JP2003055568A - Ion exchanger resin dispersion and method for producing the same - Google Patents

Ion exchanger resin dispersion and method for producing the same

Info

Publication number
JP2003055568A
JP2003055568A JP2002112161A JP2002112161A JP2003055568A JP 2003055568 A JP2003055568 A JP 2003055568A JP 2002112161 A JP2002112161 A JP 2002112161A JP 2002112161 A JP2002112161 A JP 2002112161A JP 2003055568 A JP2003055568 A JP 2003055568A
Authority
JP
Japan
Prior art keywords
polymer
dispersion
ion
exchanger
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002112161A
Other languages
Japanese (ja)
Inventor
Jun Mukoyama
純 向山
Toyoaki Ishizaki
豊暁 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002112161A priority Critical patent/JP2003055568A/en
Publication of JP2003055568A publication Critical patent/JP2003055568A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare an ion exchanger resin dispersion capable of giving such an ion-exchange membrane that has a uniform and small thickness so as to be reduced in electrical resistance, has low hydrogen gas permeability, is reduced in dimensional change caused by heating or moistening, exhibits no anisotropy and has high tear strength so as to be excellent in handleability, and is mass- producible. SOLUTION: In this ion exchanger resin dispersion, an ion exchanger polymer having sulfonate groups, preferably a fluorine-containing polymer having the sulfonate groups, and a fibrillar fluorocarbon polymer are dispersed into a dispersion medium. The ion exchanger resin dispersion is obtained, for example, by mixing a fluorine-containing polymer having precursor groups of the sulfonate groups and a fluorocarbon polymer capable of being fibrillated, fibrillating the fluorocarbon polymer capable of being fibrillated, changing the precursor groups of the sulfonate groups into the sulfonate groups, and dispersing the treated mixture into the dispersion medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はイオン交換体ポリマ
ー分散液に関する。
FIELD OF THE INVENTION This invention relates to ion exchanger polymer dispersions.

【0002】[0002]

【従来の技術】水素・酸素燃料電池は、その反応生成物
が原理的に水のみであり地球環境への悪影響がほとんど
ない発電システムとして注目されている。固体高分子型
燃料電池は、かつてジェミニ計画及びバイオサテライト
計画で宇宙船に搭載されたが、当時の電池出力密度は低
かった。その後、より高性能のアルカリ型燃料電池が開
発され、現在のスペースシャトルに至るまで宇宙用には
アルカリ型燃料電池が採用されている。
2. Description of the Related Art A hydrogen / oxygen fuel cell has been attracting attention as a power generation system that has a reaction product of only water in principle and has almost no adverse effect on the global environment. The polymer electrolyte fuel cell was once installed in a spacecraft under the Gemini and biosatellite projects, but the cell power density at that time was low. Later, higher performance alkaline fuel cells were developed, and alkaline fuel cells have been adopted for space use up to the present space shuttle.

【0003】ところが、近年技術の進歩により固体高分
子型燃料電池が再び注目されている。その理由として次
の2点が挙げられる。(1)固体高分子電解質として高
導電性の膜が開発された。(2)ガス拡散電極層に用い
られる触媒をカーボンに担持し、これをイオン交換樹脂
で被覆することにより、高い活性が得られるようになっ
た。
However, polymer electrolyte fuel cells have been receiving attention again due to technological progress in recent years. The reasons are as follows. (1) A highly conductive membrane has been developed as a solid polymer electrolyte. (2) By supporting the catalyst used in the gas diffusion electrode layer on carbon and coating it with an ion exchange resin, high activity can be obtained.

【0004】性能をさらに向上させるために、固体高分
子電解質膜のスルホン酸基濃度の増加と厚さの低減によ
り電気抵抗を低減させることが考えられる。しかし、ス
ルホン酸基濃度の著しい増加は電解質膜の機械的強度や
引裂強さを低下させたり、取扱の際に寸法変化を起こし
たり、長期運転において電解質膜がクリープしやすくな
り耐久性を低下させる等の問題が生じる。一方厚さの低
減は電解質膜の機械的強度及び引裂強さを低下させた
り、さらに膜をガス拡散電極と接合させる場合等の加工
性・取扱い性を低下させる等の問題が生じる。
In order to further improve the performance, it is considered that the electrical resistance is reduced by increasing the concentration of sulfonic acid groups and reducing the thickness of the solid polymer electrolyte membrane. However, a significant increase in the concentration of sulfonic acid groups reduces the mechanical strength and tear strength of the electrolyte membrane, causes dimensional changes during handling, and causes the electrolyte membrane to creep easily during long-term operation, resulting in reduced durability. Problems such as occur. On the other hand, the reduction in thickness causes problems such as reduction in mechanical strength and tear strength of the electrolyte membrane, and further deterioration in workability and handleability when the membrane is bonded to a gas diffusion electrode.

【0005】[0005]

【発明が解決しようとする課題】上記の問題を解決する
方法として、ポリテトラフルオロエチレン(以下、PT
FEという。)多孔膜にスルホン酸基を有するフッ素系
イオン交換体ポリマーを含浸する方法が提案されている
(特公平5−75835)が、厚さは薄くできるものの
多孔体状のPTFEでは膜の電気抵抗が充分に低下しな
い問題があった。また、この方法ではPTFE多孔膜と
上記イオン交換体ポリマーの界面が完全に接着していな
いため、固体高分子型燃料電池の電解質膜として用いた
場合に、長期間使用すると接着性不良から水素ガスリー
クが増大し、電池性能が低下する問題があった。
As a method for solving the above problems, polytetrafluoroethylene (hereinafter referred to as PT
It is called FE. ) A method of impregnating a porous ion exchange polymer having a sulfonic acid group into a porous membrane has been proposed (Japanese Patent Publication No. 5-75835). However, although the thickness can be reduced, the electrical resistance of the porous PTFE is high. There was a problem that it did not fall sufficiently. Further, in this method, since the interface between the PTFE porous membrane and the ion exchange polymer is not completely adhered, when used as an electrolyte membrane of a polymer electrolyte fuel cell, hydrogen gas leaks due to poor adhesion after long-term use. However, there is a problem that the battery performance increases and the battery performance decreases.

【0006】膜の電気抵抗が高いことを解決する方法と
して、フィブリル状、織布状、又は不織布状のパーフル
オロカーボン重合体で補強された陽イオン交換膜が提案
された(特開平6−231779)。この膜は抵抗は低
く、この膜を用いて作製した燃料電池の発電特性は比較
的良好であったが、厚さはせいぜい100〜200μm
であり、充分に薄くなく厚さムラがあるため、発電特性
や量産性の点で不充分であった。また、パーフルオロカ
ーボン重合体とスルホン酸基を有するフッ素系イオン交
換体ポリマーとの接着性が充分でなく、水素ガス透過性
が比較的高いため、燃料電池を構成したときの出力が充
分でなかった。
As a method for solving the problem of high electric resistance of the membrane, a cation exchange membrane reinforced with a perfluorocarbon polymer in the form of fibril, woven fabric or non-woven fabric has been proposed (JP-A-6-231779). . This membrane had a low resistance, and the fuel cell produced using this membrane had relatively good power generation characteristics, but the thickness was at most 100-200 μm.
However, the thickness was not sufficiently thin and the thickness was uneven, so that it was insufficient in terms of power generation characteristics and mass productivity. Further, the adhesion between the perfluorocarbon polymer and the fluorinated ion exchanger polymer having a sulfonic acid group was not sufficient, and the hydrogen gas permeability was relatively high, so the output when the fuel cell was constructed was insufficient. .

【0007】そこで本発明は、厚さが均一で薄く抵抗が
低く、水素ガス透過性が低く、熱や加湿による寸法変化
が小さく、かつ異方性がなくて引裂き強度が高くハンド
リング性に優れ、量産が可能なイオン交換膜を得るため
のイオン交換体ポリマー分散液及びその製造方法を提供
することを目的とする。
Therefore, the present invention has a uniform thickness and a low resistance, a low hydrogen gas permeability, a small dimensional change due to heat and humidification, and has no anisotropy and a high tear strength and an excellent handling property. An object of the present invention is to provide an ion-exchanger polymer dispersion liquid for obtaining an ion-exchange membrane that can be mass-produced and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明は、スルホン酸基
を有するイオン交換体ポリマーとフィブリル状のフルオ
ロカーボン重合体とが分散媒に分散していることを特徴
とするイオン交換体ポリマー分散液及びその製造方法を
提供する。
DISCLOSURE OF THE INVENTION The present invention provides an ion-exchanger polymer dispersion characterized in that an ion-exchanger polymer having a sulfonic acid group and a fibril-like fluorocarbon polymer are dispersed in a dispersion medium. The manufacturing method is provided.

