JP5439947B2 - Membrane electrode assembly, transfer substrate for production of membrane electrode assembly, coating transfer substrate for electrode catalyst layer for production of membrane electrode assembly, and polymer electrolyte fuel cell - Google Patents

Membrane electrode assembly, transfer substrate for production of membrane electrode assembly, coating transfer substrate for electrode catalyst layer for production of membrane electrode assembly, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5439947B2
JP5439947B2 JP2009120682A JP2009120682A JP5439947B2 JP 5439947 B2 JP5439947 B2 JP 5439947B2 JP 2009120682 A JP2009120682 A JP 2009120682A JP 2009120682 A JP2009120682 A JP 2009120682A JP 5439947 B2 JP5439947 B2 JP 5439947B2
Authority
JP
Japan
Prior art keywords
electrode assembly
electrode catalyst
catalyst layer
transfer substrate
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009120682A
Other languages
Japanese (ja)
Other versions
JP2010272223A (en
Inventor
靖洋 羽場
克巧 直井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2009120682A priority Critical patent/JP5439947B2/en
Publication of JP2010272223A publication Critical patent/JP2010272223A/en
Application granted granted Critical
Publication of JP5439947B2 publication Critical patent/JP5439947B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、膜電極接合体、膜電極接合体製造用の転写基材、膜電極接合体製造用の電極触媒層の塗工転写基材及び固体高分子形燃料電池に関する。特に、発電性能が向上した膜電極接合体、膜電極接合体製造用の転写基材、膜電極接合体製造用の電極触媒層の塗工転写基材及び固体高分子形燃料電池に関する。   The present invention relates to a membrane electrode assembly, a transfer substrate for producing a membrane electrode assembly, a coating transfer substrate for an electrode catalyst layer for producing a membrane electrode assembly, and a polymer electrolyte fuel cell. In particular, the present invention relates to a membrane electrode assembly with improved power generation performance, a transfer substrate for producing a membrane electrode assembly, a coating transfer substrate for an electrode catalyst layer for producing a membrane electrode assembly, and a solid polymer fuel cell.

固体高分子形燃料電池は、二つの電極(酸化極と還元極)で固体高分子電解質膜を挟んで接合した膜電極接合体を、ガス拡散層で挟んだ構造をしている。アノードとカソードに水素と酸素を流すことで電気化学反応を起こし、発電を起こすシステムである。燃料電池は従来の発電装置と異なり、発電状態において発生するのは水のみであり、近年問題となっている二酸化炭素等の環境負荷ガスを発生しないクリーンな発電装置として期待されている。   A polymer electrolyte fuel cell has a structure in which a membrane electrode assembly formed by sandwiching a solid polymer electrolyte membrane between two electrodes (an oxidation electrode and a reduction electrode) is sandwiched between gas diffusion layers. This system generates electricity by causing an electrochemical reaction by flowing hydrogen and oxygen through the anode and cathode. Unlike conventional power generators, fuel cells generate only water in a power generation state, and are expected as clean power generators that do not generate environmentally harmful gases such as carbon dioxide, which have become a problem in recent years.

一方、膜電極接合体の作製方法としては、触媒担持した導電性粒子と、イオン導電性を持つ高分子とを有機溶媒に分散させた燃料電池用電極触媒インクを、ガス拡散層に塗布して電極触媒層を形成し、形成した電極触媒層と固体高分子電解質膜とが接するように熱圧着する方法や、転写フィルムに上記電極触媒インクを塗布し電極触媒層を形成し、形成した電極触媒層と固体高分子電解質膜とが接するように熱圧着する方法が知られている。   On the other hand, as a method for producing a membrane electrode assembly, an electrode catalyst ink for fuel cells in which conductive particles carrying catalyst and a polymer having ionic conductivity are dispersed in an organic solvent is applied to a gas diffusion layer. A method of forming an electrode catalyst layer, thermocompression bonding so that the formed electrode catalyst layer and the solid polymer electrolyte membrane are in contact, or forming the electrode catalyst layer by applying the above electrode catalyst ink to a transfer film, and forming the electrode catalyst A method of thermocompression bonding so that the layer and the solid polymer electrolyte membrane are in contact with each other is known.

このとき用いられる電極触媒層は、一般に固体高分子電解質膜との密着性の向上から平滑性が高いことが求められている。   The electrode catalyst layer used at this time is generally required to have high smoothness from the viewpoint of improving the adhesion with the solid polymer electrolyte membrane.

また、撥水性を高める為に、グリセリンなどの造孔材を電極触媒インクに混ぜた後に、電極触媒層を形成し造孔材取り除き多孔性を高める方法や、フッ素樹脂などを電極触媒インクに混ぜる方法などが取られている。   In order to improve water repellency, after mixing a pore former such as glycerin with the electrode catalyst ink, a method of forming an electrode catalyst layer to remove the pore former and increasing the porosity, or a fluorine resin or the like is mixed with the electrode catalyst ink. The method is taken.

特開2004−220979号公報Japanese Patent Laid-Open No. 2004-220979 特開2008―218131号公報JP 2008-218131 A

しかしながら、単純に平滑性の高い電極触媒層では、特に高電流密度における発電状態において排水性の効果を十分に得ることができない。   However, a simple electrode catalyst layer with high smoothness cannot provide a sufficient drainage effect particularly in a power generation state at a high current density.

また、電極触媒インクに造孔材や撥水剤を混ぜる方法では、電極触媒層の電気抵抗が高くなり、特に低電流側での出力が落ちてしまう問題があった。   In addition, the method of mixing a pore former or a water repellent with the electrode catalyst ink has a problem in that the electric resistance of the electrode catalyst layer increases, and the output on the low current side particularly decreases.

本発明は、うねり曲線を有する電極触媒層と固体高分子電解質膜との接合性を保ちつつ撥水性の良好な膜電極接合体を形成することができ、発電性能が向上した膜電極接合体、膜電極接合体製造用の転写基材、膜電極接合体製造用の電極触媒層の塗工転写基材及び固体高分子形燃料電池を提供することである。   The present invention is capable of forming a membrane electrode assembly with good water repellency while maintaining the bondability between the electrode catalyst layer having a undulation curve and the solid polymer electrolyte membrane, and a membrane electrode assembly with improved power generation performance, It is intended to provide a transfer substrate for producing a membrane electrode assembly, a coating transfer substrate for an electrode catalyst layer for producing a membrane electrode assembly, and a polymer electrolyte fuel cell.

本発明者らが鋭意検討を重ねた結果、上記課題を解決するため燃料電池膜電極接合体の電極触媒層のうねり曲線要素の平均高さを適正化することで触媒性能向上が可能であることが分かった。   As a result of intensive studies by the present inventors, it is possible to improve the catalyst performance by optimizing the average height of the undulation curve element of the electrode catalyst layer of the fuel cell membrane electrode assembly in order to solve the above problems. I understood.

本発明の請求項1に係る発明は、一対の電極触媒層で高分子電解質膜を持した構造を備える膜電極接合体であって、一対の電極触媒層の一方の高分子電解質膜との接合面と反対側の表面が、一対の電極触媒層のどちらか一方の面内の一方向においてカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さが3μm以上μm以下であることを特徴とする膜電極接合体としたものである。 The invention according to claim 1 of the present invention is a membrane electrode assembly comprising a structure that is sandwiched between the polymer electrolyte membrane a pair of electrode catalyst layers, and one of the polymer electrolyte membrane of the pair of electrode catalyst layers The average height of the waviness curve element obtained by the contour curve filter having a cut-off value of λf4 mm and λc of 0.8 mm in one direction within either surface of the pair of electrode catalyst layers is 3 μm or more. The membrane electrode assembly is 7 μm or less.

本発明の請求項2に係る発明は、一対の電極触媒層のどちらか一方をカソードとして用いることを特徴とする請求項1に記載の膜電極接合体としたものである。   The invention according to claim 2 of the present invention is the membrane electrode assembly according to claim 1, wherein either one of the pair of electrode catalyst layers is used as a cathode.

本発明の請求項3に係る発明は、請求項1または2に記載の膜電極接合体が一対のガス拡散層で持され、さらに、ガス拡散層で挟持された膜電極接合体が一対のセパレータで持されることを特徴とする固体高分子形燃料電池としたものである。 Invention is sandwiched claim 1 or 2 gas diffusion layer of the membrane electrode assembly of the pair according to, further, membrane electrode assembly is sandwiched between the gas diffusion layer pair according to claim 3 of the present invention it is in the separator nip and shall have a polymer electrolyte fuel cell according to claim.

本発明の請求項4に係る発明は、請求項1または2に記載の膜電極接合体製造用の転写基材であって、転写基材の表面が、面内の少なくとも一方向においてカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さが3μm以上17μm以下であることを特徴とする膜電極接合体製造用の転写基材としたものである。   The invention according to claim 4 of the present invention is the transfer substrate for producing a membrane electrode assembly according to claim 1 or 2, wherein the surface of the transfer substrate is cut off in at least one direction in the plane. An average height of waviness curve elements obtained by a contour curve filter of λf 4 mm and λc 0.8 mm is 3 μm or more and 17 μm or less, which is used as a transfer substrate for manufacturing a membrane electrode assembly.

本発明の請求項5に係る発明は、膜電極接合体の電極触媒層を転写基材上に設けた膜電極接合体製造用の電極触媒塗工転写基材であって、転写基材上の触媒表面は面内の少なくとも一方向においてカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さが7μm以下であることを特徴とする、膜電極接合体製造用の電極触媒塗工転写基材としたものである。   The invention according to claim 5 of the present invention is an electrode catalyst-coated transfer base material for producing a membrane electrode assembly in which an electrode catalyst layer of a membrane electrode assembly is provided on a transfer base material. The catalyst surface has an average height of waviness curve elements obtained by a contour curve filter having a cutoff value of λf4 mm and λc of 0.8 mm in at least one direction in the plane, which is 7 μm or less. This is an electrode catalyst coating transfer base material.

本発明の請求項6に係る発明は、請求項に記載の電極触媒塗工転写基材を用いて製造されることを特徴とする膜電極接合体としたものである。 The invention according to claim 6 of the present invention is a membrane / electrode assembly manufactured using the electrode catalyst-coated transfer substrate according to claim 5 .

本発明の請求項7に係る発明は、請求項6に記載の膜電極接合体が一対のガス拡散層で持され、さらに、ガス拡散層で挟持された膜電極接合体が一対のセパレータで持されることを特徴とする固体高分子形燃料電池としたものである。 Invention is sandwiched between the gas diffusion layer of the membrane electrode assembly of the pair according to claim 6, further membrane electrode assembly is sandwiched between the gas diffusion layer of the pair separator according to claim 7 of the present invention in is obtained by a polymer electrolyte fuel cell characterized in that it is sandwiched.

本発明によれば、うねり曲線を有する電極触媒層と固体高分子電解質膜との接合性を保ちつつ撥水性の良好な膜電極接合体を形成することができ、発電性能が向上した膜電極接合体、膜電極接合体製造用の転写基材、膜電極接合体製造用の電極触媒層の塗工転写基材及び固体高分子形燃料電池を提供することができる。   According to the present invention, it is possible to form a membrane electrode assembly with good water repellency while maintaining the bondability between the electrode catalyst layer having a undulation curve and the solid polymer electrolyte membrane, and the membrane electrode junction with improved power generation performance Body, a transfer substrate for producing a membrane electrode assembly, an electrode transfer layer for an electrode catalyst layer for producing a membrane electrode assembly, and a polymer electrolyte fuel cell.

本発明の実施の形態に係る固体高分子形燃料電池を示す概略分解模式図である。1 is a schematic exploded view showing a polymer electrolyte fuel cell according to an embodiment of the present invention. (a)〜(c)は、本発明の実施の形態に係る膜電極接合体を示す概略断面模式図である。(A)-(c) is a schematic cross-sectional schematic diagram which shows the membrane electrode assembly which concerns on embodiment of this invention. 本発明の実施の形態に係る膜電極接合体を示す概略模式図である。It is a schematic diagram showing a membrane electrode assembly concerning an embodiment of the invention.

以下に、本発明の実施の形態に係る膜電極接合体(MEA)11及び固体高分子形燃料電池13について説明する。なお、本発明は、以下に記載する各実施の形態に限定されうるものではなく、当業者の知識に基づいて設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。   Hereinafter, a membrane electrode assembly (MEA) 11 and a polymer electrolyte fuel cell 13 according to an embodiment of the present invention will be described. Note that the present invention is not limited to the embodiments described below, and modifications such as design changes can be made based on the knowledge of those skilled in the art, and such modifications are added. The embodiments may be included in the scope of the present invention.

まず、本発明の実施の形態において、うねり曲線要素の平均高さについて説明するが、これらはJIS B 0601:2001によって定義されている。   First, in the embodiment of the present invention, the average height of the waviness curve element will be described. These are defined by JIS B 0601: 2001.

本発明の実施の形態に係る電極触媒層の表面には、通常、短い波長成分(粗さ)、長い波長成分(うねり)、及び更に長い波長成分が同時に含まれている。そこで、本発明の実施の形態では、電極触媒層の表面形状を限定するために、うねり成分を用いて、粗さ成分とうねり成分より更に長い波長成分を取り除いて測定する必要がある。本発明の実施の形態において、カットオフ値λfとは、うねり成分とそれより長い波長成分との境界を定義するフィルタであり、カットオフ値λcとは、粗さ成分とうねり成分との境界を定義するフィルタである。本発明の実施の形態ではカットオフ値λfとλcを用いて、うねりの成分以外の波長を取り除き電極触媒層の表面形状を限定した。   The surface of the electrode catalyst layer according to the embodiment of the present invention usually contains a short wavelength component (roughness), a long wavelength component (swell), and a longer wavelength component at the same time. Therefore, in the embodiment of the present invention, in order to limit the surface shape of the electrode catalyst layer, it is necessary to use the undulation component and remove the roughness component and the wavelength component longer than the undulation component for measurement. In the embodiment of the present invention, the cutoff value λf is a filter that defines the boundary between the undulation component and the longer wavelength component, and the cutoff value λc is the boundary between the roughness component and the undulation component. This is a filter to be defined. In the embodiment of the present invention, the cut-off values λf and λc are used to remove the wavelengths other than the waviness component and limit the surface shape of the electrode catalyst layer.

本発明の実施の形態において、うねり曲線要素の平均高さWcとは、測定した基準長での輪郭曲線要素の高さZtの平均のことであり、輪郭曲線要素の高さとは、一つの山+隣の谷、或いは一つの谷+隣の山との高さの差にあたる。   In the embodiment of the present invention, the average height Wc of the waviness curve element is an average of the height Zt of the contour curve element at the measured reference length, and the height of the contour curve element is one peak. + The height of the next valley or one valley + the next mountain.

図1は、本発明の実施の形態に係る固体高分子形燃料電池13を示す概略分解模式図である。図1に示すように、本発明の実施の形態に係る固体高分子形燃料電池13は、固体高分子電解質膜1、電極触媒層2及び電極触媒層3を有する膜電極接合体(MEA)11、空気極側ガス拡散層4、燃料極側ガス拡散層5、ガス流路8及び冷却水流路9を有する一対のセパレータ10を備えている。   FIG. 1 is a schematic exploded view showing a polymer electrolyte fuel cell 13 according to an embodiment of the present invention. As shown in FIG. 1, a polymer electrolyte fuel cell 13 according to an embodiment of the present invention includes a membrane electrode assembly (MEA) 11 having a polymer electrolyte membrane 1, an electrode catalyst layer 2, and an electrode catalyst layer 3. And a pair of separators 10 having an air electrode side gas diffusion layer 4, a fuel electrode side gas diffusion layer 5, a gas flow path 8 and a cooling water flow path 9.

図1に示すように、本発明の実施の形態に係る固体高分子形燃料電池13は、固体高分子電解質膜1の両面に電極触媒層2及び電極触媒層3が接合され、持された膜電極接合体(MEA)11を備え、膜電極接合体11の電極触媒層2及び電極触媒層3と対向して空気極側ガス拡散層4及び燃料極側ガス拡散層5が配置される。これによりそれぞれ空気極6及び燃料極7が構成される。そしてガス流通用のガス流路8を備え、相対する主面に冷却水流通用の冷却水流路9を備えた導電性でかつ不透過性の材料よりなる1組のセパレータ10が配置される。燃料極7側のセパレータ10のガス流路8からは燃料ガスとして、例えば水素ガスが供給される。一方、空気極6側のセパレータ10のガス流路8からは、酸化剤ガスとして、例えば酸素を含むガスが供給される。 As shown in FIG. 1, a solid polymer fuel cell 13 according to the embodiment of the present invention, the solid polymer electrolyte membrane 1 of the double-sided electrode catalyst layer 2 and the electrode catalyst layer 3 is joined is sandwiched A membrane electrode assembly (MEA) 11 is provided, and an air electrode side gas diffusion layer 4 and a fuel electrode side gas diffusion layer 5 are disposed to face the electrode catalyst layer 2 and the electrode catalyst layer 3 of the membrane electrode assembly 11. Thereby, the air electrode 6 and the fuel electrode 7 are comprised, respectively. Then, a set of separators 10 made of a conductive and impermeable material, which is provided with a gas flow path 8 for gas flow and is provided with a cooling water flow path 9 for cooling water flow on the opposing main surface, is disposed. For example, hydrogen gas is supplied as a fuel gas from the gas flow path 8 of the separator 10 on the fuel electrode 7 side. On the other hand, a gas containing oxygen, for example, is supplied as an oxidant gas from the gas flow path 8 of the separator 10 on the air electrode 6 side.

また、一組のセパレータ10に固体高分子電解質膜1、電極触媒層2、電極触媒層3、空気極側ガス拡散層4、燃料極側ガス拡散層5が持された。いわゆる単セル構造の固体高分子形燃料電池13であるが、本発明の実施の形態にあっては、セパレータ10を介して複数のセルを積層して燃料電池とすることもできる。
Further, the solid polymer electrolyte membrane 1 to a pair of separators 10, the electrode catalyst layer 2, the electrode catalyst layer 3, the air electrode-side gas diffusion layer 4, the fuel electrode side gas diffusion layer 5 is sandwiched. Although it is a solid polymer fuel cell 13 having a so-called single cell structure, in the embodiment of the present invention, a plurality of cells may be stacked via a separator 10 to form a fuel cell.

次に、本発明の実施の形態に係る膜電極接合体11の電極触媒層2及び電極触媒層3について説明する。   Next, the electrode catalyst layer 2 and the electrode catalyst layer 3 of the membrane electrode assembly 11 according to the embodiment of the present invention will be described.

本発明の実施の形態に係る電極触媒層2及び電極触媒層3を形成する触媒インクには、触媒担持した導電性粒子とイオン伝導性高分子と溶媒とを含み構成される。   The catalyst ink for forming the electrode catalyst layer 2 and the electrode catalyst layer 3 according to the embodiment of the present invention includes conductive particles carrying a catalyst, an ion conductive polymer, and a solvent.

触媒担持した導電性粒子は、導電性を持つ担体と、触媒能を持つ触媒金属から成り立つ。触媒金属には、カソードでは酸素の還元反応、アノードでは水素の酸化反応に触媒作用を有すれば特に限定するものではない。具体的には、例えば遷移金属単体、遷移金属群からなる合金、酸化物、複酸化物、炭化物、錯体を用いることができる。中でも特にPt、Pd、Ni、Ir、Rh、Co、Os、Ru、Fe、Au、Ag、Cu等が好ましく、この群からなる合金、酸化物、複酸化物、炭化物、錯体を用いることが好ましい。また、触媒担持した導電性粒子の粒径は、触媒金属の利用率、反応性及び安定性を考慮し、1nm〜10nm程度が好ましい。   The conductive particles carrying the catalyst are composed of a carrier having conductivity and a catalytic metal having catalytic ability. The catalyst metal is not particularly limited as long as it has a catalytic action for oxygen reduction reaction at the cathode and hydrogen oxidation reaction at the anode. Specifically, for example, a transition metal simple substance, an alloy composed of a transition metal group, an oxide, a double oxide, a carbide, or a complex can be used. Among these, Pt, Pd, Ni, Ir, Rh, Co, Os, Ru, Fe, Au, Ag, Cu and the like are preferable, and it is preferable to use alloys, oxides, double oxides, carbides, complexes of this group. . In addition, the particle size of the conductive particles carrying the catalyst is preferably about 1 nm to 10 nm in consideration of the utilization rate, reactivity and stability of the catalyst metal.

導電性を持つ担体としては、特に制限されず公知のものが使用できるが、代表的なものとしてはカーボン粒子があり、具体的にはカーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、フラーレン、固体酸凝集体等の炭素粒子等が挙げられ、この中から一つ以上選べばよい。導電性を持つ担体の粒径としては10nm〜100nm程度が好ましい。   The carrier having conductivity is not particularly limited and known ones can be used, but representative examples include carbon particles, specifically carbon black, acetylene black, ketjen black, carbon nanotubes, fullerenes, Examples thereof include carbon particles such as solid acid aggregates, and one or more of these may be selected. The particle size of the conductive carrier is preferably about 10 nm to 100 nm.

電極触媒インクには、触媒担持した導電性粒子以外にも、触媒を担持していない導電性粒子を混合させても良い。   The electrode catalyst ink may be mixed with conductive particles not carrying a catalyst in addition to the conductive particles carrying a catalyst.

電極触媒インクに含まれる高分子は、イオン伝導性を有するものであれば良いが、電極触媒層2及び電極触媒層3と固体高分子電解質膜1との密着性を考えると、固体高分子電解質膜1と同じ材料を選択することが好ましい。   The polymer contained in the electrode catalyst ink is not particularly limited as long as it has ion conductivity. However, considering the adhesion between the electrode catalyst layer 2 and the electrode catalyst layer 3 and the solid polymer electrolyte membrane 1, the solid polymer electrolyte is used. It is preferable to select the same material as the membrane 1.

本発明の実施の形態に係る電極触媒インクは、上記触媒担持した導電性粒子を予め水に馴染ませておく。担持された触媒により、アルコールなどの有機溶媒を加えた際に発火の恐れがあるためである。   In the electrode catalyst ink according to the embodiment of the present invention, the conductive particles carrying the catalyst are preliminarily adjusted to water. This is because there is a risk of ignition when an organic solvent such as alcohol is added by the supported catalyst.

更に有機溶媒として、メタノール、エタノール、エチレングリコール、1−プロパノール、2−プロパノール、1,2−プロパンジオール、1,3−プロパンジオール、グリセリン、ブタノールなどのアルコール類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド等の非プロトン極性溶媒など、イオン伝導性を有する高分子を溶解可能であり、その後に除去し得るものであるならば特に制限はなく、上記記述に関わらずいずれの溶媒でも構わない。溶媒は1種又は2種以上選択したものを用いる。   Further, as organic solvents, alcohols such as methanol, ethanol, ethylene glycol, 1-propanol, 2-propanol, 1,2-propanediol, 1,3-propanediol, glycerin, butanol, N, N-dimethylformamide, N , N-dimethylacetamide, N-methyl-2-pyrrolidone, aprotic polar solvents such as dimethyl sulfoxide, and the like are not particularly limited so long as they can dissolve a polymer having ion conductivity and can be removed thereafter. None of these solvents may be used regardless of the above description. As the solvent, one selected from two or more is used.

電極触媒インク中の触媒担持した導電性粒子とイオン伝導性を有する高分子とを含めた固形分は、水と有機溶媒を合わせた全溶媒に対し、5wt%以上45wt%以下にするのが好ましい。この範囲外である場合、インクとしての安定性に欠け、インクの印刷性が悪化してしまうからである。   The solid content including the electroconductive particles carrying the catalyst in the electrode catalyst ink and the polymer having ion conductivity is preferably 5 wt% or more and 45 wt% or less with respect to the total solvent including water and the organic solvent. . If it is out of this range, the ink is not stable and the printability of the ink deteriorates.

電極触媒インクの粘度は25℃のインク温度で50mPa・s以上800mPa・s以下にするのが好ましい。固形分と粘度は印刷方法によって調整すればよいが、上記範囲内とすることにより塗工適性に優れた電極触媒インクとすることができる。   The viscosity of the electrode catalyst ink is preferably 50 mPa · s to 800 mPa · s at an ink temperature of 25 ° C. The solid content and the viscosity may be adjusted by a printing method, but by setting the solid content and the viscosity within the above range, an electrode catalyst ink having excellent coating suitability can be obtained.

電極触媒インクには、適宜増粘材、分散剤を混ぜても構わない。カーボンの分散剤として好適なのは、スルホン酸基が導入された無定形炭素である、固体酸が代表的に挙げられるが、特に限定しない。   The electrode catalyst ink may be mixed with a thickener and a dispersant as appropriate. A suitable example of the carbon dispersant is an amorphous carbon into which a sulfonic acid group has been introduced. A solid acid is typically exemplified, but the carbon dispersant is not particularly limited.

電極触媒インクに加えるイオン伝導性を持つ高分子溶液の固形分は1wt%〜30wt%が望ましい。   The solid content of the polymer solution having ion conductivity added to the electrode catalyst ink is desirably 1 wt% to 30 wt%.

本発明の実施の形態に係る電極触媒インク製造方法における混合方法としては、遊星ボールミル、ビーズミル、ホモジナイザをはじめとする公知の方法が挙げられるが特に限定しない。溶媒が触媒により溶存酸素により酸化されるため、電極触媒インクの分散は不活性ガス下で行うのが好ましいが、大気雰囲気下で混合しても特に構わない。   Examples of the mixing method in the electrode catalyst ink manufacturing method according to the embodiment of the present invention include known methods such as a planetary ball mill, a bead mill, and a homogenizer, but are not particularly limited. Since the solvent is oxidized by dissolved oxygen by the catalyst, the electrocatalyst ink is preferably dispersed in an inert gas, but may be mixed in an air atmosphere.

本発明の実施の形態に係る固体高分子電解質膜1は、イオン伝導性を有するものを用いることが好ましい。例えば、フッ素系固体高分子電解質膜1としては、デュポン社製Nafion(登録商標)、旭硝子(株)製Flemion(登録商標)、旭化成(株)製Aciplex(登録商標)、ゴア社製Gore Select(登録商標)などが挙げられる。炭化水素系固体高分子電解質膜1としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等の固体高分子電解質膜1が挙げられるが特に限定しない。膜厚は20μm〜100μm程度が好ましい。   As the solid polymer electrolyte membrane 1 according to the embodiment of the present invention, one having ion conductivity is preferably used. For example, as the fluorine-based solid polymer electrolyte membrane 1, Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., Aciplex (registered trademark) manufactured by Asahi Kasei Co., Ltd., Gore Select (manufactured by Gore) Registered trademark). Examples of the hydrocarbon-based solid polymer electrolyte membrane 1 include solid polymer electrolyte membranes 1 such as sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene. There is no particular limitation. The film thickness is preferably about 20 μm to 100 μm.

次に、電極触媒層2及び電極触媒層3の形成方法及び膜電極接合体11の作製方法について説明する。   Next, a method for forming the electrode catalyst layer 2 and the electrode catalyst layer 3 and a method for producing the membrane electrode assembly 11 will be described.

膜電極接合体11の作製方法は、固体高分子電解質膜1に電極触媒インクを塗布する方法、ガス拡散層に電極触媒インクを塗布しこれを固体高分子電解質膜1に挟持させ熱圧着する方法、転写基材に電極触媒層を一旦形成した後、固体高分子電解質膜1に挟持させ熱圧着する方法の大きく3つの方法が挙げられるがいずれの方法をとっても構わない。   The membrane electrode assembly 11 is manufactured by applying an electrode catalyst ink to the solid polymer electrolyte membrane 1, applying an electrode catalyst ink to the gas diffusion layer, and sandwiching the electrode catalyst ink between the polymer electrolyte membrane 1 and thermocompression bonding. There are three main methods: once the electrode catalyst layer is formed on the transfer substrate, and then sandwiched between the solid polymer electrolyte membrane 1 and thermocompression bonded, any method may be used.

調整された電極触媒インクの印刷方法は、ドクターブレード法、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などの塗布法、噴霧法などの方法が挙げられるが特に限定しない。塗布基材により最適なものを選定すればよい。   Examples of the method for printing the adjusted electrocatalyst ink include, but are not limited to, a doctor blade method, a dipping method, a screen printing method, a roll coating method, a coating method such as a spray method, and a spray method. What is necessary is just to select an optimal thing with an application | coating base material.

転写基材、ガス拡散層、固体高分子電解質膜1に対し乾燥後の電極触媒層2または電極触媒層3の面内の一方向において、電極触媒層2または電極触媒層3の少なくとも一方の、固体高分子電解質膜1との接合面と反対側の表面が、少なくとも電極触媒層2または電極触媒層3の面内の一方向においてカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さが3μm以上15μmとなるように塗布しても構わない。   In one direction within the surface of the electrode catalyst layer 2 or the electrode catalyst layer 3 after drying with respect to the transfer substrate, the gas diffusion layer, and the solid polymer electrolyte membrane 1, at least one of the electrode catalyst layer 2 or the electrode catalyst layer 3; The swell obtained by the contour curve filter having a cut-off value of λf4 mm and λc of 0.8 mm in at least one direction in the surface of the electrode catalyst layer 2 or the electrode catalyst layer 3 on the surface opposite to the bonding surface with the solid polymer electrolyte membrane 1 You may apply | coat so that the average height of a curve element may be 3 micrometers or more and 15 micrometers.

うねり曲線要素の平均高さが3μm以上15μmを持つ電極触媒層2または電極触媒層3からなる膜電極接合体11は、電極触媒層2または電極触媒層3に造孔材や撥水材を混ぜることなく撥水性を高めることができる。うねり曲線要素の平均高さが3μm未満である場合、十分に撥水の効果が見られなくなってしまい、平均高さが15μmを超える場合、電極触媒層2または電極触媒層3の強度が保てなくなり、ガス拡散層との接合性が保てず、内部抵抗が高くなってしまう。   The membrane electrode assembly 11 composed of the electrode catalyst layer 2 or the electrode catalyst layer 3 having an average height of the waviness curve element of 3 μm or more and 15 μm is mixed with a pore former or a water repellent material in the electrode catalyst layer 2 or the electrode catalyst layer 3. Water repellency can be improved without any problems. When the average height of the waviness curve element is less than 3 μm, the effect of water repellency is not sufficiently observed, and when the average height exceeds 15 μm, the strength of the electrode catalyst layer 2 or the electrode catalyst layer 3 can be maintained. As a result, the bondability with the gas diffusion layer cannot be maintained, and the internal resistance becomes high.

このような表面のうねり曲線を持つ電極触媒層2または電極触媒層3からなる膜電極接合体11は、とくに発電時における水の発生がカソードで顕著であるため、カソードとして用いることで撥水性の効果が高まる。   Since the membrane electrode assembly 11 composed of the electrode catalyst layer 2 or the electrode catalyst layer 3 having such a surface waviness curve is particularly prominent in the cathode during water generation, it can be made water repellent when used as a cathode. Increases effectiveness.

本発明の実施の形態において、電極触媒層2及び電極触媒層3を転写基材に塗布する場合、電極触媒層2及び電極触媒層3を転写基材に塗布してからこれを固体高分子電解質膜1に熱圧着する。転写基材としては特に限定しないが、電極触媒層2及び電極触媒層3が熱圧着により離型するものが良い。具体的にはPTFE、ETFE等のフッ素系樹脂、表面にシリコン樹脂等が塗布されている離型材、PETフィルム、ポリイミド、PEEKなどの高分子フィルム、SΜS等の金属板などが挙げられるが、電極触媒層2及び電極触媒層3が良好に印刷されかつ転写されれば特に限定しない。   In the embodiment of the present invention, when the electrode catalyst layer 2 and the electrode catalyst layer 3 are applied to the transfer substrate, the electrode catalyst layer 2 and the electrode catalyst layer 3 are applied to the transfer substrate and then applied to the solid polymer electrolyte. The film 1 is thermocompression bonded. Although it does not specifically limit as a transfer base material, The thing from which the electrode catalyst layer 2 and the electrode catalyst layer 3 release by thermocompression bonding is good. Specific examples include fluorine resins such as PTFE and ETFE, release materials having a surface coated with silicon resin, PET films, polymer films such as polyimide and PEEK, and metal plates such as SΜS. There is no particular limitation as long as the catalyst layer 2 and the electrode catalyst layer 3 are printed and transferred well.

転写基材に電極触媒層2及び電極触媒層3を塗布する場合には、電極触媒層2または電極触媒層3の少なくとも一方の、固体高分子電解質膜1との接合面と反対側の表面が、少なくとも電極触媒層2または電極触媒層3の面内の一方向においてカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さが3μm以上17μmとして転写基材を用いることで、うねり曲線要素の平均高さが3μm以上15μmである膜電極接合体11を製造することができる。   When applying the electrode catalyst layer 2 and the electrode catalyst layer 3 to the transfer substrate, at least one of the electrode catalyst layer 2 and the electrode catalyst layer 3 has a surface opposite to the bonding surface with the solid polymer electrolyte membrane 1. The transfer substrate is used with an average height of the waviness curve element obtained by the contour curve filter having a cutoff value of λf 4 mm and λc 0.8 mm in at least one direction in the plane of the electrode catalyst layer 2 or the electrode catalyst layer 3 being 3 μm or more and 17 μm. Thereby, the membrane electrode assembly 11 in which the average height of the waviness curve element is 3 μm or more and 15 μm can be manufactured.

うねり曲線要素の平均高さが3μm未満だと、十分に撥水効果をもつ電極触媒層2または電極触媒層3が製造できなくなってしまい、うねり曲線要素の平均高さが17μmを超えると、転写性が悪く転写基材上に電極触媒層2または電極触媒層3が一部残ってしまう上、作製された電極触媒層2または電極触媒層3の強度がもろくなってしまう。   If the average height of the waviness curve element is less than 3 μm, the electrode catalyst layer 2 or the electrode catalyst layer 3 having a sufficient water-repellent effect cannot be produced, and if the average height of the waviness curve element exceeds 17 μm, the transfer The electrode catalyst layer 2 or the electrode catalyst layer 3 is partially left on the transfer substrate, and the strength of the produced electrode catalyst layer 2 or the electrode catalyst layer 3 is fragile.

転写基材は、エンボス処理、ブラスト処理、粗化などの処理を行うことで表面にうねりをつけてあってもよい。   The transfer substrate may be wavy on the surface by performing processes such as embossing, blasting, and roughening.

電極触媒層2または電極触媒層3を転写基材上に設けた膜電極接合体製造用の電極触媒層の塗工転写基材は、転写基材上の電極触媒層2または電極触媒層3の表面は面内の少なくとも一方向においてカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さが7μm以下であることが好ましく、より好ましくは5μm以下である。このような条件を電極触媒層の塗工転写基材が満たすことで電極触媒層2または電極触媒層3の固体高分子電解質膜1への塗工性が良好となる。   Application of Electrode Catalyst Layer for Membrane / Electrode Assembly Production with Electrocatalyst Layer 2 or Electrocatalyst Layer 3 Provided on Transfer Substrate The transfer base of the electrode catalyst layer 2 or electrode catalyst layer 3 on the transfer base In the surface, the average height of the waviness curve element obtained by the contour curve filter having cut-off values λf4 mm and λc0.8 mm in at least one direction in the plane is preferably 7 μm or less, more preferably 5 μm or less. When the coating transfer base material of the electrode catalyst layer satisfies such conditions, the coating property of the electrode catalyst layer 2 or the electrode catalyst layer 3 to the solid polymer electrolyte membrane 1 becomes good.

うねり曲線要素の平均高さが7μmを超える大きい場合、固体高分子電解質膜1と電極触媒層2及び電極触媒層3との接合性が悪くなり、膜電極接合体11の内部抵抗が高くなってしまう。   When the average height of the waviness curve element is larger than 7 μm, the bonding property between the solid polymer electrolyte membrane 1, the electrode catalyst layer 2 and the electrode catalyst layer 3 is deteriorated, and the internal resistance of the membrane electrode assembly 11 is increased. End up.

また、固体高分子電解質膜1への電極触媒層2または電極触媒層3の転写は複数回にわたっても構わない。例えば転写基材に塗布した電極触媒層2または電極触媒層3を固体高分子電解質膜1に挟持させ転写し(膜電極接合体11)、更に膜電極接合体11に電極触媒層2または電極触媒層3を挟持させ転写しても構わない。これを複数回行う、片側だけ行う、交互に行うなど、その順番、回数などは問わない。   Further, the transfer of the electrode catalyst layer 2 or the electrode catalyst layer 3 to the solid polymer electrolyte membrane 1 may be performed a plurality of times. For example, the electrode catalyst layer 2 or the electrode catalyst layer 3 applied to the transfer base material is sandwiched and transferred between the solid polymer electrolyte membrane 1 (membrane electrode assembly 11), and the electrode catalyst layer 2 or the electrode catalyst is further transferred to the membrane electrode assembly 11. The layer 3 may be sandwiched and transferred. The order, the number of times, etc. do not ask | require, such as performing this several times, performing only one side, and performing alternately.

本発明の実施の形態における電極触媒層を塗布後の乾燥条件であるが、最適な乾燥温度は、40℃〜120℃である。乾燥時間は加える溶媒、塗布厚み、乾燥温度に依存するが、1分〜2時間程度が良い。乾燥温度・乾燥時間によっても、うねり曲線要素の平均高さが3μm以上15μmである電極触媒層を形成することができる。   Although it is the drying conditions after apply | coating the electrode catalyst layer in embodiment of this invention, the optimal drying temperature is 40 to 120 degreeC. The drying time depends on the solvent to be added, the coating thickness, and the drying temperature, but it is preferably about 1 minute to 2 hours. Depending on the drying temperature and drying time, an electrode catalyst layer having an average height of waviness curve elements of 3 μm or more and 15 μm can be formed.

本発明の実施の形態に係る熱圧着方法としては、ラミネータ、熱プレスなど、密着性が良好であればその手段を問わない。   As a thermocompression bonding method according to the embodiment of the present invention, any means may be used as long as adhesion is good, such as a laminator and a heat press.

本発明の実施の形態に係る熱圧着条件であるが、電極触媒層に含まれるイオン伝導性を持つ高分子と固体高分子電解質膜1とのガラス転移点程度で、かつ熱劣化する温度より低い必要がある。最適な条件は使用する電極触媒インクに含まれる高分子や、固体高分子電解質膜1にも依存するが、ガラス点移転付近の80℃〜160℃付近がよい。好ましくは、140℃以下がよい。   Although it is the thermocompression-bonding conditions according to the embodiment of the present invention, it is about the glass transition point between the polymer having ion conductivity contained in the electrode catalyst layer and the solid polymer electrolyte membrane 1, and lower than the temperature at which the heat deterioration occurs. There is a need. The optimum conditions depend on the polymer contained in the electrode catalyst ink to be used and the solid polymer electrolyte membrane 1, but are preferably around 80 ° C. to 160 ° C. near the glass point transfer. Preferably, 140 degrees C or less is good.

上記のようにして作製された膜電極接合体11のカソードは、固体高分子電解質膜1との接合面と反対側の表面が、少なくとも電極触媒層の面内の一方向においてカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さがが3μm以上15μm以下であればよい。より好ましくは、3μm以上12μm以下が好ましい。形状は、たとえば図2(a)〜(c)に示すような形状であればよい。アノードは運転条件によって形状を決めれば良いが、固体高分子電解質膜1との接合面と反対側の表面が、少なくとも電極触媒層の面内の一方向においてカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さがが15μm以下であることが好ましい。   The cathode of the membrane electrode assembly 11 produced as described above has a cut-off value λf 4 mm at least in one direction in the plane of the electrode catalyst layer on the surface opposite to the bonding surface with the solid polymer electrolyte membrane 1. The average height of the waviness curve element obtained by the contour curve filter of λc 0.8 mm may be 3 μm or more and 15 μm or less. More preferably, it is 3 μm or more and 12 μm or less. The shape should just be a shape as shown, for example to Fig.2 (a)-(c). The shape of the anode may be determined depending on the operating conditions, but the surface opposite to the joint surface with the solid polymer electrolyte membrane 1 has a contour with cutoff values λf 4 mm and λc 0.8 mm in at least one direction in the plane of the electrode catalyst layer. It is preferable that the average height of the waviness curve element obtained by the curve filter is 15 μm or less.

また電極触媒層の形状は、電極触媒層の面内の一方向において上記うねり曲線要素の平均高さの条件を満たせばよく、図3に示すように蒲鉾形に数列並べたような形状、格子状、ハニカム状、ストライプ状、サーペンタイン状、円柱状など特に形状を限定しない。   Further, the shape of the electrode catalyst layer only needs to satisfy the condition of the average height of the waviness curve element in one direction in the plane of the electrode catalyst layer, as shown in FIG. The shape is not particularly limited, such as a shape, a honeycomb shape, a stripe shape, a serpentine shape, or a cylindrical shape.

本発明の実施の形態に係るガス拡散層としては、カーボンペーパ、カーボンクロス、カーボンフェルト等が挙げられるが、特に限定しない。電極触媒層側にカーボンブラックなどの炭素粒子を塗布したり、PTFE溶液などで撥水処理したりするなどの処理を施しても構わない。   Examples of the gas diffusion layer according to the embodiment of the present invention include, but are not particularly limited to, carbon paper, carbon cloth, and carbon felt. A treatment such as applying carbon particles such as carbon black to the electrode catalyst layer side or performing a water repellent treatment with a PTFE solution or the like may be performed.

さらに本発明の実施の形態に用いられるセパレータ10としてはカーボン、金属等を用いることができる。また、燃料電池としては、ガス供給装置、冷却装置などその他付随する装置を組み立てることにより製造される。   Furthermore, as the separator 10 used in the embodiment of the present invention, carbon, metal or the like can be used. The fuel cell is manufactured by assembling other accompanying devices such as a gas supply device and a cooling device.

本発明の実施の形態に係る膜電極接合体11は、カソード側にカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さが3μm以上15μm以下である電極触媒層を用いることで、電極触媒層と固体高分子電解質膜1との接合性を保ちつつ撥水性を向上させることができる。   The membrane electrode assembly 11 according to the embodiment of the present invention has an electrode catalyst layer in which an average height of a waviness curve element obtained by a contour curve filter having cutoff values λf 4 mm and λc 0.8 mm is 3 μm or more and 15 μm or less on the cathode side. By using, water repellency can be improved while maintaining the bonding property between the electrode catalyst layer and the solid polymer electrolyte membrane 1.

以下、実施例を挙げて本発明を説明する。なお、本発明は下記実施例によって制限されるものではない。なお、以下すべての実施例において、表面うねりは、サンプルを多孔室吸着板に吸着させた後、顕微鏡レーザ変位計(オプレンス製)を用いて求めた。   Hereinafter, the present invention will be described with reference to examples. In addition, this invention is not restrict | limited by the following Example. In all the following examples, the surface waviness was obtained using a microscope laser displacement meter (manufactured by Oplens) after the sample was adsorbed on the perforated chamber adsorption plate.

PTFEフィルムを転写基材として用い、これにブラスト処理を施し、フィルム表面を、カットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さを8μmとなるように粗化した。このフィルムに対し、アプリケータにて電極触媒インクを塗布した。このとき、触媒表面がカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さは4μmであった。   PTFE film is used as a transfer substrate, and this is blasted to roughen the film surface so that the average height of the waviness curve element obtained by the contour curve filter with cutoff values λf 4 mm and λc 0.8 mm is 8 μm. did. The electrode catalyst ink was applied to this film with an applicator. At this time, the average height of the waviness curve element obtained by the contour curve filter having a cut-off value of λf 4 mm and λc 0.8 mm on the catalyst surface was 4 μm.

この転写基材をNafion212膜(登録商標、デュポン社製)に対しその両面に140℃10分で熱プレスを行い電極触媒層を転写させた。これより転写基材のみを剥がすことにより、電極触媒層付き固体高分子電解質膜1、膜電極接合体11を得た。このとき、固体高分子電解質膜1との接合面と反対側の電極触媒層の表面のカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さは6μmであった。転写基材に電極触媒層が残ることはなかった。   This transfer substrate was subjected to hot pressing on a Nafion 212 film (registered trademark, manufactured by DuPont) at 140 ° C. for 10 minutes to transfer the electrode catalyst layer. By removing only the transfer substrate from this, the solid polymer electrolyte membrane 1 with an electrode catalyst layer and the membrane electrode assembly 11 were obtained. At this time, the average height of the undulation curve element obtained by the contour curve filter having the cut-off values λf 4 mm and λc 0.8 mm on the surface of the electrode catalyst layer opposite to the joint surface with the solid polymer electrolyte membrane 1 was 6 μm. . The electrode catalyst layer did not remain on the transfer substrate.

PTFEフィルムを転写基材として用い、これにスクリーン印刷にてサーペンタイン状に電極触媒インクを塗布した。このとき固体高分子電解質膜1との接合面と反対側の電極触媒層の表面のカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さは5μmであった。   A PTFE film was used as a transfer substrate, and an electrode catalyst ink was applied in a serpentine form by screen printing. At this time, the average height of the waviness curve element obtained by the contour curve filter having the cut-off values λf 4 mm and λc 0.8 mm on the surface of the electrode catalyst layer opposite to the joint surface with the solid polymer electrolyte membrane 1 was 5 μm.

この転写基材をNafion212膜(デュポン社製)に対し、その両面に140℃10分で熱プレスを行い電極触媒層を転写させた。これより転写基材のみを剥がすことにより、電極触媒層付き固体高分子電解質膜1、膜電極接合体11を得た。このとき、固体高分子電解質膜1との接合面と反対側の電極触媒層の表面のカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さは4μmであった。   This transfer substrate was subjected to hot pressing at 140 ° C. for 10 minutes on a Nafion 212 film (manufactured by DuPont) to transfer the electrode catalyst layer. By removing only the transfer substrate from this, the solid polymer electrolyte membrane 1 with an electrode catalyst layer and the membrane electrode assembly 11 were obtained. At this time, the average height of the waviness curve element obtained by the contour curve filter having the cut-off values λf 4 mm and λc 0.8 mm on the surface of the electrode catalyst layer opposite to the joint surface with the solid polymer electrolyte membrane 1 was 4 μm. .

PTFEフィルムを転写基材として用い、これにスクリーン印刷にて格子状に電極触媒インクを塗布した(これを転写基材21とする)のとき、固体高分子電解質膜1との接合面と反対側の電極触媒層の表面のカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さは5μmであった。更に別のPTFEフィルムを転写基材として用いこれにバーコータにて電極触媒インクを塗布した(これを転写基材22とする)。このとき、転写基材22の電極触媒層の表面のカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さは2μmであった。   When PTFE film is used as a transfer substrate and electrode catalyst ink is applied in a grid pattern by screen printing (this is referred to as transfer substrate 21), the side opposite to the joint surface with the solid polymer electrolyte membrane 1 The average height of the waviness curve element obtained by the contour curve filter having the cut-off values λf 4 mm and λc 0.8 mm on the surface of the electrode catalyst layer was 5 μm. Further, another PTFE film was used as a transfer substrate, and an electrode catalyst ink was applied to this using a bar coater (this is referred to as transfer substrate 22). At this time, the average height of the waviness curve element obtained by the contour curve filter having the cut-off values λf 4 mm and λc 0.8 mm on the surface of the electrode catalyst layer of the transfer substrate 22 was 2 μm.

転写基材22をNafion212膜(デュポン社製)に対し、その両面に140℃10分で熱プレスを行い電極触媒層を転写させた。更に転写基材21を両面に転写させた。これより転写基材のみを剥がすことにより、電極触媒層付き固体高分子電解質膜1、膜電極接合体11を得た。このとき、固体高分子電解質膜1との接合面と反対側の電極触媒層の表面のカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さは6μmであった。   The electrode substrate layer was transferred to the Nafion 212 film (manufactured by DuPont) on the transfer substrate 22 by performing hot pressing at 140 ° C. for 10 minutes. Further, the transfer substrate 21 was transferred to both sides. By removing only the transfer substrate from this, the solid polymer electrolyte membrane 1 with an electrode catalyst layer and the membrane electrode assembly 11 were obtained. At this time, the average height of the undulation curve element obtained by the contour curve filter having the cut-off values λf 4 mm and λc 0.8 mm on the surface of the electrode catalyst layer opposite to the joint surface with the solid polymer electrolyte membrane 1 was 6 μm. .

PTFEフィルムを転写基材として用いこれにバーコータにて電極触媒インクを塗布した。このとき、触媒表面がカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さは3μmであった。この転写基材をNafion212膜(デュポン社製)に対しその両面に140℃10分で熱プレスを行い電極触媒層を転写させた。この膜電極接合体11にエンボス処理を施したところ、電極触媒層の表面がカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さは7μmとなった。   A PTFE film was used as a transfer substrate, and an electrode catalyst ink was applied thereto using a bar coater. At this time, the average height of the waviness curve element obtained by the contour curve filter having a cut-off value of λf 4 mm and λc 0.8 mm on the catalyst surface was 3 μm. This transfer substrate was subjected to hot pressing on a Nafion 212 film (manufactured by DuPont) at 140 ° C. for 10 minutes to transfer the electrode catalyst layer. When this membrane electrode assembly 11 was embossed, the average height of the waviness curve element obtained by the contour curve filter having a cut-off value of λf 4 mm and λc 0.8 mm on the surface of the electrode catalyst layer was 7 μm.

[比較例1]
PTFEフィルムを転写基材として用いこれにバーコータにて電極触媒インクを塗布した。このとき、電極触媒層の表面がカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さは3μmであった。この転写基材をNafion212膜(デュポン社製)に対しその両面に140℃10分で熱プレスを行い電極触媒層を転写させた。これより転写基材のみを剥がすことにより、電極触媒層付き固体高分子電解質膜1、膜電極接合体11を得た。このとき、固体高分子電解質膜1との接合面と反対側の電極触媒層の表面のカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さは2μmであった。
[Comparative Example 1]
A PTFE film was used as a transfer substrate, and an electrode catalyst ink was applied thereto using a bar coater. At this time, the average height of the waviness curve element obtained by the contour curve filter having a cut-off value of λf 4 mm and λc 0.8 mm on the surface of the electrode catalyst layer was 3 μm. This transfer substrate was subjected to hot pressing on a Nafion 212 film (manufactured by DuPont) at 140 ° C. for 10 minutes to transfer the electrode catalyst layer. By removing only the transfer substrate from this, the solid polymer electrolyte membrane 1 with an electrode catalyst layer and the membrane electrode assembly 11 were obtained. At this time, the average height of the waviness curve element obtained by the contour curve filter having the cut-off values λf 4 mm and λc 0.8 mm on the surface of the electrode catalyst layer opposite to the joint surface with the solid polymer electrolyte membrane 1 was 2 μm. .

実施例1、2、3及び比較例1の膜電極接合体の両面に、ガス拡散層として一対のカーボンペーパで挟持し、固体高分子形燃料電池13を作製した。燃料電池測定装置(東陽テクニカ社製GFT−SG1)を用い、燃料として水素ガス、酸化剤として酸素を使用し、セル温度80℃、フル加湿条件下にて発電特性評価をおこなった。   A polymer electrolyte fuel cell 13 was produced by sandwiching the membrane electrode assemblies of Examples 1, 2, 3 and Comparative Example 1 with a pair of carbon paper as a gas diffusion layer. Using a fuel cell measuring apparatus (GFT-SG1 manufactured by Toyo Technica Co., Ltd.), hydrogen gas was used as fuel, oxygen was used as an oxidant, and power generation characteristics were evaluated under a cell temperature of 80 ° C. and full humidification conditions.

フラッディングが始まるときの電流は、実施例1、2、3がそれぞれ0.95[A/cm]、0.92[A/cm]、0.97[A/cm]、0.92[A/cm]であったのに対し、比較例1は0.86[A/cm]であった。 The current at the start of flooding was 0.95 [A / cm 2 ], 0.92 [A / cm 2 ], 0.97 [A / cm 2 ], 0.92 in Examples 1, 2, and 3, respectively. While it was [A / cm 2 ], Comparative Example 1 was 0.86 [A / cm 2 ].

実施例及び比較例で作製した固体高分子形燃料電池13を比較すると、実施例1乃至実施例3の電極触媒層がカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さを3μm以上15μm以下とすることにより発電効率が向上することがわかる。   Comparing the polymer electrolyte fuel cells 13 produced in Examples and Comparative Examples, the electrode catalyst layers of Examples 1 to 3 are of the waviness curve element obtained by the contour curve filter having the cutoff values λf 4 mm and λc 0.8 mm. It can be seen that the power generation efficiency is improved by setting the average height to 3 μm or more and 15 μm or less.

1…固体高分子電解質膜、2…空気極側電極触媒層、3…燃料極側電極触媒層、4…空気極側ガス拡散層、5…燃料極側ガス拡散層、6…空気極、7…燃料極、8…ガス流路、9…冷却水流路、10…セパレータ、11…膜電極接合体
DESCRIPTION OF SYMBOLS 1 ... Solid polymer electrolyte membrane, 2 ... Air electrode side electrode catalyst layer, 3 ... Fuel electrode side electrode catalyst layer, 4 ... Air electrode side gas diffusion layer, 5 ... Fuel electrode side gas diffusion layer, 6 ... Air electrode, 7 ... Fuel electrode, 8 ... Gas flow path, 9 ... Cooling water flow path, 10 ... Separator, 11 ... Membrane electrode assembly

Claims (7)

一対の電極触媒層で高分子電解質膜を持した構造を備える膜電極接合体であって、
前記一対の電極触媒層の一方の前記高分子電解質膜との接合面と反対側の表面が、前記一対の電極触媒層のどちらか一方の面内の一方向においてカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さが3μm以上μm以下であることを特徴とする膜電極接合体。
A membrane electrode assembly comprising a structure that is sandwiched between the polymer electrolyte membrane a pair of electrode catalyst layers,
The surface of the pair of electrode catalyst layers on the opposite side to the joint surface with the polymer electrolyte membrane has a cut-off value of λf 4 mm, λc 0.8 mm in one direction within one of the pair of electrode catalyst layers. The membrane electrode assembly is characterized in that the mean height of the waviness curve element obtained by the contour curve filter is 3 μm or more and 7 μm or less.
前記一対の電極触媒層のどちらか一方をカソードとして用いることを特徴とする請求項1に記載の膜電極接合体。   The membrane electrode assembly according to claim 1, wherein one of the pair of electrode catalyst layers is used as a cathode. 請求項1または2に記載の膜電極接合体が一対のガス拡散層で持され、さらに、前記ガス拡散層で挟持された膜電極接合体が一対のセパレータで挟持されることを特徴とする固体高分子形燃料電池。 The membrane electrode assembly according to claim 1 or 2 is sandwiched by the pair of gas diffusion layers, and further, the feature that the membrane electrode assembly is sandwiched between the gas diffusion layer is sandwiched by a pair of separators Solid polymer fuel cell. 請求項1または2に記載の膜電極接合体製造用の転写基材であって、
前記転写基材の表面が、面内の少なくとも一方向においてカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さが3μm以上17μm以下であることを特徴とする膜電極接合体製造用の転写基材。
A transfer substrate for producing a membrane electrode assembly according to claim 1 or 2,
The film is characterized in that the surface of the transfer substrate has an average height of waviness curve elements obtained by a contour curve filter having a cutoff value of λf4 mm and λc of 0.8 mm in at least one direction in the plane of 3 μm or more and 17 μm or less. Transfer substrate for electrode assembly production.
膜電極接合体の電極触媒層を転写基材上に設けた膜電極接合体製造用の電極触媒塗工転写基材であって、
転写基材上の触媒表面は面内の少なくとも一方向においてカットオフ値λf4mm、λc0.8mmの輪郭曲線フィルタにより得られるうねり曲線要素の平均高さが7μm以下であることを特徴とする、膜電極接合体製造用の電極触媒塗工転写基材。
An electrode catalyst coating transfer substrate for producing a membrane electrode assembly, in which an electrode catalyst layer of a membrane electrode assembly is provided on a transfer substrate,
The catalyst surface on the transfer substrate has a mean height of waviness curve elements obtained by a contour curve filter having a cutoff value of λf4 mm and λc of 0.8 mm in at least one direction in the plane, and is a membrane electrode Electrocatalyst-coated transfer substrate for production of joined bodies.
請求項に記載の電極触媒塗工転写基材を用いて製造されることを特徴とする膜電極接合体。 A membrane / electrode assembly produced using the electrode catalyst-coated transfer substrate according to claim 5 . 請求項6に記載の膜電極接合体が一対のガス拡散層で持され、さらに、前記ガス拡散層で挟持された膜電極接合体が一対のセパレータで持されることを特徴とする固体高分子形燃料電池。 The membrane electrode assembly of claim 6 is sandwiched by a pair of gas diffusion layers, further characterized in that clamping membrane electrode assembly with the gas diffusion layer is sandwiched by a pair of separators Solid polymer fuel cell.
JP2009120682A 2009-05-19 2009-05-19 Membrane electrode assembly, transfer substrate for production of membrane electrode assembly, coating transfer substrate for electrode catalyst layer for production of membrane electrode assembly, and polymer electrolyte fuel cell Expired - Fee Related JP5439947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009120682A JP5439947B2 (en) 2009-05-19 2009-05-19 Membrane electrode assembly, transfer substrate for production of membrane electrode assembly, coating transfer substrate for electrode catalyst layer for production of membrane electrode assembly, and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009120682A JP5439947B2 (en) 2009-05-19 2009-05-19 Membrane electrode assembly, transfer substrate for production of membrane electrode assembly, coating transfer substrate for electrode catalyst layer for production of membrane electrode assembly, and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2010272223A JP2010272223A (en) 2010-12-02
JP5439947B2 true JP5439947B2 (en) 2014-03-12

Family

ID=43420109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009120682A Expired - Fee Related JP5439947B2 (en) 2009-05-19 2009-05-19 Membrane electrode assembly, transfer substrate for production of membrane electrode assembly, coating transfer substrate for electrode catalyst layer for production of membrane electrode assembly, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5439947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079639A (en) * 2013-10-17 2015-04-23 本田技研工業株式会社 Electrolyte membrane/electrode structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310545A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Manufacturing method of polyelectrolyte fuel cell
JP5196717B2 (en) * 2005-09-30 2013-05-15 大日本印刷株式会社 Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
JP2007157572A (en) * 2005-12-07 2007-06-21 Toyota Motor Corp Fuel cell
JP5430079B2 (en) * 2007-06-12 2014-02-26 キヤノン株式会社 Manufacturing method of membrane electrode assembly
JP2010067493A (en) * 2008-09-11 2010-03-25 Toppan Printing Co Ltd Manufacturing method for membrane-electrode assembly, membrane-electrode assembly, and solid polymer fuel cell
JP2010153093A (en) * 2008-12-24 2010-07-08 Toyota Motor Corp Polymer electrolyte fuel cell electrode and method of manufacturing the same

Also Published As

Publication number Publication date
JP2010272223A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
KR100728781B1 (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
JP3760895B2 (en) LIQUID FUEL SUPPLY FUEL CELL, FUEL CELL ELECTRODE, AND METHOD FOR PRODUCING THEM
JP5383015B2 (en) Membrane-electrode assembly for direct oxidation fuel cell using hydrocarbon fuel, method for producing the same, and fuel cell system including the same
JP2008004453A (en) Membrane electrode assembly for fuel cell
JP2006216503A (en) Catalyst layer of solid polymer fuel cell
KR101297170B1 (en) Membrane-electrode assembly for fuel cell, method of preparing same and fuel cell system comprising same
JP7387894B2 (en) Membrane-electrode assembly, method of manufacturing the same, and fuel cell including the same
JP7225691B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
JP5040000B2 (en) Manufacturing method of membrane / electrode assembly
JP2007335163A (en) Membrane catalyst layer assembly, membrane electrode assembly, and polymer-electrolyte fuel cell
US20230057062A1 (en) Membrane-electrode assembly and method for manufacturing same
JP5439947B2 (en) Membrane electrode assembly, transfer substrate for production of membrane electrode assembly, coating transfer substrate for electrode catalyst layer for production of membrane electrode assembly, and polymer electrolyte fuel cell
JP5672645B2 (en) Electrocatalyst ink for fuel cell
WO2017154475A1 (en) Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly
JP5326458B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP7119402B2 (en) MEMBRANE ELECTRODE ASSEMBLY AND POLYMER FUEL CELL INCLUDING THE SAME
JP2008258060A (en) Manufacturing method of membrane-electrode assembly
JP5501044B2 (en) Membrane electrode assembly and fuel cell
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2009245932A (en) Electrode catalyst ink for fuel cell, electrode catalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell
JP7452480B2 (en) Catalyst layer and its manufacturing method
JP5045021B2 (en) FUEL CELL ELECTRODE, MANUFACTURING METHOD THEREOF, AND FUEL CELL HAVING THE FUEL CELL ELECTRODE
JP2006344426A (en) Solid polymer fuel cell
KR20080044495A (en) Method of preparing membrane electrode assembly for fuel cell and membrane electrode assembly for fuel cell prepared therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5439947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees