JP4530635B2 - Electrocatalyst layer for fuel cells - Google Patents

Electrocatalyst layer for fuel cells Download PDF

Info

Publication number
JP4530635B2
JP4530635B2 JP2003339468A JP2003339468A JP4530635B2 JP 4530635 B2 JP4530635 B2 JP 4530635B2 JP 2003339468 A JP2003339468 A JP 2003339468A JP 2003339468 A JP2003339468 A JP 2003339468A JP 4530635 B2 JP4530635 B2 JP 4530635B2
Authority
JP
Japan
Prior art keywords
mass
polymer
electrode catalyst
catalyst layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003339468A
Other languages
Japanese (ja)
Other versions
JP2005108588A (en
Inventor
直人 三宅
雅信 脇添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2003339468A priority Critical patent/JP4530635B2/en
Publication of JP2005108588A publication Critical patent/JP2005108588A/en
Application granted granted Critical
Publication of JP4530635B2 publication Critical patent/JP4530635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、固体高分子形燃料電池用の電極触媒層に関する。   The present invention relates to an electrode catalyst layer for a polymer electrolyte fuel cell.

燃料電池は、電池内で、水素やメタノール等を電気化学的に酸化することにより、燃料の化学エネルギーを、直接、電気エネルギーに変換して取り出すものであり、クリーンな電気エネルギー供給源として注目されている。特に、固体高分子形燃料電池は、他と比較して低温で作動することから、自動車代替動力源や家庭用コジェネレーションシステム、携帯用発電機として期待されている。
かかる固体高分子形燃料電池は、プロトン交換膜の両面に電極触媒層が接合してなる膜電極接合体(以下、MEAと称する)が少なくとも備えられている。電極触媒層としては、非特許文献1に示されるような炭素粒子に電極触媒粒子が担持された複合粒子とパーフルオロカーボンスルホン酸ポリマーからなる触媒組成物を薄くシート化したものが好適に用いられている(以下、従来型電極触媒層と称する)。尚、必要に応じて一対のガス拡散層でMEAを挟み込んだ構造のものを用いる場合もある。この場合、電極触媒層とガス拡散層の積層体をガス拡散電極と称する。
A fuel cell is one that converts the chemical energy of a fuel directly into electrical energy by electrochemically oxidizing hydrogen, methanol, etc. within the cell, and is attracting attention as a clean electrical energy supply source. ing. In particular, solid polymer fuel cells are expected to be used as alternative power sources for automobiles, household cogeneration systems, and portable generators because they operate at a lower temperature than others.
Such a polymer electrolyte fuel cell is provided with at least a membrane electrode assembly (hereinafter referred to as MEA) in which electrode catalyst layers are bonded to both surfaces of a proton exchange membrane. As the electrode catalyst layer, a thin sheet of a catalyst composition comprising composite particles in which electrode catalyst particles are supported on carbon particles and a perfluorocarbon sulfonic acid polymer as shown in Non-Patent Document 1 is suitably used. (Hereinafter referred to as a conventional electrode catalyst layer). Note that a structure in which the MEA is sandwiched between a pair of gas diffusion layers may be used as necessary. In this case, the laminate of the electrode catalyst layer and the gas diffusion layer is referred to as a gas diffusion electrode.

上記のMEAを備える燃料電池はアノード側のガス拡散電極に燃料(例えば水素)、カソード側のガス拡散電極に酸化剤(例えば酸素や空気)をそれぞれ供給し、両電極間を外部回路で接続することにより作動する。具体的には、水素を燃料とした場合、アノード触媒上にて水素が酸化されてプロトンが生じ、このプロトンがアノード電極触媒層内のパーフルオロカーボンスルホン酸ポリマーを通った後、プロトン交換膜内を移動し、カソード電極触媒層内のパーフルオロカーボンスルホン酸ポリマーを通ってカソード触媒上に達する。一方、水素の酸化によりプロトンと同時に生じた電子は外部回路を通ってカソード側ガス拡散電極に到達し、カソード触媒上にてプロトンと酸化剤中の酸素と反応して水が生成され、このとき電気エネルギーを取り出すことができる。一般的に固体高分子形燃料電池は、80℃近辺にて適切な加湿条件下にて運転することにより、高い発電効率と出力を得ることができる。
ところで、固体高分子形燃料電池を自動車用途とする場合には夏場の自動車走行を想定して、高温低加湿条件下(運転温度100〜120℃近辺で、50〜80℃低加湿(湿度12〜30RH%に相当))で燃料電池を運転できることが望まれている。しかしながら、上記のような従来型電極触媒層を用いて、高温低加湿条件下において燃料電池運転を行うと、パーフルオロカーボンスルホン酸ポリマーが熱酸化分解して劣化しやすく、フッ素イオンの溶出も起きてしまう。つまり耐久性が不十分であった。
The fuel cell having the above MEA supplies fuel (for example, hydrogen) to the gas diffusion electrode on the anode side and oxidant (for example, oxygen or air) to the gas diffusion electrode on the cathode side, and connects both electrodes with an external circuit. It works by. Specifically, when hydrogen is used as a fuel, hydrogen is oxidized on the anode catalyst to generate protons, which pass through the perfluorocarbon sulfonic acid polymer in the anode electrode catalyst layer and then pass through the proton exchange membrane. It moves and reaches the cathode catalyst through the perfluorocarbon sulfonic acid polymer in the cathode electrode catalyst layer. On the other hand, electrons generated simultaneously with protons due to oxidation of hydrogen reach the cathode side gas diffusion electrode through an external circuit, and react with protons and oxygen in the oxidizing agent on the cathode catalyst to generate water. Electric energy can be taken out. In general, a polymer electrolyte fuel cell can obtain high power generation efficiency and output by operating under an appropriate humidifying condition around 80 ° C.
By the way, when the polymer electrolyte fuel cell is used for automobiles, it is assumed that the vehicle is driven in summer, and is under high-temperature and low-humidification conditions (operating temperature of 100 to 120 ° C, low humidity of 50 to 80 ° C (humidity of 12 to It is desired that the fuel cell can be operated at 30RH%))). However, when the fuel cell operation is performed under the high temperature and low humidity conditions using the conventional electrode catalyst layer as described above, the perfluorocarbon sulfonic acid polymer is likely to be deteriorated by thermal oxidative decomposition, and fluorine ion elution occurs. End up. That is, the durability was insufficient.

電極触媒層を改良する方法として、微細粒子状及び/又は繊維状シリカをアノード電極触媒層に含有させる方法(例えば特許文献1参照)、吸水性材料として架橋ポリアクリル酸塩の微細粒子を電極触媒層に含有させる方法(例えば、特許文献2参照)、メタロキサンポリマーを電極触媒層に備える方法(例えば特許文献3,4参照)、多官能性塩基性化合物を含む電極触媒層が開示されている(例えば特許文献5参照)。このような技術で、多少の耐久性改善はみられるが、まだ十分なものとはいえなかった。
Journal of Applied electrochemistry,22,p.1-7(1992) 特開平6−111827号公報 特開平7−326361号公報 特開2001−11219号公報 特開2001−325963号公報 特開2002−246041号公報
As a method for improving the electrode catalyst layer, a method in which fine particle and / or fibrous silica is contained in the anode electrode catalyst layer (see, for example, Patent Document 1), and a fine particle of a crosslinked polyacrylate as a water-absorbing material is used as an electrode catalyst. Disclosed are a method for containing in a layer (for example, see Patent Document 2), a method for providing a metalloxane polymer in an electrode catalyst layer (for example, see Patent Documents 3 and 4), and an electrode catalyst layer containing a polyfunctional basic compound. (For example, refer to Patent Document 5). Although this technique has improved the durability slightly, it has not been sufficient.
Journal of Applied electrochemistry, 22, p. 1-7 (1992) JP-A-6-1111827 JP 7-326361 A JP 2001-11219 A JP 2001-325963 A JP 2002-26041 A

本発明は、耐熱酸化に優れ、高温低加湿条件下でも熱酸化分解の少ない電極触媒層を提供することを目的とする。   An object of the present invention is to provide an electrode catalyst layer which is excellent in heat-resistant oxidation and has little thermal oxidative decomposition even under high temperature and low humidification conditions.

本発明者らは、上記課題を解決するために鋭意研究した結果、イオン交換基を有するパーフルオロカーボン重合体とポリベンズイミダゾール、及び電極触媒から構成される燃料電池用の電極触媒層が熱酸化に対して良好な耐性を有することを見出した。そして、本発明の電極触媒層を用いて製造した膜電極接合体を備えることにより、高温低加湿条件下において、運転を行っても高耐久性を示し、かつフッ素イオンの排出が少ない燃料電池を提供できることを見出し、本発明に至った。すなわち、本発明は以下のとおりである。
(1)導電性粒子上に電極触媒粒子が担持された複合粒子を30.00質量%以上80.00質量%以下、イオン交換基を有するパーフルオロカーボン重合体を19.99質量%以上60.00質量%以下、ポリベンズイミダゾールを0.01質量%以上10.00質量%以下含有することを特徴とする燃料電池用の電極触媒層。
)(1)に記載の電極触媒層を備えた膜電極接合体。
)(1)に記載の電極触媒層を備えた固体高分子形燃料電池。
以下に、本発明の燃料電池用の電極触媒層を詳細に説明する。
As a result of diligent research to solve the above problems, the present inventors have found that an electrode catalyst layer for a fuel cell composed of a perfluorocarbon polymer having an ion exchange group, polybenzimidazole, and an electrode catalyst has been subjected to thermal oxidation. It has been found that it has good resistance. And, by providing a membrane electrode assembly manufactured using the electrode catalyst layer of the present invention, a fuel cell that exhibits high durability even when operated under high temperature and low humidification conditions and has little fluorine ion emission The present invention has been found out and can be achieved. That is, the present invention is as follows.
(1) 30.00% by mass to 80.00% by mass of composite particles in which electrocatalyst particles are supported on conductive particles, 19.99% by mass to 60.00% by mass of a perfluorocarbon polymer having an ion exchange group, and polybenzimidazole. An electrode catalyst layer for a fuel cell, characterized by containing 0.01% by mass or more and 10.00% by mass or less .
( 2 ) A membrane electrode assembly comprising the electrode catalyst layer according to ( 1) .
( 3 ) A polymer electrolyte fuel cell comprising the electrode catalyst layer according to ( 1) .
Hereinafter, the electrode catalyst layer for a fuel cell of the present invention will be described in detail.

本発明の電極触媒層を用いて製造した膜電極接合体を備えることにより、高温低加湿条件下において運転を行っても高耐久性を示し、かつフッ素イオンの溶出が少ない燃料電池を提供できる効果を有する。   By providing the membrane electrode assembly produced using the electrode catalyst layer of the present invention, it is possible to provide a fuel cell that exhibits high durability even when operated under high-temperature and low-humidification conditions and has little fluorine ion elution Have

本発明の燃料電池用の電極触媒層は、イオン交換基を有するパーフルオロカーボン重合体とポリベンズイミダゾール、及び電極触媒から構成されることを特徴とする。
該パーフルオロカーボン重合体としては、化学式(1)で表される重合体が代表例として挙げられる。

Figure 0004530635
(式中、X1 、X2 およびX3 は、それぞれ独立に、ハロゲン元素または炭素数1以上3以下のパーフルオロアルキル基、0≦a<1、0<g≦1、a+g=1、bは0以上8 以下の整数、cは0または1、d、eおよびfはそれぞれ独立に0以上6 以下の整数(但し、d+e+fは0に等しくない)、R1 およびR2は、それぞれ独立にハロゲン元素、炭素数1以上10以下のパーフルオロアルキル基またはフルオロクロロアルキル基、X4 は、COOZ、SO3 Z、PO3 2 、PO3 HZ(Zは水素原子、金属原子(Na、K、Ca等)、アミン類(NH4 、NH3 R、NH2 2 、NHR3 、NR4 (Rはアルキル基及び/又はアレーン基)) The electrode catalyst layer for a fuel cell of the present invention is characterized by comprising a perfluorocarbon polymer having an ion exchange group, polybenzimidazole, and an electrode catalyst.
A typical example of the perfluorocarbon polymer is a polymer represented by the chemical formula (1).
Figure 0004530635
Wherein X 1 , X 2 and X 3 are each independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, b Is an integer of 0 to 8, c is 0 or 1, d, e and f are each independently an integer of 0 to 6 (where d + e + f is not equal to 0), R 1 and R 2 are each independently Halogen element, perfluoroalkyl group or fluorochloroalkyl group having 1 to 10 carbon atoms, X 4 is COOZ, SO 3 Z, PO 3 Z 2 , PO 3 HZ (Z is a hydrogen atom, metal atom (Na, K , Ca, etc.), amines (NH 4 , NH 3 R, NH 2 R 2 , NHR 3 , NR 4 (R is an alkyl group and / or an arene group))

中でも、X4 =SO3 Hのパーフルオロカーボンスルホン酸ポリマーであることが好ましく、特に化学式(2)で表される短側鎖型パーフルオロカーボンスルホン酸ポリマーが好ましい。

Figure 0004530635
(式中、0≦a<1、0<g≦1、a+g=1) Among these, a perfluorocarbon sulfonic acid polymer of X 4 = SO 3 H is preferable, and a short side chain type perfluorocarbon sulfonic acid polymer represented by the chemical formula (2) is particularly preferable.
Figure 0004530635
(Where 0 ≦ a <1, 0 <g ≦ 1, a + g = 1)

該パーフルオロカーボン重合体は、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のパーフルオロオレフィン、パーフルオロアルキルビニルエーテル等の第3成分を含む共重合体であってもよい。
このようなパーフルオロカーボン重合体の当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)としては特に限定されないが、250以上2000以下であることが好ましく、250以上1200以下であることがより好ましく、400以上800以下であることが最も好ましい。より低いEW、つまりプロトン交換容量の大きい該パーフルオロカーボン重合体を用いることにより、高温低加湿条件下においても優れたプロトン伝導性を示し、燃料電池に用いた場合、運転時に高い出力を得ることができる。
ポリベンズイミダゾールとしては、例えば、化学式(3)で表される化合物、化学式(4)に表されるポリベンゾビスイミダゾール、化学式(5)で表されるポリ2,5−ベンズイミダゾール等が挙げられる。
The perfluorocarbon polymer may be a copolymer containing a third component such as perfluoroolefin such as hexafluoropropylene or chlorotrifluoroethylene, or perfluoroalkyl vinyl ether.
The equivalent mass EW (dry mass in grams per equivalent of ion-exchange group) of such a perfluorocarbon polymer is not particularly limited, but is preferably 250 or more and 2000 or less, and more preferably 250 or more and 1200 or less. Preferably, it is 400 or more and 800 or less. By using the perfluorocarbon polymer having a lower EW, that is, a large proton exchange capacity, it exhibits excellent proton conductivity even under high-temperature and low-humidity conditions, and when used in a fuel cell, a high output during operation can be obtained. it can.
Examples of the polybenzimidazole include a compound represented by the chemical formula (3), a polybenzobisimidazole represented by the chemical formula (4), and a poly 2,5-benzimidazole represented by the chemical formula (5). .

Figure 0004530635
(式中、xは、10以上1.0×107 以下の整数である)
Figure 0004530635
(Wherein x is an integer of 10 or more and 1.0 × 10 7 or less)

Figure 0004530635
(式中、lは、10以上1.0×107 以下の整数、RとR1 は、化学式(3)と同じである)
Figure 0004530635
(式中、mは、10以上1.0×107 以下の整数である)
Figure 0004530635
(In the formula, l is an integer of 10 or more and 1.0 × 10 7 or less, and R and R 1 are the same as those in chemical formula (3)).
Figure 0004530635
(In the formula, m is an integer of 10 or more and 1.0 × 10 7 or less)

該パーフルオロカーボン重合体に対するポリベンズイミダゾールの質量比としては、0.0001以上1以下であることが好ましく、0.001以上0.1以下であることがより好ましく、0.01以上0.05以下であることが最も好ましい。
該パーフルオロカーボン重合体とポリベンズイミダゾールとの混合状態は特に限定されないが、ポリマーアロイを形成していることが好ましい。ポリマーアロイの範疇には、(I)非相溶系の機械的混練物、(II)部分的に相溶した混合物、(III)完全に相溶した均一混合物、がこれに属する。本発明の電極触媒層において、該パーフルオロカーボン重合体とポリベンズイミダゾールが完全に相溶または部分的に相溶している形態がより好ましい。
本発明の電極触媒層は、さらに電極触媒を有する。電極触媒は、アノードでは燃料(例えば水素)を酸化して容易にプロトンを生ぜしめ、カソードではプロトン及び電子と酸化剤(例えば酸素や空気)を反応させて水を生成させる触媒である。電極触媒の種類には制限がないが、白金が好ましく用いられる。CO等の不純物に対する白金の耐性を強化するために、白金にルテニウム等を添加又は合金化した電極触媒が好ましく用いられる場合もある。
The mass ratio of polybenzimidazole to the perfluorocarbon polymer is preferably 0.0001 or more and 1 or less, more preferably 0.001 or more and 0.1 or less, and 0.01 or more and 0.05 or less. Most preferably.
The mixed state of the perfluorocarbon polymer and polybenzimidazole is not particularly limited, but preferably forms a polymer alloy. The category of polymer alloys includes (I) incompatible mechanical kneaded materials, (II) partially compatible mixtures, and (III) completely compatible homogeneous mixtures. In the electrode catalyst layer of the present invention, a form in which the perfluorocarbon polymer and polybenzimidazole are completely or partially compatible is more preferable.
The electrode catalyst layer of the present invention further has an electrode catalyst. The electrode catalyst is a catalyst that oxidizes fuel (for example, hydrogen) at the anode and easily generates protons, and at the cathode, reacts protons and electrons with an oxidizing agent (for example, oxygen or air) to generate water. Although there is no restriction | limiting in the kind of electrode catalyst, Platinum is used preferably. In order to enhance the resistance of platinum to impurities such as CO, an electrode catalyst obtained by adding or alloying ruthenium or the like to platinum may be preferably used.

電極面積に対する電極触媒の担持量としては、電極触媒層を形成した状態で、好ましくは0.001mg/cm2 以上10mg/cm2 以下、より好ましくは0.01mg/cm2 以上5mg/cm2 以下、最も好ましくは0.1mg/cm2 以上1mg/cm2 以下である。
通常、電極触媒は導電性粒子に電極触媒粒子が担持された複合粒子の形態で用いられる。導電性粒子としては、導電性を有するものであれば何でもよく、例えばファーネスブラック、チャンネルブラック、アセチレンブラック等のカーボンブラック、活性炭、黒鉛、各種金属が用いられる。これら導電性粒子の粒子径としては、好ましくは10オングストローム以上10μm以下、より好ましくは50オングストローム以上1μm以下、最も好ましくは100オングストローム以上5000オングストローム以下である。
電極触媒粒子の粒子径は限定されないが、10オングストローム以上1000オングストローム以下が好ましく、より好ましくは10オングストローム以上500オングストローム以下、最も好ましくは15オングストローム以上100オングストローム以下である。
The supported amount of the electrode catalyst with respect to the electrode area is preferably 0.001 mg / cm 2 to 10 mg / cm 2 , more preferably 0.01 mg / cm 2 to 5 mg / cm 2 in the state where the electrode catalyst layer is formed. Most preferably, it is 0.1 mg / cm 2 or more and 1 mg / cm 2 or less.
Usually, the electrode catalyst is used in the form of composite particles in which electrode catalyst particles are supported on conductive particles. Any conductive particles may be used as long as they have conductivity. For example, carbon black such as furnace black, channel black, and acetylene black, activated carbon, graphite, and various metals are used. The particle diameter of these conductive particles is preferably 10 angstroms or more and 10 μm or less, more preferably 50 angstroms or more and 1 μm or less, and most preferably 100 angstroms or more and 5000 angstroms or less.
The particle diameter of the electrocatalyst particles is not limited, but is preferably 10 angstroms or more and 1000 angstroms or less, more preferably 10 angstroms or more and 500 angstroms or less, and most preferably 15 angstroms or more and 100 angstroms or less.

複合粒子としては、導電性粒子に対して電極触媒粒子が、好ましくは1質量%以上99質量%以下、より好ましくは10質量%以上90質量%以下、最も好ましくは30質量%以上70質量%以下に担持されていることが好ましい。具体的には、市販のデグッサ(株)製F101RA/W、田中貴金属工業(株)製TEC10E40E等が好適な例として挙げられる。
また、本発明の電極触媒層は複合粒子が該パーフルオロカーボン重合体とポリベンズイミダゾールにより結着した構造を有するのが望ましい。
本発明の電極触媒層における複合粒子、該パーフルオロカーボン重合体、該ポリベンズイミダゾールの含有率は、それぞれ30.00質量%以上80.00質量%以下、19.99質量%以上60.00質量%以下、0.01質量%以上10.00質量%以下(合計100質量%)が好ましく、そして、それぞれ40.00質量%以上75.00質量%以下、24.95質量%以上55.00質量%以下、0.05質量%以上5.00質量%以下(合計100質量%)がより好ましく、さらに、それぞれ50.00質量%以上70.00質量%以下、29.90質量%以上49.00質量%以下、0.10質量%以上1.00質量%以下(合計100質量%)が最も好ましい。
As the composite particles, the electrocatalyst particles are preferably 1% by mass to 99% by mass, more preferably 10% by mass to 90% by mass, and most preferably 30% by mass to 70% by mass with respect to the conductive particles. It is preferable that it is supported on. Specifically, commercially available Degussa Co., Ltd. F101RA / W, Tanaka Kikinzoku Kogyo Co., Ltd. TEC10E40E etc. are mentioned as a suitable example.
The electrode catalyst layer of the present invention preferably has a structure in which composite particles are bound by the perfluorocarbon polymer and polybenzimidazole.
The content of the composite particles, the perfluorocarbon polymer, and the polybenzimidazole in the electrode catalyst layer of the present invention is 30.00% by mass or more and 80.00% by mass or less, and 19.99% by mass or more and 60.00% by mass, respectively. Hereafter, 0.01 mass% or more and 10.00 mass% or less (total 100 mass%) are preferable, and 40.00 mass% or more and 75.00 mass% or less and 24.95 mass% or more and 55.00 mass%, respectively. Hereafter, 0.05 mass% or more and 5.00 mass% or less (total 100 mass%) are more preferable, and also 50.00 mass% or more and 70.00 mass% or less, 29.90 mass% or more and 49.00 mass%, respectively. % Or less, 0.10% by mass or more and 1.00% by mass or less (total of 100% by mass) is most preferable.

本発明の電極触媒層の厚みとしては、好ましくは0.01μm以上200μm以下、より好ましくは0.1μm以上100μm以下、最も好ましくは1μm以上50μm以下である。
本発明の電極触媒層の空隙率としては特に限定されないが、好ましくは10体積%以上90体積%以下、より好ましくは20体積%以上80体積%以下、最も好ましくは30体積%以上60体積%以下である。
また、撥水性の向上のため、本発明の電極触媒層がさらにポリテトラフルオロエチレン(以下、PTFE)を含有する場合がある。この場合、PTFEの形状としては特に限定されないが、定形性のものであれば構わず、粒子状、繊維状であることが好ましく、これらが単独で使用されても混合して使用されていても構わない。
The thickness of the electrode catalyst layer of the present invention is preferably 0.01 μm or more and 200 μm or less, more preferably 0.1 μm or more and 100 μm or less, and most preferably 1 μm or more and 50 μm or less.
The porosity of the electrode catalyst layer of the present invention is not particularly limited, but is preferably 10% by volume to 90% by volume, more preferably 20% by volume to 80% by volume, and most preferably 30% by volume to 60% by volume. It is.
In order to improve water repellency, the electrode catalyst layer of the present invention may further contain polytetrafluoroethylene (hereinafter referred to as PTFE). In this case, the shape of PTFE is not particularly limited, but may be any shape as long as it has a regular shape, and is preferably in the form of particles or fibers, and these may be used alone or in combination. I do not care.

本発明の電極触媒層にPTFEを含有する場合の含有率としては、電極触媒層の全質量に対し、好ましくは0.001質量%以上20質量%以下、より好ましくは0.01質量%以上10質量%以下、最も好ましくは0.1質量%以上5質量%以下である。
また、親水性向上のため、本発明の電極触媒層がさらに金属酸化物を含有する場合がある。この場合、金属酸化物としては特に限定はないが、Al2 3 、B2 3 、MgO、SiO2 、SnO2 、TiO2 、V2 5 、WO3 、Y2 3 、ZrO2 、Zr2 3 及びZrSiO4 からなる群から選ばれた少なくとも1つを構成要素とする金属酸化物であることが好ましい。中でもAl2 3 ,SiO2 ,TiO2 、ZrO2 であることが好ましく、SiO2 が特に好ましい。
The content when PTFE is contained in the electrode catalyst layer of the present invention is preferably 0.001% by mass or more and 20% by mass or less, more preferably 0.01% by mass or more and 10% by mass with respect to the total mass of the electrode catalyst layer. It is not more than mass%, most preferably not less than 0.1 mass% and not more than 5 mass%.
Moreover, the electrode catalyst layer of this invention may contain a metal oxide further for hydrophilicity improvement. In this case, the metal oxide is not particularly limited, but Al 2 O 3 , B 2 O 3 , MgO, SiO 2 , SnO 2 , TiO 2 , V 2 O 5 , WO 3 , Y 2 O 3 , ZrO 2 , Zr 2 O 3, and ZrSiO 4 , a metal oxide having at least one member selected from the group consisting of ZrSiO 4 is preferable. Of these, Al 2 O 3 , SiO 2 , TiO 2 and ZrO 2 are preferable, and SiO 2 is particularly preferable.

本発明の電極触媒層が金属酸化物を含有する場合の含有率としては、電極触媒層の全質量に対し、好ましくは0.001質量%以上20質量%以下、より好ましくは0.01質量%以上10質量%以下、最も好ましくは0.1質量%以上5質量%以下である。
金属酸化物の形態としては、粒子状や繊維状といったものを用いても構わないが、特に非定形であることが望ましい。ここで言う非定形とは、光学顕微鏡や電子顕微鏡で観察しても、粒子状や繊維状の金属酸化物が観察されないことを言う。特に、走査型電子顕微鏡(SEM)を用いて電極触媒層を数10万倍までに拡大して観察しても、粒子状や繊維状の金属酸化物は観察されない。また、透過型電子顕微鏡(TEM)を用いて電極触媒層を数10万倍〜数100万倍に拡大して観察しても、明確に粒子状や繊維状の金属酸化物は観察することができない。このように現状の顕微鏡技術の範囲内では、金属酸化物の粒子状や繊維状を確認することができないことを指す。
As a content rate in case the electrode catalyst layer of this invention contains a metal oxide, Preferably it is 0.001 mass% or more and 20 mass% or less with respect to the total mass of an electrode catalyst layer, More preferably, it is 0.01 mass%. It is 10 mass% or less, Most preferably, it is 0.1 mass% or more and 5 mass% or less.
The metal oxide may be in the form of particles or fibers, but it is particularly desirable that the metal oxide be amorphous. The term “amorphous” as used herein means that no particulate or fibrous metal oxide is observed even when observed with an optical microscope or an electron microscope. In particular, even when the electrode catalyst layer is magnified up to several hundred thousand times using a scanning electron microscope (SEM), no particulate or fibrous metal oxide is observed. In addition, even when the electrode catalyst layer is observed by magnifying it to several hundred thousand to several million times using a transmission electron microscope (TEM), it is possible to clearly observe a particulate or fibrous metal oxide. Can not. Thus, within the scope of the current microscopic technique, it means that the particle shape or fiber shape of the metal oxide cannot be confirmed.

次に本発明の電極触媒層の製造方法について説明する。
(電極触媒層の製造方法)
本発明の電極触媒層は、例えばイオン交換基を有するパーフルオロカーボン重合体とポリベンズイミダゾールとを含むポリマー溶液中に電極触媒を分散させた電極触媒組成物を、プロトン交換膜上又はPTFEシート等の他の基材上に塗布した後、乾燥、固化して製造することができる。尚、本発明において電極触媒組成物の塗布は、スプレー法等の一般的に知られている各種方法を用いることが可能である。
該電極触媒組成物は、必要に応じてさらに溶媒を添加されて使用される。用いることができる溶媒としては水、アルコール類(エタノール、2−プロパノール、エチレングリコール、グリセリン等)、窒素化合物(ジメチルホルムアミド、ジメチルアセトアミド等)、硫黄化合物(ジメチルスルホキシド等)、フロン等の単独溶媒又は複合溶媒が挙げられる。このような溶媒の添加量としては、電極触媒組成物の全質量に対し、好ましくは0.1質量%以上90質量%以下、より好ましくは1質量%以上50質量%以下、最も好ましくは5質量%以上20質量%以下であることが望ましい。
Next, the manufacturing method of the electrode catalyst layer of this invention is demonstrated.
(Method for producing electrode catalyst layer)
The electrode catalyst layer of the present invention is obtained by, for example, treating an electrode catalyst composition in which an electrode catalyst is dispersed in a polymer solution containing a perfluorocarbon polymer having an ion exchange group and polybenzimidazole on a proton exchange membrane or a PTFE sheet. After coating on another substrate, it can be dried and solidified. In the present invention, the electrode catalyst composition can be applied by various commonly known methods such as a spray method.
The electrocatalyst composition is used after further adding a solvent as necessary. Solvents that can be used include single solvents such as water, alcohols (ethanol, 2-propanol, ethylene glycol, glycerin, etc.), nitrogen compounds (dimethylformamide, dimethylacetamide, etc.), sulfur compounds (dimethyl sulfoxide, etc.), and chlorofluorocarbons. A composite solvent may be mentioned. The addition amount of such a solvent is preferably 0.1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and most preferably 5% by mass with respect to the total mass of the electrode catalyst composition. % Or more and 20% by mass or less is desirable.

また一方、ガス拡散層と電極触媒層が積層した米国DE NORA NORTH AMERICA社製ELAT(登録商標)のようなガス拡散電極に、該パーフルオロカーボン重合体とポリベンズイミダゾールを含むポリマー溶液を塗布もしくは浸漬・塗布せしめた後に、乾燥、固化することによっても本発明の電極触媒層を得ることができる。
またさらに、電極触媒層を作製後に塩酸等の無機酸に浸漬を行い、該パーフルオロカーボン重合体のイオン交換基をプロトン基にする場合がある。酸処理の温度としては、好ましくは5℃以上90℃以下、より好ましくは10℃以上70℃以下、最も好ましくは20℃以上50℃以下である。
On the other hand, a polymer solution containing the perfluorocarbon polymer and polybenzimidazole is applied to or immersed in a gas diffusion electrode such as ELAT (registered trademark) manufactured by DE NORA NORTH AMERICA, in which a gas diffusion layer and an electrode catalyst layer are laminated. -After apply | coating, the electrode catalyst layer of this invention can be obtained also by drying and solidifying.
Furthermore, the electrode catalyst layer may be produced and then immersed in an inorganic acid such as hydrochloric acid to convert the ion-exchange group of the perfluorocarbon polymer into a proton group. The acid treatment temperature is preferably 5 ° C. or higher and 90 ° C. or lower, more preferably 10 ° C. or higher and 70 ° C. or lower, and most preferably 20 ° C. or higher and 50 ° C. or lower.

次に上記イオン交換基を有するパーフルオロカーボン重合体とポリベンズイミダゾールとを含むポリマー溶液の製造方法についてに詳しく説明する。
〈(1)イオン交換基を有するパーフルオロカーボン重合体の製造方法〉
上述のイオン交換基を有するパーフルオロカーボン重合体は、下記化学式(6)に示される前駆体ポリマーを重合した後、加水分解を行って製造することができる。

Figure 0004530635
(式中、X1 、X2 およびX3 は、それぞれ独立に、ハロゲン元素または炭素数1以上3以下のパーフルオロアルキル基、0≦a<1、0<g≦1、a+g=1、bは0以上8以下の整数、cは0または1、d、eおよびfはそれぞれ独立に0以上6以下の整数(但し、d+e+fは、0に等しくない)、R1 およびR2はそれぞれ独立にハロゲン元素、炭素数1以上10以下のパーフルオロアルキル基またはフルオロクロロアルキル基、X5 はCOOR3 ,COR4 、SO2 4 、PO2 HR4 、またはPO2 4 (R3 は炭素数1〜3の炭化水素系アルキル基、R4 はハロゲン元素)) Next, a method for producing a polymer solution containing the perfluorocarbon polymer having an ion exchange group and polybenzimidazole will be described in detail.
<(1) Method for producing perfluorocarbon polymer having ion exchange group>
The above-mentioned perfluorocarbon polymer having an ion exchange group can be produced by polymerizing a precursor polymer represented by the following chemical formula (6), followed by hydrolysis.
Figure 0004530635
Wherein X 1 , X 2 and X 3 are each independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, b Is an integer from 0 to 8, c is 0 or 1, d, e and f are each independently an integer from 0 to 6 (where d + e + f is not equal to 0), R 1 and R 2 are each independently Halogen element, perfluoroalkyl group or fluorochloroalkyl group having 1 to 10 carbon atoms, X 5 is COOR 3 , COR 4 , SO 2 R 4 , PO 2 HR 4 , or PO 2 R 4 (R 3 is carbon number 1 to 3 hydrocarbon alkyl groups, R 4 is a halogen element))

1)前駆体ポリマーの製造方法
前駆体ポリマーは、フッ化オレフィンとフッ化ビニル化合物とを共重合させることにより製造される。具体的なフッ化オレフィンとしては、CF2 =CF2 ,CF2 =CFCl,CF2 =CCl2 等が、具体的なフッ化ビニル化合物としては、CF2 =CFO(CF2 Z −SO2 F,CF2 =CFOCF2 CF(CF3 )O(CF2 Z −SO2 F,CF2 =CF(CF2 Z −SO2 F,CF2 =CF(OCF2 CF(CF3 ))Z −(CF2 Z-1 −SO2 F,CF2 =CFO(CF2 Z −CO2 R,CF2 =CFOCF2 CF(CF3 )O(CF2 Z −CO2 R,CF2 =CF(CF2 Z −CO2 R,CF2 =CF(OCF2 CF(CF3 ))Z −(CF2 2 −CO2 R(Zは1〜8の整数、Rは炭素数1〜3の炭化水素アルキル基を表す)等が挙げられる。
1) Method for Producing Precursor Polymer A precursor polymer is produced by copolymerizing a fluorinated olefin and a vinyl fluoride compound. Specific fluorinated olefin, CF 2 = CF 2, CF 2 = CFCl, CF 2 = CCl 2 , and examples of the specific fluorinated vinyl compounds, CF 2 = CFO (CF 2 ) Z -SO 2 F, CF 2 = CFOCF 2 CF (CF 3) O (CF 2) Z -SO 2 F, CF 2 = CF (CF 2) Z -SO 2 F, CF 2 = CF (OCF 2 CF (CF 3)) Z - (CF 2) Z- 1 -SO 2 F, CF 2 = CFO (CF 2) Z -CO 2 R, CF 2 = CFOCF 2 CF (CF 3) O (CF 2) Z -CO 2 R, CF 2 = CF (CF 2) Z -CO 2 R, CF 2 = CF (OCF 2 CF (CF 3)) Z - (CF 2) 2 -CO 2 R (Z is an integer of 1 to 8, R represents the number of carbon atoms 1 to 3 hydrocarbon alkyl groups).

前駆体ポリマーの重合方法としては、フッ化ビニル化合物をフロン等の溶媒に溶かした後、テトラフルオロエチレンのガスと反応させ重合する溶液重合法、フロン等の溶媒を使用せずに重合する塊状重合法、フッ化ビニル化合物を界面活性剤とともに水中に仕込んで乳化させた後、テトラフルオロエチレンのガスと反応させ重合する乳化重合法等が挙げられる。
前駆体ポリマーの、JIS K−7210に基づいた270℃、荷重21.2N、オリフィス内径2.09mmで測定されるメルトインデックスMI( g/ 10分) は限定されないが、0.001以上1000以下が好ましく、より好ましくは0.01以上100以下、最も好ましくは0.1以上10以下である。
The polymerization method of the precursor polymer includes a solution polymerization method in which a vinyl fluoride compound is dissolved in a solvent such as chlorofluorocarbon, and then reacted with a tetrafluoroethylene gas to polymerize, or a bulk polymer that is polymerized without using a solvent such as chlorofluorocarbon. Examples thereof include an emulsion polymerization method in which a vinyl fluoride compound is mixed with water in a surfactant and emulsified in water and then reacted with a tetrafluoroethylene gas for polymerization.
The melt index MI (g / 10 minutes) measured at 270 ° C., load 21.2 N, orifice inner diameter 2.09 mm based on JIS K-7210 of the precursor polymer is not limited, but is 0.001 or more and 1000 or less. More preferably, it is 0.01 or more and 100 or less, and most preferably 0.1 or more and 10 or less.

2)前駆体ポリマーの加水分解方法
次に、前駆体ポリマーを、塩基性反応液体に浸漬させて加水分解処理を行う。
該反応液体は限定されないが、水酸化カリウム、水酸化ナトリウム等のアルカリ金属またはアルカリ土類金属の水酸化物の水溶液が好ましい。該反応液体のアルカリ金属またはアルカリ土類金属の水酸化物の含有率は限定されないが、10質量%以上30質量%以下であることが好ましい。該反応液体は、ジメチルスルホキシド、メチルアルコール等の膨潤性有機化合物を含有するのが好ましい。該反応液体の膨潤性有機化合物の含有率としては、1質量%以上30質量%以下であることが好ましい。加水分解処理を行った後、適当な塩の水溶液もしくは塩酸等の無機酸に浸漬することにより、該パーフルオロカーボン重合体が製造される。
2) Method of hydrolysis of precursor polymer Next, the precursor polymer is immersed in a basic reaction liquid to perform a hydrolysis treatment.
The reaction liquid is not limited, but an aqueous solution of an alkali metal or alkaline earth metal hydroxide such as potassium hydroxide or sodium hydroxide is preferred. The content of the alkali metal or alkaline earth metal hydroxide in the reaction liquid is not limited, but is preferably 10% by mass or more and 30% by mass or less. The reaction liquid preferably contains a swellable organic compound such as dimethyl sulfoxide or methyl alcohol. The content of the swellable organic compound in the reaction liquid is preferably 1% by mass or more and 30% by mass or less. After the hydrolysis treatment, the perfluorocarbon polymer is produced by dipping in an aqueous solution of a suitable salt or an inorganic acid such as hydrochloric acid.

〈(2)ポリベンズイミダゾールを含むポリマー溶液の製造方法〉
該パーフルオロカーボン重合体をジメチルアセトアミドに溶解したポリマー溶液Bとポリベンズイミダゾールをジメチルアセトアミドに溶解したポリマー溶液Cを混合することによって、該パーフルオロカーボン重合体とポリベンズイミダゾールが均一に混合したポリマー溶液を製造することができる。また別の方法として、ポリマー溶液Bとポリマー溶液Cとを混合し、さらに該パーフルオロカーボン重合体を水および/またはアルコールに溶解したポリマー溶液Aを添加、混合したポリマー溶液もこれに適合する。このようにして得られたポリマー溶液は、必要に応じて濃縮を行っても良い。
<(2) Method for Producing Polymer Solution Containing Polybenzimidazole>
By mixing the polymer solution B in which the perfluorocarbon polymer is dissolved in dimethylacetamide and the polymer solution C in which polybenzimidazole is dissolved in dimethylacetamide, a polymer solution in which the perfluorocarbon polymer and polybenzimidazole are uniformly mixed is obtained. Can be manufactured. As another method, the polymer solution B and the polymer solution C are mixed, and the polymer solution A in which the perfluorocarbon polymer is dissolved in water and / or alcohol is added and mixed. The polymer solution thus obtained may be concentrated as necessary.

上記ポリマー溶液A〜Cの製法を例示すると以下のようである。
1)ポリマー溶液A
オートクレーブ中40〜200℃で熱処理する等の方法により、水及び/又はアルコールを含有した溶媒に該パーフルオロカーボン重合体を溶解させたポリマー溶液Aを得ることができる。溶媒としては、水とアルコールの混合溶媒が好ましく、特に、水/エタノール=3/1〜1/3(体積割合)、水/イソプロパノール=3/1〜1/3(体積割合)の混合溶媒等がより好ましい。ポリマー溶液Aにおける該パーフルオロカーボン重合体の含有率としては、1質量%以上10質量%以下であることが好ましい。
2)ポリマー溶液B
上記と同様にオートクレーブ中で熱処理することで、該パーフルオロカーボン重合体をジメチルアセトアミドに溶解させて、ポリマー溶液Bを得ることもできる。また、ポリマー溶液Aにジメチルアセトアミドを添加し、エバポレーター等で水およびまたはアルコール溶媒を揮発させて、ポリマー溶液Bとしても良い。 ポリマー溶液Bにおける該パーフルオロカーボン重合体の含有率としては、1質量%以上10質量%以下であることが好ましい。
An example of the production method of the polymer solutions A to C is as follows.
1) Polymer solution A
A polymer solution A in which the perfluorocarbon polymer is dissolved in a solvent containing water and / or alcohol can be obtained by a method such as heat treatment at 40 to 200 ° C. in an autoclave. As the solvent, a mixed solvent of water and alcohol is preferable, and in particular, a mixed solvent of water / ethanol = 3/1 to 1/3 (volume ratio), water / isopropanol = 3/1 to 1/3 (volume ratio), and the like. Is more preferable. The content of the perfluorocarbon polymer in the polymer solution A is preferably 1% by mass or more and 10% by mass or less.
2) Polymer solution B
The polymer solution B can also be obtained by dissolving the perfluorocarbon polymer in dimethylacetamide by heat treatment in an autoclave as described above. Alternatively, dimethylacetamide may be added to the polymer solution A, and water and / or an alcohol solvent may be volatilized with an evaporator or the like to obtain the polymer solution B. The content of the perfluorocarbon polymer in the polymer solution B is preferably 1% by mass or more and 10% by mass or less.

3)ポリマー溶液C
ポリベンズイミダゾールとジメチルアセトアミドをオートクレーブに入れ、40〜300℃で熱処理する等の方法によってポリマー溶液Cを得ることができる。ポリマー溶液Cにおけるポリベンズイミダゾールの含有率としては、1質量%以上10質量%以下であることが好ましい。
ポリベンズイミダゾールは、公知文献に記載された方法により重合することができる(例えば、実験化学講座28高分子合成第4版、日本化学会編、丸善( 株) 参照) 。ポリベンズイミダゾールの重量平均分子量は限定されないが、好ましくは10000以上1000000以下、より好ましくは20000以上100000以下、最も好ましくは50000以上100000以下である。
3) Polymer solution C
The polymer solution C can be obtained by a method in which polybenzimidazole and dimethylacetamide are put in an autoclave and heat-treated at 40 to 300 ° C. The content of polybenzimidazole in the polymer solution C is preferably 1% by mass or more and 10% by mass or less.
Polybenzimidazole can be polymerized by methods described in known literature (see, for example, Experimental Chemistry Lecture 28 Polymer Synthesis 4th Edition, edited by The Chemical Society of Japan, Maruzen Co., Ltd.). The weight average molecular weight of polybenzimidazole is not limited, but is preferably 10,000 to 1,000,000, more preferably 20,000 to 100,000, and most preferably 50,000 to 100,000.

また、ポリベンズイミダゾールを溶解したポリマー溶液(以下、PBIポリマー溶液と称する)の固有粘度iv(dL/g)は、好ましくは0.1dL/g以上10.0dL/g以下、より好ましくは0.3dL/g以上5.0dL/g以下、最も好ましくは0.5dL/g以上1.0dL/g以下である。
該固有粘度ivは、PBIポリマー溶液の粘度ηp( mPa・s) とジメチルアセトアミドの粘度ηs( mPa・s) 、およびPBIポリマー溶液の濃度Cp( g/dL) から、下記式を用いて求めることができる。ここでいう粘度とは、例えば、25℃にて円錐平板型の回転式粘度計(E型粘度計)を用いて測定される値である。
iv=ln(ηp/ηs)/Cp
In addition, the intrinsic viscosity iv (dL / g) of a polymer solution in which polybenzimidazole is dissolved (hereinafter referred to as PBI polymer solution) is preferably 0.1 dL / g or more and 10.0 dL / g or less, more preferably 0.8. It is 3 dL / g or more and 5.0 dL / g or less, Most preferably, it is 0.5 dL / g or more and 1.0 dL / g or less.
The intrinsic viscosity iv is determined from the viscosity ηp (mPa · s) of the PBI polymer solution, the viscosity ηs (mPa · s) of dimethylacetamide, and the concentration Cp (g / dL) of the PBI polymer solution using the following formula: Can do. The viscosity referred to here is, for example, a value measured at 25 ° C. using a conical plate type rotary viscometer (E-type viscometer).
iv = ln (ηp / ηs) / Cp

(膜電極接合体)
本発明の電極触媒層は固体高分子形燃料電池として評価することでその効果が発揮される。以下にその評価方法について説明する。
本発明の電極触媒層はプロトン交換膜を介して電極触媒層が接合したMEA(膜電極接合体)として使用され、アノード・カソードとして用いられる電極触媒層の双方あるいは少なくとも一方に使用されることで効果を奏する。なお、いずれか一方の電極に本発明の電極触媒層が用いられる場合はカソード側に用いるほうが好ましい。また、必要に応じてMEAを介して一対のガス拡散層を対向するように接合した構造にしても構わない。
(Membrane electrode assembly)
The effect of the electrode catalyst layer of the present invention can be demonstrated by evaluating it as a polymer electrolyte fuel cell. The evaluation method will be described below.
The electrode catalyst layer of the present invention is used as an MEA (membrane electrode assembly) in which the electrode catalyst layer is bonded via a proton exchange membrane, and is used as both or at least one of the electrode catalyst layers used as an anode and a cathode. There is an effect. In addition, when the electrode catalyst layer of this invention is used for any one electrode, it is more preferable to use for the cathode side. Moreover, you may make it the structure which joined so that a pair of gas diffusion layer might oppose through MEA as needed.

本発明のMEAに用いられるプロトン交換膜の種類は限定されないが、パーフルオロカーボンスルホン酸ポリマーからなるプロトン交換膜、もしくはパーフルオロカーボンスルホン酸ポリマーとポリベンズイミダゾールから構成されるプロトン交換膜が好ましい。この際のプロトン交換膜の全重量に対する該パーフルオロカーボン重合体の含有率としては、80.00質量%以上99.99質量%以下が好ましく、90.00質量%以上99.90質量%以下がより好ましく、95.00質量%以上99.00質量%以下が最も好ましい。また、プロトン交換膜の全重量に対するポリベンズイミダゾールの含有率としては、0.01質量%以上20.00質量%以下が好ましく、0.10質量%以上10.00質量%以下がより好ましく、1.00質量%以上5.00質量%以下が最も好ましい。プロトン交換膜のEWは限定されないが、250以上2000以下が好ましく、より好ましくは300以上1200以下、最も好ましくは400以上800以下である。また、膜厚には制限はないが、1μm以上500μm以下が好ましく、より好ましくは2μm以上100μm以下、最も好ましくは10μm以上50μm以下である。
MEAはプロトン交換膜上に直接電極触媒層を形成する、もしくはPTFEシート等のプロトン交換膜以外の基材上に塗布成形した後、乾燥、固化して得られた電極触媒層とプロトン交換膜とを100℃〜200℃で加熱プレスして転写、接合する方法を用いて得ることもできる。尚、ガス拡散層とMEAを接合する場合も同様に加熱プレスして得ることができる。
The type of proton exchange membrane used in the MEA of the present invention is not limited, but a proton exchange membrane composed of a perfluorocarbon sulfonic acid polymer or a proton exchange membrane composed of a perfluorocarbon sulfonic acid polymer and polybenzimidazole is preferable. In this case, the content of the perfluorocarbon polymer with respect to the total weight of the proton exchange membrane is preferably 80.00% by mass or more and 99.99% by mass or less, more preferably 90.00% by mass or more and 99.90% by mass or less. Preferably, it is 95.00% by mass or more and 99.00% by mass or less. The content of polybenzimidazole with respect to the total weight of the proton exchange membrane is preferably 0.01% by mass or more and 20.00% by mass or less, more preferably 0.10% by mass or more and 10.00% by mass or less. 0.000% by mass or more and 5.00% by mass or less is most preferable. The EW of the proton exchange membrane is not limited, but is preferably 250 or more and 2000 or less, more preferably 300 or more and 1200 or less, and most preferably 400 or more and 800 or less. Moreover, although there is no restriction | limiting in a film thickness, 1 micrometer or more and 500 micrometers or less are preferable, More preferably, they are 2 micrometers or more and 100 micrometers or less, Most preferably, they are 10 micrometers or more and 50 micrometers or less.
MEA forms an electrode catalyst layer directly on a proton exchange membrane, or is applied and molded on a substrate other than a proton exchange membrane such as a PTFE sheet, and then dried and solidified to obtain an electrode catalyst layer and a proton exchange membrane. Can be obtained by using a method in which the film is heated and pressed at 100 ° C. to 200 ° C. for transfer and bonding. In addition, when joining a gas diffusion layer and MEA, it can obtain similarly by heat-pressing.

(燃料電池)
以上のようにして得られたMEAは、必要に応じてその両側に一対のガス拡散層を対向させ、更にバイポーラプレート、バッキングプレートといった一般的な固体高分子形燃料電池に用いる構成成分と組み合わせて、固体高分子形燃料電池として使用されるのが一般的である。
このうちバイポーラプレートは、その表面に燃料や酸化剤等のガスを流すための溝を形成させたグラファイト又は樹脂との複合材料、金属製のプレート等のことであり、電子を外部負荷回路へ伝達する他に燃料や酸化剤を電極触媒近傍に供給する流路としての機能を持っている。こうしたバイポーラプレートの間にMEAを挿入して複数積み重ねることにより、燃料電池が作製される。燃料電池の運転は、最終的に一方の電極に水素を、他方の電極に酸素又は空気を供給することによって行われる。
尚、本発明の電極触媒層は、クロルアルカリ、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサー等に用いることも可能である。
(Fuel cell)
The MEA obtained as described above has a pair of gas diffusion layers facing each other as necessary, and is combined with components used for a general polymer electrolyte fuel cell such as a bipolar plate and a backing plate. In general, it is used as a polymer electrolyte fuel cell.
Of these, the bipolar plate is a graphite or resin composite material with a groove for flowing gas such as fuel or oxidant on its surface, a metal plate, etc., and transmits electrons to an external load circuit. In addition, it has a function as a flow path for supplying fuel and oxidant to the vicinity of the electrode catalyst. A fuel cell is manufactured by inserting and stacking a plurality of MEAs between such bipolar plates. The fuel cell is finally operated by supplying hydrogen to one electrode and oxygen or air to the other electrode.
The electrode catalyst layer of the present invention can also be used for chloralkali, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor and the like.

本発明を実施例に基づいて説明する。
[実施例1]
本発明の燃料電池用の電極触媒層を以下のように評価した。
(燃料電池評価)
各種電極触媒層をガス拡散電極中に形成させ、以下のような燃料電池評価を行う。まず、アノード側ガス拡散電極とカソード側ガス拡散電極を向い合わせて、その間にプロトン交換膜を挟み込み、160℃、圧力4.9MPaでホットプレスすることによりMEAを作製する。
このMEAを評価セルに組み込んで評価装置にセットする。燃料として水素ガス、酸化剤として空気ガスを用い、常圧、セル温度120℃にて電池運転を行う。ガス加湿には水バブリング方式を用い、水素ガス、空気ガスともに80℃で加湿してセルへ供給し、電圧を0.9Vに保持した。燃料電池運転を20時間続けた後、評価セルを冷却して運転を終了した。
The present invention will be described based on examples.
[Example 1]
The electrode catalyst layer for a fuel cell of the present invention was evaluated as follows.
(Fuel cell evaluation)
Various electrode catalyst layers are formed in the gas diffusion electrode, and the following fuel cell evaluation is performed. First, an anode side gas diffusion electrode and a cathode side gas diffusion electrode are faced to each other, a proton exchange membrane is sandwiched between them, and hot pressing is performed at 160 ° C. and a pressure of 4.9 MPa to produce an MEA.
This MEA is incorporated into an evaluation cell and set in an evaluation apparatus. Battery operation is performed at normal pressure and cell temperature of 120 ° C. using hydrogen gas as fuel and air gas as oxidant. A water bubbling method was used for gas humidification, and both hydrogen gas and air gas were humidified at 80 ° C. and supplied to the cell, and the voltage was maintained at 0.9V. After the fuel cell operation was continued for 20 hours, the evaluation cell was cooled and the operation was terminated.

(フッ素イオン濃度測定)
上記のような燃料電池評価において排出された排水中のフッ素イオン濃度を、ThermoOrion社製のフッ素複合電極(モデル9609BNionplusTM)とイオンメーター(モデル920AplusTM)を用いて測定する。まず、フッ素イオン濃度が0.1ppm、1ppm、10ppmの標準溶液のフッ素イオン濃度を各々測定し、検量線を作製する。次に、電池排水を4ml採取し、これにイオン強度調整剤0.4mlを添加し混合した後、フッ素複合電極を浸漬させて安定するまで待ち、フッ素イオン濃度を測定する。
(Fluorine ion concentration measurement)
The fluorine ion concentration in the wastewater discharged in the fuel cell evaluation as described above is measured using a fluorine composite electrode (Model 9609BNionplus ) manufactured by ThermoOrion and an ion meter (Model 920Aplus ). First, a calibration curve is prepared by measuring the fluorine ion concentrations of standard solutions having fluorine ion concentrations of 0.1 ppm, 1 ppm, and 10 ppm, respectively. Next, 4 ml of battery drainage is sampled, 0.4 ml of an ionic strength adjusting agent is added thereto and mixed, and then the fluorine composite electrode is immersed and waited until it is stabilized, and the fluorine ion concentration is measured.

[実施例1]
パーフルオロカーボンスルホン酸ポリマーの前駆体ポリマーとして、テトラフルオロエチレンとCF2 =CFO(CF2 2 −SO2 Fとのパーフルオロカーボン重合体(EW=710、MI(JIS K−7210、270℃、荷重2.16kgf、オリフィス内径2.09mm、g/ 10分) =3.0)を製造した。この前駆体ポリマーを、水酸化カリウム( 15質量%) とジメチルスルホキシド( 30質量%) を溶解した水溶液中に、60℃で4時間接触させて、加水分解処理を行った。その後、60℃水中に4時間浸漬した。次に60℃の2N塩酸水溶液に3時間浸漬した後、イオン交換水で水洗、乾燥して、パーフルオロカーボンスルホン酸ポリマー(EW=710)を得た。
[Example 1]
As a precursor polymer of perfluorocarbon sulfonic acid polymer, a perfluorocarbon polymer of tetrafluoroethylene and CF 2 ═CFO (CF 2 ) 2 —SO 2 F (EW = 710, MI (JIS K-7210, 270 ° C., load) 2.16 kgf, orifice inner diameter 2.09 mm, g / 10 min) = 3.0) was produced. This precursor polymer was subjected to a hydrolysis treatment by bringing it into contact with an aqueous solution in which potassium hydroxide (15% by mass) and dimethyl sulfoxide (30% by mass) were dissolved at 60 ° C. for 4 hours. Then, it was immersed in 60 degreeC water for 4 hours. Next, it was immersed in a 2N hydrochloric acid aqueous solution at 60 ° C. for 3 hours, then washed with ion-exchanged water and dried to obtain a perfluorocarbon sulfonic acid polymer (EW = 710).

このパーフルオロカーボンスルホン酸ポリマーを水/エタノール混合溶媒(水:エタノール=50.0:50.0(質量比))とともにオートクレーブ中に入れて密閉し、180℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、パーフルオロカーボンスルホン酸ポリマー:水:エタノール=5.0:47.5:47.5(質量比)の組成のポリマー溶液Aを得た。
さらに、このポリマー溶液Aにジメチルアセトアミドを添加し、その後エバポレーターで水、エタノールを除去することにより、パーフルオロカーボンスルホン酸ポリマー:ジメチルアセトアミド=1.5:98.5(質量比)の組成のポリマー溶液Bも得た。
This perfluorocarbon sulfonic acid polymer was placed in an autoclave together with a water / ethanol mixed solvent (water: ethanol = 50.0: 50.0 (mass ratio)), sealed, heated to 180 ° C. and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a polymer solution A having a composition of perfluorocarbon sulfonic acid polymer: water: ethanol = 5.0: 47.5: 47.5 (mass ratio).
Further, dimethylacetamide was added to the polymer solution A, and then water and ethanol were removed by an evaporator, whereby a polymer solution having a composition of perfluorocarbonsulfonic acid polymer: dimethylacetamide = 1.5: 98.5 (mass ratio). B was also obtained.

一方、化学式(7)で示され、重量平均分子量が27000であるポリベンズイミダゾール(シグマアルドリッチジャパン( 株) 社製)をジメチルアセトアミドとともにオートクレーブ中に入れて密閉し、200℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、ポリベンズイミダゾール:ジメチルアセトアミド=10.0:90.0(質量比)の組成のポリマー溶液を得た。このポリマー溶液の固有粘度ivは0. 8dL/gであった。さらに、このポリマー溶液をジメチルアセトアミドで10倍に希釈して、ポリベンズイミダゾール:ジメチルアセトアミド=1.0:99.0(質量比)の組成のポリマー溶液Cを作製した。

Figure 0004530635
On the other hand, polybenzimidazole (Sigma Aldrich Japan Co., Ltd.) represented by the chemical formula (7) and having a weight average molecular weight of 27000 was sealed together with dimethylacetamide in an autoclave, heated to 200 ° C. and heated to 5 ° C. Held for hours. Thereafter, the autoclave was naturally cooled to obtain a polymer solution having a composition of polybenzimidazole: dimethylacetamide = 10.0: 90.0 (mass ratio). The intrinsic viscosity iv of this polymer solution was 0.8 dL / g. Further, this polymer solution was diluted 10 times with dimethylacetamide to prepare a polymer solution C having a composition of polybenzimidazole: dimethylacetamide = 1.0: 99.0 (mass ratio).
Figure 0004530635

次に、4.00gのポリマー溶液Bの中に、攪拌しながら0.65gのポリマー溶液Aを徐々に添加、混合して均一なポリマー溶液とした。次いで、攪拌しながら更に11.71gのポリマー溶液Cを徐々に添加、混合して、均一なポリマー溶液を得た。
このポリマー溶液15.00gをナスフラスコに入れてエバポレーターにセットし、90℃のオイルバス中にて2倍に濃縮した。濃縮後のポリマー溶液中のパーフルオロカーボンスルホン酸ポリマーの濃度は7.95質量%、ポリベンズイミダゾールの濃度は0.08質量%であった。
このポリマー溶液を米国DE NORA NORTH AMERICA社製ガス拡散電極ELAT(登録商標)(Pt担持量0.4mg/cm2 )に塗布した後、大気雰囲気中にて160℃で乾燥・固定化し、さらに2N塩酸水溶液に3時間浸漬後、水洗、乾燥させて、本発明の電極触媒層をガス拡散電極中に形成させる。この電極触媒層におけるポリマー担持量は0.8mg/cm2 であった。
Next, with stirring, 0.65 g of the polymer solution A was gradually added to 4.00 g of the polymer solution B and mixed to obtain a uniform polymer solution. Next, 11.71 g of the polymer solution C was gradually added and mixed while stirring to obtain a uniform polymer solution.
15.00 g of this polymer solution was placed in an eggplant flask, set in an evaporator, and concentrated twice in an oil bath at 90 ° C. The concentration of the perfluorocarbon sulfonic acid polymer in the polymer solution after concentration was 7.95% by mass, and the concentration of polybenzimidazole was 0.08% by mass.
This polymer solution was applied to a gas diffusion electrode ELAT (registered trademark) (Pt loading 0.4 mg / cm 2 ) manufactured by DE NORA NORTH AMERICA, USA, dried and fixed at 160 ° C. in an air atmosphere, and further 2N After being immersed in an aqueous hydrochloric acid solution for 3 hours, washed with water and dried to form the electrode catalyst layer of the present invention in the gas diffusion electrode. The amount of polymer supported on this electrode catalyst layer was 0.8 mg / cm 2 .

プロトン交換膜としては、上記と同じパーフルオロカーボンスルホン酸ポリマーの前駆体ポリマーを重合し、この前駆体ポリマーを270℃で溶融押出して50μm厚のフィルムに成形し、上記と同様の加水分解処理を行って得たパーフルオロカーボンスルホン酸膜(EW=710)を使用した。
このように、本発明の電極触媒層を形成させたガス拡散電極をアノード、カソード両側に使用してMEAを作製し、上記の燃料電池評価を行った。カソード側とアノード側の電池排水のフッ素イオン濃度は、各々5ppm、4ppmと低く、本発明の電極触媒層は高温でも優れた耐久性を示した。
As the proton exchange membrane, the same precursor polymer of perfluorocarbon sulfonic acid polymer as described above is polymerized, this precursor polymer is melt extruded at 270 ° C. to form a 50 μm thick film, and the same hydrolysis treatment as above is performed. The perfluorocarbon sulfonic acid membrane (EW = 710) obtained above was used.
Thus, MEA was produced using the gas diffusion electrode on which the electrode catalyst layer of the present invention was formed on both sides of the anode and cathode, and the above fuel cell evaluation was performed. The concentrations of fluorine ions in the battery drainage on the cathode side and on the anode side were as low as 5 ppm and 4 ppm, respectively, and the electrode catalyst layer of the present invention showed excellent durability even at high temperatures.

[比較例1]
実施例1で作製したポリマー溶液Aを米国DE NORA NORTH AMERICA社製ガス拡散電極ELAT(登録商標)(Pt担持量0.4mg/cm2 )に塗布した後、大気雰囲気中にて160℃で乾燥・固定化し、さらに2N塩酸水溶液に3時間浸漬後、水洗、乾燥させた。この電極触媒層におけるポリマー担持量は0.8mg/cm2 であった。
このようなガス拡散電極をアノード、カソード両側に使用し、実施例1で使用したものと同じプロトン交換膜を用いてMEAを作製し、上記の燃料電池評価を行った。カソード側とアノード側の電池排水のフッ素イオン濃度は、各々126ppm、32ppmと実施例1に比べ著しく高く、高温での耐久性は不十分であった。
[Comparative Example 1]
The polymer solution A prepared in Example 1 was applied to a gas diffusion electrode ELAT (registered trademark) (Pt loading: 0.4 mg / cm 2 ) manufactured by DE NORA NORTH AMERICA, USA, and then dried at 160 ° C. in an air atmosphere. -Immobilized and further immersed in 2N hydrochloric acid aqueous solution for 3 hours, washed with water and dried. The amount of polymer supported on this electrode catalyst layer was 0.8 mg / cm 2 .
Using such a gas diffusion electrode on both sides of the anode and cathode, an MEA was produced using the same proton exchange membrane as that used in Example 1, and the above fuel cell evaluation was performed. The fluorine ion concentrations of the battery drainage on the cathode side and the anode side were 126 ppm and 32 ppm, respectively, which were significantly higher than those in Example 1, and the durability at high temperatures was insufficient.

本発明の電極触媒層は、耐熱酸化に優れ、高温低加湿条件下で運転する燃料電池用として好適である。   The electrode catalyst layer of the present invention is excellent in heat-resistant oxidation and suitable for a fuel cell that operates under high temperature and low humidification conditions.

Claims (3)

導電性粒子上に電極触媒粒子が担持された複合粒子を30.00質量%以上80.00質量%以下、イオン交換基を有するパーフルオロカーボン重合体を19.99質量%以上60.00質量%以下、ポリベンズイミダゾールを0.01質量%以上10.00質量%以下含有することを特徴とする燃料電池用の電極触媒層。 30.00% by mass to 80.00% by mass of composite particles in which electrocatalyst particles are supported on conductive particles, 19.99% by mass to 60.00% by mass of perfluorocarbon polymer having an ion exchange group, 0.01% by mass of polybenzimidazole An electrode catalyst layer for a fuel cell, which is contained in an amount of 10.00% by mass or less . 請求項1に記載の電極触媒層を備えた膜電極接合体。 A membrane electrode assembly comprising the electrode catalyst layer according to claim 1 . 請求項1に記載の電極触媒層を備えた固体高分子形燃料電池。 A polymer electrolyte fuel cell comprising the electrode catalyst layer according to claim 1 .
JP2003339468A 2003-09-30 2003-09-30 Electrocatalyst layer for fuel cells Expired - Fee Related JP4530635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339468A JP4530635B2 (en) 2003-09-30 2003-09-30 Electrocatalyst layer for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339468A JP4530635B2 (en) 2003-09-30 2003-09-30 Electrocatalyst layer for fuel cells

Publications (2)

Publication Number Publication Date
JP2005108588A JP2005108588A (en) 2005-04-21
JP4530635B2 true JP4530635B2 (en) 2010-08-25

Family

ID=34534654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339468A Expired - Fee Related JP4530635B2 (en) 2003-09-30 2003-09-30 Electrocatalyst layer for fuel cells

Country Status (1)

Country Link
JP (1) JP4530635B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080548A (en) * 2005-09-12 2007-03-29 Shin Etsu Chem Co Ltd Method of manufacturing electrolyte membrane-electrode assembly and direct methanol fuel cell using it
JP5062722B2 (en) * 2005-09-15 2012-10-31 独立行政法人物質・材料研究機構 Membrane for proton conductive fuel cell operable under anhydrous and high temperature, and method for producing the same
JP2007103083A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Transfer sheet for manufacturing catalyst layer-electrolyte film laminate for fuel cell, and catalyst layer-electrolyte film laminate
WO2018155598A1 (en) * 2017-02-23 2018-08-30 旭化成株式会社 Composition, composite film and membrane electrode assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236973A (en) * 2000-02-23 2001-08-31 Toyota Central Res & Dev Lab Inc Solid high polymer electrolytic film and its production
JP2003109602A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd High molecular electrolyte fuel cell and method of manufacturing the same
JP2003178780A (en) * 2001-12-11 2003-06-27 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236973A (en) * 2000-02-23 2001-08-31 Toyota Central Res & Dev Lab Inc Solid high polymer electrolytic film and its production
JP2003109602A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd High molecular electrolyte fuel cell and method of manufacturing the same
JP2003178780A (en) * 2001-12-11 2003-06-27 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell

Also Published As

Publication number Publication date
JP2005108588A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP3768991B2 (en) Nano-composite electrolyte membrane and fuel cell employing the same
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
CA2450346C (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
JP5151074B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly, and fuel cell using the same
JP2012092345A (en) Liquid composition, method for producing the same, and method for manufacturing membrane-electrode assembly for polymer electrolyte fuel cell
JP2006147560A (en) Membrane/electrode assembly for fuel cell, and fuel cell having the same
JP4861608B2 (en) Composite electrolyte membrane and fuel cell employing the same
JPWO2007007767A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP2008027890A (en) Solid electrolyte, membrane electrode assembly, and fuel cell
JP5286651B2 (en) Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
JP4352878B2 (en) Monomer compound, graft copolymer compound, production method thereof, polymer electrolyte membrane, and fuel cell
JP4780902B2 (en) Electrocatalyst layer for fuel cells
JP2007031718A5 (en)
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
JP4530635B2 (en) Electrocatalyst layer for fuel cells
JP5465840B2 (en) Method for producing polymer electrolyte fuel cell
JP5094295B2 (en) Membrane electrode assembly and fuel cell
JP5614891B2 (en) Membrane electrode composite and solid polymer electrolyte fuel cell
JP4798974B2 (en) Method for producing solid polymer electrolyte membrane
JP2006156295A (en) Complex electrolyte film, its manufacturing method, fuel cell, and portable equipment
JP2006260901A (en) Complex membrane of fluorine-containing sulfonic acid polymer
JP2014234445A (en) Polymer electrolyte composition, as well as polymer electrolyte membrane, electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell using the same
JP4931540B2 (en) Proton exchange membrane
JPH06342666A (en) Solid high molecular type fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4530635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees