JP2002343380A - Electrolyte film for solid polymer fuel cell, and manufacturing method of the same - Google Patents

Electrolyte film for solid polymer fuel cell, and manufacturing method of the same

Info

Publication number
JP2002343380A
JP2002343380A JP2001147678A JP2001147678A JP2002343380A JP 2002343380 A JP2002343380 A JP 2002343380A JP 2001147678 A JP2001147678 A JP 2001147678A JP 2001147678 A JP2001147678 A JP 2001147678A JP 2002343380 A JP2002343380 A JP 2002343380A
Authority
JP
Japan
Prior art keywords
membrane
film
fuel cell
polymer
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001147678A
Other languages
Japanese (ja)
Other versions
JP4867081B2 (en
Inventor
Satoru Motomura
了 本村
Ichiro Terada
一郎 寺田
Yoshiaki Higuchi
義明 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001147678A priority Critical patent/JP4867081B2/en
Publication of JP2002343380A publication Critical patent/JP2002343380A/en
Application granted granted Critical
Publication of JP4867081B2 publication Critical patent/JP4867081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer electrolyte film composed of a positive ion exchange film having low resistance and small dimensional variation even when water is absorbed, and to provide a solid polymer fuel cell having the polymer electrolyte film. SOLUTION: The manufacturing method of the electrolyte film for the solid polymer fuel cell includes an extension process after laminating an extension supporting film on at least one surface of a positive ion exchange film composed of perfluorocarbon polymer containing sulfonic acid group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池、特に固体高分子型燃料電池用電解質膜に関する。
The present invention relates to a polymer electrolyte fuel cell, and more particularly to an electrolyte membrane for a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】水素・酸素燃料電池は、その反応生成物
が原理的に水のみであり地球環境への悪影響がほとんど
ない発電システムとして注目されている。固体高分子型
燃料電池は、かつてジェミニ計画及びバイオサテライト
計画で宇宙船に搭載されたが、当時の電池出力密度は低
かった。その後、より高性能のアルカリ型燃料電池が開
発され、現在のスペースシャトルに至るまで宇宙用には
アルカリ型燃料電池が採用されている。
2. Description of the Related Art A hydrogen / oxygen fuel cell has attracted attention as a power generation system whose reaction product is only water in principle and has almost no adverse effect on the global environment. Solid polymer fuel cells were once mounted on spacecraft in the Gemini and Biosatellite programs, but the power density at that time was low. Since then, higher performance alkaline fuel cells have been developed, and up to the present space shuttle, alkaline fuel cells have been adopted for space applications.

【0003】ところが、近年技術の進歩により固体高分
子型燃料電池が再び注目されている。その理由として次
の2点が挙げられる。(1)固体高分子電解質として高
導電性の膜が開発された。(2)ガス拡散電極層に用い
られる触媒をカーボンに担持し、これをイオン交換樹脂
で被覆することにより、高い活性が得られるようになっ
た。
However, polymer electrolyte fuel cells have attracted attention again in recent years due to technological advances. The reasons are as follows. (1) A highly conductive film was developed as a solid polymer electrolyte. (2) The catalyst used for the gas diffusion electrode layer is supported on carbon, and this is coated with an ion exchange resin, whereby high activity can be obtained.

【0004】現在、一般的に固体高分子電解質として用
いられる膜は、プロトン導電性が高いため、抵抗が低く
高い電池性能を発現できる。一方、一般に抵抗が低い膜
ほど含水率が高いため、含水時に膜の長さ方向に寸法が
増大しやすく、様々な弊害を生じやすい。例えば、膜を
一対の電極の間に挟んで接合した膜電極接合体を燃料電
池セルに組込んで運転を行うと、反応により生成した水
や燃料ガスとともに供給される水蒸気等により膜が膨潤
し、膜の寸法が増大する。通常、膜と電極は接合してい
るので電極も膜の寸法変化に追従する。そして、膜電極
接合体はガスの流路として溝が形成されたセパレータ等
で拘束されているため、寸法の増大分は「しわ」とな
る。そして、そのしわがセパレータの溝を埋めてガスの
流れを阻害することがある。
At present, a membrane generally used as a solid polymer electrolyte has high proton conductivity, and therefore can exhibit low resistance and high battery performance. On the other hand, since a film having a lower resistance generally has a higher water content, the size of the film tends to increase in the length direction when the film is wet, and various adverse effects are likely to occur. For example, when an operation is performed by incorporating a membrane electrode assembly in which a membrane is sandwiched between a pair of electrodes into a fuel cell unit, the membrane swells due to water generated by the reaction or water vapor supplied together with the fuel gas. , Increasing the dimensions of the membrane. Normally, since the film and the electrode are bonded, the electrode also follows the dimensional change of the film. Since the membrane electrode assembly is restrained by a separator or the like in which a groove is formed as a gas flow path, an increase in dimension becomes a "wrinkle". Then, the wrinkles may fill the grooves of the separator and obstruct the gas flow.

【0005】したがって、固体高分子電解質膜として
は、低抵抗でかつ含水時の寸法変化が少ないことが必要
であり、電極を作製するための塗工液中の溶媒により膨
潤しにくいことが好ましい。しかし、上述のように従来
の技術では、これらの要件をすべて満たす膜を得ること
は困難であった。
Therefore, the solid polymer electrolyte membrane needs to have a low resistance and a small dimensional change when containing water, and it is preferable that the membrane does not easily swell with a solvent in a coating liquid for producing an electrode. However, as described above, it is difficult to obtain a film that satisfies all of these requirements with the conventional technology.

【0006】上記の問題を解決する方法として、膜に補
強材を複合し前記の特性を両立する手法が考えられる。
具体的にはポリテトラフルオロエチレン(以下、PTF
Eという。)多孔膜にスルホン酸基を有するフッ素系イ
オン交換ポリマーを含浸する方法が提案されている(特
公平5−75835)。しかし、PTFE多孔膜では、
含水時にイオン交換膜が伸びる応力を抑えることはでき
ない。
As a method for solving the above-mentioned problem, a method in which a reinforcing material is combined with a film to achieve the above-mentioned characteristics can be considered.
Specifically, polytetrafluoroethylene (hereinafter, PTF)
E. A method has been proposed in which a porous membrane is impregnated with a fluorinated ion exchange polymer having a sulfonic acid group (Japanese Patent Publication No. 5-75835). However, with a PTFE porous membrane,
It is not possible to suppress the stress at which the ion-exchange membrane stretches when it contains water.

【0007】また、フィブリル状、織布状、又は不織布
状のパーフルオロカーボン重合体で補強された陽イオン
交換膜が提案されている(特開平6−231779)。
この膜は、含水時の寸法変化率を低減できるが、膜厚が
せいぜい100〜200μmであり、充分な低抵抗を実
現することはできない。
Further, a cation exchange membrane reinforced with a fibril-shaped, woven or non-woven perfluorocarbon polymer has been proposed (JP-A-6-231779).
This film can reduce the dimensional change rate when it contains water, but has a thickness of at most 100 to 200 μm, and cannot realize a sufficiently low resistance.

【0008】また、膜の強度を向上させると同時に薄膜
を得る手段として、電解質膜をガラス転移温度から融点
までの温度範囲で2軸延伸する方法が提案されている
(特開平11−354140)。この方法は、強度物性
向上のためには有効であるが、上記温度範囲で延伸して
も膜の含水時の寸法変化を抑制することはできない。
Further, as a means for obtaining a thin film while improving the strength of the film, a method has been proposed in which an electrolyte membrane is biaxially stretched in a temperature range from a glass transition temperature to a melting point (JP-A-11-354140). Although this method is effective for improving the strength properties, even if the film is stretched in the above temperature range, it is not possible to suppress the dimensional change of the film when it contains water.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明は、低抵
抗でありかつ含水時の寸法変化が少ない固体高分子型燃
料電池用電解質膜の製造方法を提供し、安定して高出力
が得られる固体高分子型燃料電池を提供することを目的
とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method for producing an electrolyte membrane for a polymer electrolyte fuel cell which has a low resistance and a small dimensional change when containing water, whereby a high output can be stably obtained. An object is to provide a polymer electrolyte fuel cell.

【0010】[0010]

【課題を解決するための手段】本発明は、スルホン酸基
を有するパーフルオロカーボン重合体からなる陽イオン
交換膜の少なくとも片面に延伸補助フィルムを積層した
後、延伸することを特徴とする固体高分子型燃料電池用
電解質膜の製造方法を提供する。
According to the present invention, there is provided a solid polymer comprising the steps of: laminating a stretching auxiliary film on at least one surface of a cation exchange membrane comprising a perfluorocarbon polymer having a sulfonic acid group; Provided is a method for manufacturing an electrolyte membrane for a fuel cell.

【0011】本発明において、電解質膜となる陽イオン
交換膜を延伸処理する場合、当該陽イオン交換膜のみを
延伸処理すると破れやすく均一に薄くすることが困難で
あるが、延伸補助フィルムを積層して延伸処理すると、
電解質膜となるフィルムを均一に薄くできる。すなわち
本発明における延伸補助フィルムは、電解質膜となるフ
ィルムの延伸を補助するために積層されるフィルムであ
る。
In the present invention, when a cation exchange membrane serving as an electrolyte membrane is subjected to a stretching treatment, if only the cation exchange membrane is subjected to a stretching treatment, it is easy to be broken and it is difficult to make the cation exchange membrane thin evenly. When stretched
The film that becomes the electrolyte membrane can be made uniform and thin. That is, the stretching auxiliary film in the present invention is a film that is laminated to assist the stretching of the film serving as the electrolyte membrane.

【0012】上述の方法により延伸処理された膜は、均
一で薄くできるだけでなく、含水時の寸法変化率を少な
くすることができるので、膜を扱う雰囲気湿度によって
膜の寸法はほとんど変化しないので取り扱いやすい。
The film stretched by the above-mentioned method can be not only uniform and thin, but also can reduce the dimensional change rate when it contains water. Cheap.

【0013】また、本発明は、比抵抗が20Ω・cm以
下であり、含水時の寸法変化率が−5%〜+5%であ
り、かつ厚さが3〜90μmである陽イオン交換膜から
なることを特徴とする固体高分子型燃料電池用電解質膜
を提供する。
Further, the present invention comprises a cation exchange membrane having a specific resistance of 20 Ω · cm or less, a dimensional change rate of -5% to + 5% when containing water, and a thickness of 3 to 90 μm. An electrolyte membrane for a polymer electrolyte fuel cell is provided.

【0014】ここで本明細書における膜の比抵抗とは、
単位面積あたりの膜抵抗値を示し、具体的には80℃、
95%湿度雰囲気において、4端子交流法により測定さ
れる単位面積あたりの膜抵抗値をいう。膜の比抵抗は、
燃料電池の発電特性に直接的に影響を及ぼす因子であ
り、比抵抗は低いほど好ましい。比抵抗が20Ω・cm
を超えると電池の抵抗損が大きくなり発電効率が低下す
る。電池性能向上のためには、10Ω・cm以下である
とより好ましい。
Here, the specific resistance of the film in the present specification is:
Indicates the film resistance per unit area, specifically 80 ° C.
It refers to a film resistance value per unit area measured by a four-terminal AC method in a 95% humidity atmosphere. The specific resistance of the membrane is
It is a factor that directly affects the power generation characteristics of the fuel cell, and the lower the specific resistance, the better. Specific resistance is 20Ω · cm
If it exceeds, the resistance loss of the battery increases and the power generation efficiency decreases. In order to improve battery performance, it is more preferable that the resistance is 10 Ω · cm or less.

【0015】また、本明細書における含水時の膜の寸法
変化率とは、膜を25℃、湿度50%の雰囲気から25
℃の水中に浸漬して60分以上保持した際の、膜の長さ
方向の寸法変化割合を示す。なお、本発明において寸法
変化率が−5%〜+5%であるというのは、膜のどの方
向の長さをとっても寸法変化率が−5%〜+5%である
ことをいう。
In this specification, the dimensional change rate of a film when it is hydrated means that the film is changed from an atmosphere at 25 ° C. and a humidity of 50% to 25%.
The dimensional change ratio in the length direction of the film when immersed in water at ° C. and held for 60 minutes or more is shown. In the present invention, the dimensional change rate of -5% to + 5% means that the dimensional change rate is -5% to + 5% regardless of the length of the film in any direction.

【0016】電解質膜の寸法変化率が−5%〜+5%の
範囲外であると、膜を扱う雰囲気湿度により膜の寸法が
変化し、膜のハンドリング性に問題を生じやすい。ま
た、膜に電極を組み合わせた膜電極接合体を燃料電池セ
ルに組み込んで運転を行うと、膜が膨潤して寸法が増大
し膜と接合されている電極も膜の寸法変化に追従する。
通常、接合体はセパレータ等で拘束されているためにそ
れが「しわ」となり、しわのセパレータの溝を埋めガス
の流れを阻害するおそれがある。
If the dimensional change rate of the electrolyte membrane is out of the range of -5% to + 5%, the dimensions of the membrane change due to the humidity of the atmosphere in which the membrane is handled, and a problem tends to occur in the handleability of the membrane. In addition, when an operation is performed by incorporating a membrane electrode assembly in which a membrane is combined with an electrode into a fuel cell, the membrane swells and its dimensions increase, and the electrodes bonded to the membrane follow the dimensional change of the membrane.
Usually, since the joined body is restrained by a separator or the like, it becomes a "wrinkle", and there is a possibility that the groove of the wrinkled separator is filled and the flow of gas is hindered.

【0017】また、電解質膜の厚さが3μm未満である
と、膜の強度が弱くハンドリング性が悪く、膜の両面に
電極を配置し接合して固体高分子型燃料電池に組み込む
ための膜電極接合体を作製する際に膜が破けるおそれが
ある。一方、電解質膜の厚さが厚すぎると発電時に膜中
の水の移動が阻害され発電特性が低下する。発電中は膜
のアノード側とカソード側では含水率が異なり、厚さ方
向に含水率の分布ができることになる。これが発電特性
を低下させる原因の一つになっており、膜が厚いほどこ
の現象が顕著となる。
When the thickness of the electrolyte membrane is less than 3 μm, the strength of the membrane is weak and the handling property is poor, and the membrane electrode for arranging and bonding electrodes on both sides of the membrane and incorporating it into a polymer electrolyte fuel cell. There is a possibility that the film may be broken at the time of producing the joined body. On the other hand, if the thickness of the electrolyte membrane is too large, the movement of water in the membrane during power generation is hindered, and the power generation characteristics deteriorate. During power generation, the water content differs between the anode side and the cathode side of the membrane, and a distribution of the water content can be formed in the thickness direction. This is one of the causes of lowering the power generation characteristics, and the thicker the film, the more remarkable this phenomenon.

【0018】本発明の製造方法によれば、電解質膜を均
一に薄くすることができ、かつ含水時の寸法変化率を少
なくすることができるため、比抵抗が20Ω・cm以下
であり、含水時の寸法変化率が−5%〜+5%であり、
かつ厚さが3〜90μmである陽イオン交換膜からなる
電解質膜が得られる。
According to the production method of the present invention, the electrolyte membrane can be made uniform and thin, and the dimensional change rate when hydrated can be reduced, so that the specific resistance is 20 Ω · cm or less. Has a dimensional change rate of -5% to + 5%,
An electrolyte membrane comprising a cation exchange membrane having a thickness of 3 to 90 μm is obtained.

【0019】[0019]

【発明の実施の形態】本発明の製造方法では、具体的に
以下の手順で電解質膜を作製することが好ましい。 (1)スルホン酸基の前駆体基を有するパーフルオロカ
ーボン重合体の2軸押出し成形による混練、ペレット
化。 (2)上記ペレットを用いて1軸押出し成形によるフィ
ルム化。 (3)加水分解、酸型化処理、洗浄、乾燥。 (4)延伸補助フィルムを積層後、2軸延伸。
BEST MODE FOR CARRYING OUT THE INVENTION In the production method of the present invention, it is preferable to specifically prepare an electrolyte membrane by the following procedure. (1) Kneading and pelletizing of a perfluorocarbon polymer having a sulfonic acid group precursor group by twin-screw extrusion molding. (2) Film formation by uniaxial extrusion using the above pellets. (3) Hydrolysis, acidification treatment, washing and drying. (4) Biaxial stretching after laminating the stretching auxiliary film.

【0020】上記(1)〜(4)の工程をさらに具体的
に説明する。(1)の工程でスルホン酸基の前駆体基を
有するパーフルオロカーボン重合体粉末を2軸押出し成
形してペレット化する。ここで、スルホン酸基の前駆体
基とは、加水分解等によりスルホン酸基となる基のこと
で、具体的には−SO2F基、−SO2Cl基等を示す。
(1)の工程で得られたペレットは、(2)の工程で、
好ましくは加熱下で1軸押出し成形されフィルム化され
る。また、(1)のペレット化する工程を経ずに直接1
軸押出し成形し、この1軸押出し成形の工程でフィルム
化してもよい。加熱下で1軸押出し成形する場合は、フ
ィルムの温度が200〜270℃程度となるように成形
することが好ましい。フィルム温度が200℃未満の場
合は、吐出圧力が高くなりすぎ、生産性が低下するおそ
れがある。フィルム温度が270℃を超えると得られる
膜の表面が荒れて膜の厚さが不均一になりやすい。
The steps (1) to (4) will be described more specifically. In the step (1), the perfluorocarbon polymer powder having a sulfonic acid group precursor group is biaxially extruded and formed into pellets. Here, the precursor group of the sulfonic acid group refers to a group that becomes a sulfonic acid group by hydrolysis or the like, and specifically indicates a —SO 2 F group, a —SO 2 Cl group, or the like.
In step (2), the pellets obtained in step (1)
Preferably, it is extruded under heating and formed into a film. In addition, directly without the step of pelletizing (1),
It may be extruded and formed into a film in the step of uniaxial extrusion. In the case of uniaxial extrusion molding under heating, it is preferable to form the film so that the temperature of the film is about 200 to 270 ° C. When the film temperature is lower than 200 ° C., the discharge pressure becomes too high, and the productivity may be reduced. When the film temperature exceeds 270 ° C., the surface of the obtained film tends to be rough and the thickness of the film tends to be uneven.

【0021】次いで加水分解、酸型化処理、洗浄、乾燥
を行い((3)の工程)、スルホン酸基の前駆体基をス
ルホン酸基に変換させ、陽イオン交換膜を得る。次に、
上記陽イオン交換膜に延伸補助フィルムを例えば70〜
100℃程度に加熱したロールプレスを用いて加熱積層
し、延伸した後、延伸補助フィルムを剥がすことにより
電解質膜を構成する陽イオン交換膜が得られる((4)
の工程)。
Next, hydrolysis, acidification treatment, washing and drying are performed (step (3)) to convert the precursor group of the sulfonic acid group into a sulfonic acid group, thereby obtaining a cation exchange membrane. next,
For example, 70-
After heating and laminating using a roll press heated to about 100 ° C. and stretching, the stretching auxiliary film is peeled off to obtain a cation exchange membrane constituting an electrolyte membrane ((4)).
Process).

【0022】本発明では陽イオン交換膜となるフィルム
を40〜200℃の温度範囲で延伸処理することが好ま
しく、延伸により膜面積を5〜200%増大させること
が好ましい。延伸処理とは、陽イオン交換膜が保有する
膜面積に対し、外力を加えることにより膜面積を増大さ
せる加工のことである。延伸処理は、1軸又は2軸方向
に処理されることが好ましいが、膜の面方向全体の寸法
を安定させるには2軸方向の延伸処理が特に好ましい。
In the present invention, the film to be a cation exchange membrane is preferably stretched at a temperature in the range of 40 to 200 ° C., and the membrane area is preferably increased by stretching by 5 to 200%. The stretching process is a process of increasing the membrane area by applying an external force to the membrane area held by the cation exchange membrane. The stretching treatment is preferably carried out in a uniaxial or biaxial direction, but a biaxial stretching treatment is particularly preferred in order to stabilize the overall dimensions of the film in the plane direction.

【0023】含水時の寸法変化を抑えるためには陽イオ
ン交換膜に長さ方向に収縮する残留応力を適度に残すこ
とが必要である。陽イオン交換膜は、含水させると長さ
方向に寸法を増大するが、その際に収縮する残量応力を
解放させればその応力どうしを解消し寸法の増大を防ぐ
ことができる。このため、適度な残留応力を残すために
は延伸処理時の温度や延伸倍率を調整することが好まし
い。延伸処理の温度が40℃未満では延伸処理を行うこ
とが難しく、寸法変化を抑える効果を得にくい。また、
200℃以上では陽イオン交換膜が分子運動による自由
度を有するため、延伸処理で加えられる外力に対して追
従して動くことになる。このため、膜内に長さ方向に収
縮する残留応力を充分に残すことが難しい。
In order to suppress a dimensional change when water is contained, it is necessary to leave a residual stress which contracts in the length direction on the cation exchange membrane appropriately. When the cation exchange membrane is hydrated, its dimension increases in the length direction. If the residual stress that contracts at that time is released, the stress can be eliminated and the dimension can be prevented from increasing. For this reason, in order to leave an appropriate residual stress, it is preferable to adjust the temperature and the stretching ratio during the stretching process. When the temperature of the stretching treatment is lower than 40 ° C., it is difficult to perform the stretching treatment, and it is difficult to obtain the effect of suppressing the dimensional change. Also,
At 200 ° C. or higher, the cation exchange membrane has a degree of freedom due to molecular motion, and moves following external force applied in the stretching process. For this reason, it is difficult to sufficiently leave residual stress that contracts in the length direction in the film.

【0024】また、延伸倍率は5〜200%であること
が好ましい。5%未満では長さ方向に収縮する残留応力
が小さすぎ寸法増大を抑える効果が充分でなく、逆に2
00%を超えるとその残留応力が大きすぎ寸法収縮を生
じるおそれがある。上述のとおり、含水時に生じる寸法
増大の応力を打ち消すためには、それに見合う残留応力
を残すことが必要であり、そのためには、特に延伸温度
は50〜120℃であることがことが好ましく、延伸倍
率は10〜100%であることが好ましい。
The stretching ratio is preferably 5 to 200%. If it is less than 5%, the residual stress shrinking in the length direction is too small, and the effect of suppressing the dimensional increase is not sufficient.
If it exceeds 00%, the residual stress is too large, and dimensional shrinkage may occur. As described above, it is necessary to leave a residual stress commensurate with that in order to counteract the stress of the dimensional increase that occurs when water is contained. For this purpose, it is particularly preferable that the stretching temperature is 50 to 120 ° C. The magnification is preferably from 10 to 100%.

【0025】延伸補助フィルムは、延伸可能であれば特
に限定されないが、例えば、ポリエチレンテレフタレー
トフィルム、ポリブチレンテレフタレートフィルム、ポ
リエチレンフィルム、エチレン−α−オレフィン共重合
体フィルム、エチレン−ビニルアルコール共重合体フィ
ルム、エチレン−酢酸ビニル共重合体フィルム、エチレ
ン−酢酸ビニル−塩化ビニル共重合体フィルム、エチレ
ン−塩化ビニル共重合体フィルム、ポリプロピレンフィ
ルム、ポリ塩化ビニルフィルム、ポリアミドフィルム、
ポリビニルアルコールフィルム等が挙げられる。なかで
もポリエチレンテレフタレートフィルム又はポリプロピ
レンフィルムが好ましい。
The stretching auxiliary film is not particularly limited as long as it can be stretched. For example, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyethylene film, an ethylene-α-olefin copolymer film, an ethylene-vinyl alcohol copolymer film , Ethylene-vinyl acetate copolymer film, ethylene-vinyl acetate-vinyl chloride copolymer film, ethylene-vinyl chloride copolymer film, polypropylene film, polyvinyl chloride film, polyamide film,
Examples include a polyvinyl alcohol film. Among them, a polyethylene terephthalate film or a polypropylene film is preferable.

【0026】特にアモルファス状態のポリエチレンテレ
フタレートフィルム及びキャスト製膜したポリプロピレ
ンフィルムは70〜110℃の温度範囲で延伸すること
ができ、これらのフィルムを積層して延伸すると陽イオ
ン交換膜に適度な残留応力を残すことができるので好ま
しい。
In particular, the amorphous polyethylene terephthalate film and the cast polypropylene film can be stretched in a temperature range of 70 to 110 ° C. When these films are laminated and stretched, a moderate residual stress is applied to the cation exchange membrane. Is preferable since it can leave

【0027】本発明において電解質膜となる陽イオン交
換膜としては、スルホン酸基を有するパーフルオロカー
ボン重合体からなる陽イオン交換膜が好ましいが、寸法
変化率が少なく低抵抗で薄膜化できる陽イオン交換膜で
あれば、炭化水素系重合体や部分フッ素化された炭化水
素系重合体からなる陽イオン交換膜等も使用できる。上
記陽イオン交換膜は単一のイオン交換樹脂からなっても
よいし、2種以上のイオン交換樹脂を混合したものであ
ってもよい。
In the present invention, the cation exchange membrane serving as the electrolyte membrane is preferably a cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group. As the membrane, a cation exchange membrane made of a hydrocarbon polymer or a partially fluorinated hydrocarbon polymer can be used. The cation exchange membrane may be composed of a single ion exchange resin, or may be a mixture of two or more ion exchange resins.

【0028】スルホン酸基を有するパーフルオロカーボ
ン重合体としては、従来より公知の重合体が広く採用さ
れる。なかでも、一般式CF2=CF(OCF2CFX)
m−Op−(CF2nSO3H(ここでXはフッ素原子又
はトリフルオロメチル基であり、mは0〜3の整数であ
り、nは0〜12の整数であり、pは0又は1であり、
n=0のときにはp=0である。)で表されるパーフル
オロビニル化合物とパーフルオロオレフィン又はパーフ
ルオロアルキルビニルエーテル等との共重合体が好まし
い。パーフルオロビニル化合物の具体例としては式1〜
4のいずれかで表される化合物が挙げられる。ただし、
下式において、qは1〜9の整数であり、rは1〜8の
整数であり、sは0〜8の整数であり、zは2又は3で
ある。
As the perfluorocarbon polymer having a sulfonic acid group, a conventionally known polymer is widely used. In particular, the general formula CF 2 = CF (OCF 2 CFX)
m -O p - (CF 2) n SO 3 H ( wherein X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer from 0 to 12, p is 0 or 1;
When n = 0, p = 0. )), A copolymer of a perfluorovinyl compound represented by the formula (1) with a perfluoroolefin or a perfluoroalkylvinyl ether. Specific examples of the perfluorovinyl compound are represented by formulas 1 to
And a compound represented by any one of the above. However,
In the following formula, q is an integer of 1 to 9, r is an integer of 1 to 8, s is an integer of 0 to 8, and z is 2 or 3.

【0029】[0029]

【化1】 Embedded image

【0030】スルホン酸基を有するパーフルオロビニル
化合物に基づく重合単位を含む重合体は、通常−SO2
F基を有するパーフルオロビニル化合物を用いて重合さ
れ、重合後に−SO2F基が−SO3H基に変換される。
−SO2F基を有するパーフルオロビニル化合物は、単
独重合も可能であるが、ラジカル重合反応性が小さいた
め、通常は上記のようにパーフルオロオレフィン又はパ
ーフルオロ(アルキルビニルエーテル)等のコモノマー
と共重合して用いられる。コモノマーとなるパーフルオ
ロオレフィンとしては、テトラフルオロエチレン、ヘキ
サフルオロプロピレン等が挙げられるが、通常はテトラ
フルオロエチレンが好ましく採用される。
A polymer containing a polymerized unit based on a perfluorovinyl compound having a sulfonic acid group is usually -SO 2
It is polymerized using a perfluorovinyl compound having a F group, -SO 2 F groups are converted to -SO 3 H groups after polymerization.
The perfluorovinyl compound having an —SO 2 F group can be homopolymerized, but has a low radical polymerization reactivity, and thus is usually used together with a comonomer such as a perfluoroolefin or perfluoro (alkyl vinyl ether) as described above. Used after polymerization. Examples of the perfluoroolefin to be a comonomer include tetrafluoroethylene, hexafluoropropylene, and the like, but usually tetrafluoroethylene is preferably employed.

【0031】コモノマーとなるパーフルオロ(アルキル
ビニルエーテル)としては、CF2=CF−(OCF2
FY)t−O−Rfで表される化合物が好ましい。ただ
し、ここで、Yはフッ素原子又はトリフルオロメチル基
であり、tは0〜3の整数であり、Rfは直鎖又は分岐
鎖のCu2u+1で表されるパーフルオロアルキル基(1
≦u≦12)である。さらに具体的には、式5〜7のい
ずれかで表される化合物が挙げられる。ただし、下式
中、vは1〜8の整数であり、wは1〜8の整数であ
り、xは2又は3である。
As a perfluoro (alkyl vinyl ether) serving as a comonomer, CF 2 CFCF— (OCF 2 C
FY) a compound represented by t -O-R f are preferred. However, where, Y is a fluorine atom or a trifluoromethyl group, t is an integer from 0 to 3, perfluoroalkyl group and R f represented by C u F 2u + 1 linear or branched (1
≤ u ≤ 12). More specifically, a compound represented by any one of formulas 5 to 7 is exemplified. However, in the following formula, v is an integer of 1 to 8, w is an integer of 1 to 8, and x is 2 or 3.

【0032】[0032]

【化2】 Embedded image

【0033】また、パーフルオロオレフィンやパーフル
オロ(アルキルビニルエーテル)以外に、1,1,2,
3,3,4,4−ヘプタフルオロ−4−[(トリフルオ
ロエテニル)オキシ]−1−ブテン等の含フッ素モノマ
ーもコモノマーとして−SO 2F基を有するパーフルオ
ロビニル化合物と共重合させてもよい。
In addition, perfluoroolefins and perful
Other than Oro (alkyl vinyl ether), 1, 1, 2,
3,3,4,4-heptafluoro-4-[(trifluoro
Fluorinated monomers such as roethenyl) oxy] -1-butene
-Also as a comonomer -SO TwoPerfluoro having F group
It may be copolymerized with a vinyl compound.

【0034】また、パーフルオロカーボン重合体以外の
重合体で本発明の電解質膜を構成しうる重合体として
は、例えば式8で表される重合単位と式9で表される重
合単位とを含む重合体が挙げられる。ここで、P1はフ
ェニルトリール基、ビフェニルトリール基、ナフタレン
トリール基、フェナントレントリール基、アントラセン
トリール基であり、P2はフェニレン基、ビフェニレン
基、ナフチレン基、フェナントリレン基、アントラシレ
ン基であり、A2は−SO3M基(Mは水素原子又はアル
カリ金属原子、以下同じ)、−COOM基又は加水分解
によりこれらの基に転換する基であり、B1、B2はそれ
ぞれ独立に酸素原子、イオウ原子、スルホニル基又はイ
ソプロピリデン基である。P1及びP2の構造異性は特に
限定されず、P1及びP2の水素原子の1個以上がフッ素
原子、塩素原子、臭素原子又は炭素数1〜3のアルキル
基に置換されていてもよい。
The polymer which can constitute the electrolyte membrane of the present invention with a polymer other than the perfluorocarbon polymer is, for example, a polymer containing a polymer unit represented by the formula 8 and a polymer unit represented by the formula 9 Coalescence. Here, P 1 is a phenyltolyl group, a biphenyltolyl group, a naphthalene reel group, a phenanthrene reel group, or an anthracene reel group, and P 2 is a phenylene group, biphenylene group, naphthylene group, phenanthrylene group, anthracylene group, and A 2 is a —SO 3 M group (M is a hydrogen atom or an alkali metal atom; the same applies hereinafter), a —COOM group or a group that is converted to these groups by hydrolysis, B 1 and B 2 each independently represent an oxygen atom, It is a sulfur atom, a sulfonyl group or an isopropylidene group. Structural isomers of P 1 and P 2 is not particularly limited, one or more fluorine atoms of the hydrogen atom of the P 1 and P 2, a chlorine atom, be substituted by a bromine atom or an alkyl group having 1 to 3 carbon atoms Good.

【0035】[0035]

【化3】 Embedded image

【0036】本発明において、電解質膜のイオン交換容
量としては、0.5〜2.0ミリ当量/g乾燥樹脂、特
に0.7〜1.6ミリ当量/g乾燥樹脂であることが好
ましい。イオン交換容量が低すぎると抵抗が大きくな
る。一方、イオン交換容量が高すぎると水に対する親和
性が強すぎるため、発電時に膜が溶解するおそれがあ
る。
In the present invention, the ion exchange capacity of the electrolyte membrane is preferably 0.5 to 2.0 meq / g dry resin, particularly preferably 0.7 to 1.6 meq / g dry resin. If the ion exchange capacity is too low, the resistance will increase. On the other hand, if the ion exchange capacity is too high, the affinity for water is too strong, and the membrane may be dissolved during power generation.

【0037】本発明の固体高分子型燃料電池は、通常の
手法に従い、例えば以下のようにして得られる。まず、
白金触媒微粒子を担持させた導電性のカーボンブラック
粉末とスルホン酸型パーフルオロカーボン重合体の溶液
を混合し均一な分散液を得て、以下のいずれかの方法で
ガス拡散電極を形成して膜電極接合体を得る。膜は延伸
処理を施したスルホン酸型パーフルオロカーボン重合体
からなる陽イオン交換膜を用いる。
The polymer electrolyte fuel cell of the present invention can be obtained according to a usual method, for example, as follows. First,
A solution of a conductive carbon black powder carrying platinum catalyst fine particles and a solution of a sulfonic acid type perfluorocarbon polymer is mixed to obtain a uniform dispersion, and a gas diffusion electrode is formed by any of the following methods to form a membrane electrode. Obtain a conjugate. As the membrane, a cation exchange membrane made of a sulfonic acid type perfluorocarbon polymer subjected to a stretching treatment is used.

【0038】第1の方法は、上記陽イオン交換膜の両面
に上記分散液を塗布し乾燥後、両面を2枚のカーボンク
ロス又はカーボンペーパーで密着する方法である。第2
の方法は、上記分散液を2枚のカーボンクロス又はカー
ボンペーパー上に塗布乾燥後、分散液が塗布された面が
上記陽イオン交換膜と密着するように、上記陽イオン交
換膜の両面から挟みこむ方法である。なお、ここでカー
ボンクロス又はカーボンペーパーは触媒を含む層により
均一にガスを拡散させるためのガス拡散層としての機能
と集電体としての機能を有するものである。
The first method is a method in which the dispersion is applied to both sides of the cation exchange membrane, dried, and then both sides are brought into close contact with two sheets of carbon cloth or carbon paper. Second
Is applied to two sheets of carbon cloth or carbon paper and dried, and then sandwiched from both sides of the cation exchange membrane so that the surface to which the dispersion is applied is in close contact with the cation exchange membrane. It is a method of indenting. Here, the carbon cloth or carbon paper has a function as a gas diffusion layer for uniformly diffusing gas into the layer containing the catalyst and a function as a current collector.

【0039】得られた膜電極接合体は、燃料ガス又は酸
化剤ガスの通路となる溝が形成されセパレータの間に挟
まれ、セルに組み込まれて固体高分子型燃料電池が得ら
れる。ここでセパレータとしては、例えば導電性カーボ
ン板からなるものが使用できる。
The obtained membrane / electrode assembly is formed with a groove serving as a passage for a fuel gas or an oxidizing gas, sandwiched between separators, and assembled into a cell to obtain a polymer electrolyte fuel cell. Here, as the separator, for example, a separator made of a conductive carbon plate can be used.

【0040】上記のようにして得られる固体高分子型燃
料電池では、アノード側には水素ガスが供給され、カソ
ード側には酸素又は空気が供給される。アノードにおい
てはH2→2H++2e-の反応が起こり、カソードにお
いては1/2O2+2H++2e-→H2Oの反応が起こ
り、化学エネルギが電気エネルギに変換される。
In the polymer electrolyte fuel cell obtained as described above, hydrogen gas is supplied to the anode side, and oxygen or air is supplied to the cathode side. At the anode, a reaction of H 2 → 2H + + 2e occurs, and at the cathode, a reaction of 1 / 2O 2 + 2H + + 2e → H 2 O occurs, whereby chemical energy is converted into electric energy.

【0041】[0041]

【実施例】[例1(実施例)]テトラフルオロエチレン
に基づく重合単位とCF2=CFOCF2CF(CF3
O(CF22SO2Fに基づく重合単位とからなる共重
合体粉末(イオン交換容量1.1ミリ当量/グラム乾燥
樹脂)を2軸押出し成形してペレットを得た。次にこの
ペレットを1軸押出し機によりフィルム化し、厚さ55
μmのフィルムを作製し、ジメチルスルホキシドと水酸
化カリウムとを含む水溶液を用いて加水分解し、塩酸で
酸型化処理して−SO2F基を−SO3H基に変換した
後、洗浄、乾燥して厚さ60μmの膜を得た。
EXAMPLES Example 1 (Example) Polymerized units based on tetrafluoroethylene and CF 2 CFCFOCF 2 CF (CF 3 )
A copolymer powder composed of polymerized units based on O (CF 2 ) 2 SO 2 F (ion exchange capacity: 1.1 meq / g dry resin) was biaxially extruded to obtain pellets. Next, the pellets are formed into a film by a single screw extruder and have a thickness of 55 mm.
A film having a thickness of μm was prepared, hydrolyzed using an aqueous solution containing dimethyl sulfoxide and potassium hydroxide, converted to an —SO 2 F group into an —SO 3 H group by acidification with hydrochloric acid, and then washed. After drying, a film having a thickness of 60 μm was obtained.

【0042】次に、延伸補助フィルムとして厚さ200
μmのアモルファスポリエチレンテレフタレートフィル
ム2枚でこの膜を両面から挟み、80℃で加熱ロールプ
レスして延伸補助フィルムが両面に積層されたフィルム
を作製した。この積層フィルムを各軸方向(1軸押出し
機を通した方向(MD方向)及びMD方向に垂直な方向
(TD方向))に対し90℃にてそれぞれ長さを40%
増大させて面積増加率が96%となるように2軸延伸を
行った。次いで延伸補助フィルムを剥がすことにより延
伸膜を得た。得られた膜の厚さを5cm間隔で10点測
定し、膜厚の平均値を算出した。延伸条件、延伸前後の
膜厚の測定結果を表1に示す。
Next, as a stretching auxiliary film, a film having a thickness of 200
This film was sandwiched from both sides with two μm amorphous polyethylene terephthalate films, and heated and roll-pressed at 80 ° C. to produce a film in which a stretching auxiliary film was laminated on both sides. The length of each of these laminated films at 90 ° C. with respect to each axial direction (the direction (MD direction) through a single-screw extruder (MD direction) and the direction perpendicular to the MD direction (TD direction)) is 40%.
The film was biaxially stretched so that the area increase rate was 96%. Next, the stretch assisting film was peeled off to obtain a stretched film. The thickness of the obtained film was measured at 10 points at intervals of 5 cm, and the average value of the film thickness was calculated. Table 1 shows the stretching conditions and the measurement results of the film thickness before and after the stretching.

【0043】[膜抵抗測定]上記延伸膜から5mm幅の
短冊状膜サンプルを作製し、その表面に白金線(直径:
0.2mm)を幅方向と平行になるように5mm間隔で
5本押し当て、80℃、相対湿度95%の恒温・恒湿装
置中にサンプルを保持し、交流10kHzにおける白金
線間の交流インピーダンスを測定することにより交流比
抵抗を求めた。5mm間隔に白金線を5本押し当ててい
るため、極間距離を5、10、15、20mmに変化さ
せることができるので、各極間距離における交流抵抗を
測定し、極間距離と抵抗の勾配から膜の比抵抗を算出す
ることで白金線と膜との間の接触抵抗の影響を除外し
た。極間距離と抵抗測定値との間には良い直線関係が得
られ、勾配と厚さから実行抵抗を算出した。結果を表2
に示す。
[Measurement of Membrane Resistance] A strip-shaped film sample having a width of 5 mm was prepared from the above-mentioned stretched film, and a platinum wire (diameter:
0.2 mm) is pressed in parallel with the width direction at 5 mm intervals, and the sample is held in a constant temperature / humidity chamber at 80 ° C. and a relative humidity of 95%. Was measured to determine an AC specific resistance. Since five platinum wires are pressed at 5 mm intervals, the distance between the electrodes can be changed to 5, 10, 15, and 20 mm. Therefore, the AC resistance at each distance between the electrodes is measured, and the distance between the electrodes and the resistance are measured. The influence of the contact resistance between the platinum wire and the membrane was excluded by calculating the specific resistance of the membrane from the gradient. A good linear relationship was obtained between the distance between the poles and the measured resistance, and the effective resistance was calculated from the slope and the thickness. Table 2 shows the results
Shown in

【0044】[含水時の寸法変化測定]上記延伸膜から
200mm角のサンプルを切り出し、温度25℃、湿度
50%の雰囲気に16時間曝し、サンプルのMD方向、
TD方向それぞれの長さを測定した。次に、25℃のイ
オン交換水にサンプルを1時間浸漬した後、同様にして
MD方向、TD方向それぞれの長さを測定した。このと
きのサンプルの伸びから寸法変化率を算出した。結果を
表1に示す。
[Measurement of Dimensional Change When Water is Included] A 200 mm square sample was cut out from the above stretched film and exposed to an atmosphere at a temperature of 25 ° C. and a humidity of 50% for 16 hours.
Each length in the TD direction was measured. Next, the sample was immersed in ion-exchanged water at 25 ° C. for 1 hour, and the lengths in the MD and TD directions were measured in the same manner. The dimensional change rate was calculated from the elongation of the sample at this time. Table 1 shows the results.

【0045】[燃料電池の作製及び評価]燃料電池セル
は以下のようにして組み立てた。テトラフルオロエチレ
ンに基づく重合単位とCF2=CF−OCF2CF(CF
3)O(CF22SO3Hに基づく重合単位とからなる共
重合体(イオン交換容量1.1ミリ当量/グラム乾燥樹
脂)と白金担持カーボンとを1:3の質量比で含みエタ
ノールを溶媒とする塗工液を、上記延伸膜の両面にダイ
コート法で塗工し、乾燥して厚さ10μm、白金担持量
0.5mg/cm2の電極層を膜の形成した。さらにそ
の両外側にカーボンクロスをガス拡散層として配置して
膜電極接合体を作製した。この膜電極接合体の両外側に
ガス通路用の細溝をジグザグ状に切削加工したカーボン
板製のセパレータ、さらにその外側にヒータを配置し、
有効膜面積25cm2の固体高分子型燃料電池を組み立
てた。
[Production and Evaluation of Fuel Cell] The fuel cell was assembled as follows. Polymerized units based on tetrafluoroethylene and CF 2 CFCF—OCF 2 CF (CF
3 ) Ethanol containing a copolymer consisting of polymerized units based on O (CF 2 ) 2 SO 3 H (ion exchange capacity 1.1 meq / g dry resin) and platinum-supported carbon in a mass ratio of 1: 3 Was applied to both surfaces of the stretched film by a die coating method, and dried to form an electrode layer having a thickness of 10 μm and a platinum carrying amount of 0.5 mg / cm 2 . Further, carbon cloths were arranged on both outer sides as gas diffusion layers to produce a membrane electrode assembly. On both sides of this membrane electrode assembly, a separator made of a carbon plate obtained by cutting a narrow groove for a gas passage into a zigzag shape, and further, a heater is arranged outside the separator.
A polymer electrolyte fuel cell having an effective membrane area of 25 cm 2 was assembled.

【0046】燃料電池の温度を80℃に保ち、カソード
に空気、アノードに水素をそれぞれ0.15MPaで供
給した。電流密度0.1A/cm2、及び1A/cm2
ときの端子電圧をそれぞれ測定した。結果を表2に示
す。
The temperature of the fuel cell was maintained at 80 ° C., and air was supplied to the cathode and hydrogen was supplied to the anode at 0.15 MPa, respectively. Current density 0.1 A / cm 2, and the terminal voltage when the 1A / cm 2 were measured. Table 2 shows the results.

【0047】[例2]2軸延伸の際の面積増加率を30
%に変更した以外は、例1と同様にしてサンプルを作製
し、例1と同様にして評価を行った。膜の物性及び作製
条件を表1に、結果を表2に示す。
[Example 2] The area increase rate during biaxial stretching was 30.
%, A sample was prepared in the same manner as in Example 1, and evaluation was performed in the same manner as in Example 1. Table 1 shows the physical properties and preparation conditions of the film, and Table 2 shows the results.

【0048】[例3]2軸延伸の雰囲気温度を110℃
に変更した以外は、例1と同様にしてサンプルを作製
し、例1と同様にして評価を行った。膜の物性及び作製
条件を表1に、結果を表2に示す。
[Example 3] The atmosphere temperature of biaxial stretching was 110 ° C.
A sample was prepared in the same manner as in Example 1 except that the sample was changed to, and evaluation was performed in the same manner as in Example 1. Table 1 shows the physical properties and preparation conditions of the film, and Table 2 shows the results.

【0049】[例4]2軸延伸の雰囲気温度と面積増加
率をそれぞれ75℃、15%に変更した以外は、例1と
同様にしてサンプルを作製し、例1と同様にして評価を
行った。膜の物性及び作製条件を表1に、結果を表2に
示す。
Example 4 A sample was prepared in the same manner as in Example 1 except that the atmosphere temperature and the area increase rate of the biaxial stretching were changed to 75 ° C. and 15%, respectively, and evaluated in the same manner as in Example 1. Was. Table 1 shows the physical properties and preparation conditions of the film, and Table 2 shows the results.

【0050】[例5、6]膜としてイオン交換容量がそ
れぞれ0.91meq./g(例5)、及び1.33m
eq./g(例6)のものを用いた以外は、例3と同様
にしてサンプルを作製し、例1と同様にして評価を行っ
た。膜の物性及び作製条件を表1に、結果を表2に示
す。
[Examples 5 and 6] Each of the membranes had an ion exchange capacity of 0.91 meq. / G (Example 5), and 1.33 m
eq. A sample was prepared in the same manner as in Example 3 except that the sample having the / g (Example 6) was used, and the evaluation was performed in the same manner as in Example 1. Table 1 shows the physical properties and preparation conditions of the film, and Table 2 shows the results.

【0051】[例7、8(比較例)]膜としてイオン交
換容量がそれぞれ1.1meq./g(例7)、及び
0.91meq./g(例8)のものを用い、2軸延伸
を行わず例1と同様に評価を行った。膜の物性を表1
に、結果を表2に示す。なお、例7及び例8の膜は、膜
電極接合体を得るために電極層形成用の塗工液を膜に塗
工したところ膜が膨潤して変形し、均一な電極層を形成
することができず、燃料電池セルとして組み立てて評価
できる膜電極接合体は得られなかった。そのため、出力
特性の評価はできなかった。
[Examples 7 and 8 (Comparative Examples)] Each of the membranes had an ion exchange capacity of 1.1 meq. / G (Example 7), and 0.91 meq. / G (Example 8) was evaluated in the same manner as in Example 1 without biaxial stretching. Table 1 shows the physical properties of the film.
Table 2 shows the results. In addition, when the coating liquid for forming an electrode layer is applied to the membranes of the membranes of Examples 7 and 8 to obtain a membrane electrode assembly, the membrane swells and deforms to form a uniform electrode layer. However, a membrane electrode assembly that could be assembled and evaluated as a fuel cell was not obtained. Therefore, the output characteristics could not be evaluated.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【発明の効果】本発明によれば、電気抵抗が低く、含水
時の寸法変化が少ない陽イオン交換膜を得られるので、
膜に電極を接合してなる膜電極接合体を組み込んだ固体
高分子型燃料電池の運転を行う際に、膜電極接合体がセ
パレータ等で拘束されても‘しわ’が発生せず、セパレ
ータの溝を膜電極接合体が埋めてガスの流れを阻害する
ことがない。
According to the present invention, a cation exchange membrane having a low electric resistance and a small dimensional change when containing water can be obtained.
When operating a polymer electrolyte fuel cell incorporating a membrane electrode assembly formed by joining electrodes to a membrane, no wrinkles occur even when the membrane electrode assembly is restrained by a separator, etc. The grooves are not filled with the membrane / electrode assembly and the flow of gas is not hindered.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08F 228/02 C08F 228/02 C08J 5/22 101 C08J 5/22 101 CEU CEU H01M 8/10 H01M 8/10 // B29K 27:12 B29K 27:12 B29L 7:00 B29L 7:00 Fターム(参考) 4F071 AA07 AA26 AA26X AA27X AA39X AF54 AH15 FA05 FC02 FD02 FE06 4F100 AK17A AL01B AL01C AL07A AR00B AR00C BA02 BA03 BA06 BA07 BA10B BA10C EJ37B EJ37C GB41 JB20A JG01B JG01C JL04 YY00B YY00C 4F210 AA16 AC03 AD05 AD08 AD35 AE03 AG01 AH33 AR04 AR06 AR12 QA02 QC05 QD22 QG01 QG15 QG18 QW50 4J100 AC26Q AE39P AP01P BA02P BA08P BA56P BB12P BB13P CA04 JA16 5H026 AA06 BB02 CX05 EE19 HH00 HH03 HH05 HH06 HH08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08F 228/02 C08F 228/02 C08J 5/22 101 C08J 5/22 101 CEU CEU H01M 8/10 H01M 8 / 10 // B29K 27:12 B29K 27:12 B29L 7:00 B29L 7:00 F term (reference) 4F071 AA07 AA26 AA26X AA27X AA39X AF54 AH15 FA05 FC02 FD02 FE06 4F100 AK17A AL01B AL01C AL07A AR00B AR00B BA03 BA03 BA03 BA03 EJ37C GB41 JB20A JG01B JG01C JL04 YY00B YY00C 4F210 AA16 AC03 AD05 AD08 AD35 AE03 AG01 AH33 AR04 AR06 AR12 QA02 QC05 QD22 QG01 QG15 QG18 QW50 4J100 AC26Q AE39P AP01P06H06 HBBAH08A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】スルホン酸基を有するパーフルオロカーボ
ン重合体からなる陽イオン交換膜の少なくとも片面に延
伸補助フィルムを積層した後、延伸することを特徴とす
る固体高分子型燃料電池用電解質膜の製造方法。
1. A method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising: laminating a stretching auxiliary film on at least one surface of a cation exchange membrane comprising a perfluorocarbon polymer having a sulfonic acid group, and stretching. Method.
【請求項2】40℃以上200℃未満の温度範囲で前記
陽イオン交換膜を延伸し、膜面積を5〜200%増大さ
せる請求項1に記載の固体高分子型燃料電池用電解質膜
の製造方法。
2. The production of an electrolyte membrane for a polymer electrolyte fuel cell according to claim 1, wherein the cation exchange membrane is stretched in a temperature range of 40 ° C. or more and less than 200 ° C. to increase the membrane area by 5 to 200%. Method.
【請求項3】延伸することにより、前記陽イオン交換膜
の厚さを3〜90μmとする請求項1又は2に記載の固
体高分子型燃料電池用電解質膜の製造方法。
3. The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to claim 1, wherein the thickness of the cation exchange membrane is 3 to 90 μm by stretching.
【請求項4】前記パーフルオロカーボン重合体は、CF
2=CF2に基づく重合単位とCF2=CF(OCF2CF
X)m−Op−(CF2nSO3Hに基づく重合単位(こ
こでXはフッ素原子又はトリフルオロメチル基であり、
mは0〜3の整数であり、nは0〜12の整数であり、
pは0又は1であり、n=0のときにはp=0であ
る。)とからなる共重合体である請求項1〜3のいずれ
かに記載の固体高分子型燃料電池用電解質膜の製造方
法。
4. The method according to claim 1, wherein the perfluorocarbon polymer is CF.
Polymerized units based on 2 = CF 2 and CF 2 = CF (OCF 2 CF
X) m -O p - (CF 2) n SO 3 polymerized units (wherein X based on H is a fluorine atom or a trifluoromethyl group,
m is an integer of 0 to 3, n is an integer of 0 to 12,
p is 0 or 1, and when n = 0, p = 0. The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to any one of claims 1 to 3, which is a copolymer comprising:
【請求項5】比抵抗が20Ω・cm以下であり、含水時
の寸法変化率が−5%〜+5%であり、かつ厚さが3〜
90μmである陽イオン交換膜からなることを特徴とす
る固体高分子型燃料電池用電解質膜。
5. The specific resistance is not more than 20 Ω · cm, the dimensional change rate when containing water is -5% to + 5%, and the thickness is 3 to 5%.
An electrolyte membrane for a polymer electrolyte fuel cell, comprising a cation exchange membrane having a thickness of 90 μm.
【請求項6】前記陽イオン交換膜は、請求項1〜4のい
ずれかの方法により得られたものである請求項5に記載
の固体高分子型燃料電池用電解質膜。
6. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 5, wherein said cation exchange membrane is obtained by the method according to any one of claims 1 to 4.
【請求項7】請求項5又は6に記載の電解質膜の両面に
ガス拡散電極が配置され、さらにその外側にガスの流路
となる溝が表面に形成されたセパレータが配置されてい
ることを特徴とする固体高分子型燃料電池。
7. A gas diffusion electrode is disposed on both surfaces of the electrolyte membrane according to claim 5 and a separator having a groove serving as a gas flow path formed on the surface is disposed outside the gas diffusion electrode. Characteristic polymer electrolyte fuel cell.
JP2001147678A 2001-05-17 2001-05-17 Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same Expired - Fee Related JP4867081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001147678A JP4867081B2 (en) 2001-05-17 2001-05-17 Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001147678A JP4867081B2 (en) 2001-05-17 2001-05-17 Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002343380A true JP2002343380A (en) 2002-11-29
JP4867081B2 JP4867081B2 (en) 2012-02-01

Family

ID=18993120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001147678A Expired - Fee Related JP4867081B2 (en) 2001-05-17 2001-05-17 Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4867081B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018527A1 (en) * 2002-06-17 2004-03-04 Daikin Industries, Ltd. Fluoropolymer dispersion and process for producing fluoropolymer dispersion
WO2005091409A1 (en) * 2004-03-19 2005-09-29 Toagosei Co., Ltd. Electrolyte film and fuel cell
JP2006131846A (en) * 2004-11-09 2006-05-25 Asahi Glass Co Ltd Method for producing electrolyte material, membrane for solid polymer-type fuel battery and method for producing electrode assembly
JP2006261124A (en) * 2005-03-17 2006-09-28 Solvay Solexis Spa Catalyst coated membrane composite material and its manufacturing method
JP2008530755A (en) * 2005-02-11 2008-08-07 ゴア エンタープライズ ホールディングス,インコーポレイティド Method for reducing fuel cell degradation
JP2009016075A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Manufacturing method of composite electrolyte membrane, and membrane electrode assembly equipped with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354140A (en) * 1998-06-10 1999-12-24 Toyota Central Res & Dev Lab Inc Thin film electrolyte having high strength
WO2001006586A1 (en) * 1999-07-21 2001-01-25 Asahi Glass Company, Limited Solid polymer electrolyte type fuel cell and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354140A (en) * 1998-06-10 1999-12-24 Toyota Central Res & Dev Lab Inc Thin film electrolyte having high strength
WO2001006586A1 (en) * 1999-07-21 2001-01-25 Asahi Glass Company, Limited Solid polymer electrolyte type fuel cell and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018527A1 (en) * 2002-06-17 2004-03-04 Daikin Industries, Ltd. Fluoropolymer dispersion and process for producing fluoropolymer dispersion
US9109053B2 (en) 2002-06-17 2015-08-18 Daikin Industries, Ltd. Fluoropolymer dispersion and process for producing fluoropolymer dispersion
WO2005091409A1 (en) * 2004-03-19 2005-09-29 Toagosei Co., Ltd. Electrolyte film and fuel cell
JP2006131846A (en) * 2004-11-09 2006-05-25 Asahi Glass Co Ltd Method for producing electrolyte material, membrane for solid polymer-type fuel battery and method for producing electrode assembly
JP2008530755A (en) * 2005-02-11 2008-08-07 ゴア エンタープライズ ホールディングス,インコーポレイティド Method for reducing fuel cell degradation
JP2006261124A (en) * 2005-03-17 2006-09-28 Solvay Solexis Spa Catalyst coated membrane composite material and its manufacturing method
JP2009016075A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Manufacturing method of composite electrolyte membrane, and membrane electrode assembly equipped with the same

Also Published As

Publication number Publication date
JP4867081B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
EP1139472B1 (en) Electrolyte membrane for solid polymer type fuel cell and producing method thereof
US7311989B2 (en) Polymer membrane, process for its production and membrane-electrode assembly for solid polymer electrolyte fuel cells
KR102112648B1 (en) Polymer electrolyte membrane
JP5277740B2 (en) Method for forming catalyst layer and method for producing membrane electrode assembly for polymer electrolyte fuel cell
EP1615282A1 (en) Solid polymer electrolyte membrane, membrane electrode assembly for solid polymer fuel cell, and method for producing solid polymer electrolyte membrane
US20020064700A1 (en) Solid polymer electrolyte fuel cell and method of its production
US20030008198A1 (en) Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production
JP5331122B2 (en) Reinforcing electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell including the same
JP2002025583A (en) Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method
JP4867081B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same
JP2003055568A (en) Ion exchanger resin dispersion and method for producing the same
JP2000188111A (en) Solid high polymer electrolyte fuel cell
JP2001345111A (en) Electrolyte membrane for solid polymer fuel cell and method of manufacturing it
JP4218255B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JP2001243964A (en) Solid polymer electrolyte fuel cell
JP2003059512A (en) Manufacturing method of electrolyte film for solid polymer fuel cell
WO2001006586A1 (en) Solid polymer electrolyte type fuel cell and method for manufacturing the same
JP4234573B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
JP2006160902A (en) Polyelectrolyte membrane and its manufacturing method
JP2006164777A (en) Membrane-electrode conjugate for direct methanol fuel cell and its manufacturing method
JPH06231782A (en) Improved solid high polymer electrolytic type fuel cell
JP2000188110A (en) Solid high polymer electrolyte fuel cell and its gas diffusion electrode
JP4188789B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
JP2000188109A (en) Solid high polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees