JP2007080548A - Method of manufacturing electrolyte membrane-electrode assembly and direct methanol fuel cell using it - Google Patents

Method of manufacturing electrolyte membrane-electrode assembly and direct methanol fuel cell using it Download PDF

Info

Publication number
JP2007080548A
JP2007080548A JP2005263198A JP2005263198A JP2007080548A JP 2007080548 A JP2007080548 A JP 2007080548A JP 2005263198 A JP2005263198 A JP 2005263198A JP 2005263198 A JP2005263198 A JP 2005263198A JP 2007080548 A JP2007080548 A JP 2007080548A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
catalyst
catalyst layer
electrode
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005263198A
Other languages
Japanese (ja)
Inventor
Toshio Oba
敏夫 大庭
Shigeru Konishi
繁 小西
Hiroshi Matsukawa
博史 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005263198A priority Critical patent/JP2007080548A/en
Publication of JP2007080548A publication Critical patent/JP2007080548A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrolyte membrane-electrode assembly capable of effectively using a catalyst with little crossover of methanol, and to provide a direct methanol fuel cell using it and having high power generation characteristics. <P>SOLUTION: A catalyst layer is formed on a substrate sheet by using catalyst paste comprising catalyst particles, ion conductive resin, and a solvent, at least two times of transfer of the catalyst layer from the substrate sheet to the electrolyte membrane and/or the electrode are repeated, and the electrolyte membrane is joined to the electrode to interpose the catalyst layer between the electrolyte membrane and the electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子型燃料電池の電解質膜・電極接合体の製造方法、及びそれを用いたダイレクトメタノール型燃料電池に関する。   The present invention relates to a method for producing an electrolyte membrane / electrode assembly of a polymer electrolyte fuel cell, and a direct methanol fuel cell using the same.

固体高分子型燃料電池用電解質膜を用いた燃料電池は、作動温度が100℃以下と低く、そのエネルギー密度が高いことから、電気自動車の電源や簡易補助電源として広く実用化が期待されている。この固体高分子型燃料電池においては、電解質膜、白金系の触媒、ガス拡散電極、及び電解質膜と電極の接合体などに関する重要な要素技術があり、この中でも、電解質膜と電極の接合体は、燃料電池としての特性に関与する最も重要な技術の一つである。   A fuel cell using an electrolyte membrane for a polymer electrolyte fuel cell has a low operating temperature of 100 ° C. or lower, and its energy density is high. Therefore, it is expected to be widely put into practical use as a power source for electric vehicles and a simple auxiliary power source. . In this polymer electrolyte fuel cell, there are important elemental technologies related to electrolyte membranes, platinum-based catalysts, gas diffusion electrodes, and electrolyte membrane-electrode assemblies. Among these, electrolyte membrane-electrode assemblies include It is one of the most important technologies involved in fuel cell characteristics.

従来、この固体高分子型燃料電池の電解質膜・電極接合体の製造方法には、大別して次の3つの方法が知られている。
(1)電解質膜に直接電極触媒を析出させる方法(例えば、特許文献1:特公昭58−47471号公報参照)。
(2)触媒能を有する電極シートを作製し、ホットプレスにより電解質膜に接合する方法(以下、ホットプレス法という。例えば、特許文献2:米国特許第3134697号明細書、特許文献3:米国特許第3297484号明細書及び特許文献4:特公平2−7398号公報参照)。
(3)電解質膜と電極上にそれぞれ触媒層を形成し、それら接合する方法(例えば、特許文献5:特開2001−345110号公報)
Conventionally, the following three methods are generally known as a method for producing an electrolyte membrane / electrode assembly of a polymer electrolyte fuel cell.
(1) A method of directly depositing an electrode catalyst on an electrolyte membrane (for example, see Patent Document 1: Japanese Patent Publication No. 58-47471).
(2) A method of producing an electrode sheet having catalytic ability and bonding it to an electrolyte membrane by hot pressing (hereinafter referred to as hot pressing method. For example, Patent Document 2: US Pat. No. 3,134,697, Patent Document 3: US Patent No. 3297484 and Patent Document 4: Japanese Patent Publication No. 2-7398).
(3) A method of forming a catalyst layer on each of an electrolyte membrane and an electrode and joining them (for example, Patent Document 5: Japanese Patent Laid-Open No. 2001-345110)

しかし、上記固体高分子型燃料電池の電解質膜・電極接合体のいずれの製造方法においても、触媒量が少ない場合は有効に利用できるものの、ダイレクトメタノール型燃料電池用など反応分極が大きく、触媒量が多く触媒層が厚い場合は、触媒層にひび割れが生じ、触媒が有効に使用できないばかりでなく、メタノールのクロスオーバーが増加するという問題があった。   However, in any method for producing the electrolyte membrane / electrode assembly of the above polymer electrolyte fuel cell, although it can be effectively used when the amount of catalyst is small, the reaction polarization is large, such as for direct methanol fuel cells, and the amount of catalyst However, when the catalyst layer is thick, cracks occur in the catalyst layer, which not only prevents the catalyst from being used effectively, but also increases the crossover of methanol.

特公昭58−47471号公報Japanese Patent Publication No.58-47471 米国特許第3134697号明細書US Pat. No. 3,134,697 米国特許第3297484号明細書US Pat. No. 3,297,484 特公平2−7398号公報Japanese Patent Publication No.2-7398 特開2001−345110号公報JP 2001-345110 A

本発明は、上記事情に鑑みなされたもので、固体高分子型燃料電池用電解質膜・電極接合体において、上記問題を解決し、触媒が有効に利用可能で、メタノールのクロスオーバーが少ない電解質膜・電極接合体の製造方法、及びそれを用いた発電特性に優れるダイレクトメタノール型燃料電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in an electrolyte membrane / electrode assembly for a polymer electrolyte fuel cell, solves the above-mentioned problems, allows the catalyst to be used effectively, and electrolyte membrane with less methanol crossover. An object of the present invention is to provide a method for producing an electrode assembly and a direct methanol fuel cell having excellent power generation characteristics using the electrode assembly.

本発明者らは、上記目的を達成するために鋭意検討を行った結果、触媒ペーストを用いて基材シート上にひび割れのない触媒層を形成し、電解質膜及び/又は電極に前記触媒層を少なくとも2回転写させ、触媒層が電解質膜と電極間に介在するように貼り合わせることにより、前記電解質膜と前記電極とが良好に接合し、ダイレクトメタノール型燃料電池用として有用な電解質膜・電極接合体が得られることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors formed a catalyst layer without cracks on the base sheet using the catalyst paste, and the catalyst layer was formed on the electrolyte membrane and / or electrode. Electrolyte membranes / electrodes useful for direct methanol fuel cells by transferring at least twice and pasting together so that the catalyst layer is interposed between the electrolyte membranes and the electrodes. It has been found that a joined body can be obtained, and has led to the present invention.

従って、本発明は、下記に示す電解質膜・電極接合体の製造方法、及びそれを用いたダイレクトメタノール用燃料電池を提供する。
請求項1:
基材シート上に触媒粒子とイオン伝導性樹脂と溶剤からなる触媒ペーストを用いて触媒層を形成し、前記基材シートから前記触媒層を電解質膜及び/又は電極に少なくとも2回転写することを繰り返した後、触媒層が、電解質膜と電極の中間となるように電解質膜と電極を接合したことを特徴とする電解質膜・電極接合体の製造方法。
請求項2:
触媒粒子が白金族金属又は白金含有合金であり、導電材に予め担持させてあることを特徴とする請求項1記載の電解質膜・電極接合体の製造方法。
請求項3:
白金族金属又は白金含有合金量が少なくとも2mg/cm2であることを特徴とする請求項1又は2記載の電解質膜・電極接合体の製造方法。
請求項4:
請求項1〜3のいずれか1項記載の方法で製造された電解質膜・電極接合体を用いてなることを特徴とするダイレクトメタノール型燃料電池。
Therefore, this invention provides the manufacturing method of the electrolyte membrane electrode assembly shown below, and the fuel cell for direct methanol using the same.
Claim 1:
Forming a catalyst layer on the substrate sheet using a catalyst paste comprising catalyst particles, an ion conductive resin and a solvent, and transferring the catalyst layer from the substrate sheet to an electrolyte membrane and / or an electrode at least twice. A process for producing an electrolyte membrane / electrode assembly, wherein the electrolyte membrane and the electrode are joined such that the catalyst layer is intermediate between the electrolyte membrane and the electrode after the repetition.
Claim 2:
2. The method for producing an electrolyte membrane / electrode assembly according to claim 1, wherein the catalyst particles are a platinum group metal or a platinum-containing alloy and are previously supported on a conductive material.
Claim 3:
The method according to claim 1 or 2 membrane electrode assembly according platinum group metal or platinum-containing alloy weight, characterized in that at least 2 mg / cm 2.
Claim 4:
A direct methanol fuel cell comprising the electrolyte membrane / electrode assembly produced by the method according to claim 1.

