614B2 (en) * 2002-07-26 2011-01-19 旭硝子株式会社 POLYMER MEMBRANE, METHOD FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER FUEL CELL
JP2004071361A (en) * 2002-08-06 2004-03-04 Asahi Kasei Corp Fluorine-based ion exchange membrane
JP4601243B2 (en) * 2002-08-06 2010-12-22 旭化成イーマテリアルズ株式会社 Fluorine ion exchange membrane
JP2010045041A (en) * 2002-08-21 2010-02-25 Three M Innovative Properties Co Adjusting method of multi-layer proton exchanging membrane and membrane electrode assembly
US7488788B2 (en) 2003-05-13 2009-02-10 Asahi Glass Company, Limited Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
WO2005091409A1 (en) * 2004-03-19 2005-09-29 Toagosei Co., Ltd. Electrolyte film and fuel cell
JP2005302612A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Solid electrolyte membrane
JP2005310454A (en) * 2004-04-20 2005-11-04 Toyota Central Res & Dev Lab Inc Electrolyte and electrolyte film
JP4547713B2 (en) * 2004-04-20 2010-09-22 株式会社豊田中央研究所 Electrolyte membrane
JP2006179273A (en) * 2004-12-22 2006-07-06 Asahi Kasei Corp Composite steam-permeable film
DE112007000960T5 (en) 2006-04-19 2009-04-02 Toyota Jidosha Kabushiki Kaisha, Toyota-shi A porous material for an electrolyte membrane of a fuel cell, a method of manufacturing the same, an electrolyte membrane for a solid polymer fuel cell, a membrane-electrode assembly (MEA), and a fuel cell
US9070910B2 (en) 2006-04-19 2015-06-30 Toyota Jidosha Kabushiki Kaisha Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (MEA), and fuel cell
US9147892B2 (en) 2006-04-19 2015-09-29 Toyota Jidosha Kabushiki Kaisha Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (MEA), and fuel cell
US9160012B2 (en) 2006-04-19 2015-10-13 Toyota Jidosha Kabushiki Kaisha Porous material for fuel cell electrolyte membrane, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane electrode assembly (MEA), and fuel cell
JP2009064777A (en) * 2007-08-10 2009-03-26 Japan Gore Tex Inc Reinforced solid polymer electrolyte composite membrane, membrane-electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2009172475A (en) * 2008-01-22 2009-08-06 Sumitomo Electric Ind Ltd Gas decomposing element
JP2009178642A (en) * 2008-01-30 2009-08-13 Sumitomo Electric Ind Ltd Gas decomposition component
JP2009289573A (en) * 2008-05-29 2009-12-10 Toyota Motor Corp Composite type electrolyte film, and fuel cell equipped with the same
JP2014522552A (en) * 2011-06-16 2014-09-04 エルジー ケム. エルティーディ. Polymer electrolyte membrane for fuel cell, membrane electrode assembly including the same, and fuel cell
US9385388B2 (en) 2011-06-16 2016-07-05 Lg Chem, Ltd. Polymer electrolyte membrane for fuel cell, membrane electrode assembly and fuel cell including the same
WO2014027441A1 (en) * 2012-08-14 2014-02-20 トヨタ自動車株式会社 Electrolyte membrane for fuel cells and method for producing same

Similar Documents

Publication Publication Date Title
EP1139472B1 (en) Electrolyte membrane for solid polymer type fuel cell and producing method thereof
US6156451A (en) Process for making composite ion exchange membranes
US8420701B2 (en) Polymer electrolyte membrane, membrane-electrode assembly for polymer electrolyte fuel cells and process for producing polymer electrolyte membrane
JP5849148B2 (en) Polymer electrolyte membrane
JP5411543B2 (en) Reinforcing electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell including the same
JP4857560B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
US20020064700A1 (en) Solid polymer electrolyte fuel cell and method of its production
WO2004011535A1 (en) Polymer film, process for producing the same, and united membrane electrode assembly for solid polymer type fuel cell
JP2002025583A (en) Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method
JP5331122B2 (en) Reinforcing electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell including the same
JP2001345111A (en) Electrolyte membrane for solid polymer fuel cell and method of manufacturing it
WO1998051733A1 (en) Process for making composite ion exchange membranes
JP2003059512A (en) Manufacturing method of electrolyte film for solid polymer fuel cell
JP2003055568A (en) Ion exchanger resin dispersion and method for producing the same
JP4867081B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same
WO2009107273A1 (en) Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly
JP4218255B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
WO2001006586A1 (en) Solid polymer electrolyte type fuel cell and method for manufacturing the same
JP2006160902A (en) Polyelectrolyte membrane and its manufacturing method
JP4234573B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
JP2005078895A (en) Cation exchange membrane, its manufacturing method, and membrane-electrode junction for solid polymer fuel cell
JP4188789B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell