JP2006156295A - Complex electrolyte film, its manufacturing method, fuel cell, and portable equipment - Google Patents

Complex electrolyte film, its manufacturing method, fuel cell, and portable equipment Download PDF

Info

Publication number
JP2006156295A
JP2006156295A JP2004348732A JP2004348732A JP2006156295A JP 2006156295 A JP2006156295 A JP 2006156295A JP 2004348732 A JP2004348732 A JP 2004348732A JP 2004348732 A JP2004348732 A JP 2004348732A JP 2006156295 A JP2006156295 A JP 2006156295A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fuel cell
antioxidant
fuel
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004348732A
Other languages
Japanese (ja)
Other versions
JP5084097B2 (en
Inventor
Yoshino Noguchi
愛乃 野口
Okitoshi Kimura
興利 木村
Masaharu Tanaka
正治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004348732A priority Critical patent/JP5084097B2/en
Publication of JP2006156295A publication Critical patent/JP2006156295A/en
Application granted granted Critical
Publication of JP5084097B2 publication Critical patent/JP5084097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte film, and a fuel cell using the electrolyte film, with stable electric characteristics for a long period which can be reduced in cost as compared with an all-fluorine electrolyte film by providing an anti-redox layer between a catalyst layer and the electrolyte film, as for an electric field-oriented film containing hydrocarbon. <P>SOLUTION: The complex electrolyte film formed by applying an electric field to ion-conductive resin containing a hydrocarbon bond is made to have an anti-redox layer at an interface of the electrolyte film and the catalyst layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池の複合電解質膜、その製造方法、燃料電池及び携帯機器に関する。   The present invention relates to a composite electrolyte membrane for a fuel cell, a manufacturing method thereof, a fuel cell, and a portable device.

温暖化ガスに代表される環境問題の観点からクリーンエネルギー源としての燃料電池が急ピッチで開発されてきてきる。特に固体電解質型燃料電池は低温作動や小型で高出力密度であることから研究開発が活発に進められている。その中、燃料電池電解質膜として低コストで燃料クロスオーバーの低い膜や酸化に強い膜など長期安定稼動できる膜が検討されてきた。酸化に対して長期安定な電解質膜としては特許文献1の特開2001−118591に過酸化物を分解する遷移金属化合物を含有する膜やフェノール水酸基を化合した膜等が提案されている。また特許文献2の特開2001−158806にはメタノールクロスオーバーを低減する膜として、イオン伝導性樹脂にポリビニールアルコールをスルホン化した層を形成した複合膜が検討されてきた。   Fuel cells as clean energy sources have been developed at a rapid pace from the viewpoint of environmental problems typified by greenhouse gases. In particular, solid oxide fuel cells are actively researched and developed because of their low-temperature operation, small size, and high power density. Among them, as a fuel cell electrolyte membrane, a membrane that can operate stably over a long period of time, such as a membrane with low fuel crossover and a membrane resistant to oxidation, has been studied. As an electrolyte membrane that is stable against oxidation for a long time, Japanese Patent Application Laid-Open No. 2001-118591 in Patent Document 1 proposes a membrane containing a transition metal compound that decomposes a peroxide, a membrane combined with a phenol hydroxyl group, and the like. Japanese Patent Application Laid-Open No. 2001-158806 of Patent Document 2 has studied a composite membrane in which a layer obtained by sulfonating polyvinyl alcohol on an ion conductive resin is formed as a membrane for reducing methanol crossover.

しかしながら、これら炭化水素系の膜は触媒との界面で酸化と還元が行なわれる環境で使用されているため、長期運転において酸化還元反応場において電解質の劣化が進み、電解質と触媒の界面の減少が起こり電気特性の低下を引き起こしていた。   However, since these hydrocarbon membranes are used in an environment where oxidation and reduction are performed at the interface with the catalyst, the deterioration of the electrolyte proceeds in the oxidation-reduction reaction field during long-term operation, and the decrease in the interface between the electrolyte and the catalyst is reduced. It happened and caused the electrical characteristics to deteriorate.

また、特許文献3の特開2004−79252には炭化水素系の電解質を、機械的、熱的強度に優れる基材に含浸させて膜を形成する事で、膜の機械強度を向上することが開示されている。これらは機械強度の向上はされるが、触媒層との界面において起こる、酸化還元による炭化水素材料の劣化については検討されていないため、電池性能としての耐久性に課題がある。
また特許文献4の特開2002−8680には化学的に安定なフッ素系電解質をフッ素系多孔質材料に含浸させ架橋することにより、機械的強度を向上していることが上げられている。これは、全フッ化電解質膜であり、低コスト化が困難となっている。
特開2001−118591号公報 特開2001−158806号公報 特開2004−79252号公報 特開2002−8680号公報
Japanese Patent Application Laid-Open No. 2004-79252 of Patent Document 3 can improve the mechanical strength of a film by forming a film by impregnating a hydrocarbon-based electrolyte into a substrate having excellent mechanical and thermal strength. It is disclosed. Although these improve mechanical strength, there has been a problem in durability as battery performance because degradation of hydrocarbon materials due to oxidation-reduction that occurs at the interface with the catalyst layer has not been studied.
Japanese Patent Application Laid-Open No. 2002-8680 discloses that mechanical strength is improved by impregnating a fluorine-based porous material with a chemically stable fluorine-based electrolyte and crosslinking. This is a total fluorinated electrolyte membrane, and it is difficult to reduce the cost.
JP 2001-118591 A JP 2001-158806 A JP 2004-79252 A JP 2002-8680 A

そこで本発明は、炭化水素を含有する電界配向膜において、抗酸化還元層を触媒層と電解質膜の間に設けることによって全フッ化電解質膜に比べ低コストが可能で、長期にわたり電気特性の安定な電解質膜を提供することを目的とする。
特に本発明は、かかる問題を解決することを主目的としている。
本発明の第1の目的は、燃料電池の触媒層と電解質膜の界面において、酸化還元による界面減少を防ぐことである(請求項1)。
Accordingly, the present invention provides a field-alignment film containing hydrocarbons, which can be manufactured at a lower cost than a fluorinated electrolyte film by providing an anti-oxidation / reduction layer between the catalyst layer and the electrolyte film, and has stable electrical characteristics over a long period of time. It is an object to provide a simple electrolyte membrane.
In particular, the main object of the present invention is to solve such a problem.
A first object of the present invention is to prevent interface reduction due to redox at the interface between a catalyst layer and an electrolyte membrane of a fuel cell (claim 1).

また本発明の第2の目的は、請求項1において、抗酸化還元層を表層に有する電解質膜の機械特性が向上した膜を提供することである(請求項2)。   A second object of the present invention is to provide a membrane in which the mechanical properties of an electrolyte membrane having an antioxidant reduction layer as a surface layer in claim 1 are improved (claim 2).

本発明の第3の目的は、請求項1から3記載の抗酸化還元層において、イオン導電性を損なわずに酸化還元による界面減少を防ぐことである(請求項3)。   The third object of the present invention is to prevent interface reduction due to oxidation and reduction without impairing ionic conductivity in the oxidation-reduction layer according to claims 1 to 3 (claim 3).

本発明の第4の目的は、請求項4記載の複合電解質膜において、抗酸化還元層と電解質膜の組成を近くすることで界面の接合を向上することである(請求項4、5)。   A fourth object of the present invention is to improve interface bonding by making the composition of the antioxidant / reduction layer and the electrolyte membrane close to each other in the composite electrolyte membrane according to claim 4 (claims 4 and 5).

本発明の第5の目的は、請求項5記載の複合電解質膜において、抗酸化還元層を含む複合電解質膜の電気特性を向上することである(請求項6)。   The fifth object of the present invention is to improve the electrical characteristics of the composite electrolyte membrane including the antioxidant-reduction layer in the composite electrolyte membrane according to claim 5 (claim 6).

本発明の第6の目的は、前記目的を達成した燃料電池を提供することである(請求項7)。    A sixth object of the present invention is to provide a fuel cell that achieves the object (Claim 7).

本発明の第7の目的は、エネルギー密度の高い液体燃料を用いた燃料電池において、安定した燃料電池を提供することである(請求項8)。   A seventh object of the present invention is to provide a stable fuel cell in a fuel cell using a liquid fuel having a high energy density.

本発明の第8の目的は、前記目的を達成した燃料電池において、環境保全性および安全性が高い燃料を供給することである(請求項9)。   An eighth object of the present invention is to supply a fuel having high environmental conservation and safety in a fuel cell that achieves the above object (claim 9).

本発明の第9の目的は、前記目的を達成した燃料電池において、発電特性が長期安定した燃料電池を提供する事である(請求項10)。   A ninth object of the present invention is to provide a fuel cell that achieves the above-mentioned object and has stable power generation characteristics over a long period of time (claim 10).

本発明者は、第1目的を達成するべく検討した結果、炭化水素結合を含むイオン伝導性樹脂に電界を印加して形成した複合電解質膜において、該電解質膜と触媒層との界面に抗酸化還元層を設けたことにより達成できることを見出した。   As a result of investigations to achieve the first object, the present inventor, in a composite electrolyte membrane formed by applying an electric field to an ion conductive resin containing a hydrocarbon bond, has an antioxidant at the interface between the electrolyte membrane and the catalyst layer. It has been found that this can be achieved by providing a reducing layer.

第2目的を達成するべく検討した結果、請求項1に記載の複合電解質膜において、該電解質膜がイオン伝導性樹脂と非イオン伝導性樹脂からなることにより達成できることを見出した。   As a result of studies to achieve the second object, it has been found that the composite electrolyte membrane according to claim 1 can be achieved by the electrolyte membrane comprising an ion conductive resin and a non-ion conductive resin.

第3目的を達成するべく検討した結果、請求項1または2に記載の抗酸化還元層が、前記複合電解質膜よりもフッ素含有率が高いことにより達成できることを見出した。   As a result of studies to achieve the third object, it was found that the antioxidant / reduction layer according to claim 1 or 2 can be achieved by having a higher fluorine content than the composite electrolyte membrane.

第4目的を達成するべく検討した結果、請求項2に記載の非イオン導電性樹脂が、フッ素含有樹脂からなることか、または請求項3に記載の抗酸化還元層がフッ素含有イオン伝導性樹脂と非イオン伝導性フッ素樹脂からなることによって達成できることを見出した。   As a result of studying to achieve the fourth object, the nonionic conductive resin according to claim 2 is made of a fluorine-containing resin, or the antioxidant redox layer according to claim 3 is a fluorine-containing ion conductive resin. And found that it can be achieved by comprising a non-ion conductive fluororesin.

第5目的を達成するべく検討した結果、請求項5記載の抗酸化還元層に電界を印加させる工程を有することで達成できることを見出した。   As a result of studies to achieve the fifth object, it has been found that the object can be achieved by including a step of applying an electric field to the antioxidant redox layer according to claim 5.

第6目的を達成するべく検討した結果、請求項1−5の少なくともいずれか1項に記載の複合電解質膜を有する燃料電池を用いる事により達成できることを見出した。   As a result of studies to achieve the sixth object, it has been found that this can be achieved by using a fuel cell having the composite electrolyte membrane according to at least any one of claims 1-5.

第7目的を達成するべく検討した結果、燃料にアルコールを用いることにより達成できることを見出した。   As a result of studying to achieve the seventh object, it has been found that this can be achieved by using alcohol as a fuel.

第8目的を達成するべく検討した結果、燃料電池に供給する燃料に、エタノールを用いることにより達成できることを見出した。   As a result of studies to achieve the eighth object, it has been found that this can be achieved by using ethanol as the fuel supplied to the fuel cell.

第9目的を達成すべく検討した結果、携帯機器に前記燃料電池を用いることで達成できることを見出した。   As a result of studying to achieve the ninth object, it has been found that the fuel cell can be used in a portable device.

電解質と触媒層との界面減少を防ぐことが出来る(請求項1)。   Reduction of the interface between the electrolyte and the catalyst layer can be prevented (claim 1).

機械特性が向上した電解質膜を提供することが出来る(請求項2)。   An electrolyte membrane with improved mechanical properties can be provided (claim 2).

イオン導電性を損なわずに酸化還元による電解質膜と触媒層との界面減少を防ぐことが出来る(請求項3)。   It is possible to prevent a decrease in the interface between the electrolyte membrane and the catalyst layer due to oxidation and reduction without impairing ionic conductivity.

抗酸化還元層と電解質膜の組成を近くすることで界面の接合を向上することが出来る(請求項4)。   Interfacial bonding can be improved by making the composition of the antioxidant / reduction layer and the electrolyte membrane close to each other (claim 4).

抗酸化還元層を含む複合電解質膜の電気特性を向上することが出来る(請求項5)。   The electrical characteristics of the composite electrolyte membrane including the antioxidant / reduction layer can be improved (claim 5).

電解質と触媒層の界面減少を防いだ長期間安定運転する燃料電池を提供することが出来る(請求項6)。   It is possible to provide a fuel cell that can stably operate for a long period of time while preventing the interface between the electrolyte and the catalyst layer from decreasing.

エネルギー密度の高い液体燃料を用い燃料電池を供給出来る(請求項7)。   A fuel cell can be supplied using liquid fuel having a high energy density.

環境保全性および安全性が高い燃料の燃料電池を供給出来る(請求項8)。   It is possible to supply a fuel cell of fuel having high environmental conservation and safety (claim 8).

長期安定稼動できる携帯機器を提供できる(請求項9)。   A portable device capable of long-term stable operation can be provided (claim 9).

(請求項1から3の説明)
プロトン伝導型固体高分子電解質を使用した燃料電池を例にとり、その発電概念図を図1に示す。
基本的構成要素として、中心にイオン伝導体(図1の場合はプロトン伝導体)が存在し、その両側にアノードおよびカソードが配置された構成を有している。
プロトン伝導型の電解質が使用される場合には、アノード側にプロトン源となる燃料(水素、アルコールなど)が供給され、アノード内の触媒作用により前記した燃料により、水素イオンが発生する。この時、発生する電子は外部回路に流れ出る。
(Explanation of claims 1 to 3)
An example of a fuel cell using a proton conducting solid polymer electrolyte is shown in FIG.
As a basic component, an ion conductor (proton conductor in the case of FIG. 1) is present at the center, and an anode and a cathode are disposed on both sides thereof.
When a proton-conducting electrolyte is used, fuel (hydrogen, alcohol, etc.) serving as a proton source is supplied to the anode side, and hydrogen ions are generated by the above-described fuel by the catalytic action in the anode. At this time, the generated electrons flow out to the external circuit.

発生した水素イオンは、プロトン伝導体中を伝搬し、アノードに達する。アノードに酸化剤(たとえば空気あるいは、酸素など。またこれらの混合物も含む)が供給されることにより、水素イオンと酸素と、外部回路を通して流れてくる電子(e-)とが反応し、水を生成する。以上が発電の概念であり、この反応式を表すと、下記式のようになる。 The generated hydrogen ions propagate through the proton conductor and reach the anode. When an oxidant (for example, air or oxygen, including a mixture thereof) is supplied to the anode, hydrogen ions, oxygen, and electrons (e ) flowing through an external circuit react with each other, and water is absorbed. Generate. The above is the concept of power generation, and this reaction equation is represented by the following equation.

アノード反応;H2 → 2H+ + 2e-(水素燃料の場合)
カソード反応;2H+ + 1/2O2 + 2e- → H2
全反応;H2+1/2O2→H2
Anode reaction; H 2 → 2H + + 2e (in the case of hydrogen fuel)
Cathode reaction: 2H + + 1 / 2O 2 + 2e → H 2 O
Total reaction: H 2 + 1 / 2O 2 → H 2 O

前記した式に示された反応が進行する場所は、燃料電池の電解質膜と電極の狭持体において、燃料と触媒と電解質との三相の界面(三相界面)である。
電子の授受はこの三相界面でのみ行なわれる。この三相を構成する燃料(燃料分子)は、電解質の薄層を透過して三相を構成する触媒表面で活性化され、電子を電極に与える。また電解質は、生成したプロトンなどのイオンが、この電解質を拡散伝搬していく。このように、“燃料”と、“燃料を活性化して電子を伝搬する伝導体触媒”と、“プロトンを伝搬する電解質”とからなる三相が、形成されていることが燃料電池にとって、不可欠なのである。
The place where the reaction shown in the above equation proceeds is the three-phase interface (three-phase interface) of the fuel, the catalyst, and the electrolyte in the sandwich body of the electrolyte membrane and the electrode of the fuel cell.
Electrons are exchanged only at this three-phase interface. The fuel constituting the three phases (fuel molecules) is activated on the surface of the catalyst constituting the three phases through the thin electrolyte layer, and gives electrons to the electrodes. In the electrolyte, ions such as generated protons diffuse and propagate through the electrolyte. Thus, it is indispensable for the fuel cell that the three phases consisting of “fuel”, “conductor catalyst that activates fuel to propagate electrons”, and “electrolyte that propagates protons” are formed. That's it.

実際には、触媒の表面に、薄い電解質層が存在してもよく、水素はこの電解質層を透過可能であるので、燃料の拡散する空孔が存在しない場合でも反応は進行する。この場合にも、反応は三相界面で行なわれているといえる。さらにメタノールやエタノールなどの液体燃料を用いる燃料電池の場合においても、電解質層をこれらの液体燃料が浸透するので、水素燃料と同様に発電の反応が起こる。
この三相界面の形成が電気特性を得るために重要であり、その構造が種々検討されている。
Actually, a thin electrolyte layer may exist on the surface of the catalyst, and hydrogen can permeate through this electrolyte layer, so that the reaction proceeds even when there are no fuel diffusing vacancies. Also in this case, it can be said that the reaction is carried out at the three-phase interface. Furthermore, even in the case of a fuel cell using liquid fuel such as methanol or ethanol, since the liquid fuel penetrates the electrolyte layer, a power generation reaction occurs as in the case of hydrogen fuel.
The formation of this three-phase interface is important for obtaining electrical characteristics, and various structures have been studied.

しかしながら、触媒粒子に電解質との界面を増加した触媒インクを用いてこの界面の形成し、三相界面の面積を増加させた電極の製造を行なっても、その三相界面が長期間保持されないため、燃料電池の発電特性が低下してしまうという課題がある。   However, even if an electrode with an increased area of the three-phase interface is formed using catalyst ink with an increased interface with the electrolyte in the catalyst particles, the three-phase interface is not retained for a long time. There is a problem that the power generation characteristics of the fuel cell deteriorate.

特に炭化水素系の電解質膜を用いた場合には、燃料電池の発電特性の低下が顕著であり、その原因は三相界面の電解質が、触媒の酸化還元雰囲気下にあって活性化された水素イオンに曝露されており、電解質自身が酸化されて劣化してしまい、触媒と電解質との界面が減少してしまうことにある。これまでにたとえば特許文献1の特開2001−118591公報に開示されているように、このような電解質膜の酸化を防ぐ為に、酸化マンガンや酸化ルテニウムなどの遷移金属酸化物を電解質膜に配合分散させるなどの検討が行なわれてきたが、発電特性を維持するには十分ではなかった。   In particular, when a hydrocarbon electrolyte membrane is used, the power generation characteristics of the fuel cell are markedly reduced. The cause is that the electrolyte at the three-phase interface is activated in an oxidation-reduction atmosphere of the catalyst. It is exposed to ions, the electrolyte itself is oxidized and deteriorates, and the interface between the catalyst and the electrolyte is reduced. For example, as disclosed in Japanese Patent Application Laid-Open No. 2001-118591 of Patent Document 1, in order to prevent such oxidation of the electrolyte film, a transition metal oxide such as manganese oxide or ruthenium oxide is included in the electrolyte film. Although studies such as dispersion have been made, it has not been sufficient to maintain power generation characteristics.

また、特許文献3の特開2004−79252公報には、炭化水素系の電解質を、機械的、熱的強度に優れる基材に含浸させて膜を形成する事で、膜の機械強度を向上することが開示されている。これらは機械的強度は向上されるが、触媒層との界面において起こる酸化還元反応による炭化水素材料の劣化については検討されていない。このため、電池性能としての耐久性に課題がある。   Japanese Patent Application Laid-Open No. 2004-79252 of Patent Document 3 improves the mechanical strength of the film by forming a film by impregnating a hydrocarbon-based electrolyte into a substrate having excellent mechanical and thermal strength. It is disclosed. Although these have improved mechanical strength, the deterioration of the hydrocarbon material due to the redox reaction occurring at the interface with the catalyst layer has not been studied. For this reason, there is a problem in durability as battery performance.

また特許文献4の特開2002−8680には、フッ素系電解質をフッ素系多孔質材料に含浸させて架橋することにより、機械的強度を向上している技術が開示されている。これは、全フッ化電解質膜であり、低コスト化が図れない。   Japanese Patent Application Laid-Open No. 2002-8680 of Patent Document 4 discloses a technique in which mechanical strength is improved by impregnating a fluorine-based electrolyte into a fluorine-based porous material and crosslinking. This is a total fluorinated electrolyte membrane, and the cost cannot be reduced.

本発明では、炭化水素系樹脂またはベンズイミダゾールを主鎖として含有する膜に電界を印加させて配向させた電解質膜と、触媒層との間に、化学的に安定な抗酸化還元層を設けることによって、全フッ化電解質膜に比べ、低コストで長期にわたり電気特性の安定が可能な複合電解質膜を提供すること、この複合電解質膜を用いた燃料電池を提供することを目的としている。   In the present invention, a chemically stable antioxidant reduction layer is provided between the catalyst layer and the electrolyte membrane oriented by applying an electric field to a membrane containing a hydrocarbon resin or benzimidazole as the main chain. Accordingly, it is an object of the present invention to provide a composite electrolyte membrane capable of stabilizing electrical characteristics over a long period of time at a lower cost than a fully fluorinated electrolyte membrane, and to provide a fuel cell using this composite electrolyte membrane.

本発明の抗酸化還元層は、配向した炭化水素系樹脂等からなる電解質の表面(触媒との界面)を酸化または還元反応の少なくとも1つから保護し、かつ、抗酸化還元層自体もプロトン伝導性でなければならないようにした点にある。そして電解質膜と触媒層との間に配置されている抗酸化還元層は、各々の界面(電解質膜と抗酸化還元層との界面、抗酸化還元層と触媒層との界面)において、発生したプロトンを効率よく伝搬する為に、図2に示すように、触媒と抗酸化還元層のプロトン伝導体との界面や、電解を印加して配向した電解質膜と抗酸化還元層の界面が十分形成されなければならない。   The antioxidant / reduction layer of the present invention protects the surface (interface with the catalyst) of an electrolyte made of oriented hydrocarbon resin from at least one of oxidation or reduction reaction, and the antioxidant / reduction layer itself is also proton conductive. The point is that it must be sex. And the antioxidant reduction layer arranged between the electrolyte membrane and the catalyst layer was generated at each interface (interface between the electrolyte membrane and the antioxidant reduction layer, interface between the antioxidant reduction layer and the catalyst layer). In order to efficiently propagate protons, as shown in FIG. 2, the interface between the catalyst and the proton conductor of the antioxidant reduction layer, or the interface between the electrolyte membrane and the antioxidant reduction layer oriented by applying electrolysis is sufficiently formed. It must be.

本発明の複合電解質膜は、ポリアリーレン系重合体やスルホン化ポリビニルアルコール膜を含む、ポリアクリル酸、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリ(アシッドホスホオキシ(アルキル)メタクリレート)、ポリ(アシッドホスホオキシ(アルキル)アクリレート)、ポリ(アシッドホスホオキシ(オキシアルキル)メタクリレート)、ポリ(アシッドホスホオキシ(オキシアルキル)アクリレート)などの炭化水素系重合体あるいはポリベンズイミダゾールから得られる重合体またはこれらの原料のモノマーを1種以上用いて得られる共重合体の電解質膜(プロトン伝導体)に、抗酸化還元層を設けるものである。その中でも電界を印加してイオン伝導部を配向させた電解質膜を利用する。
電界を印加した電解質膜としては、機械特性を補強する為に、炭化水素系のイオン伝導性樹脂に、成膜性の良い非イオン伝導性の樹脂を混合して膜化したものが好ましく用いることができる。炭化水素系の非イオン伝導性樹脂としては、ポリエチレン、ポリプロピレンなどのアルキル高分子や、ポリカーボネート、ポリエステルなどが挙げられ、また、ポリベンズイミダゾールあるいはこれら炭化水素系樹脂の共重合体、または炭化水素系重合体とポリイミダゾールあるいはポリベンズイミダゾールとの共重合体などの主鎖に、置換ないし非置換のアリーレン基を有する高分子などを電解質膜として用いることができる。
The composite electrolyte membrane of the present invention includes polyacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, poly (acid phosphooxy (alkyl) methacrylate), poly (acid phosphooxy), including polyarylene polymers and sulfonated polyvinyl alcohol membranes. (Alkyl) acrylate), poly (acid phosphooxy (oxyalkyl) methacrylate), poly (acid phosphooxy (oxyalkyl) acrylate) and other hydrocarbon polymers, polymers obtained from polybenzimidazole, or raw materials thereof An antioxidant reduction layer is provided on an electrolyte membrane (proton conductor) of a copolymer obtained by using one or more monomers. Among these, an electrolyte membrane is used in which an electric field is applied to align the ion conducting portion.
As an electrolyte membrane to which an electric field is applied, in order to reinforce mechanical properties, a membrane obtained by mixing a nonionic conductive resin having a good film forming property with a hydrocarbon ion conductive resin is preferably used. Can do. Examples of the hydrocarbon-based nonionic conductive resins include alkyl polymers such as polyethylene and polypropylene, polycarbonates, polyesters, etc., and polybenzimidazole, copolymers of these hydrocarbon resins, or hydrocarbon-based resins. A polymer having a substituted or unsubstituted arylene group in the main chain such as a copolymer of a polymer and polyimidazole or polybenzimidazole can be used as the electrolyte membrane.

更に好ましくは、グラフト型フッ素樹脂やポリフッ化ビニリデン、ポリテトラフルオロエチレン、またこれらフッ素樹脂(フッ素樹脂単量体)の共重合体などのフッ素系樹脂を、非イオン伝導性樹脂として用い、イオン伝導性樹脂として上記した樹脂を用いるのが良い。上記フッ素系樹脂には、塩素を有するグラフト型樹脂も含まれる。たとえば、塩素含有のグラフト型フッ素樹脂も本発明で使用される。
たとえば、上記したグラフト重合体としては、以下の式で重合した3元共重合体グラフトポリマー(1−プロペニルオキシカルボン酸と、1,1−ジフルオロ−2フルオロ−2−クロロ−エチレンと、1,1−ジフルオロエチレンとの3元共重合体)を挙げることができる。ただし、下記化1では、グラフト反応によるグラフト反応のみを挙げている。
More preferably, a fluorinated resin such as a graft-type fluororesin, polyvinylidene fluoride, polytetrafluoroethylene, or a copolymer of these fluororesins (fluorine resin monomers) is used as a non-ion conductive resin to conduct ion conduction. It is preferable to use the above-described resin as the conductive resin. The fluororesin includes a graft resin having chlorine. For example, a chlorine-containing graft type fluororesin is also used in the present invention.
For example, as the above graft polymer, a terpolymer graft polymer polymerized by the following formula (1-propenyloxycarboxylic acid, 1,1-difluoro-2fluoro-2-chloro-ethylene, 1, Terpolymer with 1-difluoroethylene). However, in the following chemical formula 1, only the graft reaction by the graft reaction is listed.

Figure 2006156295
Figure 2006156295

本発明の複合電解質膜として、前記非イオン伝導性樹脂と炭化水素系のイオン伝導性樹脂とを混合して形成した膜に電界を印加することで、導電性が向上し、機械的強度にも優れた膜が得られる。具体的には、前記したイオン伝導性樹脂と、前記した非イオン伝導性樹脂との2種類の樹脂とを用いて製造することができる。更に好ましくは前記各樹脂を各々が溶解する溶媒または分散する分散媒に溶解ないし分散してキャスト法などにより膜を形成した後に、その膜厚方向に外部電界を印加して配向させる。このとき、樹脂を溶解した溶媒(または樹脂を分散する分散媒)が除去される工程中に電界を印加するのが好ましい。こうして、外部電界を最適に選ぶことによって良好なイオン伝導性を有した電界配向膜が得られる。一般に、イオン伝導を行なう樹脂が主に炭化水素からなるため触媒による酸化還元環境において特に酸化が進み劣化してしまう。本発明では、このため、非イオン伝導性樹脂に、化学的に安定な樹脂を選ぶ事によって、酸化還元に対する安定性を向上することが可能である。ただし、この使用は、イオン伝導性を低下させてしまうため混合割合が制限される。   As the composite electrolyte membrane of the present invention, by applying an electric field to a membrane formed by mixing the non-ion conductive resin and the hydrocarbon-based ion conductive resin, the conductivity is improved and the mechanical strength is also improved. An excellent film is obtained. Specifically, it can be manufactured using two types of resins, the above-described ion conductive resin and the above-described non-ion conductive resin. More preferably, after each resin is dissolved or dispersed in a solvent or a dispersion medium in which each resin is dissolved to form a film by a casting method or the like, an orientation is applied by applying an external electric field in the film thickness direction. At this time, it is preferable to apply an electric field during the step of removing the solvent in which the resin is dissolved (or the dispersion medium in which the resin is dispersed). Thus, an electric field alignment film having good ion conductivity can be obtained by optimally selecting the external electric field. In general, since the resin that conducts ions is mainly composed of hydrocarbons, oxidation proceeds and deteriorates particularly in a redox environment by a catalyst. Therefore, in the present invention, it is possible to improve the stability against redox by selecting a chemically stable resin as the non-ion conductive resin. However, this use reduces the ionic conductivity, so the mixing ratio is limited.

そこで本発明では、図2(b)に示すように、炭化水素系重合体を有するイオン伝導性樹脂と、触媒との間に、炭化水素系重合体からなるイオン伝導性樹脂にくらべ、酸化還元に強いイオン伝導性の樹脂を用いることで酸化還元による劣化を防ぐようにしている。酸化還元が行なわれる樹脂とは、酸性条件下において2重結合など電子密度が高い箇所を有し、酸に対し電子供与が行なわれる樹脂構造であったり、また逆に還元条件下で電子密度が低い箇所を有し還元剤に対して求核置換(反応)が行われやすい樹脂構造をとるものであったりする。さらに電気化学的には酸化還元電位において内部の炭化水素からなるイオン伝導性樹脂と比べてより貴な電位、あるいはより卑な電位まで分解が起こらない樹脂が酸化還元に強い樹脂として、抗酸化還元樹脂に用いる事ができる。具体的にはパーフルオロスルホン酸、パーフルオロカルボン酸などのフッ素系のイオン伝導性樹脂が好ましく用いられる。このフッ素系イオン伝導性樹脂には、塩素基を含有するものであってもよい。全フッ化イオン伝導性樹脂以外にも、抗酸化還元層が付与される電解質膜と比べて、フッ素含有率が高い樹脂などが用いられる。
電解質膜と触媒層の間に抗酸化還元層を設けることにより、抗酸化還元に有効なフッ素含有量の高い材料の使用量を低減させることができ、本発明では、コストが抑えられる。
Therefore, in the present invention, as shown in FIG. 2 (b), the oxidation-reduction is performed between an ion conductive resin having a hydrocarbon polymer and a catalyst, compared to an ion conductive resin made of a hydrocarbon polymer. By using a strong ion conductive resin, deterioration due to redox is prevented. The resin to be oxidized / reduced has a resin structure in which an electron density such as a double bond is high under acidic conditions and the electron is donated to the acid. Conversely, the electron density is reduced under reducing conditions. It may have a resin structure that has a low portion and is easily subjected to nucleophilic substitution (reaction) on the reducing agent. Furthermore, electrochemically, the oxidation-reduction potential is such that a resin that does not decompose to a more noble or lower-potential compared to an ion conductive resin consisting of internal hydrocarbons as a redox potential is a resin that is resistant to redox Can be used for resin. Specifically, fluorine-based ion conductive resins such as perfluorosulfonic acid and perfluorocarboxylic acid are preferably used. This fluorine-based ion conductive resin may contain a chlorine group. In addition to the total fluoride ion conductive resin, a resin having a high fluorine content as compared with the electrolyte membrane to which the antioxidant / reduction layer is provided is used.
By providing an anti-oxidation / reduction layer between the electrolyte membrane and the catalyst layer, the amount of a material having a high fluorine content effective for the anti-oxidation / reduction can be reduced, and the cost can be suppressed in the present invention.

(請求項4の説明)
炭化水素系重合体を有するイオン伝導部を有し電界配向された電解質膜の非イオン伝導性樹脂としてフッ素樹脂を用いることによって、フッ素系の抗酸化還元層との相溶性(接合)が良くなり、長期にわたりイオン伝導性の良い膜を得る事ができる。
前記したように、イオン伝導性樹脂と非イオン伝導性樹脂とを混合して形成した膜を本発明の抗酸化還元層を有する複合電解質膜に用いる事により、イオン伝導性を著しく低下させる事無く電解質膜の物性を抗酸化還元層に近いものに制御する事ができる。
(Explanation of claim 4)
By using a fluororesin as the non-ion conductive resin of the electrolyte membrane that has an ionic conducting part with a hydrocarbon polymer and is oriented in the electric field, compatibility (bonding) with the fluoric antioxidant / redox layer is improved. A film having good ion conductivity can be obtained over a long period of time.
As described above, the membrane formed by mixing the ion conductive resin and the non-ion conductive resin is used for the composite electrolyte membrane having the antioxidant redox layer of the present invention, without significantly reducing the ion conductivity. The physical properties of the electrolyte membrane can be controlled to be close to those of the antioxidant / reduction layer.

全炭化水素系重合体の電解質膜表面にフッ素系の抗酸化還元層を接合させた場合に比べて本発明の複合電解質膜は前記した抗酸化還元膜との接合が良く、長期に亘って、電解質膜と抗酸化還元層との接合が安定している。
用いられるフッ素樹脂としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリフッ化ビニール、ポリフッ化アルコール、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン−エチレン共重合体などのフルオロアルキル高分子、あるいは上記した化1で示される塩素基含有フッ素樹脂(塩素含有フッ素グラフト重合体)などが挙げられるが、これに限定されない。
Compared to the case where a fluorine-based antioxidant / reduced layer is bonded to the surface of the electrolyte membrane of the all-hydrocarbon polymer, the composite electrolyte membrane of the present invention has good bonding with the above-described antioxidant-reduced membrane, and over a long period of time, The joining of the electrolyte membrane and the antioxidant / reduction layer is stable.
Examples of the fluororesin used include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, polyfluorinated alcohol, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene. -A fluoroalkyl polymer such as an ethylene copolymer, or a chlorine group-containing fluororesin (chlorine-containing fluorine graft polymer) represented by the above-mentioned chemical formula 1 can be used, but it is not limited thereto.

(請求項5、6の説明)
さらに抗酸化還元層と電解質膜との接合を良くするために、フッ素系の抗酸化還元樹脂に前記電界配向膜の非イオン伝導性樹脂として用いたフッ素系樹脂を混合して用いることができる。電界配向膜の非イオン伝導性樹脂としては、フッ素系の抗酸化還元樹脂との相溶性が良く、抗酸化還元性能は維持されている。これにより、電解質膜と抗酸化還元層の物性も近くなるため接合界面の剥離等が防げる。
また抗酸化還元層を炭化水素系重合体を含有する電解質の表面に形成する工程は、炭化水素を含有する電解質膜の表面に抗酸化還元層となるフッ素系などのイオン伝導性樹脂と非イオン伝導性樹脂を混合した物をキャストし乾燥成形するが、この前記乾燥工程において抗酸化還元層にも電界を印加することが出来る。これにより抗酸化還元層が、設けられる電解質膜と同様に、イオン伝導部が配向して抗酸化還元層においてもイオン伝導性能がより向上することができる。
(Explanation of claims 5 and 6)
Furthermore, in order to improve the bonding between the antioxidant / reduction layer and the electrolyte membrane, a fluorine-based antioxidant / reduction resin can be used by mixing a fluorine-based resin used as the non-ion conductive resin of the electric field alignment film. As the non-ion conductive resin for the electric field alignment film, the compatibility with the fluorine-based antioxidant / reducing resin is good, and the antioxidant / reducing performance is maintained. As a result, the physical properties of the electrolyte membrane and the antioxidant redox layer are also close, and peeling of the joint interface can be prevented.
In addition, the step of forming the antioxidant / reduction layer on the surface of the electrolyte containing the hydrocarbon polymer includes the step of forming a fluorine-based ion conductive resin and a nonionic ion on the surface of the electrolyte membrane containing the hydrocarbon. A material mixed with a conductive resin is cast and dried, and an electric field can be applied to the antioxidant / reduction layer in the drying step. Thereby, like the electrolyte membrane in which the antioxidant / reduction layer is provided, the ionic conduction portion is oriented, and the ionic conduction performance can be further improved in the antioxidant / reduction layer.

(請求項7から9の説明)
燃料電池に供給される燃料は、燃料電池本体の特性にあわせて適宜設定されるものであるが、体積および重量エネルギー密度に優れるものを使用することが好ましい。燃料電池の小型化を実現するためには、体積および重量エネルギー密度にすぐれる燃料を使用することが好ましい。特にこのうちでも体積エネルギー密度にすぐれる燃料を用いた燃料電池が好ましい。したがって気体状燃料は体積エネルギー密度に劣るため好ましくなく、液体状燃料、固体状燃料がこのましい。
(Explanation of claims 7 to 9)
The fuel supplied to the fuel cell is appropriately set in accordance with the characteristics of the fuel cell main body, but it is preferable to use a fuel that is excellent in volume and weight energy density. In order to achieve miniaturization of the fuel cell, it is preferable to use a fuel having excellent volume and weight energy density. In particular, a fuel cell using a fuel having an excellent volume energy density is preferable. Therefore, gaseous fuel is not preferable because it is inferior in volumetric energy density, and liquid fuel and solid fuel are preferable.

これは、たとえば燃料1分子当たりの酸化反応により取り出せる電子数が、燃料として水素を用いた場合には2個であり、メタノールであれば6個であり、エタノールであれば12個である。このことから、各燃料分子1molから取り出せるクーロンCの量は、1molの電子の電荷(1F:1ファラデー)を96,500C(クーロン)とすると、それぞれ理論値として、96500×2C(水素の場合)、96500×6C(メタノールの場合)、96500×12C(エタノールの場合)となる。各々の密度、分子量を考慮し、1cc当たりのクーロン量に換算すると水素で約9C/ml、メタノールで約14400C/ml、エタノールで15200C/mlのエネルギー密度となる。常圧の気体としての水素は単位体積あたりのエネルギー密度は著しく低くなることなる。メタノールとエタノールは酸化反応には水分子がそれぞれ、1分子、3分子必要である(以下の式)。これを加味しても、液体燃料が優れることはあきらかである。   For example, the number of electrons that can be extracted by an oxidation reaction per molecule of fuel is 2 when hydrogen is used as the fuel, 6 when methanol is used, and 12 when ethanol is used. From this, the amount of Coulomb C that can be extracted from 1 mol of each fuel molecule is 96500 × 2C (in the case of hydrogen) as theoretical values, assuming that the charge of 1 mol of electrons (1F: 1 Faraday) is 96,500 C (Coulomb). 96500 × 6C (in the case of methanol) and 96500 × 12C (in the case of ethanol). Considering each density and molecular weight, when converted to the amount of coulomb per cc, the energy density is about 9 C / ml for hydrogen, about 14400 C / ml for methanol, and 15200 C / ml for ethanol. Hydrogen as a normal pressure gas has an extremely low energy density per unit volume. Methanol and ethanol each require one molecule and three molecules of water for the oxidation reaction (the following formula). Even with this in mind, it is clear that liquid fuel is superior.

CH3OH+H2O→6H+ + 6e- + CO2
25OH+3H2O→12H+ + 12e- + 2CO2
CH 3 OH + H 2 O → 6H + + 6e + CO 2
C 2 H 5 OH + 3H 2 O → 12H + + 12e + 2CO 2

高圧の水素あるいは液体水素を使用することも可能であるが、容器を堅牢にする必要があり、容器込みのエネルギー密度を考慮すると、常温常圧で液体あるいは固体である燃料を用いることが、燃料電池にとって優れているといえる。   Although it is possible to use high-pressure hydrogen or liquid hydrogen, it is necessary to make the container robust, and considering the energy density in the container, it is possible to use fuel that is liquid or solid at normal temperature and pressure. It can be said that it is excellent for the battery.

具体的には、水素吸蔵合金に蓄えた水素、ガソリン、液体状炭化水素、液体状アルコールなどの固体状または液体状の燃料が使用できるが、本体の燃料電池の小型化が可能な点、体積エネルギー密度に優れる点により、アルコール系の燃料を使用することが、燃料電池にとっては好ましいと言える。
中でも、炭素数4以下のアルコールを使用することが好ましく、さらに好ましくは、安全性が高く、生合成が可能である点(環境面)から、本発明に使用される燃料電池の燃料として、エタノールを使用することが好ましい。
Specifically, solid or liquid fuels such as hydrogen, gasoline, liquid hydrocarbons, and liquid alcohol stored in hydrogen storage alloys can be used, but the size and volume of the main body fuel cell can be reduced. It can be said that it is preferable for the fuel cell to use an alcohol fuel because of its excellent energy density.
Among them, it is preferable to use an alcohol having 4 or less carbon atoms, and more preferably, ethanol is used as a fuel for the fuel cell used in the present invention in view of high safety and biosynthesis (environmental aspect). Is preferably used.

またこのような本発明の燃料電池を搭載した携帯機器は、携帯性に優れる燃料と組み合わせる事で、長期間安定した稼動ができる携帯機器として利用することができる。   Moreover, a portable device equipped with such a fuel cell of the present invention can be used as a portable device that can be stably operated for a long period of time by combining with a fuel having excellent portability.

以下、本発明を実施例により、説明するが、このような実施例は、ほんの一例に過ぎない。
比較例1
炭化水素含有の電解質膜として、ポリアクリル酸とポリフッ化ビニリデンを溶解できる溶媒であるDMF(ジメチルホルムアミド)に溶かして混合し、離形性を有する樹脂上にキャストした後、
4kV/cmの電界を印加しながら乾燥させた。得られた膜Aの膜厚は50μmであり、その両面にPt担持触媒と拡散電極を配しセパレータを装着してセルを作製しセルAとした。
Hereinafter, the present invention will be described by way of examples, but such examples are only examples.
Comparative Example 1
As a hydrocarbon-containing electrolyte membrane, after dissolving and mixing in DMF (dimethylformamide), which is a solvent capable of dissolving polyacrylic acid and polyvinylidene fluoride, and casting on a resin having releasability,
Drying was performed while applying an electric field of 4 kV / cm. The obtained film A had a thickness of 50 μm. A Pt-supported catalyst and a diffusion electrode were arranged on both sides of the film A, and a separator was mounted to prepare a cell.

実施例1
炭化水素含有の電解質膜として比較例1の電解質膜を作製し、その表面にパーフルオロスルホン酸(Nafion、Dupont社製)の溶液をキャストし、乾燥を行ない抗酸化還元層を形成した。得られた複合膜Bは膜厚が80μmであった。複合膜Bを比較例1と同様にセルに装着しセルBとした。
Example 1
The electrolyte membrane of Comparative Example 1 was prepared as a hydrocarbon-containing electrolyte membrane, and a solution of perfluorosulfonic acid (Nafion, manufactured by Dupont) was cast on the surface, followed by drying to form an antioxidant reduction layer. The obtained composite membrane B had a thickness of 80 μm. The composite membrane B was attached to a cell in the same manner as in Comparative Example 1 to obtain a cell B.

実施例2
炭化水素含有の電解質膜として、ポリスチレンスルホン酸とフッ素樹脂(セフラルソフト、セントラル硝子社製)の溶液を混合し、離形成を有する樹脂上にキャストし、4kV/cmの電界を印加しながら乾燥させた。得られた膜の膜圧は50μmであり、その表面に前記フッ素樹脂(セフラルソフト、セントラル硝子社製)とパーフルオロスルホン酸(Nafion、Dupont社製)の溶液をキャストして乾燥させ、抗酸化還元層を形成した。得られた複合膜Cの膜厚は80μmであった。複合膜Cを比較例1と同様に両面にPt担持カーボンと拡散電極を配しセパレータを装着してセルを作製しこれをセルCとした。
Example 2
As a hydrocarbon-containing electrolyte membrane, a solution of polystyrene sulfonic acid and a fluororesin (Cefalsoft, manufactured by Central Glass Co., Ltd.) was mixed, cast on a resin having a separation formation, and dried while applying an electric field of 4 kV / cm. . The membrane pressure of the obtained membrane is 50 μm, and a solution of the fluororesin (Cefalsoft, manufactured by Central Glass Co.) and perfluorosulfonic acid (Nafion, manufactured by Dupont) is cast on the surface and dried, and antioxidant reduction A layer was formed. The film thickness of the obtained composite film C was 80 μm. Similarly to Comparative Example 1, the composite film C was provided with a Pt-supported carbon and a diffusion electrode on both sides, and a separator was mounted to prepare a cell.

実施例3
炭化水素含有の電解質膜として実施例2の電解質膜を用いた。電解質膜の膜圧は50μmであり、その表面に前記フッ素樹脂(セフラルソフト、セントラル硝子社製)とパーフルオロスルホン酸(Nafion、Dupont社製)の溶液をキャストし、4kV/cmの電界を印加しながら乾燥させ、抗酸化還元そうを形成した。得られた複合膜Dの膜厚は70μmであった。複合膜Dを比較例1)と同様に両面にPt担持カーボンと拡散電極を配しセパレータを装着してセルを作製しセルDとした。
Example 3
The electrolyte membrane of Example 2 was used as the hydrocarbon-containing electrolyte membrane. The membrane pressure of the electrolyte membrane is 50 μm, and a solution of the above fluororesin (Cefalsoft, manufactured by Central Glass) and perfluorosulfonic acid (Nafion, manufactured by Dupont) is cast on the surface, and an electric field of 4 kV / cm is applied. While drying, an antioxidant redox was formed. The film thickness of the obtained composite film D was 70 μm. Similarly to Comparative Example 1), the composite film D was provided with a Pt-supported carbon and a diffusion electrode on both sides, and a separator was attached to produce a cell, which was designated as Cell D.

評価法
1.作製したセルの初期特性としてアノード燃料としてメタノールを、カソードに空気(酸素)をそれぞれ供給して、電流電圧特性(I−V特性)から、電気特性(80mA/cm2における電池電圧)を比較した。
2.作製したセルにアノード燃料としてメタノールを、カソードに空気(酸素)をそれぞれ供給して、500時間発電を行ない、評価1と同様にして(80mA/cm2における電池電圧)電気特性を比較した。
Evaluation method 1. As the initial characteristics of the fabricated cell, methanol was supplied as the anode fuel, and air (oxygen) was supplied to the cathode, and the electrical characteristics (battery voltage at 80 mA / cm 2 ) were compared from the current-voltage characteristics (IV characteristics). .
2. Methanol was supplied as anode fuel to the fabricated cell, and air (oxygen) was supplied to the cathode, and power generation was performed for 500 hours. The electrical characteristics were compared in the same manner as in Evaluation 1 (battery voltage at 80 mA / cm 2 ).

結果
作製したセルの初期特性(80mA/cm2における電池電圧)は、セルA(膜A)>セルB(複合膜B)>セルD(複合膜D)>セルC(複合膜C)の順に良く、500時間においての電気特性(80mA/cm2における電池電圧)はセルD(複合膜D)>セルC(複合膜C)>セルB(複合膜B)>セルA(膜A)の順に良かった。
複合電解質膜は、抗酸化還元層を設けない膜にくらべて、膜厚が厚くなる分、初期特性が低く計測されたが、500時間運転を行なっている間に低下した電圧はセルD(複合膜D)<セルC(複合膜C)<セルB(複合膜B)<セルA(膜A)の順に小さく、本発明の複合電解質膜を用いたほうが、長時間運転において安定していることが分かった。
つまり、炭化水素系樹脂含有の電解質膜Aに、フッ素含有抗酸化還元層を設けたセルBの方が、長時間安定した電気特性が得られており、さらに電解質膜Aに含有されるフッ素樹脂を、抗酸化還元層に混合したセルCのほうがその電気特性が安定していることが結論された。
The initial characteristics (battery voltage at 80 mA / cm 2 ) of the resulting cell are as follows: cell A (film A)> cell B (composite film B)> cell D (composite film D)> cell C (composite film C). The electrical characteristics at 500 hours (battery voltage at 80 mA / cm 2 ) are in the order of cell D (composite film D)> cell C (composite film C)> cell B (composite film B)> cell A (film A). Was good.
The composite electrolyte membrane was measured to have a lower initial characteristic because the film thickness was thicker than the membrane without the antioxidant reduction layer, but the voltage decreased during the 500-hour operation was measured in the cell D (composite). Membrane D) <cell C (composite membrane C) <cell B (composite membrane B) <cell A (membrane A) is smaller in this order, and the composite electrolyte membrane of the present invention is more stable in operation for a long time. I understood.
In other words, the cell B in which the fluorine-containing antioxidant / reduction layer is provided on the electrolyte membrane A containing the hydrocarbon resin has more stable electric characteristics for a longer time, and the fluorine resin contained in the electrolyte membrane A It was concluded that the cell C mixed with the antioxidant reduction layer had more stable electrical characteristics.

より好ましい状態として、電解質膜Aに含有されるフッ素樹脂を抗酸化還元層に混合し、電界を印加して得られたセルDのほうが、より電気特性がよく、長時間に亘って安定していることがわかった。   As a more preferable state, the cell D obtained by mixing the fluororesin contained in the electrolyte membrane A into the antioxidant reduction layer and applying an electric field has better electrical characteristics and is stable over a long period of time. I found out.

燃料電池の発電の原理を説明するための図である。It is a figure for demonstrating the principle of the electric power generation of a fuel cell. 複合電解質膜の構造を説明するための図であり、(a)は、従来使用されている構造であり、(b)は、本発明の複合電解質膜の構造を示す図である。It is a figure for demonstrating the structure of a composite electrolyte membrane, (a) is a structure used conventionally, (b) is a figure which shows the structure of the composite electrolyte membrane of this invention. 本発明の燃料電池の長期間発電の特性を示す図であり、縦軸は電圧(V)を、横軸は時間(Hour)を表す。図中、Vinは、初期電圧値である。It is a figure which shows the characteristic of long-term power generation of the fuel cell of this invention, a vertical axis | shaft represents voltage (V) and a horizontal axis represents time (Hour). In the figure, Vin is an initial voltage value.

Claims (10)

炭化水素結合を含むイオン伝導性樹脂に電界を印加して形成した複合電解質膜において、
該電解質膜と触媒層との界面に抗酸化還元層を設けたことを特徴とした複合電解質膜。
In a composite electrolyte membrane formed by applying an electric field to an ion conductive resin containing hydrocarbon bonds,
A composite electrolyte membrane, characterized in that an antioxidation-reduction layer is provided at the interface between the electrolyte membrane and the catalyst layer.
請求項1に記載の複合電解質膜において、該複合電解質膜がイオン伝導性樹脂と非イオン伝導性樹脂とを混合した樹脂膜からなることを特徴とした複合電解質膜。   2. The composite electrolyte membrane according to claim 1, wherein the composite electrolyte membrane comprises a resin film obtained by mixing an ion conductive resin and a non-ion conductive resin. 請求項1または2に記載の抗酸化還元層が、前記複合電解質膜よりもフッ素含有率が高いことを特徴とした複合電解質膜。   The composite electrolyte membrane according to claim 1 or 2, wherein the antioxidant / reduction layer has a higher fluorine content than the composite electrolyte membrane. 請求項2に記載の非イオン導電性樹脂が、フッ素含有樹脂からなることを特徴とした複合電解質膜。   A composite electrolyte membrane, wherein the nonionic conductive resin according to claim 2 is made of a fluorine-containing resin. 請求項3に記載の抗酸化還元層がフッ素含有イオン伝導性樹脂と非イオン伝導性フッ素樹脂からなることを特徴とした複合電解質膜。   A composite electrolyte membrane, wherein the antioxidant / reduction layer according to claim 3 comprises a fluorine-containing ion conductive resin and a non-ion conductive fluoro resin. 請求項5記載の抗酸化還元層に電界を印加させる工程を有することを特徴とする複合電解質膜の製造方法。   A method for producing a composite electrolyte membrane, comprising a step of applying an electric field to the antioxidant redox layer according to claim 5. 請求項1から5の少なくともいずれか1項に記載の複合電解質膜を有する燃料電池。   A fuel cell comprising the composite electrolyte membrane according to claim 1. アルコールを燃料とすることを特徴とした請求項7記載の燃料電池。   8. The fuel cell according to claim 7, wherein alcohol is used as a fuel. 請求項8記載のアルコールがエタノールであることを特徴とした燃料電池。   A fuel cell, wherein the alcohol according to claim 8 is ethanol. 請求項9記載の燃料電池を搭載した携帯機器。   A portable device equipped with the fuel cell according to claim 9.
JP2004348732A 2004-12-01 2004-12-01 Manufacturing method of electrolyte membrane Expired - Fee Related JP5084097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348732A JP5084097B2 (en) 2004-12-01 2004-12-01 Manufacturing method of electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348732A JP5084097B2 (en) 2004-12-01 2004-12-01 Manufacturing method of electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2006156295A true JP2006156295A (en) 2006-06-15
JP5084097B2 JP5084097B2 (en) 2012-11-28

Family

ID=36634292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348732A Expired - Fee Related JP5084097B2 (en) 2004-12-01 2004-12-01 Manufacturing method of electrolyte membrane

Country Status (1)

Country Link
JP (1) JP5084097B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069504A1 (en) * 2005-12-15 2007-06-21 Nissan Motor Co., Ltd. Fuel, fuel cell system, fuel cell vehicle and operating method for fuel cell system
KR100963747B1 (en) 2007-03-13 2010-06-14 주식회사 엘지화학 Method for preparing polymer film using electric field
US7846609B2 (en) 2006-11-30 2010-12-07 Samsung Sdi Co., Ltd. Module-type fuel cell system
US8343674B2 (en) 2007-01-17 2013-01-01 Samsung Sdi Co., Ltd. Fuel cell system and control method of the same
JP2013206445A (en) * 2012-03-29 2013-10-07 Fujitsu Ltd Determination program, determination device, and determination method
WO2014087958A1 (en) 2012-12-03 2014-06-12 Jsr株式会社 Membrane-electrode-assembly manufacturing method, membrane electrode assembly, membrane-electrode-assembly-forming laminates, proton exchange membrane fuel cell, and water-electrolysis device
JPWO2020196278A1 (en) * 2019-03-28 2020-10-01
JP7484898B2 (en) 2020-03-24 2024-05-16 東レ株式会社 Electrolyte membrane and redox flow battery using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176456A (en) * 1997-12-15 1999-07-02 Aisin Seiki Co Ltd Solid high polymer electrolyte fuel cell
JP2003234015A (en) * 2002-02-12 2003-08-22 Isamu Uchida Solid polymer ion conductor and its manufacturing method
JP2004288574A (en) * 2003-03-25 2004-10-14 Casio Comput Co Ltd Power supply system, portable device, and method of fuel supply
JP2004335250A (en) * 2003-05-07 2004-11-25 Matsushita Electric Ind Co Ltd Electrolyte film for fuel cell, its manufacturing method and fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176456A (en) * 1997-12-15 1999-07-02 Aisin Seiki Co Ltd Solid high polymer electrolyte fuel cell
JP2003234015A (en) * 2002-02-12 2003-08-22 Isamu Uchida Solid polymer ion conductor and its manufacturing method
JP2004288574A (en) * 2003-03-25 2004-10-14 Casio Comput Co Ltd Power supply system, portable device, and method of fuel supply
JP2004335250A (en) * 2003-05-07 2004-11-25 Matsushita Electric Ind Co Ltd Electrolyte film for fuel cell, its manufacturing method and fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069504A1 (en) * 2005-12-15 2007-06-21 Nissan Motor Co., Ltd. Fuel, fuel cell system, fuel cell vehicle and operating method for fuel cell system
US9112196B2 (en) 2005-12-15 2015-08-18 Nissan Motor Co., Ltd. Fuel, fuel cell system, fuel cell vehicle and operating method for fuel cell system
US7846609B2 (en) 2006-11-30 2010-12-07 Samsung Sdi Co., Ltd. Module-type fuel cell system
US8343674B2 (en) 2007-01-17 2013-01-01 Samsung Sdi Co., Ltd. Fuel cell system and control method of the same
KR100963747B1 (en) 2007-03-13 2010-06-14 주식회사 엘지화학 Method for preparing polymer film using electric field
JP2013206445A (en) * 2012-03-29 2013-10-07 Fujitsu Ltd Determination program, determination device, and determination method
WO2014087958A1 (en) 2012-12-03 2014-06-12 Jsr株式会社 Membrane-electrode-assembly manufacturing method, membrane electrode assembly, membrane-electrode-assembly-forming laminates, proton exchange membrane fuel cell, and water-electrolysis device
JPWO2020196278A1 (en) * 2019-03-28 2020-10-01
CN113454270A (en) * 2019-03-28 2021-09-28 东丽株式会社 Laminated electrolyte membrane, membrane electrode assembly, water electrolysis type hydrogen generator, and method for producing laminated electrolyte membrane
JP7359139B2 (en) 2019-03-28 2023-10-11 東レ株式会社 Laminated electrolyte membrane, membrane electrode assembly, water electrolysis type hydrogen generator, and method for manufacturing the laminated electrolyte membrane
JP7484898B2 (en) 2020-03-24 2024-05-16 東レ株式会社 Electrolyte membrane and redox flow battery using the same

Also Published As

Publication number Publication date
JP5084097B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP4808123B2 (en) Membrane-electrode assembly for fuel cell and manufacturing method thereof
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP2006140152A (en) Electrode for fuel cell, and membrane/electrode assembly and fuel cell system including it
JP2006147560A (en) Membrane/electrode assembly for fuel cell, and fuel cell having the same
KR20160120078A (en) Polymer electrolyte membrane for fuel cell and membrane-electrode assembly for fuel cell including the same
JP5002911B2 (en) Measuring method of electroosmotic water volume EOW per proton in power generation evaluation in direct methanol fuel cell (DMFC)
JP2002298867A (en) Solid polymer fuel cell
JP2007109599A (en) Film electrode assembly for solid polymer fuel cell
JP5084097B2 (en) Manufacturing method of electrolyte membrane
Dunwoody et al. Proton exchange membranes: the view forward and back
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
JP5286651B2 (en) Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
JP4352878B2 (en) Monomer compound, graft copolymer compound, production method thereof, polymer electrolyte membrane, and fuel cell
JP2007031718A5 (en)
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
JP2011171301A (en) Direct oxidation fuel cell
WO2006085619A1 (en) Fuel cell
EP2202830A1 (en) Membrane electrode assembly and fuel cell
JP2006221970A (en) Operation method of direct methanol fuel cell
JP2006059756A (en) Solid polyelectrolyte film and polymer electrolyte fuel cell using the same, and their manufacturing method
JP4972276B2 (en) Manufacturing method of electrolyte membrane
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP2002298868A (en) Solid polymer fuel cell
JP4530635B2 (en) Electrocatalyst layer for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees