JP3342726B2 - Solid polymer electrolyte fuel cell and method of manufacturing the same - Google Patents

Solid polymer electrolyte fuel cell and method of manufacturing the same

Info

Publication number
JP3342726B2
JP3342726B2 JP03414293A JP3414293A JP3342726B2 JP 3342726 B2 JP3342726 B2 JP 3342726B2 JP 03414293 A JP03414293 A JP 03414293A JP 3414293 A JP3414293 A JP 3414293A JP 3342726 B2 JP3342726 B2 JP 3342726B2
Authority
JP
Japan
Prior art keywords
fuel cell
cation exchange
exchange membrane
solid polymer
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03414293A
Other languages
Japanese (ja)
Other versions
JPH06231779A (en
Inventor
正之 田村
清成 實方
義明 樋口
晴久 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP03414293A priority Critical patent/JP3342726B2/en
Publication of JPH06231779A publication Critical patent/JPH06231779A/en
Application granted granted Critical
Publication of JP3342726B2 publication Critical patent/JP3342726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質型燃
料電池及びその製造方法に関する。
The present invention relates, related to the solid polymer electrolyte fuel cell and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年プロトン伝導性の高分子膜を電解質
として用いる燃料電池(固体高分子電解質型燃料電池)
の研究が進んでいる。固体高分子電解質型燃料電池は、
低温で作動し出力密度が高く小型化が可能であるという
特徴を有し、車載用電源等の用途に対し有望視されてい
る。
2. Description of the Related Art In recent years, a fuel cell using a proton conductive polymer membrane as an electrolyte (solid polymer electrolyte fuel cell)
Research is progressing. Solid polymer electrolyte fuel cells
It has the feature that it operates at low temperature and has a high output density and can be miniaturized, and is expected to be used for applications such as power supplies for vehicles.

【0003】[0003]

【発明が解決しようとする課題】固体高分子電解質型燃
料電池に用いられる高分子膜は、通常厚さ100〜20
0μmのプロトン伝導性イオン交換膜が用いられ、特に
スルホン酸基を有するパーフルオロカーボン重合体から
なる陽イオン交換膜が基本特性に優れ広く検討されてい
る。しかし、現在提案されている陽イオン交換膜の電気
抵抗は、より高出力密度の電池を得る観点から必ずしも
十分に低いとは言えない。
The polymer membrane used for the solid polymer electrolyte fuel cell usually has a thickness of 100 to 20.
A proton conductive ion exchange membrane of 0 μm is used, and a cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group has been widely studied because of its excellent basic characteristics. However, the electric resistance of the currently proposed cation exchange membrane is not necessarily sufficiently low from the viewpoint of obtaining a battery with a higher output density.

【0004】陽イオン交換膜の電気抵抗を低減する方法
としてはスルホン酸基濃度の増加と膜厚の低減がある
が、スルホン酸基濃度の著しい増加は膜の機械的強度を
低下させたり、長期運転において膜がクリープしやす
なり耐久性を低下させるなどの問題点が生じる。一方膜
厚の低減は膜の機械的強度を低下させたり、更にガス拡
散電極との接合等の加工性・取扱い性を低下させるなど
の問題点が生じる。
As a method for reducing the electric resistance of the cation exchange membrane, there is an increase in the sulfonic acid group concentration and a decrease in the film thickness. However, a remarkable increase in the sulfonic acid group concentration causes a decrease in the mechanical strength of the membrane or a long term. problems such as film reduces the ease no longer durability creep in operation occurs. On the other hand, reducing the film thickness causes problems such as lowering the mechanical strength of the film and further lowering the workability and handling properties such as bonding with the gas diffusion electrode.

【0005】上記の問題点を解決する方法として、スル
ホン酸基を含有するパーフルオロカーボン重合体のフィ
ルムとポリテトラフルオロエチレン(PTFE)の多孔
体との複合陽イオン交換膜が提案された(マーク.W.
バーブルッジら、AIChEジャーナル、1992,3
8,93。以下、文献1という。)が、膜厚は薄くでき
るものの多孔体状のPTFEでは膜の電気抵抗が十分に
低下しないことがわかった。
As a method for solving the above problems, a composite cation exchange membrane comprising a film of a perfluorocarbon polymer containing a sulfonic acid group and a porous material of polytetrafluoroethylene (PTFE) has been proposed (Mark. W.
Barbrudge et al., AIChE Journal, 1992, 3
8,93. Hereinafter, this is referred to as Document 1. However, it has been found that although the film thickness can be reduced, the electrical resistance of the film is not sufficiently reduced with the porous PTFE.

【0006】[0006]

【課題を解決するための手段】本発明は前述の問題点を
解決すべくなされたものであり、フィブリル状のフルオ
ロカーボン重合体補強材で補強されたスルホン酸基を含
有するパーフルオロカーボン重合体からなる陽イオン交
換膜を固体高分子電解質とし、該陽イオン交換膜の表面
にガス拡散電極が密着して配置されていることを特徴
する固体高分子電解質型の燃料電池を提供する。 また、
スルホン酸基を含有するパーフルオロカーボン重合体と
PTFEのファインパウダーとを混合した後、押出し成
膜してフィブリル状のPTFEからなる補強材で補強さ
れた陽イオン交換膜とし、該陽イオン交換膜を固体高分
子電解質としてその表面にガス拡散電極を密着して配置
することを特徴とする固体高分子電解質型の燃料電池の
製造方法を提供する。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has been developed to solve the above-mentioned problems and to provide a sulfonic acid group-containing resin reinforced with a fibril- like fluorocarbon polymer reinforcing material. A cation exchange membrane made of a fluorocarbon polymer is used as a solid polymer electrolyte, and the surface of the cation exchange membrane is
The gas diffusion electrode is disposed in close contact that provides a fuel cell of a solid polymer electrolyte type, wherein the. Also,
A perfluorocarbon polymer containing a sulfonic acid group;
After mixing with PTFE fine powder, extrusion molding
Membrane and reinforced with fibril-like PTFE reinforcement
Cation exchange membrane, and the cation exchange membrane
Gas diffusion electrode is placed in close contact with the surface as a proton electrolyte
Of a polymer electrolyte fuel cell
A manufacturing method is provided.

【0007】本発明において補強材の構成材料であるフ
ルオロカーボン重合体としては、テトラフルオロエチレ
ン、ヘキサフルオロプロピレンの如きパーフルオロオレ
フィン、クロロトリフルオロエチレン、パーフルオロ
(アルキルビニルエーテル)等の単独重合体又は共重合
体が例示される。その具体例としてはPTFE、テトラ
フルオロエチレン−ヘキサフルオロプロピレン共重合体
(FEP)、テトラフルオロエチレン−パーフルオロ
(プロピルビニルエーテル)共重合体(PFA)、ポリ
クロロトリフルオロエチレン、テトラフルオロエチレン
−パーフルオロ(2,2−ジメチル−1,3−ジオキソ
ール)共重合体、ポリパーフルオロ(ブテニルビニルエ
ーテル)などが挙げられるが、特にPTFE、FEP又
はPFAなどのパーフルオロカーボン重合体が特性上好
ましい。
In the present invention, the fluorocarbon polymer which is a constituent material of the reinforcing material may be a homopolymer or a copolymer such as perfluoroolefin such as tetrafluoroethylene and hexafluoropropylene, chlorotrifluoroethylene and perfluoro (alkyl vinyl ether). Polymers are exemplified. Specific examples thereof include PTFE, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoro (propyl vinyl ether) copolymer (PFA), polychlorotrifluoroethylene, and tetrafluoroethylene-perfluoro. Examples thereof include (2,2-dimethyl-1,3-dioxole) copolymer and polyperfluoro (butenyl vinyl ether), and a perfluorocarbon polymer such as PTFE, FEP or PFA is particularly preferable in terms of characteristics.

【0008】かかる重合体は、フィブリル状の形態で
スルホン酸基を含有する(以下、スルホン酸型とい
う。)パーフルオロカーボン重合体からなる陽イオン交
換膜の補強材とされる。フィブリル状の形態は文献1に
おけるPTFE多孔体と比較して陽イオン交換膜への混
入の割合が任意に選定可能であること及び電気抵抗の上
昇が少ないこと、更に寸法安定性に優れていること等の
利点を有する
[0008] Such polymers are in the form of fibrils ,
It is used as a reinforcing material for a cation exchange membrane made of a perfluorocarbon polymer containing a sulfonic acid group (hereinafter referred to as a sulfonic acid type). Fibrillar forms that increase the及beauty electrical resistance is small can be compared to the PTFE porous body in document 1 can be arbitrarily selected percentage of incorporation of the cation exchange membrane, further excellent dimensional stability It has advantages such as that you are.

【0009】上記補強材の陽イオン交換膜への適用方法
は特に限定されず、例えば、陽イオン交換膜を構成する
スルホン酸型パーフルオロカーボン重合体とPTFEの
ファインパウダーを混合した後押出し成膜する方法等が
採用される。
The method of applying the reinforcing material to the cation exchange membrane is not particularly limited. For example , a sulfonic acid-type perfluorocarbon polymer constituting the cation exchange membrane and PTFE fine powder are mixed and then extruded to form a film. The method is adopted.

【0010】本発明に用いられるスルホン酸型パーフル
オロカーボン重合体としては、テトラフルオロエチレン
とCF2=CF−(OCF2CFX)m−Oq−(CF2n
−A(式中mは0〜3、nは0〜12、qは0又は1、
XはF又はCF3、Aはスルホン酸基。)で表されるフ
ルオロビニル化合物との共重合体が好ましく採用可能で
ある。
The sulfonic acid type perfluorocarbon polymer used in the present invention includes tetrafluoroethylene and CF 2 CFCF— (OCF 2 CFX) m —O q — (CF 2 ) n
-A (m is 0 to 3, n is 0 to 12, q is 0 or 1,
X is F or CF 3 , A is a sulfonic acid group. A copolymer with a fluorovinyl compound represented by the formula (1) can be preferably employed.

【0011】上記フルオロビニル化合物の好ましい例と
しては、CF2=CFO(CF2rSO3CF2=C
FOCF2CF(CF3)O(CF2sSO3CF2
CF(CF2tSO3CF2=CF(OCF2CF
(CF3))uO(CF22SO3などが挙げられ
る。ただし、rは1〜8であり、sは1〜8であり、t
は0〜8であり、uは1〜5である。かかるスルホン酸
型パーフルオロカーボン重合体中のスルホン酸基の濃
度、即ちイオン交換容量としては0.5〜2.0ミリ当
量/g乾燥樹脂、更には0.7〜1.6ミリ当量/g乾
燥樹脂の範囲が好ましい。イオン交換容量がこの範囲よ
り低い場合には膜の電気抵抗が大きくなり、一方高い場
合には膜の機械的強度が十分になりにくい。
Preferred examples of the above fluorovinyl compound include CF 2 CFCFO (CF 2 ) r SO 3 H and CF 2 CC.
FOCF 2 CF (CF 3 ) O (CF 2 ) s SO 3 H , CF 2 =
CF (CF 2 ) t SO 3 H , CF 2 = CF (OCF 2 CF
(CF 3 )) uO (CF 2 ) 2 SO 3 H , and the like. Where r is 1 to 8, s is 1 to 8, and t is
Is 0-8 and u is 1-5. The concentration of the sulfonic acid group in the sulfonic acid type perfluorocarbon polymer, that is, the ion exchange capacity is 0.5 to 2.0 meq / g dry resin, and further 0.7 to 1.6 meq / g dry. The range of the resin is preferred. When the ion exchange capacity is lower than this range, the electric resistance of the membrane increases, while when the ion exchange capacity is high, the mechanical strength of the membrane is hardly sufficient.

【0012】陽イオン交換膜中の、補強材として用いら
れるフルオロカーボン重合体とスルホン酸型パーフルオ
ロカーボン重合体との割合は0.1/99.9〜50/
50(重量比)、更には0.5/99.5〜40/60
(重量比)の範囲が好ましい。補強材の割合がこの範囲
より大きい場合は膜抵抗が上昇し、一方小さい場合は補
強効果が現れにくい。
In the cation exchange membrane, the ratio of the fluorocarbon polymer used as a reinforcing material to the sulfonic acid type perfluorocarbon polymer is 0.1 / 99.9 to 50 /.
50 (weight ratio), more preferably 0.5 / 99.5 to 40/60
(Weight ratio) is preferable. When the proportion of the reinforcing material is larger than this range, the membrane resistance increases, while when the proportion is small, the reinforcing effect is hard to appear.

【0013】補強されたスルホン酸型パーフルオロカー
ボン重合体からなる陽イオン交換膜は通常の既知の手法
に従ってその表面にガス拡散電極を密着させ、次いで集
電体をとりつけ燃料電池として組み立てられる。
A cation exchange membrane made of a reinforced sulfonic acid type perfluorocarbon polymer is assembled with a gas diffusion electrode on the surface thereof according to a commonly known method, and then a current collector is attached to the membrane to form a fuel cell.

【0014】ガス拡散電極は通常白金触媒微粒子を担持
させた導電性のカーボンブラック粉末をPTFEなどの
疎水性樹脂結着材で保持させた多孔質体のシートよりな
るが、該多孔質体はスルホン酸型パーフルオロカーボン
重合体や該重合体で表面を被覆された微粒子を含んでい
てもよい。ガス拡散電極と陽イオン交換膜とは加熱プレ
ス法等により密着される。
The gas diffusion electrode is usually made of a porous sheet in which conductive carbon black powder carrying platinum catalyst fine particles is held by a hydrophobic resin binder such as PTFE. It may contain an acid-type perfluorocarbon polymer or fine particles whose surface is coated with the polymer. The gas diffusion electrode and the cation exchange membrane are brought into close contact with each other by a hot press method or the like.

【0015】集電体には燃料ガス又は酸化剤ガスの通路
となる溝が形成された導電性カーボン板等が用いられ
る。
As the current collector, a conductive carbon plate having a groove serving as a passage for the fuel gas or the oxidizing gas is used.

【0016】水素ガス燃料電池では極側に水素ガスが
供給され極側には酸素又は空気が供給され、次の反応
により化学エネルギーが電気エネルギーに変換される。 極:H2→2H++2e- 極:1/2O2+2H++2e-→H2
[0016] is supplied hydrogen gas to the negative hydrogen gas fuel cells to the positive electrode side is supplied oxygen or air, chemical energy is converted into electrical energy by the following reaction. Anode: H 2 → 2H + + 2e - cathode: 1 / 2O 2 + 2H + + 2e - → H 2 O

【0017】[0017]

【実施例】実施例1 特開平2−88645号公報に記載されている方法に準
拠し、イオン交換容量1.1ミリ当量/g乾燥樹脂のC
2=CFOCF2CF(CF3)O(CF22SO2Fと
テトラフルオロエチレンとの共重合体に、本共重合体の
1重量%のPTFE製のファインパウダーを混合した
後、220℃で押出し製膜し、フィブリ ルによって補強
された厚さ100μmのフィルムを得た。次いで、ジメ
チルスルホキシド30重量%と苛性カリ15重量%とを
含む水溶液中で加水分解を行い、水洗した後1Nの塩酸
に25℃、24時間上記フィルムを浸漬した。得られた
陽イオン交換膜について(ミューレン式引裂き強度試験
装置を用いて)引裂き強度(押出し方向と平行な場合)
を測定したところ、引裂き強度は65gであった。
EXAMPLES Example 1 According to the method described in JP-A-2-88645, an ion exchange capacity of 1.1 meq / g of dry resin C
F 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 2 F and a copolymer of tetrafluoroethylene and 1% by weight of the copolymer were mixed with fine powder made of PTFE, and then mixed with 220 extruded film formation at ° C., reinforced by fibrin Le
A film having a thickness of 100 μm was obtained. Next, the film was hydrolyzed in an aqueous solution containing 30% by weight of dimethyl sulfoxide and 15% by weight of potassium hydroxide, washed with water, and then immersed in 1N hydrochloric acid at 25 ° C. for 24 hours. About the obtained cation exchange membrane, using the Mullen-type tear strength tester, tear strength (when parallel to the extrusion direction)
Was measured, the tear strength was 65 g.

【0018】比較例1 実施例1で用いたのと同一の共重合体にPTFE製ファ
インパウダーを混入せずに220℃で押出し製膜し、厚
さ100μmのフィルムを得た後、実施例1と同様な処
理を施して得られる陽イオン交換膜の引裂き強度を測定
したところ25gであった。
The PTFE-made file on the same copolymer as used in Comparative Example 1 Example 1
After extruding the film at 220 ° C. without mixing the powder and obtaining a film having a thickness of 100 μm, the tear strength of the cation exchange membrane obtained by performing the same treatment as in Example 1 was measured. there were.

【0019】実施例2 実施例1で得られたフィブリルによって補強された陽イ
オン交換膜の燃料電池特性を評価した。白金触媒微粒子
を担持させたカーボンブラック粉末にPTFEを混入
し、ロールプレスを用いて厚さ250μmのシート状の
ガス拡散電極を作製した。このガス拡散電極2枚の間に
上記陽イオン交換膜を挿入し平板熱プレス機を用いて積
層することにより膜電極接合体を作製した。膜電極接合
体の白金触媒量は膜面積cm2あたり1mgであった。
次に膜電極接合体をチタン製の集電体、PTFE製のガ
ス供給室、ヒーターの順番ではさみ、有効膜面積9cm
2の燃料電池を組み上げた。セルの温度を80℃に保
ち、正極に酸素、負極に水素をそれぞれ5気圧で供給し
た時の電流密度に対する端子電圧を測定したところ電流
密度1A/cm2においてセル電圧0.60Vであっ
た。
Example 2 The fuel cell characteristics of the cation exchange membrane reinforced with fibrils obtained in Example 1 were evaluated. PTFE was mixed with the carbon black powder carrying the platinum catalyst fine particles, and a 250 μm-thick sheet-shaped gas diffusion electrode was prepared using a roll press. The cation exchange membrane was inserted between the two gas diffusion electrodes, and laminated by using a flat plate heat press to produce a membrane electrode assembly. The platinum catalyst amount of the membrane electrode assembly was 1 mg per cm 2 of the membrane area.
Next, the membrane electrode assembly is sandwiched between a collector made of titanium, a gas supply chamber made of PTFE, and a heater in this order, and the effective membrane area is 9 cm.
We assembled 2 fuel cells. The cell voltage was 0.60 V at a current density of 1 A / cm 2 when the cell temperature was maintained at 80 ° C. and the terminal voltage was measured with respect to the current density when oxygen was supplied to the positive electrode and hydrogen was supplied to the negative electrode at 5 atm.

【0020】比較例2 比較例1で製造された補強されていない陽イオン交換膜
に対し、実施例2と同様な方法により燃料電池を組み上
げた後、同様な条件下で電流密度に対する端子電圧を測
定したところ電流密度1A/cm2においてセル電圧
0.60Vであった。
Comparative Example 2 A fuel cell was assembled in the same manner as in Example 2 with the reinforced cation exchange membrane produced in Comparative Example 1, and the terminal voltage with respect to the current density was measured under the same conditions. When measured, the cell voltage was 0.60 V at a current density of 1 A / cm 2 .

【0021】上記の結果からわかるように、実施例1の
陽イオン交換膜は、比較例1の膜に比べて大きい引裂き
強度を有するにもかかわらず、略同一の燃料電池特性を
保持できる。
[0021] As can be seen from the above results, the cation exchange membrane of Example 1, despite having a high tear strength as compared with the film of Comparative Example 1, Ru can hold substantially the same fuel cell characteristics.

【0022】[0022]

【発明の効果】従来膜にない低い電気抵抗と高い機械的
強度を有する補強された陽イオン交換膜を固体高分子電
解質とすることにより、高性能の固体高分子電解質型燃
料電池が得られる。
According to the present invention, a solid polymer electrolyte is used as a reinforced cation exchange membrane having a low electric resistance and a high mechanical strength which cannot be obtained in a conventional membrane, and a high-performance solid polymer electrolyte fuel cell can be obtained.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−141187(JP,A) 特開 昭63−37134(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/02,8/10 C08J 5/04,5/22 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-53-141187 (JP, A) JP-A-63-37134 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8 / 02,8 / 10 C08J 5 / 04,5 / 22

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】フィブリル状のフルオロカーボン重合体補
強材で補強されたスルホン酸基を含有するパーフルオロ
カーボン重合体からなる陽イオン交換膜を固体高分子電
解質とし、該陽イオン交換膜の表面にガス拡散電極が密
着して配置されていることを特徴とする固体高分子電解
質型の燃料電池。
A cation exchange membrane comprising a sulfonic acid group-containing perfluorocarbon polymer reinforced with a fibril- like fluorocarbon polymer reinforcing material is used as a solid polymer electrolyte, and gas diffusion is performed on the surface of the cation exchange membrane. Electrodes are dense
A solid polymer electrolyte type fuel cell, wherein the fuel cell is disposed while being worn .
【請求項2】陽イオン交換膜中のフルオロカーボン重合
体補強材とスルホン酸基を含有するパーフルオロカーボ
ン重合体との割合が0.1/99.9〜50/50(重
量比)である請求項1に記載の固体高分子電解質型の燃
料電池。
2. The ratio of the fluorocarbon polymer reinforcing material to the sulfonic acid group-containing perfluorocarbon polymer in the cation exchange membrane is 0.1 / 99.9 to 50/50 (weight ratio). 2. The solid polymer electrolyte fuel cell according to 1.
【請求項3】フルオロカーボン重合体補強材が、ポリテ
トラフルオロエチレン、テトラフルオロエチレン−パー
フルオロ(プロピルビニルエーテル)共重合体、又はテ
トラフルオロエチレン−ヘキサフルオロプロピレン共重
合体からなる請求項1又は2に記載の固体高分子電解質
型の燃料電池。
3. The method according to claim 1, wherein the fluorocarbon polymer reinforcing material comprises polytetrafluoroethylene, tetrafluoroethylene-perfluoro (propyl vinyl ether) copolymer, or tetrafluoroethylene-hexafluoropropylene copolymer. The solid polymer electrolyte type fuel cell according to the above.
【請求項4】スルホン酸基を含有するパーフルオロカー
ボン重合体が、CF2=CF2とCF2=CF−(OCF2
CFX)m−Oq−(CF2n−A(式中mは0〜3、n
=0〜12、qは0又は1、XはF又はCF3、Aはス
ルホン酸基。)との共重合体である請求項1、2又は3
に記載の固体高分子電解質型の燃料電池。
4. A perfluorocarbon polymer containing a sulfonic acid group, CF 2 = CF 2 and CF 2 = CF- (OCF 2
CFX) m -O q - (CF 2) n -A ( wherein m is 0 to 3, n
= 0 to 12, q is 0 or 1, X is F or CF 3, A is a sulfonic acid group. 4. The copolymer of claim 1, 2 or 3, wherein
4. The solid polymer electrolyte fuel cell according to item 1.
【請求項5】(5) スルホン酸基を含有するパーフルオロカーPerfluorocar containing sulfonic acid group
ボン重合体とポリテトラフルオロエチレンのファインパBone polymer and polytetrafluoroethylene fine particles
ウダーとを混合した後、押出し成膜してフィブリル状のPowder and then extruded to form a fibril
ポリテトラフルオロエチレンからなる補強材で補強されReinforced with polytetrafluoroethylene reinforcing material
た陽イオン交換膜とし、該陽イオン交換膜を固体高分子A cation exchange membrane, and the cation exchange membrane is a solid polymer.
電解質としてその表面にガス拡散電極を密着して配置すA gas diffusion electrode is placed in close contact with the surface as an electrolyte
ることを特徴とする固体高分子電解質型の燃料電池の製Of a solid polymer electrolyte fuel cell
造方法。Construction method.
【請求項6】6. 前記陽イオン交換膜中の補強材とスルホンReinforcing material and sulfone in the cation exchange membrane
酸基を含有するパーフルオロカーボン重合体との割合がThe ratio with the perfluorocarbon polymer containing an acid group is
0.1/99.9〜50/50(重量比)である請求項The ratio is 0.1 / 99.9 to 50/50 (weight ratio).
5に記載の固体高分子電解質型の燃料電池の製造方法。6. The method for producing a solid polymer electrolyte fuel cell according to 5.
JP03414293A 1993-01-29 1993-01-29 Solid polymer electrolyte fuel cell and method of manufacturing the same Expired - Fee Related JP3342726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03414293A JP3342726B2 (en) 1993-01-29 1993-01-29 Solid polymer electrolyte fuel cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03414293A JP3342726B2 (en) 1993-01-29 1993-01-29 Solid polymer electrolyte fuel cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06231779A JPH06231779A (en) 1994-08-19
JP3342726B2 true JP3342726B2 (en) 2002-11-11

Family

ID=12405966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03414293A Expired - Fee Related JP3342726B2 (en) 1993-01-29 1993-01-29 Solid polymer electrolyte fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3342726B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100589270C (en) * 2004-12-22 2010-02-10 旭硝子株式会社 Electrolyte membrane, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035510A (en) * 1999-07-21 2001-02-09 Asahi Glass Co Ltd Solid high polymer electrolyte fuel cell
EP1139472B1 (en) * 2000-03-31 2006-07-05 Asahi Glass Company Ltd. Electrolyte membrane for solid polymer type fuel cell and producing method thereof
IT1318593B1 (en) * 2000-06-23 2003-08-27 Ausimont Spa FLUORINATED IONOMERS.
EP1263073A1 (en) * 2001-05-31 2002-12-04 Asahi Glass Co., Ltd. Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production
EP1263074A1 (en) 2001-05-31 2002-12-04 Asahi Glass Co., Ltd. Ion exchange polymer dispersion and process for its production
JP4613614B2 (en) 2002-07-26 2011-01-19 旭硝子株式会社 POLYMER MEMBRANE, METHOD FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER FUEL CELL
JP4857560B2 (en) * 2002-09-30 2012-01-18 旭硝子株式会社 Method for producing electrolyte membrane for polymer electrolyte fuel cell
JP4907882B2 (en) 2004-03-04 2012-04-04 パナソニック株式会社 Composite electrolyte membrane, catalyst layer membrane assembly, membrane electrode assembly, and polymer electrolyte fuel cell
JP4748513B2 (en) * 2004-07-21 2011-08-17 グンゼ株式会社 Extra fine fiber and method for producing the same
DE602005014437D1 (en) 2004-12-22 2009-06-25 Asahi Glass Co Ltd Electrolyte membrane, process for their preparation and membrane electrode assembly for solid polymer fuel cells
JP4771702B2 (en) * 2005-01-07 2011-09-14 旭化成イーマテリアルズ株式会社 Polymer solid electrolyte membrane with reinforcing material
KR100712933B1 (en) * 2005-02-18 2007-05-02 대주전자재료 주식회사 Solid polymer electrolytic membrane and fuel cell employing same
JP5093870B2 (en) 2005-07-07 2012-12-12 富士フイルム株式会社 Method for producing solid electrolyte multilayer film
JP4969126B2 (en) 2005-07-07 2012-07-04 富士フイルム株式会社 SOLID ELECTROLYTE FILM, ITS MANUFACTURING METHOD, MANUFACTURING EQUIPMENT, ELECTRODE MEMBRANE COMPOSITION AND FUEL CELL
JP5151063B2 (en) 2006-04-19 2013-02-27 トヨタ自動車株式会社 Porous material for electrolyte membrane for fuel cell, production method thereof, electrolyte membrane for polymer electrolyte fuel cell, membrane-electrode assembly (MEA), and fuel cell
EP2109171A4 (en) 2006-12-14 2010-09-01 Asahi Glass Co Ltd Solid polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
JP5163209B2 (en) 2008-03-21 2013-03-13 旭硝子株式会社 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
TWI384024B (en) * 2008-11-27 2013-02-01 Ind Tech Res Inst Proton exchange membrane and method for manufacturing the same
US9012106B2 (en) 2010-06-18 2015-04-21 Shandong Huaxia Shenzhou New Material Co., Ltd Fluorine containing ionomer composite with ion exchange function, preparation method and use thereof
EP2584627B1 (en) 2010-06-18 2016-10-05 Shandong Huaxia Shenzhou New Material Co., Ltd. Composite having ion exchange function and preparation method and use thereof
EP2583747B1 (en) 2010-06-18 2016-09-21 Shandong Huaxia Shenzhou New Material Co., Ltd. Fluorine containing ionomer composite with ion exchange function, preparation method and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100589270C (en) * 2004-12-22 2010-02-10 旭硝子株式会社 Electrolyte membrane, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells

Also Published As

Publication number Publication date
JPH06231779A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
JP3342726B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same
US6869714B2 (en) Electrode-membrane assembly and process for the preparation thereof
US7179560B2 (en) Composite electrolyte membrane and fuel cell containing the same
JP3382654B2 (en) Solid polymer electrolyte fuel cell
JP5260009B2 (en) Membrane electrode assembly and fuel cell
JP4090108B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP3714766B2 (en) Electrode and membrane / electrode assembly for polymer electrolyte fuel cell
JP3541466B2 (en) Improved solid polymer electrolyte fuel cell
JPH11135136A (en) Solid poly electrolyte type fuel cell
JP3547013B2 (en) Electrode for polymer electrolyte fuel cell and fuel cell using the same
JP2001243964A (en) Solid polymer electrolyte fuel cell
JP3382655B2 (en) Improved solid polymer electrolyte fuel cell
JPH027399B2 (en)
JP4218255B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JPH09219206A (en) Electrochemical element
JPH06231778A (en) Solid high polymer electrolytic fuel cell
JP2001345111A (en) Electrolyte membrane for solid polymer fuel cell and method of manufacturing it
JP4828864B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell
JP2005060516A (en) Fluorine-based ion exchange membrane
JP4798974B2 (en) Method for producing solid polymer electrolyte membrane
JPH06231782A (en) Improved solid high polymer electrolytic type fuel cell
JP4530635B2 (en) Electrocatalyst layer for fuel cells
JPH06260185A (en) Fuel cell with solid highpolymer electrolyte
JP2002343380A (en) Electrolyte film for solid polymer fuel cell, and manufacturing method of the same
JPH06231780A (en) Improved solid high polymer electrolytic fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees