JP2000188110A - Solid high polymer electrolyte fuel cell and its gas diffusion electrode - Google Patents
Solid high polymer electrolyte fuel cell and its gas diffusion electrodeInfo
- Publication number
- JP2000188110A JP2000188110A JP10365137A JP36513798A JP2000188110A JP 2000188110 A JP2000188110 A JP 2000188110A JP 10365137 A JP10365137 A JP 10365137A JP 36513798 A JP36513798 A JP 36513798A JP 2000188110 A JP2000188110 A JP 2000188110A
- Authority
- JP
- Japan
- Prior art keywords
- ion exchange
- exchange resin
- electrode
- polymer electrolyte
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体高分子電解質
型燃料電池及びそのガス拡散電極に関する。The present invention relates to a polymer electrolyte fuel cell and a gas diffusion electrode thereof.
【0002】[0002]
【従来の技術】水素・酸素燃料電池は、その反応生成物
が原理的に水のみであり地球環境への悪影響がほとんど
ない発電システムとして注目されている。固体高分子電
解質型燃料電池は、かつてジェミニ計画及びバイオサテ
ライト計画で宇宙船に搭載されたが、当時の電池出力密
度は低かった。その後、より高性能のアルカリ型燃料電
池が開発され、現在のスペースシャトルに至るまで宇宙
用にはアルカリ型燃料電池が採用されている。2. Description of the Related Art A hydrogen / oxygen fuel cell has attracted attention as a power generation system whose reaction product is only water in principle and has almost no adverse effect on the global environment. Solid polymer electrolyte fuel cells were once mounted on spacecraft in the Gemini and Biosatellite programs, but the power density at that time was low. Since then, higher performance alkaline fuel cells have been developed, and up to the present space shuttle, alkaline fuel cells have been adopted for space applications.
【0003】ところが、近年技術の進歩により固体高分
子電解質型燃料電池が再び注目されている。その理由と
して次の2点が挙げられる。(1)固体高分子電解質と
して高導電性の膜が開発された。(2)ガス拡散電極層
に用いられる触媒をカーボンに担持し、さらにこれをイ
オン交換樹脂で被覆することにより、きわめて大きな活
性が得られるようになった。However, in recent years, attention has been paid again to solid polymer electrolyte fuel cells due to technological advances. The reasons are as follows. (1) A highly conductive film was developed as a solid polymer electrolyte. (2) By supporting the catalyst used for the gas diffusion electrode layer on carbon and coating this with an ion-exchange resin, an extremely large activity can be obtained.
【0004】そして、固体高分子電解質型燃料電池の電
極・固体高分子電解質膜接合体(以下、単に接合体とい
う)の製造方法に関して多くの検討がなされている。現
在検討されている固体高分子電解質型燃料電池は、作動
温度が50〜120℃と低いため、排熱が燃料電池の補
機動力等に有効利用しがたい欠点がある。これを補う意
味でも固体高分子電解質型燃料電池は、特に高い出力密
度を要求されている。また実用化への課題として、燃料
及び空気利用率の高い運転条件下でも高エネルギ効率、
高出力密度が得られる接合体の開発が要求されている。[0004] Many studies have been made on a method for manufacturing an electrode-solid polymer electrolyte membrane assembly (hereinafter simply referred to as an assembly) of a solid polymer electrolyte fuel cell. The solid polymer electrolyte fuel cells currently being studied have a drawback that the operating temperature is as low as 50 to 120 ° C., so that the exhaust heat cannot be used effectively for the auxiliary power of the fuel cell. To compensate for this, the solid polymer electrolyte fuel cell is required to have a particularly high output density. In addition, as a challenge for practical use, high energy efficiency, even under operating conditions with high fuel and air utilization rates,
There is a demand for the development of a joined body that can obtain a high power density.
【0005】[0005]
【発明が解決しようとする課題】低作動温度かつ高ガス
利用率の運転条件下では、特に触媒上への物質移動が電
極反応の律速となりやすい。具体的には、イオン交換樹
脂で被覆された触媒上にガスが迅速に拡散することが必
要であるが、従来のイオン交換樹脂材料では満足できる
特性が得られていない。Under operating conditions of low operating temperature and high gas utilization, mass transfer, especially on the catalyst, tends to be the rate limiting of the electrode reaction. Specifically, it is necessary that the gas be rapidly diffused onto the catalyst coated with the ion exchange resin, but satisfactory characteristics cannot be obtained with the conventional ion exchange resin material.
【0006】また、電極に含まれるイオン交換樹脂は、
通常溶媒に溶解した溶液を用いて電極に含有させるが、
従来の材料では常温常圧では溶媒に溶解することが困難
であり、オートクレーブ中で高温で溶解しなければなら
ない等の問題がある。さらに、このようにして得られた
イオン交換樹脂溶液は粘度が高く、触媒を充分に被覆で
きない問題がある。The ion exchange resin contained in the electrode is
Usually contained in the electrode using a solution dissolved in a solvent,
Conventional materials are difficult to dissolve in a solvent at normal temperature and normal pressure, and have a problem that they must be dissolved at a high temperature in an autoclave. Furthermore, the ion exchange resin solution obtained in this way has a high viscosity, and there is a problem that the catalyst cannot be coated sufficiently.
【0007】一方、接合体を形成する方法としては、イ
オン交換樹脂と触媒を含む層からなる空気極及び燃料極
を高分子固体電解質である膜にホットプレスして接合す
る方法が通常用いられ、イオン交換樹脂はホットプレス
時に溶融し、膜と電極を結合するバインダとしても機能
する。しかし、従来の材料では、ホットプレスの温度は
150〜180℃の比較的高い温度でなければイオン交
換樹脂が溶融せず、膜と電極が充分に接合できないこと
が知られている。その際、イオン交換膜及びイオン交換
樹脂はその温度にさらされるために含水率が低下し、そ
の結果電気抵抗が上昇し、電池としての出力が低下する
問題がある。On the other hand, as a method of forming a joined body, a method of hot-pressing and joining an air electrode and a fuel electrode comprising a layer containing an ion exchange resin and a catalyst to a membrane which is a solid polymer electrolyte is generally used. The ion exchange resin is melted during hot pressing and also functions as a binder for bonding the membrane and the electrode. However, with conventional materials, it is known that unless the temperature of hot pressing is a relatively high temperature of 150 to 180 ° C., the ion exchange resin does not melt and the membrane and the electrode cannot be sufficiently bonded. At that time, since the ion exchange membrane and the ion exchange resin are exposed to the temperature, the water content decreases, and as a result, the electric resistance increases, and there is a problem that the output as a battery decreases.
【0008】そこで、本発明は、低作動温度かつ高ガス
利用率の運転条件下でも触媒上へのガスの迅速な移動を
可能としかつ含水率が高いイオン交換樹脂を含むガス拡
散電極を提供し、該ガス拡散電極を有することにより出
力が高い高分子固体電解質型燃料電池を提供することを
目的とする。Accordingly, the present invention provides a gas diffusion electrode containing an ion-exchange resin having a high water content and capable of rapidly moving a gas onto a catalyst even under operating conditions of a low operating temperature and a high gas utilization rate. It is another object of the present invention to provide a polymer solid oxide fuel cell having a high output by having the gas diffusion electrode.
【0009】[0009]
【課題を解決するための手段】本発明は、触媒と含フッ
素カーボンスルホン酸型イオン交換樹脂とを含有してな
り、前記イオン交換樹脂は、末端に−SO2Fを有する
前記イオン交換樹脂の前駆体を加水分解及び酸型化処理
して得られ、かつ前記前駆体は、溶融押出し温度が80
〜170℃であることを特徴とする固体高分子電解質型
燃料電池用ガス拡散電極を提供する。The present invention comprises a catalyst and a fluorinated carbon sulfonic acid type ion exchange resin, wherein the ion exchange resin has a structure of -SO 2 F at the terminal. The precursor is obtained by hydrolyzing and acidifying the precursor, and the precursor has a melt extrusion temperature of 80
A gas diffusion electrode for a solid polymer electrolyte fuel cell, wherein the temperature is from 170 to 170 ° C.
【0010】また、本発明は、触媒とイオン交換樹脂と
を含有してなるガス拡散電極が燃料極及び空気極とさ
れ、膜状固体高分子電解質の片面に前記燃料極が、もう
一方の面に前記空気極が、それぞれ配置された固体高分
子電解質型燃料電池において、前記空気極及び前記燃料
極の少なくとも一方に含有される前記イオン交換樹脂
は、末端に−SO2Fを有する前記イオン交換樹脂の前
駆体を加水分解及び酸型化処理して得られ、かつ前記前
駆体は、溶融押出し温度が80〜170℃である含フッ
素カーボンスルホン酸型イオン交換樹脂であることを特
徴とする固体高分子電解質型燃料電池を提供する。Further, according to the present invention, a gas diffusion electrode containing a catalyst and an ion exchange resin is used as a fuel electrode and an air electrode, and the fuel electrode is provided on one surface of the membrane-shaped solid polymer electrolyte, and the other is provided on the other surface. In the solid polymer electrolyte fuel cell in which the air electrode is respectively disposed, the ion exchange resin contained in at least one of the air electrode and the fuel electrode has -SO 2 F at an end thereof. A solid obtained by hydrolyzing and acid-forming a resin precursor, and wherein the precursor is a fluorine-containing carbon sulfonic acid type ion exchange resin having a melt extrusion temperature of 80 to 170 ° C. Provided is a polymer electrolyte fuel cell.
【0011】本発明のガス拡散電極に含まれる含フッ素
カーボンスルホン酸型イオン交換樹脂は、末端が−SO
2Fである樹脂からなる前駆体(以下、単に前駆体とい
う。)を加水分解及び酸型化処理して得られる。この前
駆体としては、CF2=CF2とCF2=CF−(OCF2
CFX)m−Op−(CF2)n−SO2Fで表されるフル
オロビニル化合物(式中、mは0〜3の整数、nは1〜
12の整数、pは0又は1であり、XはF又はCF3で
ある。)との共重合体が好ましい。上記フルオロビニル
化合物の好ましい例としては、以下の化合物が挙げられ
る。ただし、下記式中、qは1〜8の整数、rは1〜8
の整数、sは1〜8の整数、tは1〜3の整数を示す。[0011] The fluorine-containing carbon sulfonic acid type ion exchange resin contained in the gas diffusion electrode of the present invention has a terminal of -SO
2 F precursor comprising a resin (hereinafter, simply referred to as precursor.) Obtained by the processes hydrolysis and acid form. The precursors include CF 2 = CF 2 and CF 2 = CF- (OCF 2
CFX) m -O p - (CF 2) n fluorovinyl compound represented by -SO 2 F (wherein, m is an integer of from 0 to 3, n represents 1
12 integer, p is 0 or 1, X is F or CF 3. ) Are preferred. Preferred examples of the fluorovinyl compound include the following compounds. However, in the following formula, q is an integer of 1 to 8, and r is 1 to 8
, S is an integer of 1 to 8, and t is an integer of 1 to 3.
【0012】[0012]
【化1】CF2=CFO(CF2)qSO2F、 CF2=CFOCF2CF(CF3)O(CF2)rSO
2F、 CF2=CF(CF2)sSO2F、 CF2=CF(OCF2CF(CF3))tO(CF2)2S
O2F。Embedded image CF 2 CFCFO (CF 2 ) q SO 2 F, CF 2 CFCFOCF 2 CF (CF 3 ) O (CF 2 ) r SO
2 F, CF 2 = CF ( CF 2) s SO 2 F, CF 2 = CF (OCF 2 CF (CF 3)) t O (CF 2) 2 S
O 2 F.
【0013】なお上記共重合体には、ヘキサフルオロプ
ロピレン、クロロトリフルオロエチレン等の含フッ素オ
レフィン、又はパーフルオロ(アルキルビニルエーテ
ル)に基づく重合単位や、エチレン、塩化ビニリデン等
の非フッ素系オレフィンに基づく重合単位が、テトラフ
ルオロエチレンに基づく重合単位のうちの25重量%以
下であればテトラフルオロエチレンに基づく重合単位の
一部と置き換わって含まれていてもよい。The above-mentioned copolymer is based on a fluorinated olefin such as hexafluoropropylene or chlorotrifluoroethylene, a polymerized unit based on perfluoro (alkyl vinyl ether), or a non-fluorinated olefin such as ethylene or vinylidene chloride. If the polymerized unit is 25% by weight or less of the polymerized unit based on tetrafluoroethylene, it may be included in place of a part of the polymerized unit based on tetrafluoroethylene.
【0014】前駆体は、−SO2Fが例えばNaOHや
KOH等の水溶液により加水分解された後、塩酸や硫酸
等の水溶液により酸型化され酸型樹脂に変換される。例
えばKOH水溶液により加水分解される場合は−SO2
Fが−SO3Kに変換され、その後Kイオンがプロトン
に置換されることで目的のイオン交換樹脂が得られる。
また、加水分解と酸型化処理は同時に行ってもよい。[0014] precursor, after being hydrolyzed by an aqueous solution such as a -SO 2 F, for example NaOH or KOH, is converted to the acid type resin is an acid form with an aqueous solution such as hydrochloric acid or sulfuric acid. For example, when hydrolyzed by KOH aqueous solution, -SO 2
The desired ion exchange resin is obtained by converting F to —SO 3 K and then replacing the K ion with a proton.
Further, the hydrolysis and the acidification treatment may be performed simultaneously.
【0015】本発明のガス拡散電極に含まれるイオン交
換樹脂は、前駆体の溶融押出し温度が80〜170℃で
あり、特に100〜160℃が好ましい。なお、本発明
において、溶融押出し温度とは、長さ1mm、内径1m
mのノズルを用い、30kg/cm2の押出し圧力の条
件で樹脂の溶融押出しを行った際、押出し量が100m
m3/秒となる温度を示すものとする。本明細書では、
以下この溶融押出し温度をTQと呼ぶものとする。T
Qは、樹脂の分子量の目安となる数値であり、一般にTQ
が高いほど分子量は大きい。The ion-exchange resin contained in the gas diffusion electrode of the present invention has a melt extrusion temperature of the precursor of 80 to 170 ° C., preferably 100 to 160 ° C. In the present invention, the melt extrusion temperature is 1 mm in length and 1 m in inner diameter.
When the resin was melt-extruded using a 30-m nozzle under an extrusion pressure of 30 kg / cm 2 , the extrusion amount was 100 m
It indicates the temperature at which m 3 / sec. In this specification,
Hereinafter, this melt extrusion temperature is referred to as T Q. T
Q is a numerical value which is a measure of the molecular weight of the resin, generally T Q
The higher is the higher the molecular weight.
【0016】TQが80℃未満の樹脂及び該樹脂を前駆
体とする樹脂は、構造上固体状態を維持するのが困難で
あるため、本発明のガス拡散電極に含まれるイオン交換
樹脂としては適さない。また前駆体のTQが170℃を
超えると、イオン交換樹脂の分子量が大きくて含水率が
低くなり、電気伝導度が低下するとともに、溶媒に溶解
しにくいため溶液化しにくく、触媒粒子を効果的に被覆
できにくくなる。Since the resin having a T Q of less than 80 ° C. and the resin using the resin as a precursor are structurally difficult to maintain a solid state, the ion exchange resin contained in the gas diffusion electrode of the present invention is Not suitable. Further, if T Q of the precursor exceeds 170 ° C., the water content is lowered to increase the molecular weight of the ion-exchange resin, together with electrical conductivity is decreased, hardly solutionizing for difficult to dissolve in a solvent, effective catalyst particles It is difficult to cover the surface.
【0017】前駆体のTQが上記範囲であると触媒粒子
が効果的に被覆されることに加え、イオン交換樹脂の含
水率が高くなるため、ガスのイオン交換樹脂に対する溶
解、拡散が容易となる。そのため触媒上での電極反応に
おいて物質移動による過電圧の増加、すなわち電極の反
応サイトにおけるガス濃度の低下による電圧損失の増大
が抑えられるので、高電圧、高電流密度の燃料電池が得
られる。When the T Q of the precursor is in the above range, the catalyst particles are effectively coated, and the water content of the ion exchange resin is increased, so that the gas can be easily dissolved and diffused in the ion exchange resin. Become. Therefore, an increase in overvoltage due to mass transfer in an electrode reaction on the catalyst, that is, an increase in voltage loss due to a decrease in gas concentration at a reaction site of the electrode can be suppressed, and a fuel cell with high voltage and high current density can be obtained.
【0018】また、前駆体のTQが上記範囲であるとイ
オン交換樹脂の溶融温度が低くなるため、イオン交換樹
脂と触媒とを含む電極層をイオン交換膜とともにホット
プレスして接合体を形成する場合、従来の材料に比べて
かなり低い温度で充分な強度を有するように接合でき
る。このため、特に空気極、燃料極ともに本発明のガス
拡散電極からなると、接合体の製造が容易になるだけで
なく、ホットプレス時に固体高分子電解質であるイオン
交換膜及びイオン交換樹脂が高温にならないので含水率
が低下せず、電池として高出力が達成できるので好まし
い。Further, since the T Q precursors melting temperature of the ion exchange resin is lowered when the above-mentioned range, forming a bonded body of the electrode layer containing an ion exchange resin and a catalyst to hot pressing ion exchange membrane In this case, bonding can be performed so as to have sufficient strength at a considerably lower temperature than conventional materials. For this reason, especially when the air electrode and the fuel electrode are both formed of the gas diffusion electrodes of the present invention, not only the production of the joined body is facilitated, but also the ion exchange membrane and the ion exchange resin, which are solid polymer electrolytes, become hot at the time of hot pressing. This is preferable because the water content does not decrease and a high output can be achieved as a battery.
【0019】さらに、イオン交換樹脂の前駆体のTQを
イオン交換膜の前駆体のTQより低くすれば、イオン交
換膜が流動性をおびにくい温度範囲でホットプレスでき
る。そのため、イオン交換膜が変形しにくく、燃料極と
空気極とのショート及びイオン交換膜の局所的な薄膜化
による膜強度の低下を回避できる。Further, if the T Q of the precursor of the ion exchange resin is set lower than the T Q of the precursor of the ion exchange membrane, hot pressing can be performed in a temperature range where the fluidity of the ion exchange membrane is not easily reduced. Therefore, the ion exchange membrane is not easily deformed, and a short circuit between the fuel electrode and the air electrode and a decrease in membrane strength due to a local thinning of the ion exchange membrane can be avoided.
【0020】また、前駆体のTQが上記範囲であるとイ
オン交換樹脂の分子量は極端には大きくないので、イオ
ン交換樹脂は溶媒に溶解して溶液化することが容易とな
り、かつ溶液の粘度も低下するため、触媒粒子を効果的
に被覆でき、電池として高い出力を得ることができる。Further, since T Q of the precursor molecular weight is the ion exchange resin in the above range is not extreme large, the ion exchange resin becomes easy to solution by being dissolved in a solvent, and a solution viscosity of Therefore, the catalyst particles can be effectively coated, and a high output can be obtained as a battery.
【0021】また、本発明のガス拡散電極に含まれるイ
オン交換樹脂は、イオン交換容量(以下、ARという)
が0.5〜2.0ミリ当量/グラム乾燥樹脂であること
が好ましい。一般に、イオン交換樹脂は、ARが大きい
ほど含水率が高く、プロトン導電率が高く、ガス透過性
が高い。ARが0.5ミリ当量/グラム乾燥樹脂未満で
あるとイオン交換樹脂の抵抗が大きくなる。またARが
2.0ミリ当量/グラム乾燥樹脂を超えると、樹脂の構
造上エーテル側鎖が多くなりすぎて固体状態を維持する
のが困難となるために、ガス拡散電極に含有させる樹脂
としては不適当である。特には0.7〜1.4ミリ当量
/グラム乾燥樹脂であることが好ましい。The ion exchange resin contained in the gas diffusion electrode of the present invention has an ion exchange capacity (hereinafter referred to as AR ).
Is preferably 0.5 to 2.0 meq / g dry resin. Generally, the ion exchange resin, A R is large enough moisture content is high, high proton conductivity, high gas permeability. When AR is less than 0.5 meq / g dry resin, the resistance of the ion exchange resin increases. When AR exceeds 2.0 meq / g dry resin, the ether side chains become too large in the structure of the resin and it becomes difficult to maintain a solid state. Is inappropriate. In particular, it is preferably from 0.7 to 1.4 meq / g dry resin.
【0022】気相から触媒に対してスムーズに反応ガス
を供給させるには、含水率の高いイオン交換樹脂、すな
わち前駆体のTQが低いイオン交換樹脂が触媒を被覆し
ていることが好ましい。前駆体のTQが低いイオン交換
樹脂を有するガス拡散電極を使用することにより、燃料
電池は安定して高出力を得られる。[0022] To supply smoothly the reaction gas to the catalyst from the gas phase, it is preferable moisture content with high ion-exchange resins, i.e. T Q is lower ion exchange resin precursor covers the catalyst. By using a gas diffusion electrode having an ion-exchange resin having a low precursor T Q , the fuel cell can stably obtain a high output.
【0023】また、発電時には電気浸透水が燃料極から
空気極へ移動するため、燃料極では触媒を被覆するイオ
ン交換樹脂が脱水されて高抵抗化する傾向にある。しか
し、膜の乾燥を防ぐため、燃料極及び空気極に供給され
るガスは通常加湿されているので、前駆体のTQが低く
含水率の高いイオン交換樹脂を用いると気相の水蒸気か
ら吸水しやすく、燃料極でもイオン交換樹脂の高抵抗化
を回避できる。In addition, during power generation, the electroosmotic water moves from the fuel electrode to the air electrode, and the ion exchange resin coating the catalyst tends to be dehydrated at the fuel electrode to increase the resistance. However, to prevent drying of the membrane, the gas to be supplied to the fuel electrode and the air electrode is usually humidified, water from the water vapor in the gas phase the use of T Q low water content high ion exchange resin precursor The resistance of the ion exchange resin can be prevented from increasing even at the fuel electrode.
【0024】本発明のガス拡散電極に含まれる触媒とイ
オン交換樹脂とは、重量比で触媒:イオン交換樹脂=
0.40:0.60〜0.95:0.05であること
が、電極の導電性と撥水性の観点から好ましい。なお、
ここでいう触媒は、カーボンなどの担体に担持された担
持触媒の場合は該担体の重量を含むものとする。The catalyst and the ion exchange resin contained in the gas diffusion electrode of the present invention are expressed by weight ratio of catalyst: ion exchange resin =
The ratio of 0.40: 0.60 to 0.95: 0.05 is preferable from the viewpoint of electrode conductivity and water repellency. In addition,
In the case of a supported catalyst supported on a carrier such as carbon, the catalyst herein includes the weight of the carrier.
【0025】本発明のガス拡散電極は、イオン交換樹脂
及び触媒を溶媒に溶解又は分散した液(以下、電極形成
用の液という)を噴霧、塗布、濾過等の公知の方法によ
り形成できる。電極は、イオン交換膜上に直接形成して
もよいし、カーボンペーパー等からなる集電体上に層状
に形成した後にこれをイオン交換膜と接合してもよい。
カーボンペーパーのかわりにカーボンとフッ素樹脂から
なるカーボン層をカーボン繊維織布上に形成したシート
を用いてもよい。また、別途用意した平板上に電極を形
成し、これをイオン交換膜に転写してもよい。電極をイ
オン交換膜上に直接形成しない場合は、公知のホットプ
レス法、接着法(特開平7−220741、特開平7−
254420)等によりイオン交換膜と接合する。The gas diffusion electrode of the present invention can be formed by a known method such as spraying, coating, or filtering a liquid in which an ion exchange resin and a catalyst are dissolved or dispersed in a solvent (hereinafter, referred to as a liquid for forming an electrode). The electrodes may be formed directly on the ion exchange membrane, or may be formed in layers on a current collector made of carbon paper or the like and then joined to the ion exchange membrane.
Instead of carbon paper, a sheet in which a carbon layer made of carbon and fluororesin is formed on a carbon fiber woven fabric may be used. Alternatively, an electrode may be formed on a separately prepared flat plate and transferred to an ion exchange membrane. When the electrode is not formed directly on the ion-exchange membrane, a known hot pressing method and a bonding method (Japanese Patent Application Laid-Open Nos.
254420) and the like.
【0026】上記電極形成用の液の粘度は、電極の形成
方法により好ましい範囲が異なり、数十cP程度の分散
液状のものから2万cP程度のペースト状のものまで、
広い粘度範囲のものが使用できる。粘度を調節するため
に、電極形成用の液には増粘剤や希釈溶媒が含まれてい
てもよい。増粘剤としてはエチルセルロース、メチルセ
ルロースやセロソルブ系のものが使用できるが、除去操
作を必要とするので用いない方が望ましい。希釈溶媒と
してはメタノール、エタノール、イソプロピルアルコー
ル等のアルコール類、フルオロカーボン類、ヒドロフル
オロカーボン類、ヒドロクロロフルオロカーボン類、水
等が使用できる。The preferred range of the viscosity of the above liquid for forming an electrode varies depending on the method of forming the electrode, and ranges from a dispersion of about several tens cP to a paste of about 20,000 cP.
A wide viscosity range can be used. In order to adjust the viscosity, the liquid for forming an electrode may contain a thickener or a diluting solvent. Ethylcellulose, methylcellulose or cellosolve-based thickeners can be used as the thickener, but it is desirable not to use it because a removal operation is required. As the diluting solvent, alcohols such as methanol, ethanol and isopropyl alcohol, fluorocarbons, hydrofluorocarbons, hydrochlorofluorocarbons, water and the like can be used.
【0027】本発明において、電極、特に水が生成され
る空気極には撥水化剤が含まれると、水蒸気の凝縮によ
る電極多孔体の閉塞(フラッディング)が抑制できるの
で好ましい。撥水化剤としては、例えば、テトラフルオ
ロエチレン(以下、PTFEという。)、テトラフルオ
ロエチレン/ヘキサフルオロプロピレン共重合体、テト
ラフルオロエチレン/パーフルオロ(アルキルビニルエ
ーテル)共重合体等が使用できる。また、溶媒に溶解で
きる含フッ素樹脂は、電極を撥水化処理しやすいので好
ましい。撥水化剤は電極中に0.01〜30重量%含ま
れることが好ましい。In the present invention, it is preferable that a water-repellent agent is contained in the electrode, particularly in the air electrode from which water is generated, because it is possible to suppress clogging (flooding) of the electrode porous body due to condensation of water vapor. As the water repellent, for example, tetrafluoroethylene (hereinafter, referred to as PTFE), a tetrafluoroethylene / hexafluoropropylene copolymer, a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, or the like can be used. Further, a fluorine-containing resin that can be dissolved in a solvent is preferable because the electrode is easily water-repellent. The water repellent is preferably contained in the electrode in an amount of 0.01 to 30% by weight.
【0028】本発明における膜状固体高分子電解質は特
には限定されないが、例えば、スルホン酸基、リン酸基
又はフェノール系水酸基等を陽イオン交換基として有す
る樹脂からなることが好ましい。具体的には、例えば本
発明における含フッ素カーボンスルホン酸型イオン交換
樹脂と同様の構造のフッ素系陽イオン交換樹脂からなる
ことが好ましく、この場合、熱流動性のある前記樹脂の
前駆体を熱プレス成形、ロール成形、押出し成形等の公
知の方法で膜状に成形し、加水分解、酸型化処理し膜状
固体高分子電解質が得られる。また、フッ素系陽イオン
交換樹脂をアルコール等の溶媒に溶解した溶液から、溶
媒キャスト法で得ることもできる。Although the membrane solid polymer electrolyte in the present invention is not particularly limited, it is preferably made of a resin having, for example, a sulfonic acid group, a phosphoric acid group or a phenolic hydroxyl group as a cation exchange group. Specifically, for example, it is preferable to use a fluorinated cation exchange resin having the same structure as that of the fluorinated carbon sulfonic acid type ion exchange resin in the present invention. It is formed into a membrane by a known method such as press molding, roll molding, or extrusion molding, and is subjected to hydrolysis and acidification to obtain a membrane-shaped solid polymer electrolyte. Further, it can be obtained by a solvent casting method from a solution in which a fluorine-based cation exchange resin is dissolved in a solvent such as alcohol.
【0029】さらに、膜状固体高分子電解質はスルホン
酸基又はホスホン酸基等を有する炭化水素系樹脂又は部
分フッ素化された炭化水素系樹脂等のイオン交換樹脂か
らなるものでもよい。具体的には例えば、スチレンをエ
チレン/テトラフルオロエチレン共重合体にグラフト重
合させた後、スルホン酸基をスチレンに基づく重合単位
に導入した樹脂、ポリスルホンやポリエーテルエーテル
ケトン等をスルホン化した樹脂等からなるものでもよ
い。Further, the membrane solid polymer electrolyte may be made of an ion exchange resin such as a hydrocarbon resin having a sulfonic acid group or a phosphonic acid group or a partially fluorinated hydrocarbon resin. Specifically, for example, a resin obtained by graft-polymerizing styrene onto an ethylene / tetrafluoroethylene copolymer and then introducing a sulfonic acid group into a polymerization unit based on styrene, a resin obtained by sulfonating polysulfone or polyetheretherketone, or the like. It may be composed of
【0030】また、膜状固体高分子電解質は、上記の陽
イオン交換樹脂を補強材と複合化した膜からなるもので
もよい。補強材としては、ポリエチレン、ポリテトラフ
ルオロエチレン、テトラフルオロエチレン/パーフルオ
ロ(プロピルビニルエーテル)共重合体やテトラフルオ
ロエチレン/ヘキサフルオロプロピレン共重合体等が挙
げられる。これらの補強材はフィブリル状、織布状、不
織布状及び多孔体の形態で用いられる。Further, the membrane solid polymer electrolyte may be formed of a membrane in which the above cation exchange resin is combined with a reinforcing material. Examples of the reinforcing material include polyethylene, polytetrafluoroethylene, tetrafluoroethylene / perfluoro (propyl vinyl ether) copolymer, and tetrafluoroethylene / hexafluoropropylene copolymer. These reinforcing materials are used in the form of fibrils, woven fabrics, nonwoven fabrics and porous bodies.
【0031】膜状固体高分子電解質の厚さは、例えば1
0〜300μmのものが使用される。10μmより薄い
とピンホールが発生しやすくショートするおそれがあ
る。300μmより厚いと膜の電気抵抗が高くなり燃料
電池の出力特性が低下する。特には20〜100μmの
厚さが好ましい。The thickness of the membrane solid polymer electrolyte is, for example, 1
Those having a size of 0 to 300 μm are used. If the thickness is less than 10 μm, pinholes are likely to occur and a short circuit may occur. If the thickness is more than 300 μm, the electric resistance of the membrane increases, and the output characteristics of the fuel cell deteriorate. In particular, a thickness of 20 to 100 μm is preferable.
【0032】[0032]
【実施例】以下に本発明を実施例(例1〜3)及び比較
例(例4〜5)によって詳しく説明するが、本発明はこ
れらに限定されない。EXAMPLES The present invention will be described in detail with reference to Examples (Examples 1 to 3) and Comparative Examples (Examples 4 and 5), but the present invention is not limited to these.
【0033】ステンレス鋼製オートクレーブに、重合溶
媒としてのCF2ClCF2CHClFと重合開始剤とし
てのアゾビスイソブチロニトリルと、CF2=CF−O
CF2CF(CF3)−OCF2CF2SO2Fとを仕込ん
だ。次いでオートクレーブ内を液体窒素で充分に脱気し
た後、CF2=CF2を仕込んで70℃にて溶液重合を開
始した。重合中は系外からCF2=CF2を導入すること
によりオートクレーブ内の圧力を一定に保持した。10
時間後に未反応のCF2=CF2をパージして重合を終了
させ、得られたポリマー溶液をメタノールで凝集し、洗
浄、乾燥させてCF2=CF2/CF2=CF−OCF2C
F(CF3)−OCF2CF2SO2F共重合体を得た。The stainless steel autoclave, and azobisisobutyronitrile as CF 2 ClCF 2 CHClF and a polymerization initiator as a polymerization solvent, CF 2 = CF-O
CF 2 CF (CF 3) were charged and -OCF 2 CF 2 SO 2 F. Next, after the inside of the autoclave was sufficiently degassed with liquid nitrogen, CF 2 = CF 2 was charged and solution polymerization was started at 70 ° C. During the polymerization, the pressure inside the autoclave was kept constant by introducing CF 2 = CF 2 from outside the system. 10
After a period of time, unreacted CF 2 = CF 2 is purged to terminate the polymerization, and the obtained polymer solution is aggregated with methanol, washed and dried to obtain CF 2 = CF 2 / CF 2 = CF-OCF 2 C.
F (CF 3) to give the -OCF 2 CF 2 SO 2 F copolymer.
【0034】この共重合体のTQを測定した後、ジメチ
ルスルホキシド30重量%及びKOH15重量%を含む
混合水溶液中でこの共重合体を加水分解し、水洗した後
1Nの塩酸中に浸漬することでパーフルオロカーボンス
ルホン酸型イオン交換樹脂を得た。After measuring the T Q of the copolymer, the copolymer is hydrolyzed in a mixed aqueous solution containing 30% by weight of dimethyl sulfoxide and 15% by weight of KOH, washed with water, and then immersed in 1N hydrochloric acid. Thus, a perfluorocarbon sulfonic acid type ion exchange resin was obtained.
【0035】なお、重合開始剤の量、仕込み溶液中の原
料の濃度及び重合時の圧力を調整することにより、TQ
が表1に示す値となるイオン交換樹脂4種類を合成し
た。これらのイオン交換樹脂は、ARがいずれも1.0
ミリ当量/グラム乾燥樹脂である。By adjusting the amount of the polymerization initiator, the concentration of the raw materials in the charged solution, and the pressure during the polymerization, T Q
4 ion exchange resins having the values shown in Table 1 were synthesized. These ion exchange resins, both A R 1.0
Metric equivalents / gram dry resin.
【0036】次に、白金が40重量%含まれるようにカ
ーボンブラック粉末に白金を担持してなる触媒と、上記
のように得られたイオン交換樹脂とを、重量比で3:1
となるようにしてエタノール系溶媒に分散させ、空気極
及び燃料極形成用の触媒ペーストとした。Next, a catalyst comprising platinum supported on carbon black powder so as to contain 40% by weight of platinum and the ion exchange resin obtained as described above were mixed in a weight ratio of 3: 1.
Thus, a catalyst paste for forming an air electrode and a fuel electrode was prepared.
【0037】燃料極、空気極ともに集電体としてはカー
ボンペーパー(商品名:TGP−H−060、東レ社
製)を撥水化処理して用いた。またガス拡散層として、
カーボンブラック粉末60重量%とPTFE粉末40重
量%とからなる混合物を混練した後圧延して厚さ100
μm、空隙率70%でPTFEがフィブリル化したシー
トを使用した。As the current collector for both the fuel electrode and the air electrode, carbon paper (trade name: TGP-H-060, manufactured by Toray Industries, Inc.) was used after water-repellent treatment. As a gas diffusion layer,
A mixture consisting of 60% by weight of carbon black powder and 40% by weight of PTFE powder is kneaded and then rolled to a thickness of 100%.
A sheet in which PTFE was fibrillated with a μm of 70% porosity was used.
【0038】燃料極、空気極ともに、触媒ペーストを上
記ガス拡散層に塗布し、乾燥することで電極シートを形
成した。このとき、触媒ペーストは、電極シートに含ま
れる白金の量が0.5mg/cm2となるように塗布し
た。電極シートは、燃料極、空気極ともに、有効電極面
積が28cm2となるように切り出した。For both the fuel electrode and the air electrode, a catalyst paste was applied to the gas diffusion layer and dried to form an electrode sheet. At this time, the catalyst paste was applied such that the amount of platinum contained in the electrode sheet was 0.5 mg / cm 2 . The electrode sheet was cut out to have an effective electrode area of 28 cm 2 for both the fuel electrode and the air electrode.
【0039】固体高分子電解質としてパーフルオロカー
ボンスルホン酸型イオン交換膜(商品名:フレミオンH
R、旭硝子社製、イオン交換容量1.1ミリ当量/グラ
ム乾燥樹脂、膜厚50μm)を使用した。空気極及び燃
料極は、触媒ペーストが塗布された面を内側に向けて対
向させ、その間にイオン交換膜を挟み込んだ状態でホッ
トプレスを行うことにより電極シートと膜を接合させ、
接合体を作製した。例1〜5のホットプレスの温度は、
表1に示す。As a solid polymer electrolyte, a perfluorocarbon sulfonic acid type ion exchange membrane (trade name: Flemion H)
R, manufactured by Asahi Glass Co., Ltd., ion exchange capacity: 1.1 meq / g dry resin, film thickness: 50 μm) was used. The air electrode and the fuel electrode are opposed to each other with the surface coated with the catalyst paste facing inward, and the electrode sheet and the membrane are joined by hot pressing with the ion exchange membrane sandwiched therebetween,
A joined body was produced. The temperature of the hot press in Examples 1 to 5 is
It is shown in Table 1.
【0040】上記接合体を集電体であるカーボンペーパ
ー2枚の間に挟んで測定セルに設置し、常圧(1at
a)、ガスは水素/空気系、セル温度80℃において
0.5A/cm2の定電流にて連続運転を行い、セルの
出力電圧を測定した。結果を表1に示す。The above joined body was placed in a measuring cell sandwiched between two carbon papers as current collectors, and was placed under normal pressure (1 at.
a) The gas was continuously operated at a constant current of 0.5 A / cm 2 at a hydrogen / air system at a cell temperature of 80 ° C., and the output voltage of the cell was measured. Table 1 shows the results.
【0041】[0041]
【表1】 [Table 1]
【0042】[0042]
【発明の効果】本発明のガス拡散電極は、電極中で触媒
を被覆するイオン交換樹脂に対するガスの溶解、拡散が
容易なため、触媒上にガスが迅速に供給される。そのた
め、電極の反応サイトにおけるガス濃度の低下による電
圧損失の増大が抑制される。したがって、高出力を長期
間安定して得られる固体高分子電解質型燃料電池が得ら
れる。According to the gas diffusion electrode of the present invention, since the gas can be easily dissolved and diffused in the ion exchange resin coating the catalyst in the electrode, the gas is quickly supplied onto the catalyst. Therefore, an increase in voltage loss due to a decrease in gas concentration at the reaction site of the electrode is suppressed. Therefore, a solid polymer electrolyte fuel cell capable of obtaining high output stably for a long period of time is obtained.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS02 AS03 BB12 EE02 EE18 HH00 5H026 AA06 BB08 BB10 CX05 EE02 EE19 HH00 HH08 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H018 AA06 AS02 AS03 BB12 EE02 EE18 HH00 5H026 AA06 BB08 BB10 CX05 EE02 EE19 HH00 HH08
Claims (5)
ン交換樹脂とを含有してなり、前記イオン交換樹脂は、
末端に−SO2Fを有する前記イオン交換樹脂の前駆体
を加水分解及び酸型化処理して得られ、かつ前記前駆体
は、溶融押出し温度が80〜170℃であることを特徴
とする固体高分子電解質型燃料電池用ガス拡散電極。Claims: 1. An ion exchange resin comprising a catalyst and a fluorinated carbon sulfonic acid type ion exchange resin,
A solid obtained by subjecting a precursor of the ion-exchange resin having —SO 2 F to a terminal to hydrolysis and acidification, and wherein the precursor has a melt extrusion temperature of 80 to 170 ° C. Gas diffusion electrode for polymer electrolyte fuel cells.
0.5〜2.0ミリ当量/g乾燥樹脂である請求項1に
記載の固体高分子電解質型燃料電池用ガス拡散電極。2. The gas diffusion electrode for a solid polymer electrolyte fuel cell according to claim 1, wherein the ion exchange resin is a dry resin having an ion exchange capacity of 0.5 to 2.0 meq / g.
ス拡散電極が燃料極及び空気極とされ、膜状固体高分子
電解質の片面に前記燃料極が、もう一方の面に前記空気
極が、それぞれ配置された固体高分子電解質型燃料電池
において、前記空気極及び前記燃料極の少なくとも一方
に含有される前記イオン交換樹脂は、末端に−SO2F
を有する前記イオン交換樹脂の前駆体を加水分解及び酸
型化処理して得られ、かつ前記前駆体は、溶融押出し温
度が80〜170℃である含フッ素カーボンスルホン酸
型イオン交換樹脂であることを特徴とする固体高分子電
解質型燃料電池。3. A gas diffusion electrode containing a catalyst and an ion exchange resin is used as a fuel electrode and an air electrode. The fuel electrode is provided on one surface of the solid polymer electrolyte membrane and the air electrode is provided on the other surface. However, in the solid polymer electrolyte fuel cells arranged respectively, the ion exchange resin contained in at least one of the air electrode and the fuel electrode has -SO 2 F
The precursor of the ion-exchange resin having is obtained by hydrolysis and acidification, and the precursor is a fluorocarbon sulfonic acid-type ion-exchange resin having a melt extrusion temperature of 80 to 170 ° C. A solid polymer electrolyte fuel cell comprising:
0.5〜2.0ミリ当量/g乾燥樹脂である請求項3に
記載の固体高分子電解質型燃料電池。4. The solid polymer electrolyte fuel cell according to claim 3, wherein said ion exchange resin is a dry resin having an ion exchange capacity of 0.5 to 2.0 meq / g.
ン交換樹脂を含有する請求項3又は4に記載の固体高分
子電解質型燃料電池。5. The solid polymer electrolyte fuel cell according to claim 3, wherein both the air electrode and the fuel electrode contain the ion exchange resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10365137A JP2000188110A (en) | 1998-12-22 | 1998-12-22 | Solid high polymer electrolyte fuel cell and its gas diffusion electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10365137A JP2000188110A (en) | 1998-12-22 | 1998-12-22 | Solid high polymer electrolyte fuel cell and its gas diffusion electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000188110A true JP2000188110A (en) | 2000-07-04 |
Family
ID=18483523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10365137A Pending JP2000188110A (en) | 1998-12-22 | 1998-12-22 | Solid high polymer electrolyte fuel cell and its gas diffusion electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000188110A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002015303A1 (en) * | 2000-08-16 | 2002-02-21 | Matsushita Electric Industrial Co., Ltd. | Fuel cell |
JP2002100371A (en) * | 2000-09-20 | 2002-04-05 | Asahi Glass Co Ltd | Solid high polymer molecule type fuel cell |
WO2006051748A1 (en) | 2004-11-10 | 2006-05-18 | Toyo Boseki Kabushiki Kaisha | Proton-conducting polymer composition and method for preparation thereof, catalyst ink containing said proton-conducting polymer composition and fuel cell including said catalyst |
US7364813B2 (en) | 2003-09-12 | 2008-04-29 | Matsushita Electric Industrial Co., Ltd. | Ink for forming catalyst layer, and electrode and membrane-electrode assembly using the same |
-
1998
- 1998-12-22 JP JP10365137A patent/JP2000188110A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002015303A1 (en) * | 2000-08-16 | 2002-02-21 | Matsushita Electric Industrial Co., Ltd. | Fuel cell |
JP2002100371A (en) * | 2000-09-20 | 2002-04-05 | Asahi Glass Co Ltd | Solid high polymer molecule type fuel cell |
JP4496628B2 (en) * | 2000-09-20 | 2010-07-07 | 旭硝子株式会社 | Polymer electrolyte fuel cell |
US7364813B2 (en) | 2003-09-12 | 2008-04-29 | Matsushita Electric Industrial Co., Ltd. | Ink for forming catalyst layer, and electrode and membrane-electrode assembly using the same |
WO2006051748A1 (en) | 2004-11-10 | 2006-05-18 | Toyo Boseki Kabushiki Kaisha | Proton-conducting polymer composition and method for preparation thereof, catalyst ink containing said proton-conducting polymer composition and fuel cell including said catalyst |
US8187734B2 (en) | 2004-11-10 | 2012-05-29 | Toyo Boseki Kabushiki Kaisha | Proton-conducting polymer composition and method for preparation thereof, catalyst ink containing said proton-conducting polymer composition and fuel cell including said catalyst ink |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5286797B2 (en) | Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly | |
JP3584612B2 (en) | Polymer electrolyte fuel cell and method for manufacturing electrode thereof | |
KR101589323B1 (en) | Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell | |
JP5130911B2 (en) | Electrolyte material for polymer electrolyte fuel cell, electrolyte membrane and membrane electrode assembly | |
JP4023903B2 (en) | Membrane / electrode assembly for polymer electrolyte fuel cells | |
US20030008198A1 (en) | Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production | |
US12018106B2 (en) | Fluorosulfonyl group-containing fluoropolymer and method for producing same, sulfonic acid group-containing fluoropolymer and method for producing same, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell | |
JP2001035510A (en) | Solid high polymer electrolyte fuel cell | |
US8178257B2 (en) | Polymer electrolyte membrane and membrane/electrode assembly for polymer electrolyte fuel cell | |
CA2670407A1 (en) | Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly | |
JPH06231779A (en) | Solid high polymer electrolytic type fuel cell | |
JP4090108B2 (en) | Membrane / electrode assembly for polymer electrolyte fuel cells | |
JP3714766B2 (en) | Electrode and membrane / electrode assembly for polymer electrolyte fuel cell | |
US6914111B2 (en) | Ion exchange polymer dispersion and process for its production | |
JP4067315B2 (en) | Fluorine ion exchange resin membrane | |
JP2000188111A (en) | Solid high polymer electrolyte fuel cell | |
JP3588889B2 (en) | Solid polymer electrolyte fuel cell | |
JPH11135136A (en) | Solid poly electrolyte type fuel cell | |
JP5465840B2 (en) | Method for producing polymer electrolyte fuel cell | |
JP5614891B2 (en) | Membrane electrode composite and solid polymer electrolyte fuel cell | |
JP2000188110A (en) | Solid high polymer electrolyte fuel cell and its gas diffusion electrode | |
CA2360939A1 (en) | Polymer electrolyte fuel cell and method for its production | |
JP4218255B2 (en) | Method for producing membrane / electrode assembly for polymer electrolyte fuel cell | |
US20080187792A1 (en) | Membrane/electrode assembly for polymer electrolyte fuel cells, and method for operating polymer electrolyte fuel cell | |
JP2002343380A (en) | Electrolyte film for solid polymer fuel cell, and manufacturing method of the same |