【0009】本発明のイオン交換体ポリマーとフィブリ
ル状のフルオロカーボン重合体とが分散媒に分散された
イオン交換体ポリマー分散液(以下、本分散液という)
を用いて形成されたイオン交換膜は、膜の面内方向に均
一にフィブリル状フルオロカーボン重合体からなる補強
材(以下、本補強材という。)を含んでいる。通常、押
出し成形により本補強材を含む膜を作製すると、フィブ
リルの配向によりMD方向(膜の成形時に押出す方向)
とTD方向(MD方向と垂直な方向)とで強度が異なる
という異方性が生じる。本分散液を用いて得られたイオ
ン交換膜ではこのような異方性を減少でき、実質的に異
方性をなくすことが可能であり、膜の引裂き強度や引っ
張り強度等の機械的強度を方向性なく向上させられる。
An ion-exchanger polymer dispersion liquid (hereinafter referred to as the present dispersion liquid) in which the ion-exchanger polymer of the present invention and a fibrillar fluorocarbon polymer are dispersed in a dispersion medium.
The ion-exchange membrane formed by using (1) contains a reinforcing material (hereinafter referred to as the present reinforcing material) made of a fibril-like fluorocarbon polymer uniformly in the in-plane direction of the membrane. Normally, when a membrane containing this reinforcing material is produced by extrusion, the MD direction (the direction of extrusion when the membrane is formed) depends on the orientation of the fibrils.
And TD direction (direction perpendicular to MD direction) cause anisotropy of different strength. With the ion exchange membrane obtained using this dispersion, such anisotropy can be reduced, and the anisotropy can be substantially eliminated, and the mechanical strength such as tear strength and tensile strength of the membrane can be improved. It can be improved without directionality.

【0010】そのため、例えばこの膜を電解質膜として
備える固体高分子電解質型燃料電池用の膜・電極接合体
はハンドリング性に優れ、熱や加湿による寸法の変化を
きわめて等方的で少なくできる。その結果、従来技術で
は難しかった、膜厚の薄い陽イオン交換膜を備える膜・
電極接合体を容易に作製できる。
Therefore, for example, a membrane-electrode assembly for a solid polymer electrolyte fuel cell provided with this membrane as an electrolyte membrane is excellent in handleability, and the dimensional change due to heat or humidification can be extremely isotropic and small. As a result, a membrane with a thin cation exchange membrane, which was difficult with the conventional technology,
The electrode assembly can be easily manufactured.

【0011】さらに、本分散液を用いて作製した膜はM
D方向、TD方向の異方性なく機械的強度が高いため、
当該膜を備える膜・電極接合体は耐久性にも優れてい
る。固体高分子型燃料電池においてアノード及びカソー
ドに供給されるガスは、通常、電解質のプロトン伝導性
を確保するために飽和水蒸気圧近くにまで加湿されてい
ることが多い。しかし、膜・電極接合体中の電流密度や
水蒸気濃度のシミュレーションを行うと、膜・電極接合
体のすべての面で均一な電流密度分布、温度分布、水蒸
気圧分布にはなっておらず、局所的な発熱が起こり部分
的に膜又は触媒層中の触媒層樹脂が乾燥し、不均一で局
所的な収縮又は膨潤が起こっている可能性が高いことが
わかっている。このような場合、膜中に本補強材が均一
に分散していると、局所的な収縮又は膨潤による力学的
な変形又はクラックが生じにくくなり、膜厚の薄い膜を
備える膜・電極接合体であっても耐久性に優れると考え
られる。
Furthermore, the film produced using this dispersion is M
Since the mechanical strength is high without anisotropy in the D and TD directions,
The membrane / electrode assembly including the membrane is also excellent in durability. In the polymer electrolyte fuel cell, the gas supplied to the anode and the cathode is usually humidified to near the saturated water vapor pressure in order to ensure the proton conductivity of the electrolyte. However, when the current density and water vapor concentration in the membrane / electrode assembly were simulated, the current density distribution, temperature distribution, and water vapor pressure distribution were not uniform on all surfaces of the membrane / electrode assembly, and It is known that there is a high possibility that the catalyst layer resin in the membrane or the catalyst layer is partially dried due to a specific heat generation to cause nonuniform and local shrinkage or swelling. In such a case, if the reinforcing material is uniformly dispersed in the film, mechanical deformation or crack due to local shrinkage or swelling is less likely to occur, and a membrane / electrode assembly including a thin film is provided. However, it is considered to have excellent durability.

【0012】また、本分散液は、触媒粉末を混合するこ
とにより、膜・電極接合体の電極の形成にも使用でき
る。すなわち、本分散液と触媒粉末とを混合した液を用
いれば、本補強材を含む電極が得られる。
Further, the present dispersion can be used for forming an electrode of a membrane / electrode assembly by mixing a catalyst powder. That is, an electrode containing the present reinforcing material can be obtained by using a liquid obtained by mixing the present dispersion liquid and the catalyst powder.

【0013】本発明においてフィブリル状のフルオロカ
ーボン重合体としては、PTFE及びテトラフルオロエ
チレンに基づく重合単位を95モル%以上含む共重合体
が挙げられる。共重合体の場合は、フィブリル化可能な
共重合体であることが必要であり、テトラフルオロエチ
レンと含フッ素モノマーとの共重合体が好ましく、テト
ラフルオロエチレンに基づく重合単位を99%以上含む
ことが好ましい。具体的には、PTFE、テトラフルオ
ロエチレン−ヘキサフルオロプロピレン共重合体、テト
ラフルオロエチレン−クロロトリフルオロエチレン共重
合体、テトラフルオロエチレン−パーフルオロ(2,2
−ジメチル−1,3−ジオキソール)共重合体、テトラ
フルオロエチレン−パーフルオロ(ブテニルビニルエー
テル)共重合体等のテトラフルオロエチレン−パーフル
オロ(アルキルビニルエーテル)共重合体等が挙げられ
るが、特にPTFEが好ましい。
In the present invention, examples of the fibril-like fluorocarbon polymer include copolymers containing at least 95 mol% of polymerized units based on PTFE and tetrafluoroethylene. In the case of a copolymer, it must be a fibrillizable copolymer, preferably a copolymer of tetrafluoroethylene and a fluorine-containing monomer, and containing 99% or more of polymer units based on tetrafluoroethylene. Is preferred. Specifically, PTFE, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-chlorotrifluoroethylene copolymer, tetrafluoroethylene-perfluoro (2,2
-Dimethyl-1,3-dioxole) copolymers, tetrafluoroethylene-perfluoro (butenyl vinyl ether) copolymers and other tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymers, and the like, but especially PTFE Is preferred.

【0014】フィブリル状フルオロカーボン重合体は、
本分散液の固形分全質量中に0.5〜15質量%含まれ
ることが好ましい。0.5質量%未満であると補強効果
が充分に発現されず、15質量%より多いと抵抗が高く
なりやすい。フィブリル状フルオロカーボン重合体が全
固形分中の2〜10質量%の場合には、抵抗が上昇せず
かつ補強効果が充分に発現され、さらに本分散液の粘度
が高すぎることもなく電解質膜又は触媒層の形成が容易
に行えるので特に好ましい。なお、ここでいうフィブリ
ル状フルオロカーボン重合体の含有量とは、フィブリル
化している又はフィブリル化しうるフルオロカーボン重
合体すべての含有量であって、フィブリル化せずに含ま
れている重合体及びフィブリル化しかけている重合体の
量も含む。すなわち、例えば該重合体としてPTFEを
用いるなら、固形分全質量中のPTFEの含有量を示す
ものとする。
The fibrillar fluorocarbon polymer is
It is preferable that 0.5 to 15 mass% of the total solid content of the present dispersion is contained. If it is less than 0.5% by mass, the reinforcing effect is not sufficiently exhibited, and if it is more than 15% by mass, the resistance tends to increase. When the fibrillar fluorocarbon polymer is 2 to 10% by mass based on the total solid content, the resistance does not increase and the reinforcing effect is sufficiently expressed, and the viscosity of the dispersion is not too high, and the electrolyte membrane or It is particularly preferable because the catalyst layer can be easily formed. The content of the fibrillar fluorocarbon polymer referred to here is the content of all the fibrillated or fibrillizable fluorocarbon polymers, the polymer contained without fibrillation and the fibrillated It also includes the amount of polymer present. That is, for example, when PTFE is used as the polymer, it indicates the content of PTFE in the total mass of the solid content.

【0015】本発明におけるイオン交換体ポリマーして
は、公知の重合体が広く採用されるが、特に燃料電池の
膜・電極接合体の構成材料とする場合は、耐久性等の観
点からスルホン酸基を有する含フッ素重合体からなるこ
とが好ましく、特にスルホン酸基を有するパーフルオロ
カーボン重合体からなることが好ましい。
Well-known polymers are widely used as the ion-exchange polymer in the present invention. In particular, when used as a constituent material of a membrane / electrode assembly of a fuel cell, sulfonic acid is used from the viewpoint of durability and the like. It is preferably made of a fluorine-containing polymer having a group, and particularly preferably made of a perfluorocarbon polymer having a sulfonic acid group.

【0016】スルホン酸基を有するパーフルオロカーボ
ン重合体としては、具体的には、一般式CF=CF
(OCFCFX)−O−(CFSO
(ここでXはフッ素原子又はトリフルオロメチル基であ
り、mは0〜3の整数であり、nは0〜12の整数であ
り、pは0又は1であり、n=0のときにはp=0であ
る。)で表されるパーフルオロビニル化合物に基づく重
合単位とパーフルオロオレフィン又はパーフルオロアル
キルビニルエーテル等に基づく重合単位とを含む共重合
体が好ましい。パーフルオロビニル化合物の具体例とし
ては式1〜4のいずれかで表される化合物等が挙げられ
る。ただし、式1〜4において、qは1〜9の整数であ
り、rは1〜8の整数であり、sは0〜8の整数であ
り、zは2又は3である。
Specific examples of the perfluorocarbon polymer having a sulfonic acid group include the general formula CF 2 ═CF.
(OCF 2 CFX) m -O p - (CF 2) n SO 3 H
(Here, X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 0 to 12, p is 0 or 1, and when n = 0, p = A copolymer containing a polymerized unit based on a perfluorovinyl compound represented by 0) and a polymerized unit based on a perfluoroolefin or a perfluoroalkyl vinyl ether is preferable. Specific examples of the perfluorovinyl compound include compounds represented by any one of formulas 1 to 4. However, in Formulas 1-4, q is an integer of 1-9, r is an integer of 1-8, s is an integer of 0-8, and z is 2 or 3.

【0017】[0017]

【化1】 [Chemical 1]

【0018】スルホン酸基を有するパーフルオロビニル
化合物に基づく重合単位を含む重合体は、通常−SO
F基を有するパーフルオロビニル化合物を用いて重合さ
れる。−SOF基を有するパーフルオロビニル化合物
は、単独重合も可能であるが、ラジカル重合反応性が小
さいため、通常はパーフルオロオレフィン又はパーフル
オロ(アルキルビニルエーテル)等のコモノマーと共重
合して用いられる。コモノマーとなるパーフルオロオレ
フィンとしては、テトラフルオロエチレン、ヘキサフル
オロプロピレン等が挙げられるが、通常はテトラフルオ
ロエチレンが好ましく採用される。
A polymer containing polymerized units based on a perfluorovinyl compound having a sulfonic acid group is usually -SO 2
It is polymerized using a perfluorovinyl compound having an F group. A perfluorovinyl compound having a —SO 2 F group can be homopolymerized, but since it has low radical polymerization reactivity, it is usually used by copolymerizing with a comonomer such as perfluoroolefin or perfluoro (alkyl vinyl ether). To be Examples of the perfluoroolefin serving as a comonomer include tetrafluoroethylene, hexafluoropropylene and the like, and usually tetrafluoroethylene is preferably used.

【0019】コモノマーとなるパーフルオロ(アルキル
ビニルエーテル)としては、CF=CF−(OCF
CFY)−O−Rで表される化合物が好ましい。た
だし、式中、Yはフッ素原子又はトリフルオロメチル基
であり、tは0〜3の整数であり、Rは直鎖又は分岐
鎖のC2u+1で表されるパーフルオロアルキル基
(1≦u≦12)である。CF=CF−(OCF
FY)−O−Rで表される化合物の好ましい例とし
ては、式5〜7のいずれかで表される化合物等が挙げら
れる。ただし、式5〜7中、vは1〜8の整数であり、
wは1〜8の整数であり、xは1〜3の整数である。
As perfluoro (alkyl vinyl ether) as a comonomer, CF 2 = CF- (OCF 2
A compound represented by CFY) t- O-R f is preferable. However, in the formula, Y is a fluorine atom or a trifluoromethyl group, t is an integer of 0 to 3, R f is a perfluoroalkyl group (1 represented by C u F 2u + 1 linear or branched ≦ u ≦ 12). CF 2 = CF- (OCF 2 C
Preferred examples of the compound represented by FY) t- O-R f include compounds represented by any one of formulas 5 to 7. However, in formulas 5-7, v is an integer of 1-8,
w is an integer of 1 to 8 and x is an integer of 1 to 3.

【0020】[0020]

【化2】 [Chemical 2]

【0021】また、パーフルオロオレフィンやパーフル
オロ(アルキルビニルエーテル)以外に、パーフルオロ
(3−オキサヘプタ−1,6−ジエン)等の含フッ素モ
ノマーもコモノマーとして−SOF基を有するパーフ
ルオロビニル化合物と共重合させてもよい。
Further, in addition to perfluoroolefin and perfluoro (alkyl vinyl ether), a fluorine-containing monomer such as perfluoro (3-oxahepta-1,6-diene) is a perfluorovinyl compound having a --SO 2 F group as a comonomer. It may be copolymerized with.

【0022】また、耐熱性等の観点ではスルホン酸基を
有するパーフルオロカーボン重合体よりも非フッ素系重
合体又は部分フッ素系重合体が好ましく、そのようなイ
オン交換体ポリマーとしては、例えば式8で表される重
合単位と式9で表される重合単位とを含む共重合体が挙
げられる。ここで、Pはフェニルトリール基、ビフェ
ニルトリール基、ナフタレントリール基、フェナントレ
ントリール基又はアントラセントリール基であり、P
はフェニレン基、ビフェニレン基、ナフチレン基、フェ
ナントリレン基又はアントラシレン基であり、AはS
M基(Mは水素原子又はアルカリ金属原子。)又は
加水分解によりこれらの基に転換する基であり、B
はそれぞれ独立に酸素原子、イオウ原子、スルホニ
ル基又はイソプロピリデン基である。P及びPの構
造異性は特に限定されず、P及びPの水素原子の1
個以上がフッ素原子、塩素原子、臭素原子又は炭素数1
〜3のアルキル基に置換されていてもよい。
From the viewpoint of heat resistance and the like, a non-fluorine type polymer or a partial fluorine type polymer is preferable to a perfluorocarbon polymer having a sulfonic acid group, and such an ion exchange polymer is, for example, represented by the formula 8 Examples thereof include copolymers containing the polymerized units represented by the formula 9 and the polymerized units represented by the formula 9. Here, P 1 is a phenyltolyl group, a biphenyltolyl group, a naphthalent reel group, a phenanthrene reel group or an anthracent reel group, and P 2
Is a phenylene group, a biphenylene group, a naphthylene group, a phenanthrylene group or an anthracylene group, and A 2 is S
An O 3 M group (M is a hydrogen atom or an alkali metal atom) or a group which is converted into these groups by hydrolysis, B 1 ,
B 2 is each independently an oxygen atom, a sulfur atom, a sulfonyl group or an isopropylidene group. Structural isomers of P 1 and P 2 are not particularly limited, one hydrogen atom of the P 1 and P 2
Fluorine atom, chlorine atom, bromine atom or 1 carbon atom
It may be substituted with an alkyl group of ~ 3.

【0023】[0023]

【化3】 [Chemical 3]

【0024】本発明において、イオン交換体ポリマー中
のスルホン酸基の濃度、すなわちイオン交換容量として
は、0.5〜2.0ミリ当量/g乾燥樹脂、特に0.7
〜1.6ミリ当量/g乾燥樹脂であることが好ましい。
イオン交換容量がこの範囲より低い場合には、例えば固
体高分子型燃料電池用の電解質膜や電極の作製に使用し
た場合、得られる電解質膜や電極の抵抗が大きくなり、
一方高い場合には電解質膜や電極の機械的強度が不充分
となる。
In the present invention, the concentration of sulfonic acid groups in the ion exchanger polymer, that is, the ion exchange capacity, is 0.5 to 2.0 meq / g dry resin, particularly 0.7.
It is preferably ˜1.6 meq / g dry resin.
When the ion exchange capacity is lower than this range, for example, when it is used for producing an electrolyte membrane or an electrode for a polymer electrolyte fuel cell, the resistance of the obtained electrolyte membrane or the electrode becomes large,
On the other hand, when it is high, the mechanical strength of the electrolyte membrane and the electrode becomes insufficient.

【0025】本分散液の分散媒としては、特に制限され
ないが、例えば下記のものが挙げられる。メチルアルコ
ール、エチルアルコール、n−プロピルアルコール、n
−ブチルアルコール、イソプロピルアルコール等の一価
アルコール類。エチレングリコール、プロピレングリコ
ール、グリセリン等の多価アルコール類。2,2,2−
トリフルオロエタノール、2,2,3,3,3−ペンタ
フルオロ−1−プロパノール、2,2,3,3−テトラ
フルオロ−1−プロパノール、2,2,3,4,4,4
−ヘキサフルオロ−1−ブタノール、2,2,3,3,
4,4,4−ヘプタフルオロ−1−ブタノール、1,
1,1,3,3,3−ヘキサフルオロ−2−プロパノー
ル等の含フッ素アルコール。
The dispersion medium of the present dispersion liquid is not particularly limited, but examples thereof include the following. Methyl alcohol, ethyl alcohol, n-propyl alcohol, n
-Monohydric alcohols such as butyl alcohol and isopropyl alcohol. Polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin. 2,2,2-
Trifluoroethanol, 2,2,3,3,3-pentafluoro-1-propanol, 2,2,3,3-tetrafluoro-1-propanol, 2,2,3,4,4,4
-Hexafluoro-1-butanol, 2,2,3,3,
4,4,4-heptafluoro-1-butanol, 1,
Fluorine-containing alcohols such as 1,1,3,3,3-hexafluoro-2-propanol.

【0026】パーフルオロトリブチルアミン、パーフル
オロ−2−n−ブチルテトラヒドロフラン等のパーフル
オロ含酸素又は含窒素化合物、1,1,2−トリクロロ
−1,2,2−トリフルオロエタン等のクロロフルオロ
カーボン類、3,3−ジクロロ−1,1,1,2,2−
ペンタフルオロプロパン、1,3−ジクロロ−1,1,
2,2,3−ペンタフルオロプロパン等のヒドロクロロ
フルオロカーボン類の他、N,N−ジメチルホルムアミ
ド、N,N−ジメチルアセトアミド、ジメチルスルホキ
シド、水等の極性溶媒が使用できる。これらの分散媒は
単独で用いてもよいし、2種以上混合して用いてもよ
い。
Perfluoro oxygen-containing or nitrogen-containing compounds such as perfluorotributylamine and perfluoro-2-n-butyltetrahydrofuran, chlorofluorocarbons such as 1,1,2-trichloro-1,2,2-trifluoroethane , 3,3-dichloro-1,1,1,2,2-
Pentafluoropropane, 1,3-dichloro-1,1,
In addition to hydrochlorofluorocarbons such as 2,2,3-pentafluoropropane, polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide and water can be used. These dispersion media may be used alone or in combination of two or more.

【0027】本分散液の濃度としては、イオン交換体ポ
リマーが分散液全質量の0.3〜30質量%であること
が好ましい。0.3質量%未満であると、分散媒を揮発
させるために時間がかかったり、時間短縮しようとする
と高温加熱が必要となり、高温で加熱するとイオン交換
樹脂中のイオンクラスターが不可逆的に小さくなり、プ
ロトン伝導性が低下する。30質量%を超えると本分散
液の粘度が高くなり、電解質膜や触媒層を形成する際の
塗工性が悪くなる。上記濃度が5〜25質量%の場合、
特に好ましい。
The concentration of the present dispersion liquid is preferably 0.3 to 30% by mass of the ion exchange polymer based on the total mass of the dispersion liquid. If it is less than 0.3% by mass, it takes time to volatilize the dispersion medium, or high temperature heating is required to shorten the time, and if heated at high temperature, ion clusters in the ion exchange resin become irreversibly small. , The proton conductivity is reduced. When it exceeds 30% by mass, the viscosity of the present dispersion becomes high and the coatability at the time of forming the electrolyte membrane or the catalyst layer becomes poor. When the concentration is 5 to 25% by mass,
Particularly preferred.

【0028】次に本分散液の製造方法を説明する。本分
散液は、(1)又は(2)の方法により製造できる。 (1)スルホン酸基の前駆体基を有する含フッ素重合体
とフィブリル化可能なフルオロカーボン重合体とを15
0℃以上かつ前記フィブリル化可能なフルオロカーボン
重合体の融点以下の温度で混合する混合工程と、前記フ
ィブリル化可能なフルオロカーボン重合体をフィブリル
化させるフィブリル化工程と、スルホン酸基の前駆体基
をスルホン酸基に変換しスルホン酸基を有する含フッ素
重合体を得る酸型化工程と、フィブリル化させた前記フ
ィブリル化可能なフルオロカーボン重合体とスルホン酸
基を有する含フッ素重合体とを分散媒中に分散させる分
散工程とを経て製造する方法。
Next, a method for producing the present dispersion liquid will be described. This dispersion can be produced by the method (1) or (2). (1) A fluorinated polymer having a sulfonic acid group precursor group and a fibrillizable fluorocarbon polymer are used.
A mixing step of mixing at a temperature of 0 ° C. or higher and a melting point of the fibrillizable fluorocarbon polymer or less, a fibrillation step of fibrillating the fibrillizable fluorocarbon polymer, or a sulfonic acid precursor group. An acid-forming step of obtaining a fluoropolymer having a sulfonic acid group by conversion into an acid group, and a fibrillated fluorocarbon polymer and a fluoropolymer having a sulfonic acid group in a dispersion medium. A method of manufacturing through a dispersion step of dispersing.

【0029】(2)スルホン酸基を有する重合体の溶液
又は分散液とフィブリル化可能なフルオロカーボン重合
体の分散液とを混合する工程と、前記工程にて得られた
混合液に対し剪断力を付与して前記フィブリル化可能な
フルオロカーボン重合体をフィブリル化させる工程とを
経て製造する方法。
(2) A step of mixing a solution or dispersion of a polymer having a sulfonic acid group with a dispersion of a fibrillatable fluorocarbon polymer, and a shearing force applied to the mixture obtained in the above step. A step of applying and fibrillating the fibrillizable fluorocarbon polymer.

【0030】(1)の方法において、スルホン酸基の前
駆体基とは、加水分解や酸型化処理することによりスル
ホン酸基に変換しうる基のことをいい、具体的には−S
F基や−SOCl基等を示す。(1)の方法につ
いて以下に具体的に説明する。混合工程とフィブリル化
工程は同時に行うことができ、まず2軸押出し機で−S
F基を有する含フッ素重合体とフィブリル化可能な
フルオロカーボン重合体(PTFE等)の粉末とを、1
50℃以上かつフィブリル化可能なフルオロカーボン重
合体の融点以下の温度で混練する。このとき、−SO
F基を有する含フッ素重合体とフィブリル化可能なフル
オロカーボン重合体の粉末とを均一に混合するとともに
フィブリル化可能なフルオロカーボン重合体をフィブリ
ル化させてペレットを得る。このときの温度が150℃
未満であると、−SOF基を有する含フッ素重合体と
フィブリル化可能なフルオロカーボン重合体を均一に混
合することやフィブリル化可能なフルオロカーボン重合
体をフィブリル化させることが難しい。
In the method (1), the precursor group of sulfonic acid group means a group which can be converted into a sulfonic acid group by hydrolysis or acid type treatment, and specifically, -S.
An O 2 F group, a —SO 2 Cl group and the like are shown. The method (1) will be specifically described below. The mixing step and the fibrillation step can be carried out simultaneously, and first, -S is performed with a twin-screw extruder.
A fluorine-containing polymer having an O 2 F group and a powder of a fibrillatable fluorocarbon polymer (PTFE, etc.) were mixed with 1
Kneading is performed at a temperature of 50 ° C. or higher and a melting point of the fibrillizable fluorocarbon polymer or lower. At this time, -SO 2
A fluorine-containing polymer having an F group and a fibrillizable fluorocarbon polymer powder are uniformly mixed, and the fibrillizable fluorocarbon polymer is fibrillated to obtain pellets. The temperature at this time is 150 ° C
If the amount is less than the above, it is difficult to uniformly mix the fluoropolymer having a —SO 2 F group and the fibrillatable fluorocarbon polymer or to fibrillate the fibrillatable fluorocarbon polymer.

【0031】フィブリル化工程において上記フルオロカ
ーボン重合体をよりフィブリル化させたい場合は、この
ペレットを押出し成形してフィルム化してもよい。ここ
で、2軸押出し機で混練する際(及び押出し成形してフ
ィルム化する際)にフィブリル化可能なフルオロカーボ
ン重合体は剪断力が付与されてフィブリル化する。
If it is desired to further fibrillate the fluorocarbon polymer in the fibrillation step, the pellets may be extruded and formed into a film. Here, the fluorocarbon polymer which can be fibrillated when kneaded with a twin-screw extruder (and when extrusion-molded into a film) is given a shearing force to be fibrillated.

【0032】次いで酸型化工程に移り、得られたペレッ
ト又はフィルムを加水分解、酸型化処理し、−SO
基をスルホン酸基(−SOH基)に変換する。さらに
分散工程に入り、酸型化工程を経たペレット又はフィル
ムを分散媒に分散させることにより本分散液が得られ
る。なお、ここでペレットやフィルムを分散媒に分散さ
せる前に、凍結粉砕機等の粉砕機で100μm〜1mm
程度の粒径の粉末に粉砕しておくと分散させやすく好ま
しい。
Next, the process proceeds to the acid-forming step, and the obtained pellets or film are subjected to hydrolysis and acid-forming treatment, and --SO 2 F
Converting the group into a sulfonic acid group (-SO 3 H group). Further, the dispersion process is started, and the pellet or film that has undergone the acid-forming process is dispersed in a dispersion medium to obtain the present dispersion liquid. Before dispersing the pellets or the film in the dispersion medium, 100 μm to 1 mm with a pulverizer such as a freeze pulverizer.
It is preferable to pulverize the powder into powder having a particle size of a certain degree because it can be easily dispersed.

【0033】また、分散工程においては、分散媒の温度
はスルホン酸基を有する含フッ素重合体を溶解又は均一
に分散できる温度であればよいが、その温度が分散媒の
常圧での沸点より高い場合は加圧下で分散工程を行って
もよい。一般には室温から270℃までの温度範囲に分
散媒の温度を保持して分散処理を行うが、特に60〜2
50℃に保持して行うことが好ましい。温度が低すぎる
と、スルホン酸基を有する含フッ素重合体とフィブリル
状のフルオロカーボン重合体を分散媒に均一に分散させ
ることが困難であったり、均一に分散させるのに時間が
かかったりする。一方、温度が高すぎると、スルホン酸
基濃度が低くなるおそれがある。分散処理を行う時間
は、通常1分〜1日程度である。分散を早く行うために
撹拌したり超音波照射を行ってもよい。
In the dispersion step, the temperature of the dispersion medium may be any temperature at which the fluorinated polymer having a sulfonic acid group can be dissolved or uniformly dispersed, but the temperature is higher than the boiling point of the dispersion medium at normal pressure. When it is high, the dispersion step may be performed under pressure. Generally, the dispersion treatment is carried out while maintaining the temperature of the dispersion medium in the temperature range from room temperature to 270 ° C.
It is preferable to hold the temperature at 50 ° C. If the temperature is too low, it may be difficult to uniformly disperse the fluorinated polymer having a sulfonic acid group and the fibrillated fluorocarbon polymer in the dispersion medium, or it may take time to disperse them uniformly. On the other hand, if the temperature is too high, the sulfonic acid group concentration may decrease. The time for performing the dispersion treatment is usually about 1 minute to 1 day. For quick dispersion, stirring or ultrasonic irradiation may be performed.

【0034】次に(2)の方法を具体的に説明する。
(2)の方法では、まず、酸型化されているスルホン酸
基を有する重合体を溶媒(分散媒)に溶解又は分散して
得られる溶液とフィブリル化可能なフルオロカーボン重
合体を分散媒に分散させた分散液とを混合する。この方
法はイオン交換体ポリマーが含フッ素重合体である場合
も非フッ素系重合体である場合も採用できる。ここで使
用する溶媒や分散媒は特に限定されず、先に例示した本
分散液の分散媒が使用できる。次に得られた混合液に対
し、剪断力を付与してフィブリル化可能なフルオロカー
ボン重合体をフィブリル化させる。具体的にはフィブリ
ル化可能なフルオロカーボン重合体に剪断力が付与され
るように撹拌する。撹拌装置は、フィブリル化可能なフ
ルオロカーボン重合体に剪断力を付与できるものであれ
ば特に限定されない。撹拌により、分散液中でフィブリ
ル化可能なフルオロカーボン重合体をフィブリル化させ
ることができ、本分散液が得られる。
Next, the method (2) will be specifically described.
In the method (2), first, a solution obtained by dissolving or dispersing a polymer having an acidified sulfonic acid group in a solvent (dispersion medium) and a fibrillizable fluorocarbon polymer are dispersed in the dispersion medium. Mix with the allowed dispersion. This method can be adopted regardless of whether the ion-exchange polymer is a fluorine-containing polymer or a non-fluorine-based polymer. The solvent and the dispersion medium used here are not particularly limited, and the dispersion medium of the present dispersion liquid exemplified above can be used. Next, a shearing force is applied to the obtained mixed liquid to fibrillate the fibrillizable fluorocarbon polymer. Specifically, the fibrillizable fluorocarbon polymer is agitated so that a shearing force is applied. The stirring device is not particularly limited as long as it can apply a shearing force to the fibrillizable fluorocarbon polymer. By stirring, the fluorocarbon polymer capable of fibrillation in the dispersion can be fibrillated, and the present dispersion can be obtained.

【0035】フィブリル化可能なフルオロカーボン重合
体の転移温度は通常室温付近にあるので、室温以上の温
度であればフィブリル化が容易であると考えられている
が、分子量や共重合成分の割合などによっては温度を上
昇させることによって粘度が著しく下がり、充分な剪断
力を付与することが困難となり、その結果フルオロカー
ボン重合体のフィブリル化が促進されなくなる場合もあ
る。そのような場合は、室温付近で撹拌することが好ま
しい。また一般にフィブリル化可能なフルオロカーボン
重合体は分子量が高いほど、また粒径が小さいほどより
フィブリル化しやすいので、高分子量で粒径が小さいフ
ルオロカーボン重合体を用いることが好ましい。
Since the transition temperature of a fibrillatable fluorocarbon polymer is usually around room temperature, it is considered that fibrillation is easy at temperatures above room temperature, but depending on the molecular weight and the proportion of copolymerization components, etc. When the temperature is raised, the viscosity is remarkably lowered, and it becomes difficult to apply a sufficient shearing force, and as a result, the fibrillation of the fluorocarbon polymer may not be accelerated. In such a case, it is preferable to stir around room temperature. In general, a fibrillizable fluorocarbon polymer is more likely to be fibrillated as the molecular weight is higher and the particle size is smaller. Therefore, it is preferable to use a fluorocarbon polymer having a high molecular weight and a small particle size.

【0036】本分散液中のフィブリル状のフルオロカー
ボン重合体については、例えば本分散液から分散媒を除
去し、走査型電子顕微鏡(SEM)で観察することによ
り、その存在を確認できる。具体的には以下の方法によ
り確認できる。
The presence of the fibrillar fluorocarbon polymer in the present dispersion can be confirmed by, for example, removing the dispersion medium from the present dispersion and observing with a scanning electron microscope (SEM). Specifically, it can be confirmed by the following method.

【0037】本分散液を乾燥時の厚さがほぼ均一に約3
0μmとなるようにシャーレに滴下し、60℃のオーブ
ンで3時間保持することによりキャスト膜を形成する。
このキャスト膜をシャーレから剥離後、表面にプラズマ
エッチング処理を施し、5千〜1万倍の倍率でSEMで
観察すると、フィブリル化したフルオロカーボン重合体
が短繊維状の形状となっていることが確認できる。
The thickness of this dispersion when dried is approximately uniform to about 3
A cast film is formed by dropping it on a petri dish so as to have a thickness of 0 μm and holding it in an oven at 60 ° C. for 3 hours.
After peeling this cast film from the petri dish, the surface was subjected to plasma etching treatment and observed by SEM at a magnification of 5,000 to 10,000 times, and it was confirmed that the fibrillated fluorocarbon polymer had a short fiber shape. it can.

【0038】ここで観察されるフィブリルは、繊維径が
1μm以下のフィブリルが全フィブリル数の70%以
上、特に95%以上を占めていることが好ましい。70
%未満であると本分散液を用いて得られる膜において、
補強効果が小さくなるおそれがある。
In the fibrils observed here, it is preferable that fibrils having a fiber diameter of 1 μm or less occupy 70% or more, particularly 95% or more of the total number of fibrils. 70
In the film obtained by using the present dispersion liquid of less than%,
The reinforcing effect may be reduced.

【0039】[0039]

【実施例】[例1(実施例)]テトラフルオロエチレン
に基づく重合単位とCF=CF−OCFCF(CF
)O(CFSOFに基づく重合単位とからな
る共重合体粉末(イオン交換容量1.1ミリ当量/グラ
ム乾燥樹脂、以下、共重合体Aという。)9730gと
PTFE粉末(商品名:フルオンCD−1、旭硝子社
製)270gとを混合し、2軸押出し成形によりペレッ
ト9500gを得た。このペレットを、溶液全体の質量
の30%のジメチルスルホキシドと溶液全体の質量の1
5%の水酸化カリウムを含む水溶液中で加水分解し、1
モル/Lの塩酸に室温にて16時間浸漬して酸型(スル
ホン酸基)に変換し、水洗、乾燥した。
EXAMPLES [Example 1 (Example) polymerized units based on tetrafluoroethylene and CF 2 = CF-OCF 2 CF (CF
3 ) 9730 g of a copolymer powder consisting of polymerized units based on O (CF 2 ) 2 SO 2 F (ion exchange capacity 1.1 meq / g dry resin, hereinafter referred to as copolymer A) and PTFE powder ( 270 g of product name: Fluon CD-1, manufactured by Asahi Glass Co., Ltd.) was mixed and biaxial extrusion molding was performed to obtain 9500 g of pellets. 30% of the total mass of the solution was mixed with dimethyl sulfoxide and 1% of the total mass of the solution.
Hydrolyze in an aqueous solution containing 5% potassium hydroxide to give 1
It was immersed in mol / L hydrochloric acid for 16 hours at room temperature to convert it into an acid form (sulfonic acid group), washed with water and dried.

【0040】これを、エタノールに分散させ、固形分濃
度が溶液全体の質量の10%であり、フィブリル状のフ
ルオロカーボン重合体(固形分全体の2.7%)とスル
ホン酸基を含有するパーフルオロカーボン重合体とを含
むフィブリル状のフルオロカーボン重合体含有イオン交
換体ポリマー分散液を得た。
This was dispersed in ethanol, the solid content concentration was 10% of the total mass of the solution, and the fibril-like fluorocarbon polymer (2.7% of the total solid content) and sulfonic acid group-containing perfluorocarbon. A fibril-like fluorocarbon polymer-containing ion exchanger polymer dispersion containing a polymer was obtained.

【0041】このイオン交換体ポリマー分散液を用い、
シリコーン系離型剤で表面処理したポリエチレンテレフ
タレート(PET)フィルム上にダイコータで塗工し
て、厚さが30μmでフィブリル状のフルオロカーボン
重合体からなる補強材を2.7質量%含むイオン交換膜
を形成した。
Using this ion exchanger polymer dispersion,
An ion exchange membrane having a thickness of 30 μm and containing 2.7% by mass of a reinforcing material made of a fibril-like fluorocarbon polymer was applied on a polyethylene terephthalate (PET) film surface-treated with a silicone release agent by a die coater. Formed.

【0042】上記イオン交換膜の引き裂き強度を測定す
るために、90℃の純水中に16時間浸漬した後、幅5
cm、長さ15cmの短冊状サンプルを切り出した。各
サンプルは、長さ方向に沿って2等分するように、短辺
の中央から長さ15cmの半分の7.5cmまで切れ目
を入れた。切れ目部分から引き裂かれるように切れ端の
一方を引張り試験機の上部チャックに、もう一方を下部
チャックに取り付け、25℃にて200mm/分の速度
でチャック間を広げ、引裂荷重を測定した。引裂強さは
引裂荷重をサンプルの厚さで除して算出し、5サンプル
の平均値をとった。得られた上記フィブリル含有イオン
交換膜の引裂強さは2N/mmであった。
In order to measure the tear strength of the above ion-exchange membrane, after dipping in pure water at 90 ° C. for 16 hours, a width of 5 was obtained.
A rectangular sample having a length of cm and a length of 15 cm was cut out. Each sample was cut in half along the length direction from the center of the short side to 7.5 cm, which is a half of the length of 15 cm. One of the cut ends was attached to the upper chuck of the tensile tester and the other was attached to the lower chuck so as to be torn from the cut portion, and the gap between the chucks was widened at a speed of 200 mm / min at 25 ° C. to measure the tear load. The tear strength was calculated by dividing the tear load by the thickness of the sample, and the average value of 5 samples was taken. The tear strength of the obtained fibril-containing ion exchange membrane was 2 N / mm.

【0043】上記フィブリル含有イオン交換膜から5m
m幅の短冊状膜サンプルを作製し、その表面に白金線
(直径:0.2mm)を幅方向と平行になるように5m
m間隔に5本押し当て、80℃、相対湿度95%の恒温
・恒湿装置中にサンプルを保持し、交流10kHzにお
ける白金線間の交流インピーダンスを測定することによ
り交流比抵抗を求めた。5mm間隔に白金線を5本押し
当てているため、極間距離を5、10、15、20mm
に変化させることができるので、各極間距離における交
流抵抗を測定し、極間距離と抵抗の勾配から膜の比抵抗
を算出することで白金線と膜との間の接触抵抗の影響を
除外した。極間距離と抵抗測定値との間には良い直線関
係が得られ、勾配と厚さから次式により比抵抗を算出し
た。 比抵抗ρ(Ω・cm)=サンプルの幅(cm)×サンプ
ルの厚さ(cm)×抵抗極間勾配(Ω/cm) 得られたフィブリル含有イオン交換膜の比抵抗は4Ω・
cmであった。
5 m from the fibril-containing ion exchange membrane
A strip-shaped film sample with a width of m was prepared, and a platinum wire (diameter: 0.2 mm) was placed on the surface of the sample for 5 m so that it was parallel to the width direction.
AC specific resistance was calculated | required by pressing five samples at m intervals, holding a sample in a thermostat / humidity device of 80 degreeC and 95% of relative humidity, and measuring the AC impedance between platinum wires in an alternating current of 10 kHz. Since 5 platinum wires are pressed at 5 mm intervals, the distance between poles is 5, 10, 15, 20 mm
The contact resistance between the platinum wire and the membrane can be excluded by measuring the AC resistance at each inter-electrode distance and calculating the specific resistance of the film from the inter-electrode distance and the gradient of the resistance. did. A good linear relationship was obtained between the distance between the poles and the measured resistance value, and the specific resistance was calculated from the following equation from the gradient and the thickness. Specific resistance ρ (Ω · cm) = width of sample (cm) × thickness of sample (cm) × gradient between resistance electrodes (Ω / cm) The specific resistance of the obtained fibril-containing ion exchange membrane is 4Ω.
It was cm.

【0044】[例2(実施例)]共重合体A粉末の量を
9600gに変更し、PTFE粉末の量を400gに変
更した以外は例1と同様にしてペレットを得て、このペ
レットを用いた以外は例1と同様にして、フィブリル状
のフルオロカーボン重合体含有イオン交換体ポリマー分
散液を得た。
Example 2 (Example) Pellets were obtained in the same manner as in Example 1 except that the amount of the copolymer A powder was changed to 9600 g and the amount of the PTFE powder was changed to 400 g. A fibril-like fluorocarbon polymer-containing ion-exchanger polymer dispersion was obtained in the same manner as in Example 1 except for the above.

【0045】このイオン交換体ポリマー分散液を用いて
例1と同様にしてイオン交換膜を形成した。得られたフ
ィブリル含有イオン交換膜を例1と同様にして評価した
ところ、繊維径1μm以下のフィブリル数は全フィブリ
ル数の96%であった。このイオン交換膜の比抵抗と引
き裂き強度を測定したところ、比抵抗は4Ω・cmであ
り、引裂強さは4N/mmであった。
Using this ion-exchanger polymer dispersion, an ion-exchange membrane was formed in the same manner as in Example 1. When the obtained fibril-containing ion exchange membrane was evaluated in the same manner as in Example 1, the number of fibrils having a fiber diameter of 1 μm or less was 96% of the total number of fibrils. When the specific resistance and the tear strength of this ion exchange membrane were measured, the specific resistance was 4 Ω · cm and the tear strength was 4 N / mm.

【0046】[例3(実施例)]エタノールのかわりに
エタノールとイオン交換水との質量比80/20の混合
分散媒に分散させた以外は例1と同様にして、固形分濃
度が分散液全体の質量の10%であるフィブリル状のフ
ルオロカーボン重合体とスルホン酸基を有するパーフル
オロカーボン重合体とからなるフィブリル状フルオロカ
ーボン重合体含有イオン交換体ポリマー分散液を得た。
[Example 3 (Example)] A dispersion liquid having a solid content concentration was obtained in the same manner as in Example 1 except that a dispersion medium of ethanol and ion-exchanged water having a mass ratio of 80/20 was used instead of ethanol. A fibril-like fluorocarbon polymer-containing ion-exchanger polymer dispersion comprising a fibril-like fluorocarbon polymer and a perfluorocarbon polymer having a sulfonic acid group, which was 10% of the total mass, was obtained.

【0047】このイオン交換体ポリマー分散液を用いて
例1と同様にして、フィブリル状のフルオロカーボン重
合体からなる補強材を2.7質量%含む30μmのイオ
ン交換膜を形成した。得られたフィブリル含有イオン交
換膜を例1と同様にして評価したところ、繊維径1μm
以下のフィブリル数は全フィブリル数の90%であっ
た。このイオン交換膜の比抵抗と引き裂き強度を測定し
たところ、比抵抗は4Ω・cmであり、引裂強さは2N
/mmであった。
Using this ion-exchanger polymer dispersion, a 30-μm ion-exchange membrane containing 2.7% by mass of a reinforcing material composed of a fibrillar fluorocarbon polymer was formed in the same manner as in Example 1. When the obtained fibril-containing ion exchange membrane was evaluated in the same manner as in Example 1, the fiber diameter was 1 μm.
The fibril numbers below were 90% of the total fibril numbers. When the specific resistance and tear strength of this ion exchange membrane were measured, the specific resistance was 4 Ω · cm and the tear strength was 2N.
/ Mm.

【0048】[例4(実施例)]共重合体Aを加水分
解、酸型化処理を行い、エタノールに9質量%の濃度と
なるように分散させた液を濃縮し、固形分濃度を11.
6質量%とした。得られた分散液11gとPTFEディ
スパージョン(商品名:アフロンADI、旭硝子社製)
0.25gとを混合した後、ホミジナイザー(商品名:
ポリトロン・ホモジナイザー Model K、キネマ
ティカ社製)を用いて回転数25000RPMで10分
間分散させ、PTFEディスパージョンに剪断力を付与
してフィブリル化を促進し、フィブリル状のフルオロカ
ーボン重合体とスルホン酸基を有するパーフルオロカー
ボン重合体とからなるフィブリル状フルオロカーボン重
合体含有イオン交換体ポリマー分散液を得た。
Example 4 (Example) Copolymer A was hydrolyzed and acidified, and the solution dispersed in ethanol to a concentration of 9% by mass was concentrated to give a solid content of 11%. .
It was 6% by mass. 11 g of the obtained dispersion liquid and PTFE dispersion (trade name: AFLON ADI, manufactured by Asahi Glass Co., Ltd.)
After mixing with 0.25g, Homijinisa (trade name:
Polytron homogenizer Model K, manufactured by Kinematica Co., Ltd.) is dispersed at a rotation speed of 25,000 RPM for 10 minutes to impart a shearing force to the PTFE dispersion to promote fibrillation, and to have a fibril-like fluorocarbon polymer and a sulfonic acid group. A fibril-like fluorocarbon polymer-containing ion-exchanger polymer dispersion containing a perfluorocarbon polymer was obtained.

【0049】このイオン交換体ポリマー分散液を用いて
例1と同様にしてイオン交換膜を形成した。得られたフ
ィブリル含有イオン交換膜のの比抵抗と引き裂き強度を
測定したところ、比抵抗は4Ω・cmであり、引裂強さ
は3N/mmであった。
Using this ion-exchanger polymer dispersion, an ion-exchange membrane was formed in the same manner as in Example 1. When the specific resistance and tear strength of the obtained fibril-containing ion exchange membrane were measured, the specific resistance was 4 Ω · cm and the tear strength was 3 N / mm.

【0050】[例5(比較例)]共重合体AとPTFE
とからなるペレットのかわりに、共重合体Aのみからな
るペレットを得た以外は例1と同様にして、固形分濃度
が分散液全体の質量の10%であるイオン交換体ポリマ
ー分散液を得た。
Example 5 (Comparative Example) Copolymer A and PTFE
An ion-exchanger polymer dispersion having a solid content concentration of 10% of the total weight of the dispersion was obtained in the same manner as in Example 1 except that pellets containing only the copolymer A were obtained instead of the pellets containing It was

【0051】このイオン交換体ポリマー分散液を塗工液
として、ダイコータで塗工して厚さが30μmのイオン
交換膜を形成した。このイオン交換膜の比抵抗と引裂強
さを測定したところ、比抵抗は4Ω・cmであった。ま
た引き裂き強度は0.5N/mmであった。
This ion-exchanger polymer dispersion liquid was used as a coating liquid and coated with a die coater to form an ion-exchange membrane having a thickness of 30 μm. When the specific resistance and tear strength of this ion exchange membrane were measured, the specific resistance was 4 Ω · cm. The tear strength was 0.5 N / mm.

【0052】[例6(比較例)]テトラフルオロエチレ
ンに基づく重合単位とCF=CF−OCFCF(C
)O(CFSOFに基づく重合単位とから
なる共重合体粉末(イオン交換容量1.1ミリ当量/グ
ラム乾燥樹脂)9730gとPTFE粉末(商品名:フ
ルオンCD−1、旭硝子社製)270gとを混合し、2
軸押出し成形によりペレット9500gを得た。得られ
たペレットを1軸押出し機によりフィルム化したが、最
も厚さの薄いフィルムでも150μmであり、それ以上
薄くしようとすると穴があいた。
Example 6 (Comparative Example) Polymerized units based on tetrafluoroethylene and CF 2 ═CF—OCF 2 CF (C
9730 g of a copolymer powder consisting of polymerized units based on F 3 ) O (CF 2 ) 2 SO 2 F (ion exchange capacity 1.1 meq / g dry resin) and PTFE powder (trade name: Fluon CD-1, 270 g of Asahi Glass Co., Ltd., and 2
9500 g of pellets were obtained by axial extrusion molding. The obtained pellets were formed into a film by a uniaxial extruder, and even the thinnest film had a thickness of 150 μm, and there were holes when it was attempted to make it thinner.

【0053】[0053]

【発明の効果】本発明のイオン交換体ポリマー分散液を
用いると、厚さが均一で薄くしかも引裂強度の高いイオ
ン交換膜が得られる。本発明のイオン交換体ポリマー分
散液を用いて得られるイオン交換膜を、例えば固体高分
子型燃料電池の電解質膜として使用すると、出力特性に
優れ耐久性にも優れる固体高分子型燃料電池が得られ
る。
By using the ion-exchanger polymer dispersion of the present invention, an ion-exchange membrane having a uniform and thin thickness and high tear strength can be obtained. When the ion exchange membrane obtained using the ion-exchanger polymer dispersion of the present invention is used as an electrolyte membrane of a polymer electrolyte fuel cell, for example, a polymer electrolyte fuel cell having excellent output characteristics and excellent durability is obtained. To be

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 BD151 BD152 BE041 GQ00 HA06 5H018 AA06 AS01 BB03 BB06 BB08 BB12 BB13 BB16 EE18 EE19 HH05 HH08 5H026 AA06 BB08 HH05 HH08    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4J002 BD151 BD152 BE041 GQ00                       HA06                 5H018 AA06 AS01 BB03 BB06 BB08                       BB12 BB13 BB16 EE18 EE19                       HH05 HH08                 5H026 AA06 BB08 HH05 HH08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】スルホン酸基を有するイオン交換体ポリマ
ーとフィブリル状のフルオロカーボン重合体とが分散媒
に分散していることを特徴とするイオン交換体ポリマー
分散液。
1. An ion-exchanger polymer dispersion, wherein an ion-exchanger polymer having a sulfonic acid group and a fibrillar fluorocarbon polymer are dispersed in a dispersion medium.
【請求項2】前記フィブリル状のフルオロカーボン重合
体は、ポリテトラフルオロエチレン又はテトラフルオロ
エチレンに基づく重合単位を95モル%以上含む共重合
体である請求項1に記載のイオン交換体ポリマー分散
液。
2. The ion-exchanger polymer dispersion according to claim 1, wherein the fibril-like fluorocarbon polymer is a polytetrafluoroethylene or a copolymer containing 95 mol% or more of polymerized units based on tetrafluoroethylene.
【請求項3】前記フィブリル状のフルオロカーボン重合
体は、前記分散液の固形分の全質量の0.5〜15質量
%含まれる請求項1又は2に記載のイオン交換体ポリマ
ー分散液。
3. The ion-exchanger polymer dispersion liquid according to claim 1, wherein the fibril-like fluorocarbon polymer is contained in an amount of 0.5 to 15% by mass based on the total mass of the solid content of the dispersion liquid.
【請求項4】前記イオン交換体ポリマーはスルホン酸基
を有する含フッ素重合体からなる請求項1〜3のいずれ
かに記載のイオン交換体ポリマー分散液。
4. The ion-exchanger polymer dispersion liquid according to claim 1, wherein the ion-exchanger polymer is a fluoropolymer having a sulfonic acid group.
【請求項5】前記スルホン酸基を有する含フッ素重合体
は、テトラフルオロエチレンに基づく重合単位とCF
=CF(OCFCFX)−O−(CFSO
Hに基づく重合単位(ここでXはフッ素原子又はトリ
フルオロメチル基であり、mは0〜3の整数であり、n
は0〜12の整数であり、pは0又は1であり、nが0
のときにはpも0である。)とからなる共重合体である
請求項4に記載のイオン交換体ポリマー分散液。
5. The fluorinated polymer having a sulfonic acid group comprises a polymer unit based on tetrafluoroethylene and CF 2
= CF (OCF 2 CFX) m -O p - (CF 2) n SO
Polymerized units based on 3 H (wherein X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, and n is
Is an integer of 0 to 12, p is 0 or 1, and n is 0.
In case of, p is also 0. 5. The ion-exchanger polymer dispersion according to claim 4, which is a copolymer consisting of
【請求項6】請求項4又は5に記載のイオン交換体ポリ
マー分散液の製造方法であって、 スルホン酸基の前駆体基を有する含フッ素重合体とフィ
ブリル化可能なフルオロカーボン重合体とを150℃以
上かつ前記フィブリル化可能なフルオロカーボン重合体
の融点以下の温度で混合する混合工程と、 前記フィブリル化可能なフルオロカーボン重合体をフィ
ブリル化させるフィブリル化工程と、 スルホン酸基の前駆体基をスルホン酸基に変換しスルホ
ン酸基を有する含フッ素重合体を得る酸型化工程と、 フィブリル化させた前記フィブリル化可能なフルオロカ
ーボン重合体とスルホン酸基を有する含フッ素重合体と
を分散媒中に分散させる分散工程とを含むことを特徴と
するイオン交換体ポリマー分散液の製造方法。
6. The method for producing an ion-exchanger polymer dispersion according to claim 4, wherein the fluoropolymer having a sulfonic acid group precursor group and the fibrillizable fluorocarbon polymer are 150 A mixing step of mixing at a temperature not less than ℃ and not more than the melting point of the fibrillizable fluorocarbon polymer, a fibrillation step of fibrillating the fibrillizable fluorocarbon polymer, and a sulfonic acid precursor group sulfonic acid An acid-forming step of converting to a group to obtain a fluoropolymer having a sulfonic acid group, and dispersing the fibrillated fluorocarbon polymer and the fluoropolymer having a sulfonic acid group in a dispersion medium And a dispersion step for allowing the dispersion of the ion exchanger polymer to be produced.
【請求項7】前記分散工程において、分散媒の温度を室
温から270℃までの温度範囲に保持する請求項6に記
載のイオン交換体ポリマー分散液の製造方法。
7. The method for producing an ion-exchanger polymer dispersion according to claim 6, wherein in the dispersion step, the temperature of the dispersion medium is maintained in the temperature range from room temperature to 270 ° C.
【請求項8】請求項1〜5のいずれかに記載のイオン交
換体ポリマー分散液の製造方法であって、 スルホン酸基を有する重合体の溶液又は分散液とフィブ
リル化可能なフルオロカーボン重合体の分散液とを混合
する工程と、 前記工程にて得られた混合液に対し剪断力を付与して前
記フィブリル化可能なフルオロカーボン重合体をフィブ
リル化させる工程とを含むことを特徴とするイオン交換
体ポリマー分散液の製造方法。
8. A method for producing an ion-exchanger polymer dispersion according to any one of claims 1 to 5, comprising a solution or dispersion of a polymer having a sulfonic acid group and a fibrillizable fluorocarbon polymer. An ion exchanger comprising a step of mixing a dispersion liquid and a step of applying a shearing force to the mixed liquid obtained in the step to fibrillate the fibrillizable fluorocarbon polymer. Method for producing polymer dispersion.
JP2002112161A 2001-06-07 2002-04-15 Ion exchanger resin dispersion and method for producing the same Withdrawn JP2003055568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112161A JP2003055568A (en) 2001-06-07 2002-04-15 Ion exchanger resin dispersion and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-172782 2001-06-07
JP2001172782 2001-06-07
JP2002112161A JP2003055568A (en) 2001-06-07 2002-04-15 Ion exchanger resin dispersion and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003055568A true JP2003055568A (en) 2003-02-26

Family

ID=26616530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112161A Withdrawn JP2003055568A (en) 2001-06-07 2002-04-15 Ion exchanger resin dispersion and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003055568A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011535A1 (en) * 2002-07-26 2004-02-05 Asahi Glass Company, Limited Polymer film, process for producing the same, and united membrane electrode assembly for solid polymer type fuel cell
JP2004311057A (en) * 2003-04-02 2004-11-04 Dainippon Printing Co Ltd Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate
JP2007501332A (en) * 2003-05-07 2007-01-25 マクダーミド・インコーポレーテツド Polytetrafluoroethylene dispersion for electroless nickel plating
JP2007280688A (en) * 2006-04-04 2007-10-25 Tokuyama Corp Diaphragm for direct liquid type fuel cell
WO2008053842A1 (en) * 2006-10-30 2008-05-08 Asahi Glass Company, Limited Liquid composition
JP2008258175A (en) * 2008-06-18 2008-10-23 Dainippon Printing Co Ltd Paste composition for catalyst layer formation and transfer sheet for manufacturing catalyst layer/electrolyte film laminate
EP2036927A1 (en) 2007-09-11 2009-03-18 Fujifilm Corporation Ionic polymer particle dispersion liquid and method for producing the same
US8795923B2 (en) 2007-04-19 2014-08-05 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly
US8802314B2 (en) 2008-10-17 2014-08-12 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011535A1 (en) * 2002-07-26 2004-02-05 Asahi Glass Company, Limited Polymer film, process for producing the same, and united membrane electrode assembly for solid polymer type fuel cell
US7311989B2 (en) 2002-07-26 2007-12-25 Asahi Glass Company, Limited Polymer membrane, process for its production and membrane-electrode assembly for solid polymer electrolyte fuel cells
JP2004311057A (en) * 2003-04-02 2004-11-04 Dainippon Printing Co Ltd Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate
JP2007501332A (en) * 2003-05-07 2007-01-25 マクダーミド・インコーポレーテツド Polytetrafluoroethylene dispersion for electroless nickel plating
JP2007280688A (en) * 2006-04-04 2007-10-25 Tokuyama Corp Diaphragm for direct liquid type fuel cell
WO2008053842A1 (en) * 2006-10-30 2008-05-08 Asahi Glass Company, Limited Liquid composition
US8461242B2 (en) 2006-10-30 2013-06-11 Asahi Glass Company, Limited Liquid composition
JP5375097B2 (en) * 2006-10-30 2013-12-25 旭硝子株式会社 Liquid composition
US8795923B2 (en) 2007-04-19 2014-08-05 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly
EP2036927A1 (en) 2007-09-11 2009-03-18 Fujifilm Corporation Ionic polymer particle dispersion liquid and method for producing the same
JP2008258175A (en) * 2008-06-18 2008-10-23 Dainippon Printing Co Ltd Paste composition for catalyst layer formation and transfer sheet for manufacturing catalyst layer/electrolyte film laminate
US8802314B2 (en) 2008-10-17 2014-08-12 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same

Similar Documents

Publication Publication Date Title
JP5849148B2 (en) Polymer electrolyte membrane
EP1139472B1 (en) Electrolyte membrane for solid polymer type fuel cell and producing method thereof
JP5277740B2 (en) Method for forming catalyst layer and method for producing membrane electrode assembly for polymer electrolyte fuel cell
JP4613614B2 (en) POLYMER MEMBRANE, METHOD FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER FUEL CELL
KR20020091823A (en) Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production
JP6833164B2 (en) Polymer, solid polymer electrolyte membrane and membrane electrode assembly
JP2001035510A (en) Solid high polymer electrolyte fuel cell
US6914111B2 (en) Ion exchange polymer dispersion and process for its production
JP2001029800A (en) Ion exchange film, ion exchange film/electrode conjugate and production of them
JP2003055568A (en) Ion exchanger resin dispersion and method for producing the same
JP2002025583A (en) Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method
JP2004178995A (en) Electrolyte film for solid polymer fuel cell and its manufacturing method
JP4067315B2 (en) Fluorine ion exchange resin membrane
JP4218255B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JP2000188111A (en) Solid high polymer electrolyte fuel cell
JP2001345111A (en) Electrolyte membrane for solid polymer fuel cell and method of manufacturing it
JP4867081B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same
JP2012018871A (en) Method of manufacturing membrane electrode assembly for solid polymer fuel cell
JP5498256B2 (en) Polymer electrolyte laminated film
JP2003059512A (en) Manufacturing method of electrolyte film for solid polymer fuel cell
JP2008210793A (en) Membrane electrode assembly for solid polymer fuel cell and operating method for solid polymer fuel cell
JP2006160902A (en) Polyelectrolyte membrane and its manufacturing method
JP2000188110A (en) Solid high polymer electrolyte fuel cell and its gas diffusion electrode
JP5328081B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL USING FLUORINE COPOLYMER AS PRECURSOR, METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL USING THE FLUORINE COPOLYMER PRECURSOR, AND ELECTROLYTE MEMBRANE USING THE FLUORINE COPOLYMER PRECURSOR Fuel cell having
JP2004131569A (en) Ion-exchange composite membrane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070914