本発明によれば、メタノール酸化に必要な白金族金属を有する触媒層を、触媒層がひび割れすることなく設けることができるため、触媒が有効に働き、メタノールのクロスオーバーの少ない発電特性に優れた電解質膜・電極接合体を得ることができ、ダイレクトメタノール型燃料電池用電解質膜・電極接合体として特に有用である。   According to the present invention, since the catalyst layer having a platinum group metal necessary for methanol oxidation can be provided without cracking the catalyst layer, the catalyst works effectively and has excellent power generation characteristics with less methanol crossover. An electrolyte membrane / electrode assembly can be obtained, and is particularly useful as an electrolyte membrane / electrode assembly for a direct methanol fuel cell.

本発明で用いられる触媒ペーストは、触媒粒子とイオン伝導性樹脂と溶剤を含むものであれば特に限定されず、公知のものを使用できる。触媒粒子としては、メタノールの酸化反応あるいは酸素の還元反応に触媒作用を有するものであればよく、白金その他の貴金属のほか、鉄、クロム、ニッケル等、及びそれらの合金でもよいが、白金、パラジウム等の白金族金属や白金を25質量%以上含有する白金とルテニウム等との合金が望ましい。中でもカソード触媒としては酸素還元活性の高い白金が、アノード触媒としてはメタノール酸化性に優れる白金・ルテニウム合金が望ましい。その粒子径は、比表面積が大きく、触媒活性に富むといった点で1〜10nmのものが望ましい。触媒粒子は導電材に担持されているほうが望ましく、触媒粒子1質量部に対し、導電材を0.1〜10質量部用いるのが望ましく、より望ましくは0.2〜1質量部である。   The catalyst paste used in the present invention is not particularly limited as long as it contains catalyst particles, an ion conductive resin, and a solvent, and known ones can be used. The catalyst particles are not limited as long as they have a catalytic action for methanol oxidation reaction or oxygen reduction reaction. In addition to platinum and other noble metals, iron, chromium, nickel, and alloys thereof may be used. A platinum group metal such as platinum or an alloy of platinum and ruthenium containing 25% by mass or more of platinum is desirable. Among them, platinum having a high oxygen reduction activity is preferable as the cathode catalyst, and platinum / ruthenium alloy having excellent methanol oxidizing property is preferable as the anode catalyst. The particle diameter is preferably 1 to 10 nm in view of a large specific surface area and rich catalytic activity. The catalyst particles are preferably supported on a conductive material, and the conductive material is preferably used in an amount of 0.1 to 10 parts by weight, and more preferably 0.2 to 1 part by weight with respect to 1 part by weight of the catalyst particles.

導電材としては炭素系粒子、例えば、カーボンブラック、活性炭、黒鉛等が好適であり、特に平均粒径10〜1,000nmの微粉末状粒子が好適に用いられるが、カーボン繊維を基材とした材料、例えばカーボンペーパー、カーボン織布、カーボン不織布等でもよい。代表的には、比表面積20m2/g以上のカーボンブラック粒子に、貴金属粒子、特に白金又は白金とルテニウムとの合金を担持したものが挙げられる。触媒粒子の導電材に対する担持量は、触媒粒子/導電材=10/90〜80/20質量部が望ましい。 As the conductive material, carbon-based particles such as carbon black, activated carbon, graphite and the like are suitable, and fine powder particles having an average particle diameter of 10 to 1,000 nm are particularly preferably used. The material may be carbon paper, carbon woven fabric, carbon non-woven fabric, or the like. Typically, carbon black particles having a specific surface area of 20 m 2 / g or more are supported with noble metal particles, particularly platinum or an alloy of platinum and ruthenium. The amount of catalyst particles supported on the conductive material is preferably catalyst particles / conductive material = 10/90 to 80/20 parts by mass.

触媒ペースト中のイオン伝導性樹脂は、触媒を支持し、触媒層を形成するバインダーとなる材料であり、また、触媒によって生じたイオン等が移動するための通路を形成する役割をもつ。このようなイオン伝導性樹脂としては、固体高分子電解質膜として使用できるものと同様のものを用いることができる。イオン伝導性樹脂としては、イオン導電性を有し、水、メタノールに溶解し難い樹脂であれば特に限定されず、公知のものを用いることができるが、代表的には、含フッ素高分子を骨格とし、スルホン酸基、カルボキシル基、リン酸基、ホスホン基等の基を有する樹脂を挙げることができる。このようなイオン伝導性樹脂としては、例えばナフィオン(デュポン社製)等の市販品を用いることができる。イオン伝導性樹脂は、通常、触媒粒子1質量部に対し0.01〜10質量部用いることが望ましく、より望ましくは0.05〜1質量部である。   The ion conductive resin in the catalyst paste is a material that supports the catalyst and serves as a binder for forming the catalyst layer, and also has a role of forming a passage for ions and the like generated by the catalyst to move. As such an ion conductive resin, the same resin that can be used as the solid polymer electrolyte membrane can be used. The ion conductive resin is not particularly limited as long as it has ion conductivity and is difficult to dissolve in water and methanol, and a known one can be used. Typically, a fluorine-containing polymer is used. Examples of the resin include a skeleton and a group such as a sulfonic acid group, a carboxyl group, a phosphoric acid group, or a phosphonic group. As such an ion conductive resin, for example, commercially available products such as Nafion (manufactured by DuPont) can be used. In general, the ion conductive resin is preferably used in an amount of 0.01 to 10 parts by mass, more preferably 0.05 to 1 part by mass with respect to 1 part by mass of the catalyst particles.

触媒ペースト中の溶剤は、イオン伝導性樹脂を溶解もしくは分散させ、触媒粒子と効率よく混合できるものであればよく、水、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール等の低級アルコール類、エチレングリコール、グリセリン等の多価アルコール類、メチルエチルケトン、ジブチルエーテル、ジメチルホルムアミド等が用いられる。触媒ペーストに使用される溶剤の量は特に制限はされないが、触媒粒子1質量部に対し1〜100質量部用いることが望ましく、より望ましくは5〜30質量部である。触媒ペーストの25℃における粘度は、塗工性の点から10〜10,000mPa・sに調整することが望ましい。   The solvent in the catalyst paste may be any solvent that dissolves or disperses the ion conductive resin and can be efficiently mixed with the catalyst particles, such as water, methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol. Alcohols, polyhydric alcohols such as ethylene glycol and glycerin, methyl ethyl ketone, dibutyl ether, dimethylformamide and the like are used. The amount of the solvent used in the catalyst paste is not particularly limited, but is preferably 1 to 100 parts by weight, more preferably 5 to 30 parts by weight with respect to 1 part by weight of the catalyst particles. The viscosity of the catalyst paste at 25 ° C. is preferably adjusted to 10 to 10,000 mPa · s from the viewpoint of coatability.

触媒ペーストを塗工して触媒層を形成する基材シートは、ポリテトラフルオロエチレン(PTFE)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)、フッ化エチレン・ポリプロピレン共重合体(FEP)、ポリテトラフルオロエチレン・パーフルオロアルコキシビニルエーテル(PFA)等のフッ素系フィルムやポリイミド、ポリエステル、ポリエチレン等のフィルムが使用でき、厚みは25〜250μmのものが望ましい。   The base sheet on which the catalyst layer is formed by applying the catalyst paste is made of polytetrafluoroethylene (PTFE), ethylene / tetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), ethylene fluoride / polypropylene Fluorine films such as polymer (FEP) and polytetrafluoroethylene / perfluoroalkoxy vinyl ether (PFA), and films such as polyimide, polyester, and polyethylene can be used, and the thickness is preferably 25 to 250 μm.

この基材上に触媒ペーストを塗工する方法は、スプレー塗布、ワイヤーバー塗布、ロール塗布、グラビア印刷、スクリーン印刷といった公知の塗工方法を使用できる。   As a method of coating the catalyst paste on the substrate, a known coating method such as spray coating, wire bar coating, roll coating, gravure printing, or screen printing can be used.

1回の塗工で得られる触媒層の厚みは50μm以下が望ましく、25μm以下がより望ましい。触媒層の厚みが50μmより厚くなるとひび割れしやすくなる。なお、触媒層の厚みの下限は1μm以上が望ましく、特に望ましくは5μm以上である。   The thickness of the catalyst layer obtained by one coating is desirably 50 μm or less, and more desirably 25 μm or less. If the thickness of the catalyst layer is greater than 50 μm, cracking tends to occur. The lower limit of the thickness of the catalyst layer is desirably 1 μm or more, and particularly desirably 5 μm or more.

触媒担持量は、アノードとカソード共それぞれ合計で2mg/cm2以上が望ましく、より望ましくは3mg/cm2以上である。触媒担持量が2mg/cm2より少ないとダイレクトメタノールの出力密度が低下する。アノードとカソードの触媒量は等量でもよいが、アノードの触媒量をカソードの触媒量より多く用いることが望ましい。なお、触媒担持量の上限は適宜選定されるが、20mg/cm2以下が望ましく、特に望ましくは10mg/cm2以下である。 The amount of catalyst supported is desirably 2 mg / cm 2 or more in total for both the anode and the cathode, and more desirably 3 mg / cm 2 or more. When the amount of catalyst supported is less than 2 mg / cm 2 , the output density of direct methanol is lowered. The catalyst amount of the anode and the cathode may be equal, but it is desirable to use the anode catalyst amount more than the cathode catalyst amount. The upper limit of the catalyst loading is appropriately selected, but is preferably 20 mg / cm 2 or less, particularly preferably 10 mg / cm 2 or less.

本発明は、上記触媒層を有する基材シートをアノード側及びカソード側にそれぞれ少なくとも2枚用意し、アノード又はカソードの触媒量を所望の量にするため、電解質膜及び/又は電極に前記触媒層を前記基材シートから少なくとも2回転写させ、次いで触媒層が、電解質膜と電極の中間となるように電解質膜と電極を接合して、アノード又はカソード触媒層を形成する。転写回数が1回で所望の触媒量とするためには触媒層を厚くする必要があるが、この場合は触媒層にひび割れが生じやすくなる。このため、薄い触媒層を形成し、2回以上に分けて転写することで、ひび割れのない触媒層を形成することができる。   In the present invention, at least two base sheets having the catalyst layer are prepared on the anode side and the cathode side, respectively, and the catalyst layer is provided on the electrolyte membrane and / or electrode in order to obtain a desired amount of catalyst for the anode or cathode. Is transferred from the substrate sheet at least twice, and then the electrolyte membrane and the electrode are joined so that the catalyst layer is intermediate between the electrolyte membrane and the electrode to form an anode or cathode catalyst layer. In order to obtain a desired amount of catalyst with one transfer, it is necessary to make the catalyst layer thicker. In this case, however, the catalyst layer is likely to crack. For this reason, by forming a thin catalyst layer and transferring it in two or more steps, a catalyst layer free from cracks can be formed.

基材上に形成された触媒層を電解質膜又は電極に転写するには、通常ホットプレス等の加熱加圧処理を行う。上記加熱加圧処理の条件は温度25〜150℃程度、圧力10〜100kg/cm2が望ましい。触媒層が転写された電解質膜及び/又は電極は、触媒層が電解質膜と電極の中間となるように電解質膜と電極を接合すればよく、この際、前記圧着は不要であるため、単に貼り合わせることで電解質膜・電極接合体を得ることができる。 In order to transfer the catalyst layer formed on the substrate to the electrolyte membrane or the electrode, a heat and pressure treatment such as hot pressing is usually performed. The conditions for the heat and pressure treatment are preferably a temperature of about 25 to 150 ° C. and a pressure of 10 to 100 kg / cm 2 . The electrolyte membrane and / or electrode to which the catalyst layer has been transferred may be bonded by simply bonding the electrolyte membrane and the electrode so that the catalyst layer is intermediate between the electrolyte membrane and the electrode. By combining them, an electrolyte membrane / electrode assembly can be obtained.

この場合、アノード及びカソード触媒層のそれぞれの厚さは1〜200μmが望ましく、特に望ましくは3〜50μmである。1μmより薄いと充分な発電性能を示し得る触媒担持量の触媒層の形成が困難になるおそれがあり、200μmより厚いと燃料の拡散性が低下すると共に電気抵抗が増大するという不利が生じるおそれがある。   In this case, the thickness of each of the anode and cathode catalyst layers is desirably 1 to 200 μm, and particularly desirably 3 to 50 μm. If the thickness is less than 1 μm, it may be difficult to form a catalyst layer having a catalyst carrying amount capable of exhibiting sufficient power generation performance. If the thickness is more than 200 μm, there is a risk that the diffusibility of the fuel decreases and the electrical resistance increases. is there.

なお、上記電解質膜、電極としては公知のものが使用し得、例えば電解質膜としては、ポリスチレンスルホン酸、スルホン化ポリベンズイミダゾール、スルホン化ポリエーテルエーテルケトン、パーフルオロカーボン系イオン交換ポリマーが挙げられる。電極としては、カーボンペーパー、カーボンクロスが挙げられる。   In addition, a well-known thing can be used as said electrolyte membrane and an electrode, For example, a polystyrene sulfonic acid, a sulfonated polybenzimidazole, a sulfonated polyetheretherketone, a perfluorocarbon type | system | group ion exchange polymer is mentioned as an electrolyte membrane. Examples of the electrode include carbon paper and carbon cloth.

ここで、図1は、本発明に従って得られた電解質膜・電極接合体の一例を示すもので、1は電解質膜・電極接合体、2は電解質膜、3aは第1回目の転写で形成された第1アノード触媒層、3bは第2回目の転写で形成された第2アノード触媒層、4aは第1回の転写で形成された第1カソード触媒層、4bは第2回目の転写で形成された第2カソード触媒層、5はアノード、6はカソードである。   Here, FIG. 1 shows an example of an electrolyte membrane / electrode assembly obtained according to the present invention, where 1 is an electrolyte membrane / electrode assembly, 2 is an electrolyte membrane, and 3a is formed by the first transfer. The first anode catalyst layer, 3b is the second anode catalyst layer formed by the second transfer, 4a is the first cathode catalyst layer formed by the first transfer, and 4b is formed by the second transfer. The second cathode catalyst layer 5 is an anode, and 6 is a cathode.

本発明のダイレクトメタノール型燃料電池は、上記の方法で得られた電解質膜・電極接合体を使用する以外は、公知の構成とすることができる。   The direct methanol fuel cell of the present invention can have a known configuration except that the electrolyte membrane / electrode assembly obtained by the above method is used.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
ナフィオン(デュポン社登録商標)の5%イソプロピルアルコール溶液(アルドリッチ社製)10.4g、白金を50質量%担持したTEC10E50E(田中貴金属社製)2g、水8g、1−プロパノール8gを混合してペースト状とした触媒ペーストを膜厚50μmPTFEフィルム(ニチアス社製)上に白金触媒が1.5mg/cm2となるようにワイヤーバーを用いて塗工した後、熱風循環式乾燥器内で60℃,30分間乾燥させ、カソード触媒層C1を得た。更に、同様にしてカソード触媒層C2を得た。
上記白金を50質量%担持したTEC10E50E(田中貴金属社製)の替わりに、白金・ルテニウム合金を54質量%担持したカーボンTEC61E54(田中貴金属社製)を使用した以外は、カソード触媒層と同様にして白金・ルテニウム量が1.5g/cm2のアノード触媒層A1,A2をそれぞれ得た。
いずれの触媒層にもヒビや割れは見られなかった。
[Example 1]
A paste prepared by mixing 10.4 g of a 5% isopropyl alcohol solution (manufactured by Aldrich) of Nafion (registered trademark of DuPont), 2 g of TEC10E50E (manufactured by Tanaka Kikinzoku) carrying 50% by mass of platinum, 8 g of water, and 8 g of 1-propanol. After coating the catalyst paste in a shape on a 50 μm-thick PTFE film (manufactured by Nichias) using a wire bar so that the platinum catalyst is 1.5 mg / cm 2, it is heated at 60 ° C. in a hot air circulation dryer. It was dried for 30 minutes to obtain a cathode catalyst layer C1. Further, a cathode catalyst layer C2 was obtained in the same manner.
Except for using TEC10E50E (produced by Tanaka Kikinzoku Co., Ltd.) carrying 50% by mass of platinum, carbon TEC61E54 (produced by Tanaka Kikinzoku) carrying 54% by mass of platinum / ruthenium alloy was used in the same manner as the cathode catalyst layer. Anode catalyst layers A1 and A2 having a platinum / ruthenium amount of 1.5 g / cm 2 were obtained.
None of the catalyst layers were cracked or cracked.

固体高分子電解質膜である厚さ50μmのナフィオン112(デュポン社製)に上記PTFE上に形成された触媒層C1を触媒層面が電解質に接するようにして、120℃で20kg/cm2の圧力で3分間圧着し、圧力開放後、PTFEフィルムを除去し、電解質膜上に第1カソード触媒層C1を形成した。更に、上記PTFE上に形成された触媒層C2を触媒層面が電解質膜上の触媒層C1に接するようにして、同様に加熱圧着し、第2カソード触媒層C2を転写し、合計で白金触媒が3mg/cm2搭載されたカソード触媒層を形成した。
電解質のカソード触媒層形成面と反対の面に、同様にして第1及び第2アノード触媒層A1,A2を転写し、合計で白金・ルテニウム合金触媒が3mg/cm2のアノード触媒層を形成した。更に、カーボンペーパーTGP−H−090(東レ社製)を両極に接触させ、電解質膜・電極接合体を得た。この接合体を用いて燃料電池を作製し、1mol/Lの濃度のメタノール溶液を燃料とし、空気を酸化ガスとして30℃で発電させたところ、35mW/cm2の最大出力密度を得た。
A catalyst layer C1 formed on the PTFE is placed on a Nafion 112 (manufactured by DuPont) having a thickness of 50 μm which is a solid polymer electrolyte membrane so that the catalyst layer surface is in contact with the electrolyte at 120 ° C. and a pressure of 20 kg / cm 2 . After pressing for 3 minutes and releasing the pressure, the PTFE film was removed, and the first cathode catalyst layer C1 was formed on the electrolyte membrane. Further, the catalyst layer C2 formed on the PTFE is heat-pressed in the same manner so that the catalyst layer surface is in contact with the catalyst layer C1 on the electrolyte membrane, the second cathode catalyst layer C2 is transferred, and the platinum catalyst is added in total. A cathode catalyst layer loaded with 3 mg / cm 2 was formed.
Similarly, the first and second anode catalyst layers A1 and A2 were transferred to the surface of the electrolyte opposite to the surface on which the cathode catalyst layer was formed to form an anode catalyst layer having a total of 3 mg / cm 2 of platinum / ruthenium alloy catalyst. . Furthermore, carbon paper TGP-H-090 (manufactured by Toray Industries, Inc.) was brought into contact with both electrodes to obtain an electrolyte membrane / electrode assembly. A fuel cell was produced using this joined body, and when a methanol solution having a concentration of 1 mol / L was used as fuel and power was generated at 30 ° C. using air as an oxidizing gas, a maximum output density of 35 mW / cm 2 was obtained.

[比較例1]
実施例1で作製した触媒ペーストを用い、実施例で使用PTFE上に白金量が3mg/cm2となるようにカソード触媒層C3、白金・ルテニウム量が3mg/cm2となるようにアノード触媒層A3を形成した結果、いずれもひび割れが著しかった。
固体高分子電解質膜である厚さ50μmのナフィオン112(デュポン社製)に上記PTFE上に形成された触媒層C3とA3を用いて実施例と同様にして電解質膜上に触媒層を形成した。実施例1と同様に発電させたが、最大出力密度は25mW/cm2と低かった。
[Comparative Example 1]
Using the catalyst paste prepared in Example 1, the cathode catalyst layer C3 so that the amount of platinum is 3 mg / cm 2 on the PTFE used in the example, and the anode catalyst layer so that the amount of platinum / ruthenium is 3 mg / cm 2. As a result of forming A3, cracks were remarkable in all cases.
A catalyst layer was formed on the electrolyte membrane using the catalyst layers C3 and A3 formed on the PTFE on Nafion 112 (manufactured by DuPont) having a thickness of 50 μm, which is a solid polymer electrolyte membrane, in the same manner as in the example. Although power was generated in the same manner as in Example 1, the maximum output density was as low as 25 mW / cm 2 .

本発明により作製された電解質膜・電極接合体の一例を説明する断面図である。It is sectional drawing explaining an example of the electrolyte membrane electrode assembly produced by this invention.

符号の説明Explanation of symbols

1 電解質膜・電極接合体
2 電解質膜
3a 第1アノード触媒層A1
3b 第2アノード触媒層A2
4a 第1カソード触媒層C1
4b 第2カソード触媒層C2
5 アノード
6 カソード
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane * electrode assembly 2 Electrolyte membrane 3a 1st anode catalyst layer A1
3b Second anode catalyst layer A2
4a First cathode catalyst layer C1
4b Second cathode catalyst layer C2
5 Anode 6 Cathode

Claims (4)

基材シート上に触媒粒子とイオン伝導性樹脂と溶剤からなる触媒ペーストを用いて触媒層を形成し、前記基材シートから前記触媒層を電解質膜及び/又は電極に少なくとも2回転写することを繰り返した後、触媒層が、電解質膜と電極の中間となるように電解質膜と電極を接合したことを特徴とする電解質膜・電極接合体の製造方法。   Forming a catalyst layer on the substrate sheet using a catalyst paste comprising catalyst particles, an ion conductive resin and a solvent, and transferring the catalyst layer from the substrate sheet to an electrolyte membrane and / or an electrode at least twice. A process for producing an electrolyte membrane / electrode assembly, wherein the electrolyte membrane and the electrode are joined such that the catalyst layer is intermediate between the electrolyte membrane and the electrode after the repetition. 触媒粒子が白金族金属又は白金含有合金であり、導電材に予め担持させてあることを特徴とする請求項1記載の電解質膜・電極接合体の製造方法。   2. The method for producing an electrolyte membrane / electrode assembly according to claim 1, wherein the catalyst particles are a platinum group metal or a platinum-containing alloy and are previously supported on a conductive material. 白金族金属又は白金含有合金量が少なくとも2mg/cm2であることを特徴とする請求項1又は2記載の電解質膜・電極接合体の製造方法。 The method according to claim 1 or 2 membrane electrode assembly according platinum group metal or platinum-containing alloy weight, characterized in that at least 2 mg / cm 2. 請求項1〜3のいずれか1項記載の方法で製造された電解質膜・電極接合体を用いてなることを特徴とするダイレクトメタノール型燃料電池。
A direct methanol fuel cell comprising the electrolyte membrane / electrode assembly produced by the method according to claim 1.
JP2005263198A 2005-09-12 2005-09-12 Method of manufacturing electrolyte membrane-electrode assembly and direct methanol fuel cell using it Pending JP2007080548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263198A JP2007080548A (en) 2005-09-12 2005-09-12 Method of manufacturing electrolyte membrane-electrode assembly and direct methanol fuel cell using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263198A JP2007080548A (en) 2005-09-12 2005-09-12 Method of manufacturing electrolyte membrane-electrode assembly and direct methanol fuel cell using it

Publications (1)

Publication Number Publication Date
JP2007080548A true JP2007080548A (en) 2007-03-29

Family

ID=37940645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263198A Pending JP2007080548A (en) 2005-09-12 2005-09-12 Method of manufacturing electrolyte membrane-electrode assembly and direct methanol fuel cell using it

Country Status (1)

Country Link
JP (1) JP2007080548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528425A (en) * 2009-05-29 2012-11-12 ソルビコア ゲーエムベーハー ウント コンパニー カーゲー Method for producing a catalyst layer for a fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140172A (en) * 1997-07-14 1999-02-12 Asahi Chem Ind Co Ltd Method for producing film-electrode joined body for fuel cell
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
JP2004311225A (en) * 2003-04-08 2004-11-04 Sony Corp Catalytic powder, catalytic electrode, and electrochemical device
JP2005056583A (en) * 2002-07-09 2005-03-03 Matsushita Electric Ind Co Ltd Electrolyte membrane-electrode assembly for fuel cell, fuel cell using it, and its manufacturing method
JP2005108588A (en) * 2003-09-30 2005-04-21 Asahi Kasei Corp Electrode catalyst layer for fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140172A (en) * 1997-07-14 1999-02-12 Asahi Chem Ind Co Ltd Method for producing film-electrode joined body for fuel cell
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
JP2005056583A (en) * 2002-07-09 2005-03-03 Matsushita Electric Ind Co Ltd Electrolyte membrane-electrode assembly for fuel cell, fuel cell using it, and its manufacturing method
JP2004311225A (en) * 2003-04-08 2004-11-04 Sony Corp Catalytic powder, catalytic electrode, and electrochemical device
JP2005108588A (en) * 2003-09-30 2005-04-21 Asahi Kasei Corp Electrode catalyst layer for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528425A (en) * 2009-05-29 2012-11-12 ソルビコア ゲーエムベーハー ウント コンパニー カーゲー Method for producing a catalyst layer for a fuel cell

Similar Documents

Publication Publication Date Title
US8168025B2 (en) Methods of making components for electrochemical cells
JP2004006369A (en) Method for manufacturing membrane electrode assembly using membrane coated with catalyst
JP2008186798A (en) Electrolyte membrane-electrode assembly
RU2414772C2 (en) Structures for gas diffusion electrodes
JP7363956B2 (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
CA2649903A1 (en) Methods of making components for electrochemical cells
JP4228643B2 (en) Method for producing membrane electrode assembly of polymer electrolyte fuel cell
WO2017154475A1 (en) Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly
JP5040000B2 (en) Manufacturing method of membrane / electrode assembly
JP2001006699A (en) Solid polymer electrolyte film and electrode joined element for solid polymer fuel cell and manufacture thereof
JP2009043692A (en) Manufacturing method and membrane electrode assembly for fuel cell, and membrane electrode assembly
JP2008198437A (en) Membrane electrode assembly for fuel cell, its manufacturing method, and fuel cell using it
JP2007080548A (en) Method of manufacturing electrolyte membrane-electrode assembly and direct methanol fuel cell using it
JP2006079917A (en) Mea for fuel cell, and fuel cell using this
JP5501044B2 (en) Membrane electrode assembly and fuel cell
JP2009004384A (en) Manufacturing method of membrane electrode assembly of polymer electrolyte fuel cell
JP2010061865A (en) Method of manufacturing membrane electrode structure, and membrane electrode structure manufactured by this method
JP2007234473A (en) Catalyst electrode layer for fuel cell and its process of manufacture
JP2008258060A (en) Manufacturing method of membrane-electrode assembly
JP2005011590A (en) Membrane electrode junction, and manufacturing method of membrane electrode junction intermediate body using the same
JP2006040703A (en) Catalyst carrying method of solid polymer fuel cell and membrane-electrode junction
JP2005209402A (en) Manufacturing method of membrane-electrode assembly of solid polymer fuel cell
JP2007103291A (en) Manufacturing method of membrane/electrode assembly for direct methanol fuel cell
JP5439947B2 (en) Membrane electrode assembly, transfer substrate for production of membrane electrode assembly, coating transfer substrate for electrode catalyst layer for production of membrane electrode assembly, and polymer electrolyte fuel cell
JP2010062062A (en) Method of manufacturing membrane electrode assembly, membrane electrode assembly, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110720