JPH06231782A - Improved solid high polymer electrolytic type fuel cell - Google Patents

Improved solid high polymer electrolytic type fuel cell

Info

Publication number
JPH06231782A
JPH06231782A JP5039420A JP3942093A JPH06231782A JP H06231782 A JPH06231782 A JP H06231782A JP 5039420 A JP5039420 A JP 5039420A JP 3942093 A JP3942093 A JP 3942093A JP H06231782 A JPH06231782 A JP H06231782A
Authority
JP
Japan
Prior art keywords
fuel cell
film
polymer electrolyte
polymer
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5039420A
Other languages
Japanese (ja)
Inventor
Masayuki Tamura
正之 田村
Kiyoshige Jitsukata
清成 實方
Masaru Yoshitake
優 吉武
Haruhisa Miyake
晴久 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5039420A priority Critical patent/JPH06231782A/en
Publication of JPH06231782A publication Critical patent/JPH06231782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a high performance solid high polymer type electrolytic fuel cell by providing a positive ion exchange film having low electric resistance serving as a solid high polymer electrolyte. CONSTITUTION:A fuel cell is formed by providing a positive ion exchange film of parfluorocarbon polymer containing sulfonic acid group, as a solid high polymer electrolyte. For the positive ion exchange film, a film consisting of the layered body of no fewer than two parfluorocarbon polymer films having different contents, is used. The film facing the positive electrode has the highest content.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体高分子電解質型燃料
電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】近年プロトン伝導性の高分子膜を電解質
として用いる燃料電池(固体高分子電解質型燃料電池)
の研究が進んでいる。固体高分子電解質型燃料電池は、
低温で作動し出力密度が高く小型化が可能であるという
特徴を有し、車載用電源等の用途に対し有力視されてい
る。
2. Description of the Related Art Recently, a fuel cell using a proton-conducting polymer membrane as an electrolyte (solid polymer electrolyte fuel cell)
Research is progressing. The solid polymer electrolyte fuel cell is
It operates at low temperature, has a high output density, and can be downsized, and is regarded as a promising candidate for applications such as in-vehicle power supplies.

【0003】[0003]

【発明が解決しようとする課題】本用途に用いられる高
分子膜は、通常厚さ100〜200μmのプロトン伝導
性イオン交換膜が用いられ、特にスルホン酸基を有する
パーフルオロカーボン重合体からなる陽イオン交換膜が
基本特性に優れ広く検討されている。しかし、現在提案
されている陽イオン交換膜の電気抵抗は、より高出力密
度の電池を得る観点から必ずしも十分に低いとは言えな
い。
As the polymer membrane used for this purpose, a proton conductive ion exchange membrane having a thickness of 100 to 200 μm is usually used, and in particular, a cation composed of a perfluorocarbon polymer having a sulfonic acid group. Exchange membranes have been widely studied because of their excellent basic properties. However, the electrical resistance of currently proposed cation exchange membranes is not necessarily sufficiently low from the viewpoint of obtaining batteries with higher power density.

【0004】陽イオン交換膜の電気抵抗を低減する方法
にはスルホン酸基濃度の増加と膜厚の低減があるが、ス
ルホン酸基濃度の著しい増加は膜の機械的強度を低下さ
せたり、長期運転において膜がクリープし易くなり耐久
性を低下させるなどの問題点が生じる。一方膜厚の低減
は膜の機械的強度を低下させたり、更にガス拡散電極と
の接合等の加工性・取扱い性を低下させるなどの問題点
が生じる。かくして、電気抵抗が低く且つ機械的強度が
高い陽イオン交換膜の開発が望まれていた。
Methods for reducing the electrical resistance of cation exchange membranes include increasing the concentration of sulfonic acid groups and reducing the film thickness, but a significant increase in the concentration of sulfonic acid groups reduces the mechanical strength of the membrane, During operation, the film easily creeps, which causes problems such as deterioration of durability. On the other hand, the reduction of the film thickness causes problems such as deterioration of the mechanical strength of the film and further deterioration of workability and handleability such as bonding with the gas diffusion electrode. Thus, it has been desired to develop a cation exchange membrane having low electric resistance and high mechanical strength.

【0005】[0005]

【課題を解決するための手段】本発明は前述の問題点を
解決すべくなされたものであり、スルホン酸基を含有す
るパーフルオロカーボン重合体からなる陽イオン交換膜
を固体高分子電解質とする燃料電池において、上記陽イ
オン交換膜が、異なる含水率を有する少なくとも2層の
パーフルオロカーボン重合体からなり、その正極に面す
るフィルムの含水率が最も高いことを特徴とする固体高
分子電解質型燃料電池を提供する。
The present invention has been made to solve the above-mentioned problems, and is a fuel using a cation exchange membrane made of a perfluorocarbon polymer containing a sulfonic acid group as a solid polymer electrolyte. In the battery, the cation exchange membrane is composed of at least two layers of perfluorocarbon polymers having different water contents, and the film facing the positive electrode has the highest water content. I will provide a.

【0006】本発明で陽イオン交換膜は、燃料電池の正
極に面する側に含水率が最も高い重合体フィルムが位置
するようにすることが必要である。そして、正極側の重
合体フィルムの含水率は、負極に面する重合体フィルム
の含水率に比べて、好ましくは5〜50重量%、特には
10〜30重量%だけ大きくするのが好ましい。一方、
各重合体フィルムを含水率は30〜110重量%、特に
は35〜95重量%に制御せしめられる。
In the present invention, the cation exchange membrane needs to have the polymer film having the highest water content positioned on the side facing the positive electrode of the fuel cell. The water content of the polymer film on the positive electrode side is preferably 5 to 50% by weight, more preferably 10 to 30% by weight, higher than the water content of the polymer film facing the negative electrode. on the other hand,
The water content of each polymer film is controlled to 30 to 110% by weight, particularly 35 to 95% by weight.

【0007】本発明で重合体フィルムは(酸型)の含水
率(△W)は、以下のように定義される。 △W=(W1 /W2 −1)×100(重量%) W1 :90℃、純水中24時間浸漬後の膜重量。 W2 :W1 を測定後、100℃にて16時間真空乾燥し
た後の膜重量。 パーフルオロカーボン重合体フィルムの含水率が、上記
範囲の下限より小さい場合は膜抵抗が極端に上昇し、ま
たより大きい場合は、膜強度及び電極接合等における膜
取扱い性が著しく低下し好ましくない。
In the present invention, the water content (ΔW) of the polymer film (acid type) is defined as follows. ΔW = (W 1 / W 2 −1) × 100 (wt%) W 1 : 90 ° C., film weight after immersion in pure water for 24 hours. W 2 : The film weight after vacuum-drying at 100 ° C. for 16 hours after measuring W 1 . When the water content of the perfluorocarbon polymer film is smaller than the lower limit of the above range, the membrane resistance is extremely increased, and when it is larger than the above range, the membrane strength and the membrane handleability in electrode bonding and the like are remarkably lowered, which is not preferable.

【0008】パーフルオロカーボン重合体フィルムを積
層した陽イオン交換膜は、厚みが30〜300μm、更
には50〜250μmであるのが好ましい。上記範囲の
下限より小さい場合には、膜強度及び電極との接合等に
おける膜取扱い性が低下し、一方上限値より大きい場合
には膜抵抗が上昇し、出力が低下するため好ましくな
い。
The cation exchange membrane laminated with the perfluorocarbon polymer film preferably has a thickness of 30 to 300 μm, more preferably 50 to 250 μm. If it is smaller than the lower limit of the above range, the film strength and the handleability of the film at the time of joining with the electrode are deteriorated, while if it is larger than the upper limit, the film resistance is increased and the output is decreased, which is not preferable.

【0009】本発明に用いられるスルホン酸基を含有す
るパーフルオロカーボン重合体としては、テトラフルオ
ロエチレンとCF2 =CF−(OCF2 CFX)m −O
q −(CF2n −A(式中m=0〜3、n=0〜1
2、q=0又は1、X=F又はCF3 、A=スルホン酸
型官能基)で表されるフルオロビニル化合物との共重合
体が好ましく採用可能である。
The perfluorocarbon polymer having a sulfonic acid group used in the present invention includes tetrafluoroethylene and CF 2 ═CF— (OCF 2 CFX) m —O.
q - (CF 2) n -A ( wherein m = 0~3, n = 0~1
A copolymer with a fluorovinyl compound represented by 2, q = 0 or 1, X = F or CF 3 , A = sulfonic acid type functional group) can be preferably used.

【0010】上記フルオロビニル化合物の好ましい例と
しては、 CF2 =CFO(CF21-8 SO2 F CF2 =CFOCF2 CF(CF3 )O(CF21-8 SO2 F CF2 =CF(CF20-8 SO2 F CF2 =CF(OCF2 CF(CF3 ))1-5 O(CF22 SO2 F などが挙げられる。
Preferred examples of the fluorovinyl compound include CF 2 ═CFO (CF 2 ) 1-8 SO 2 F CF 2 ═CFOCF 2 CF (CF 3 ) O (CF 2 ) 1-8 SO 2 F CF 2 = CF (CF 2) 0-8 SO 2 F CF 2 = CF (OCF 2 CF (CF 3)) , such as 1-5 O (CF 2) 2 SO 2 F and the like.

【0011】パーフルオロカーボン重合体を構成する上
記テトラフルオロエチレンの代わりにヘキサフルオロプ
ロピレン、クロロトリフルオロエチレン、パーフルオロ
アルコキシビニルエーテルの如きパーフルオロオレフィ
ンを用いることもできる。
It is also possible to use perfluoroolefins such as hexafluoropropylene, chlorotrifluoroethylene, and perfluoroalkoxy vinyl ethers in place of the above tetrafluoroethylene constituting the perfluorocarbon polymer.

【0012】本発明で、陽イオン交換膜は、フィブリル
状、織布状、又は不織布状のパーフルオロカーボン重合
体で補強されることもできる。本発明で、陽イオン交換
膜は通常の既知の手法に従ってその表面にガス拡散電極
を密着させ、次いで集電体をとりつけ燃料電池として組
み立てられる。
In the present invention, the cation exchange membrane may be reinforced with a fibril-like, woven-like or non-woven-like perfluorocarbon polymer. In the present invention, the cation exchange membrane is assembled as a fuel cell by adhering a gas diffusion electrode to the surface of the cation exchange membrane according to a commonly known method and then attaching a current collector.

【0013】ガス拡散電極は通常白金触媒微粒子を担持
させた導電性のカーボンブラック粉末をポリテトラフル
オロエチレンなどの疎水性樹脂結着材で保持させた多孔
質体のシートよりなるが、該多孔質体がスルホン酸型パ
ーフルオロカーボン重合体や該重合体で被覆された微粒
子を含んでいてもよい。ガス拡散電極とスルホン酸型パ
ーフルオロカーボン重合体とは加熱プレス法等により密
着される。
The gas diffusion electrode is usually composed of a sheet of a porous body in which conductive carbon black powder carrying fine platinum catalyst particles is held by a hydrophobic resin binder such as polytetrafluoroethylene. The body may contain a sulfonic acid type perfluorocarbon polymer or fine particles coated with the polymer. The gas diffusion electrode and the sulfonic acid type perfluorocarbon polymer are adhered to each other by a hot pressing method or the like.

【0014】集電体は燃料ガス又は酸化剤ガスの通路と
なる溝が形成された導電性カーボン板等が用いられる。
As the current collector, a conductive carbon plate or the like in which a groove serving as a passage for fuel gas or oxidant gas is formed is used.

【0015】[0015]

【作用】本発明で良好なの効果が達成される機構は必ず
しも明らかではないが、以下のように考えている。水素
ガス燃料電池においては以下の反応に従って化学エネル
ギーが電気エネルギーに変換される。 負極: H2 →2H+ +2e- 正極: 1/2O2 +2H+ + 2e- → H2 O 燃料電池における陽イオン交換膜中のプロトンの移動性
は、該膜の含水率に大きく関係し、含水率が高いほどプ
ロトン移動性は高く、膜抵抗は低下する。
The mechanism by which the good effect of the present invention is achieved is not clear, but it is considered as follows. In a hydrogen gas fuel cell, chemical energy is converted into electric energy according to the following reaction. Negative electrode: H 2 → 2H + + 2e Positive electrode: 1 / 2O 2 + 2H + + 2e → H 2 O The mobility of protons in a cation exchange membrane in a fuel cell is greatly related to the water content of the membrane, and The higher the ratio, the higher the proton mobility and the lower the membrane resistance.

【0016】陽イオン交換膜の正極側は上記の反応に従
って水を発生するため、高含水状態となりプロトンの移
動性も高い状態に維持されるが、一方膜の負極側は相対
的に含水率が低くなり、膜中のプロトン移動は負極が律
速になると推定される。ところで正極で発生した水分子
は膜内を負極側へ拡散するが、かかる膜の正極側に高い
含水特性を有する層を設置することにより、膜内の水分
子の拡散が加速されると考えられる。この結果、膜の負
極側の低含水状態を緩和し抵抗の低い膜が得られる。
Since the positive electrode side of the cation exchange membrane generates water according to the above reaction, it has a high water content state and the mobility of protons is also kept high, while the negative electrode side of the membrane has a relatively high water content. It becomes lower, and it is estimated that the rate of proton transfer in the film becomes rate-determining at the negative electrode. By the way, the water molecules generated in the positive electrode diffuse into the negative electrode side in the film, but it is considered that the diffusion of the water molecule in the film is accelerated by installing a layer having high water-containing property on the positive electrode side of the film. . As a result, a low water content state on the negative electrode side of the film is relaxed to obtain a film having low resistance.

【0017】[0017]

【実施例】【Example】

実施例1 特開平2−88645号公報に記載されている方法に準
拠し、CF2 =CF2とCF2 =CFO(CF2 CFC
3 )O(CF22 SO2 Fとの共重合体からなるイ
オン交換容量1.0ミリ当量/g乾燥樹脂、及び1.1
ミリ当量/g乾燥樹脂の2種類の共重合体を得た。前者
の共重合体を220℃で押し出し製膜し、厚さ80μm
のフィルムを得た。次に後者の共重合体を220℃で押
し出し製膜し、厚さ20μmのフィルムを得た。
Example 1 CF 2 ═CF 2 and CF 2 ═CFO (CF 2 CFC) based on the method described in JP-A-2-88645.
F 3 ) O (CF 2 ) 2 SO 2 F and ion exchange capacity of 1.0 meq / g dry resin, and 1.1
Two types of copolymer of milliequivalent / g dry resin were obtained. The former copolymer was extruded at 220 ° C to form a film, and the thickness was 80 μm.
I got a film of. Next, the latter copolymer was extruded at 220 ° C. to form a film, to obtain a film having a thickness of 20 μm.

【0018】上記2種類の共重合体フィルムを220℃
でロールを用いて、積層した後、ジメチルスルホキシド
30重量%と苛性カリ15重量%との混合水溶液中で加
水分解を行い、水洗した後1Nの塩酸中に浸漬した。次
に膜を水洗し、膜の四辺を専用治具で拘束した後60
℃、1時間乾燥し陽イオン交換膜を製造した。
The above two kinds of copolymer films are heated at 220 ° C.
After being laminated by using a roll, the mixture was hydrolyzed in a mixed aqueous solution of 30% by weight of dimethylsulfoxide and 15% by weight of caustic potash, washed with water and then immersed in 1N hydrochloric acid. Next, after washing the membrane with water and restraining the four sides of the membrane with special jigs, 60
It was dried at ℃ for 1 hour to produce a cation exchange membrane.

【0019】イオン交換容量1.0ミリ当量/g乾燥樹
脂、及び1.1ミリ当量/g乾燥樹脂の共重合体の90
℃の純水中の含水率はそれぞれ、50重量%、70重量
%であった。
Ion exchange capacity of 1.0 meq / g dry resin, and 1.1 meq / g dry resin copolymer 90
The water contents in pure water at 0 ° C were 50% by weight and 70% by weight, respectively.

【0020】この陽イオン交換膜を用いた燃料電池特性
を評価した。白金触媒微粒子を担持させたカーボンブラ
ック粉末にポリテトラフルオロエチレンを混入し、ロー
ルプレスを用いて厚さ250μmのシート状のガス拡散
電極を作製した。上記2枚のガス拡散電極の間に上記陽
イオン交換膜を挿入し平板熱プレス機を用いて積層する
ことにより膜電極接合体を作製した。膜電極接合体の白
金触媒量は膜面積1cm2 当り1mgであった。
The fuel cell characteristics using this cation exchange membrane were evaluated. Polytetrafluoroethylene was mixed in carbon black powder supporting platinum catalyst fine particles, and a 250 μm thick sheet-shaped gas diffusion electrode was produced by using a roll press. A membrane electrode assembly was produced by inserting the cation exchange membrane between the two gas diffusion electrodes and stacking them using a flat plate heat press. The amount of platinum catalyst in the membrane electrode assembly was 1 mg per 1 cm 2 of membrane area.

【0021】次に、膜電極接合体をチタン製の集電体、
PTFE製のガス供給室、ヒーターの順番で両側からは
さみ、有効膜面積9cm2 の燃料電池を組みあげた。こ
のとき負極側に陽イオン交換膜の1.1ミリ当量g/乾
燥樹脂の重合体フィルムが、正極に1.0ミリ当量/g
乾燥樹脂の重合体フィルムが面するように燃料電池を組
みあげた。セルの温度を80℃に保ち、正極に酸素、負
極に水素をそれぞれ5気圧で供給したときの電流密度に
対する端子電圧を測定したところ電流密度1A/cm2
でセル電圧0.62Vであった。
Next, the membrane electrode assembly is used as a titanium current collector,
A gas supply chamber made of PTFE and a heater were sandwiched in this order from both sides, and a fuel cell having an effective membrane area of 9 cm 2 was assembled. At this time, 1.1 meq of the cation exchange membrane / polymer film of dry resin on the negative electrode side, 1.0 meq / g of the positive electrode
The fuel cell was assembled with the polymer film of the dry resin facing. When the cell temperature was maintained at 80 ° C. and oxygen was supplied to the positive electrode and hydrogen was supplied to the negative electrode at 5 atm, respectively, the terminal voltage with respect to the current density was measured. The current density was 1 A / cm 2
The cell voltage was 0.62V.

【0022】比較例1 実施例1で使用したのと同じイオン交換容量1.0ミリ
当量/g乾燥樹脂の共重合体単独を220℃で押出し製
膜し、厚さ100μmのフィルムを得た。これを実施例
1と同様な処理を施し、陽イオン交換膜を製造した。実
施例1と同様な方法により燃料電池を組みあげた後、同
様な条件下で電流密度に対する端子電圧を測定したとこ
ろ電流密度1A/cm2 でセル電圧0.60Vであっ
た。
Comparative Example 1 A copolymer of the same ion exchange capacity of 1.0 meq / g dry resin as used in Example 1 was extruded at 220 ° C. to form a film having a thickness of 100 μm. This was treated in the same manner as in Example 1 to produce a cation exchange membrane. After assembling the fuel cell by the same method as in Example 1, the terminal voltage with respect to the current density was measured under the same conditions and the cell density was 0.60 V at a current density of 1 A / cm 2 .

【0023】上記の結果からわかるように、実施例1の
陽イオン交換膜は比較例1の膜に比べ、燃料電池を組み
あげたときのエネルギー損失が小さい。
As can be seen from the above results, the cation exchange membrane of Example 1 has a smaller energy loss when the fuel cell is assembled than the membrane of Comparative Example 1.

【0024】[0024]

【発明の効果】従来膜にない低い電気抵抗を有する陽イ
オン交換膜を固体高分子電解質とすることにより、高性
能の固体高分子電解質型燃料電池が得られる。
EFFECTS OF THE INVENTION By using a cation exchange membrane having a low electric resistance, which is not available in conventional membranes, as a solid polymer electrolyte, a high performance solid polymer electrolyte fuel cell can be obtained.

フロントページの続き (72)発明者 三宅 晴久 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内Front page continuation (72) Inventor Haruhisa Miyake 1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa Asahi Glass Co., Ltd. Central Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】スルホン酸基を含有するパーフルオロカー
ボン重合体からなる陽イオン交換膜を固体高分子電解質
とする燃料電池において、上記陽イオン交換膜が、異な
る含水率を有する少なくとも2層以上のパーフルオロカ
ーボン重合体フィルムの積層体からなり、その正極に面
する側のフィルムの含水率が最も高いことを特徴とする
固体高分子電解質型燃料電池。
1. A fuel cell comprising a cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group as a solid polymer electrolyte, wherein the cation exchange membrane has at least two layers having different water contents. A polymer electrolyte fuel cell, comprising a laminate of fluorocarbon polymer films, wherein the film on the side facing the positive electrode has the highest water content.
【請求項2】正極に面するパーフルオロカーボン重合体
フィルムの含水率が、負極に面するパーフルオロカーボ
ン重合体フィルムのそれよりも5〜50重量%だけ大き
い請求項1の固体高分子電解質型燃料電池。
2. A solid polymer electrolyte fuel cell according to claim 1, wherein the water content of the perfluorocarbon polymer film facing the positive electrode is higher by 5 to 50% by weight than that of the perfluorocarbon polymer film facing the negative electrode. .
【請求項3】パーフルオロカーボン重合体フィルムの含
水率が30〜110重量%である請求項1又は2の固体
高分子電解質型燃料電池。
3. The solid polymer electrolyte fuel cell according to claim 1, wherein the water content of the perfluorocarbon polymer film is 30 to 110% by weight.
【請求項4】パーフルオロカーボン重合体がCF2 =C
2 とCF2 =CF−(OCF2 CFX)m −Oq
(CF2n −A(式中m=0〜3、n=0〜12、q
=0又は1、X=F又はCF3 、A=スルホン酸型官能
基)との共重合体からなる請求項1、2又は3の固体高
分子電解質型燃料電池。
4. The perfluorocarbon polymer is CF 2 ═C.
F 2 and CF 2 = CF- (OCF 2 CFX ) m -O q -
(CF 2) n -A (wherein m = 0~3, n = 0~12, q
= 0 or 1, X = F or CF 3 , A = sulfonic acid type functional group), The solid polymer electrolyte fuel cell according to claim 1, 2 or 3.
JP5039420A 1993-02-03 1993-02-03 Improved solid high polymer electrolytic type fuel cell Pending JPH06231782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5039420A JPH06231782A (en) 1993-02-03 1993-02-03 Improved solid high polymer electrolytic type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5039420A JPH06231782A (en) 1993-02-03 1993-02-03 Improved solid high polymer electrolytic type fuel cell

Publications (1)

Publication Number Publication Date
JPH06231782A true JPH06231782A (en) 1994-08-19

Family

ID=12552496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039420A Pending JPH06231782A (en) 1993-02-03 1993-02-03 Improved solid high polymer electrolytic type fuel cell

Country Status (1)

Country Link
JP (1) JPH06231782A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629557A1 (en) * 1988-03-29 1989-10-06 Festo Kg NON-RETURN VALVE
US6355370B2 (en) 1997-11-27 2002-03-12 Aisin Seiki Kabushiki Kaisha Solid polyelectrolyte fuel cell having a solid polyelectrolyte membrane with varying water content
WO2004051776A1 (en) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
JP2005174764A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Fuel cell system, its manufacturing method, and its operation
WO2009005156A1 (en) * 2007-07-02 2009-01-08 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and fuel cell employing it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629557A1 (en) * 1988-03-29 1989-10-06 Festo Kg NON-RETURN VALVE
US6355370B2 (en) 1997-11-27 2002-03-12 Aisin Seiki Kabushiki Kaisha Solid polyelectrolyte fuel cell having a solid polyelectrolyte membrane with varying water content
WO2004051776A1 (en) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
US7011905B2 (en) 2002-12-02 2006-03-14 Sanyo Electric Co., Ltd. Solid polymer electrolyte membrane, solid polymer electrolyte fuel cell using the membrane and method of fabricating the same
JP2005174764A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Fuel cell system, its manufacturing method, and its operation
JP4586358B2 (en) * 2003-12-11 2010-11-24 株式会社エクォス・リサーチ Fuel cell system
WO2009005156A1 (en) * 2007-07-02 2009-01-08 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and fuel cell employing it
JP2009016074A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Electrolyte membrane, and fuel cell using the same
CN102569855A (en) * 2007-07-02 2012-07-11 丰田自动车株式会社 Electrolyte membrane and fuel cell employing it
US8835076B2 (en) 2007-07-02 2014-09-16 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and fuel cell using the same

Similar Documents

Publication Publication Date Title
US5981097A (en) Multiple layer membranes for fuel cells employing direct feed fuels
US7488788B2 (en) Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
US5656386A (en) Electrochemical cell with a polymer electrolyte and process for producing these polymer electrolytes
US6869714B2 (en) Electrode-membrane assembly and process for the preparation thereof
US7326737B2 (en) Polymer electrolyte membranes crosslinked by direct fluorination
JP3342726B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same
US20070202377A1 (en) Electrolyte material, electrolyte membrane and membrane-electrolyte assembly for polymer electrolyte fuel cells
WO1994019839A1 (en) Ion exchange membrane for fuel cell
JP3382654B2 (en) Solid polymer electrolyte fuel cell
JP2001229936A (en) Electrolytic film and its production method
JP3541466B2 (en) Improved solid polymer electrolyte fuel cell
CA2143211A1 (en) Ion exchange membrane having increased efficiency in proton exchange processes
JPH11135136A (en) Solid poly electrolyte type fuel cell
JPH06231783A (en) Improved solid high polymer electrolytic type fuel cell
JPH06231782A (en) Improved solid high polymer electrolytic type fuel cell
JP4848587B2 (en) ELECTROLYTE MATERIAL FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL
JPH09219206A (en) Electrochemical element
JP2001243964A (en) Solid polymer electrolyte fuel cell
JPH06231778A (en) Solid high polymer electrolytic fuel cell
JPH11162485A (en) Solid polymer electrolyte fuel cell
JP4867081B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same
JPH06260185A (en) Fuel cell with solid highpolymer electrolyte
JPH06275301A (en) Fuel cell
JP2000268834A (en) Proton conductive fuel cell
JPH06260184A (en) Fuel cell with solid highpolymer electrolyte