JP3547013B2 - Electrode for polymer electrolyte fuel cell and fuel cell using the same - Google Patents

Electrode for polymer electrolyte fuel cell and fuel cell using the same Download PDF

Info

Publication number
JP3547013B2
JP3547013B2 JP08165393A JP8165393A JP3547013B2 JP 3547013 B2 JP3547013 B2 JP 3547013B2 JP 08165393 A JP08165393 A JP 08165393A JP 8165393 A JP8165393 A JP 8165393A JP 3547013 B2 JP3547013 B2 JP 3547013B2
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
carbon
diffusion layer
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08165393A
Other languages
Japanese (ja)
Other versions
JPH06295728A (en
Inventor
裕子 青山
誠 内田
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP08165393A priority Critical patent/JP3547013B2/en
Publication of JPH06295728A publication Critical patent/JPH06295728A/en
Application granted granted Critical
Publication of JP3547013B2 publication Critical patent/JP3547013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は燃料として純水素、またはメタノールや化石燃料からの改質水素などの還元剤を用い、空気や酸素を酸化剤とする燃料電池、特に固体高分子型燃料電池用電極およびそれを用いた固体高分子型燃料電池に関するものである。
【0002】
【従来の技術】
固体高分子型燃料電池では、電極基板を兼ねた多孔質のガス拡散層上に、貴金属触媒を担持した炭素粉末とフッ素樹脂とを混合して形成したガス拡散電極を用いる。この多孔質のガス拡散層として、特開平3−102774号公報では炭素粉末とPTFEからなるシートを、特開昭64−50364号公報ではフッ素樹脂で撥水化処理した炭素粉末をホットプレスによって成型したものを用いている。また、リン酸型燃料電池用電極は固体高分子型燃料電池用電極と同様の構造であるので、固体高分子型燃料電池への応用が可能であり、例えば特公昭61−51386号公報では炭素繊維からなる多孔質の炭素紙をガス拡散層に用いている。
【0003】
固体高分子型燃料電池では、電解質に固体高分子電解質であるイオン交換膜を用いる。このイオン交換膜は水で膨潤した状態でなければイオン伝導性を示さない。そのため固体高分子型燃料電池では60〜100℃で加湿した燃料ガスおよび酸化ガスを導入し、イオン交換膜へ水の供給を行う。しかし加湿を行うことによって燃料ガスおよび酸化ガスが希釈されるため、優れた放電特性および高い電流密度を得るためには、電極のガス拡散層には高いガス透過能が必要となる。また、高電流密度を得るためには電池の内部抵抗を減少させる、すなわち電極の構成材料の電気抵抗を減少させることが重要となっている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の炭素粉末とフッ素樹脂からなるシートや、撥水化処理した炭素粉末をプレスによって成型したガス拡散層では、細孔径が小さいために十分に高いガス透過能を有する電極が得られない。さらに、このようなガス拡散層ではフッ素樹脂が50〜70wt%と多く、電気抵抗が大きくなるという欠点を有していた。また、リン酸型燃料電池用電極で用いられる多孔質の炭素紙は細孔径、気孔率は共に大きく、高いガス透過能を有するが、セルロースやピッチを炭素繊維の原料とするために曲げ強度が数十〜150kg/cmと低く、炭素紙の厚みを0.3mm以下にすることが困難であった。そのため、電極の薄層化による電池の内部抵抗の減少が困難となり、その結果、優れた放電特性が得られなかった。
【0005】
本発明は上記従来の課題を解決するもので、気孔径が大きく、最適な気孔率を有し、固有抵抗が小さくかつ薄い炭素紙をガス拡散層に用いることによって、高いガス透過能を有し、かつ低い抵抗の固体高分子型燃料電池用電極およびそれを用いた固体高分子型燃料電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
この目的を達成するために、本発明の固体高分子型燃料電池用電極はポリアクリロニトリル(以下PANとする)を原料とする炭素繊維からなり、厚みが0.1〜0.3mmであり気孔率が45〜70%であり、かつ厚み方向の固有抵抗が80mΩcm以下である炭素紙に、4フッ化エチレンと6フッ化プロピレンとの共重合体からなるフッ素樹脂による撥水処理を行ったガス拡散層を用い、前記ガス拡散層中の前記フッ素樹脂の含有量が30〜60重量%であることを特徴とする。
【0007】
【作用】
このガス拡散層を用いることによって、電極の薄層化が可能となり、電極のガス透過能が向上し、かつ電極の抵抗および電池の内部抵抗を減少させることが可能となった。
【0008】
【実施例】
以下、実施例によりさらに詳しく説明する。
【0009】
【表1】

Figure 0003547013
【0010】
電極基板として、表1に示す原料の異なる炭素繊維からなり、撥水処理を行った厚み及び固有抵抗の異なる炭素紙、およびPTFEを添加した炭素微粉末からなるシートを用いた。気孔率および細孔径分布の測定には水銀ポロシメーター(島津製作所製)を用いた。
【0011】
実施例1
白金触媒を10〜25重量%担持させた炭素微粉末を、ポリテトラフルオロエチレン(以下、PTFEとする)を25〜70重量%添加することによって撥水処理した炭素微粉末と混合し、触媒層用混合粉末とした。この混合粉末を、4フッ化エチレンと6フッ化プロピレンとの共重合体からなるフッ素樹脂(以後FEPと略す)を重量比で30〜60%添加した、PANを原料とする炭素繊維からなる厚さ0.1mmの炭素紙Aに散布し、予備成型した。このようにして炭素紙の片面に触媒層用混合粉末層を形成した成型体を340〜380℃の温度、5〜20kg/cmの圧力でホットプレスしてガス拡散電極を作成し、この電極の触媒層用混合粉末層にイオン交換樹脂溶液を塗布した。このようにして炭素紙からなる拡散層に触媒層を一体にした電極をA’とする。イオン交換樹脂溶液は、米国デュポン社製のNafionを用いた米国アルドリッチ・ケミカル社製のイオン交換樹脂粉末の5重量%溶液を用いた。
【0012】
電極A’の触媒層の白金量は0.01〜0.5mg/cm、イオン交換樹脂量は0.3〜1.0mg/cmとした。電極A’からなる負極および正極とイオン交換膜とを120〜160℃の温度、20〜60kg/cmの圧力でホットプレスし、両電極とイオン交換膜との接合を行った。この接合体を用いて図1に示した固体高分子型燃料電池の単セルCを作成した。図1中、10はイオン交換膜を示し、本実施例および比較例では米国デュポン社製のNafion117を用いた。11および12はそれぞれ負極および正極を示
【0013】
実施例2
実施例1において、電極基板にPANを原料とする炭素繊維からなる厚さ0.2mmの炭素紙Bを用いて電極B’および単セルCを作製した以外は実施例1と全く同じである。
【0014】
実施例3
実施例1において、電極基板にPANを原料とする炭素繊維からなる厚さ0.3mmの炭素紙Cを用いて電極C’および単セルCを作製した以外は実施例1と全く同じである。
【0015】
比較例1
実施例1において、電極基板にPANを原料とする炭素繊維からなる厚さ0.4mmの炭素紙Dを用いて電極D’および単セルCを作製した以外は実施例1と全く同じである。
【0016】
比較例
実施例1において、電極基板にセルロースを原料とする炭素繊維からなる厚さ0.44mmの炭素紙Eを用いて電極E’および単セルCを作製した以外は実施例1と全く同じである。
【0017】
比較例
実施例1において、電極基板にピッチを原料とする炭素繊維からなる厚さ0.4mmの炭素紙Fを用いて電極F’および単セルCを作製した以外は実施例1と全く同じである。
【0018】
比較例
実施例1において、電極基板にPTFEを50〜70重量%添加した炭素微粉末からなる導電性シートGを用いて電極G’および単セルCを作製した以外は実施例1と全く同じである。
【0019】
図2に本発明の実施例の炭素紙Aおよび比較例の炭素紙E、F、導電性シートGの細孔分布を示した。なお炭素紙B、C、Dは炭素紙Aとほぼ同じ細孔分布を示した。炭素紙Aでは直径10〜100μmの細孔が全細孔容積の大部分を占めているのに対し、炭素紙E、Fでは直径40〜300μmの細孔が全細孔容積の大部分を占めている。また、導電性シートGでは直径0.02〜1μmの細孔が全細孔容積の大部分を占めていることがわかる
【0020】
【表2】
Figure 0003547013
【0021】
表2に本発明の実施例および比較例の電極の気体透過速度を示した。気体透過速度の測定は、Nafionを塗布しない電極を用いて加湿しない酸素の透過速度を石鹸膜法によって測定した。電極A’、B’、C’、D’の気体透過速度はそれぞれ0.088、0.086、0.083、0.079cc/cmscmHgであり、拡散層の厚みが小さくなるに伴って気体透過速度は大きくなることがわかる。また、比較例の電極E’、F’、G’の気体透過速度がそれぞれ、0.084、0.100、0.061cc/cmscmHgであった。PANを原料とする炭素繊維からなる炭素紙を用いた電極D’と比較例の電極E’、F’はその厚みがほぼ同じであるが、その気体透過速度は電極F’、E’、D’の順に大きくなった。表より、ガス拡散層の気孔率は、PANを原料とする炭素繊維からなる炭素紙Dでは54%であるのに対し、比較例の炭素紙E、Fではそれぞれ61%、69%であった。このことより拡散層の厚みが同じであれば、拡散層の気孔率が大きいほど電極の気体透過速度が大きくなることがわかる。
【0022】
また、比較例の電極G’は拡散層が最も薄いがそのガス透過速度は最も小さかった。これは図2に示したように、実施例および比較例の炭素紙ではその細孔容積の大部分が直径10〜300μmの細孔で占められているのに対し、導電性シートGは直径10〜300μmの細孔は細孔容積の8%しか占めておらず、直径0.02〜1μmの小さな孔が細孔容積の67%を占めている。このように導電性シートGは実施例および比較例の炭素紙と比較して孔径が非常に小さいために、電極G’はガス透過速度が最も小さくなったと考えられる。
【0023】
なお本発明の実施例ではフッ素樹脂量を30〜60重量%としたが、フッ素樹脂量が30%未満であると、フッ素樹脂が炭素繊維を完全に被覆できず、十分な撥水性を示さないために、加湿ガスに含まれる水で電極のフラッディングが起こり、ガス透過能が低下する。また、フッ素樹脂量が60重量%を超えると拡散層がフッ素樹脂によって目詰まりし、気孔率が減少してガス透過能が低下する。このように本実施例および比較例の炭素紙の気孔率はフッ素樹脂の添加量によって可変であり、本実施例では撥水処理後の気孔率が54〜60%のものを用いたが、撥水処理後の気孔率が45%以上であれば同様の効果が得られた。一方、フッ素樹脂の添加量を減少させて撥水処理後の炭素紙の気孔率を70%より大きくすると、十分な撥水性を示さずにフラッディングを起こして気体透過能が低下した。
【0024】
また、本発明の炭素紙はFEPを用いて撥水処理を行ったが、その他の撥水材としてPTFEが挙げられる。しかし、FEPは溶融粘度が10〜10ポイズであるのに対し、PTFEは溶融粘度が1010〜1011ポイズと高い。そのため熱処理によって溶融するとFEPは流動性が生じて炭素繊維を均一に被覆するが、PTFEは流動性が生じないため、炭素繊維上に斑点状に分布する。よってPTFEによる撥水処理を行った拡散層を用いた電極は、撥水性の低下が起こり、電極の濡れによる目詰まりが起こって電極の気体透過能が低下する。
【0025】
図3に本発明の実施例および比較例の固体高分子型燃料電池の電流−電圧特性をそれぞれ示した。なお放電試験は負極側に90℃の温度で加湿した水素ガスを、また正極側に80℃の温度で加湿した酸素ガスをそれぞれ供給して行った。電池の内部抵抗は1kHzの交流で測定を行った。本発明の実施例の燃料電池C、C、C、Cは電流密度200mA/cmにおいて、それぞれ0.69、0.68、0.66、0.64Vの電池電圧を示した。一方、比較例の燃料電池C、C、Cは電流密度200mA/cmにおいてそれぞれ、0.64、0.60、0.60Vの電池電圧を示した。
【0026】
また、単電池の内部抵抗は燃料電池C、C、C、Cではそれぞれ11.0、12.5、14.0、16.0mΩであるのに対し、燃料電池C、C、Cではそれぞれ16.0mΩ、19.0mΩ、17.0mΩであった。PANを原料とする炭素繊維を用いた電極を備える電池C、C、C、Cでは、厚さ方向の固有抵抗が等しいためガス拡散層の厚みが小さくなるのに従って電極の抵抗が小さくなり、電池の内部抵抗が低くなる。同時にガス透過速度も大きくなることによって、電池の放電特性が向上する。また、ガス拡散層の厚みがほぼ等しい電池C と電池C を比較すると、電池C と電池Cはほぼ同じ特性を示したが、電池Cは、電池CおよびCより低い特性を示した。
【0027】
表1より、炭素紙A〜Dおよび炭素紙Eの固有抵抗はそれぞれ80、75mΩcmとほぼ同じであるが、炭素紙Fの固有抵抗は120mΩcmと大きい。その結果、電池Cでは、ガス拡散層の厚みがほぼ等しい。すなわち電極の厚みは等しいが、電池の内部抵抗が電池C、Cと比較して高くなり、オーム損が大きくなって200mA/cmにおける電池電圧が低くなったと考えられる。
【0028】
さらに燃料電池C、C、C、Cの限界電流密度はそれぞれ、670、625、570、500mA/cmであり、ガス拡散層が薄い、すなわち電極の気体透過速度が大きくなるに従って、電池の限界電流密度が大きくなった。また、比較例の電池C、C、Cの限界電流密度はそれぞれ、520、450、410mA/cmであった。電極F’の気体透過速度は最も大きいが、電池Cの限界電流密度が小さくなった。これは、電池の内部抵抗が大きいためにオーム損による電圧降下が大きくなるためと考えられる。
【0029】
このように固体高分子型燃料電池では、その放電特性を向上させるためには、気体透過速度が大きく、かつ抵抗の低い電極が必要である。このような電極を実現するには体積固有抵抗が小さく、かつより薄いガス拡散層を用いることが一つの手段としてあげられる。しかし、表1に示したようにセルロースやピッチを原料とする炭素繊維からなる炭素紙E、Fはその強度が数十から150kg/cmと小さいために、その厚みを0.3mm以下にすることが困難であった。これに対し、PANを原料とする炭素繊維からなる炭素紙A〜Dはその曲げ強度が400kg/cmと非常に高いために0.1mmまで厚みを小さくすることが可能であり、よって電極の薄層化が実現し、気体透過速度が大きく、かつ抵抗の低い固体高分子型燃料電池用電極を得ることができた。
【0030】
以上のことより本発明の電極を用いて固体高分子燃料電池を構成することによって、より高い放電性能を発揮する固体高分子型燃料電池を実現することが可能となった。
【0031】
なお、本実施例では、固体高分子型燃料電池の一例として水素−酸素燃料電池を取り上げたが、メタノール、天然ガスやナフサなどを燃料とする改質水素を用いた燃料電池、また、酸化剤として空気を用いた固体高分子型燃料電池に適用することも可能である。
【0032】
【発明の効果】
以上のように、本発明によれば、ポリアクリロニトリルを原料とする炭素繊維からなる炭素紙を4フッ化エチレンと6フッ化プロピレンとの共重合体で撥水処理したガス拡散層を用いることによって、ガス拡散層および電極の薄層化が可能となり、ガス透過能を向上させることが可能となった。さらに、電極の抵抗および電池の内部抵抗を減少させることが可能となり、放電特性の優れた固体高分子型燃料電池を提供できる。
【図面の簡単な説明】
【図1】固体高分子型燃料電池の単電池の断面図
【図2】本発明の実施例および比較例のガス拡散層の細孔分布を示した図
【図3】本発明の実施例および比較例の固体高分子型燃料電池の電流−電圧特性を示した図
【符号の説明】
10 イオン交換膜
11 負極
12 正極[0001]
[Industrial applications]
The present invention using a reducing agent such as reformed hydrogen from pure hydrogen or methanol or fossil fuels, as fuel, use of air or oxygen fuel cells to oxidant, in particular a polymer electrolyte fuel cell electrode and it Polymer electrolyte fuel cells.
[0002]
[Prior art]
In the polymer electrolyte fuel cell, a gas diffusion electrode formed by mixing a carbon powder carrying a noble metal catalyst and a fluororesin on a porous gas diffusion layer also serving as an electrode substrate is used. The porous gas diffusion layer is formed by hot pressing a sheet made of carbon powder and PTFE in Japanese Patent Application Laid-Open No. Hei 3-102774, and a carbon powder which has been made water-repellent by a fluororesin in Japanese Patent Application Laid-Open No. 64-50364. We used what we did. Further, since the phosphoric acid type fuel cell electrode has the same structure as the polymer electrolyte fuel cell electrode, it can be applied to a polymer electrolyte fuel cell. For example, Japanese Patent Publication No. 61-51386 discloses carbon electrodes. Porous carbon paper made of fibers is used for the gas diffusion layer.
[0003]
In a polymer electrolyte fuel cell, an ion exchange membrane which is a polymer electrolyte is used as an electrolyte. This ion exchange membrane does not exhibit ionic conductivity unless it is swollen with water. Therefore introducing fuel gas and oxidant gas humidified at 60 to 100 [° C. In a polymer electrolyte fuel cell, to supply the water to the ion exchange membrane. However, since the fuel gas and oxidant gas is diluted by performing humidification, in order to obtain excellent discharge characteristics and high current density, it is necessary to high gas permeability is a gas diffusion layer of the electrode. Further, in order to obtain a high current density, it is important to reduce the internal resistance of the battery, that is, to reduce the electric resistance of the constituent material of the electrode.
[0004]
[Problems to be solved by the invention]
However, in the conventional sheet made of carbon powder and fluororesin, or in a gas diffusion layer formed by pressing water-repellent carbon powder by pressing, an electrode having a sufficiently high gas permeability due to a small pore diameter can be obtained. Absent. Further, such a gas diffusion layer has a drawback that the fluororesin is as large as 50 to 70 wt% and the electric resistance is increased. Porous carbon paper used in the electrode for phosphoric acid type fuel cells has a large pore diameter and a high porosity, and has high gas permeability.However, the bending strength is low because cellulose or pitch is used as a raw material for carbon fiber. As low as several tens to 150 kg / cm 2 , it was difficult to reduce the thickness of the carbon paper to 0.3 mm or less. Therefore, it is difficult to reduce the internal resistance of the battery by making the electrodes thinner, and as a result, excellent discharge characteristics cannot be obtained.
[0005]
The present invention solves the above-mentioned conventional problems and has a high gas permeability by using a carbon paper having a large pore diameter, an optimum porosity, a small specific resistance and a thin carbon paper for the gas diffusion layer. It is an object of the present invention to provide a polymer electrolyte fuel cell electrode having a low resistance and a polymer electrolyte fuel cell using the same.
[0006]
[Means for Solving the Problems]
To this end, the solid polymer fuel cell electrode of the present invention consists of carbon fibers polyacrylonitrile (hereinafter referred to as PAN) as a raw material, a thickness of 0.1 to 0.3 mm, pore A carbon paper having a ratio of 45 to 70% and a resistivity in the thickness direction of 80 mΩcm or less was subjected to a water-repellent treatment with a fluororesin made of a copolymer of ethylene tetrafluoride and propylene hexafluoride . A gas diffusion layer is used, and the content of the fluororesin in the gas diffusion layer is 30 to 60% by weight.
[0007]
[Action]
By using this gas diffusion layer, the electrode can be made thinner, the gas permeability of the electrode can be improved, and the resistance of the electrode and the internal resistance of the battery can be reduced.
[0008]
【Example】
Hereinafter, an example will be described in more detail.
[0009]
[Table 1]
Figure 0003547013
[0010]
As the electrode substrate, a sheet made of carbon fibers made of different raw materials shown in Table 1 and subjected to water-repellent treatment and having different thicknesses and specific resistances, and a sheet made of carbon fine powder added with PTFE were used. The porosity and the pore size distribution were measured using a mercury porosimeter (manufactured by Shimadzu Corporation).
[0011]
Example 1
A carbon fine powder carrying 10 to 25% by weight of a platinum catalyst is mixed with a carbon fine powder subjected to water-repellent treatment by adding 25 to 70% by weight of polytetrafluoroethylene (hereinafter referred to as PTFE) to form a catalyst layer. Mixed powder. This mixed powder is added with a fluororesin (hereinafter abbreviated as FEP) composed of a copolymer of tetrafluoroethylene and hexafluoropropylene in a weight ratio of 30 to 60%, and is made of carbon fiber made from PAN. It was sprayed on carbon paper A having a thickness of 0.1 mm and preformed. The molded body in which the mixed powder layer for the catalyst layer was formed on one side of the carbon paper in this manner was hot pressed at a temperature of 340 to 380 ° C. and a pressure of 5 to 20 kg / cm 2 to form a gas diffusion electrode. The ion-exchange resin solution was applied to the mixed powder layer for the catalyst layer . The electrode in which the catalyst layer is integrated with the diffusion layer made of carbon paper in this way is designated as A '. As the ion exchange resin solution, a 5% by weight solution of ion exchange resin powder manufactured by Aldrich Chemical Co., Ltd. using Nafion manufactured by DuPont, USA was used.
[0012]
The amount of platinum in the catalyst layer of the electrode A 'is 0.01 to 0.5 / cm 2, the ion exchange resin amount was 0.3~1.0mg / cm 2. The negative electrode and the positive electrode composed of the electrode A ′ and the ion exchange membrane were hot-pressed at a temperature of 120 to 160 ° C. and a pressure of 20 to 60 kg / cm 2 to join the two electrodes to the ion exchange membrane . Creating the single cells C A polymer electrolyte fuel cell shown in FIG. 1 using the conjugate. In FIG. 1, reference numeral 10 denotes an ion-exchange membrane, and Nafion 117 manufactured by DuPont of the United States was used in the examples and comparative examples. 11 and 12 shows the anode and cathode, respectively.
[0013]
Example 2
In Example 1, except for producing an electrode B 'and the unit cells C B using carbon paper B having a thickness of 0.2mm made of carbon fiber as a raw material of the PAN to the electrode substrate is the same as that in Example 1 .
[0014]
Example 3
Example 1 is exactly the same as Example 1 except that an electrode C ′ and a single cell CC were prepared using a 0.3 mm thick carbon paper C made of carbon fiber made of PAN as the electrode substrate. .
[0015]
Comparative Example 1
Example 1 is exactly the same as Example 1 except that an electrode D ′ and a single cell CD were prepared using a 0.4 mm-thick carbon paper D made of carbon fiber made of PAN as an electrode substrate. .
[0016]
Comparative Example 2
Example 1 is exactly the same as Example 1 except that an electrode E ′ and a single cell CE were prepared using 0.44 mm thick carbon paper E made of carbon fiber made of cellulose as a raw material for the electrode substrate. .
[0017]
Comparative Example 3
Example 1 is exactly the same as Example 1 except that an electrode F ′ and a single cell CF were prepared using a 0.4 mm thick carbon paper F made of carbon fiber made of pitch as a raw material for the electrode substrate. .
[0018]
Comparative Example 4
Example 1 is exactly the same as Example 1 except that an electrode G ′ and a single cell CG were produced using a conductive sheet G made of fine carbon powder in which 50 to 70% by weight of PTFE was added to the electrode substrate. .
[0019]
FIG. 2 shows the pore distribution of the carbon paper A of the example of the present invention, the carbon papers E and F of the comparative example, and the conductive sheet G. Contact Charcoal Motoshi B such, C, D showed almost the same pore distribution as carbon paper A. In carbon paper A, pores having a diameter of 10 to 100 μm occupy most of the total pore volume, whereas in carbon papers E and F, pores having a diameter of 40 to 300 μm occupy most of the total pore volume. ing. Further, it can be seen that in the conductive sheet G, pores having a diameter of 0.02 to 1 μm occupy most of the total pore volume .
[0020]
[Table 2]
Figure 0003547013
[0021]
Table 2 shows the gas permeation rates of the electrodes of Examples and Comparative Examples of the present invention. The gas permeation rate was measured by using an electrode not coated with Nafion and measuring the permeation rate of non-humidified oxygen by a soap film method . Electrodes A ', B', C ' , D' gas transmission rate of a respective 0.088,0.086,0.083,0.079cc / cm 2 scmHg, with the thickness of the diffusion layer becomes smaller Thus, it can be seen that the gas permeation rate increases. In addition, the gas transmission rates of the electrodes E ′, F ′, and G ′ of the comparative examples were 0.084, 0.100, and 0.061 cc / cm 2 scmHg, respectively. The electrode D ' using carbon paper made of carbon fiber made of PAN and the electrodes E' and F 'of the comparative example have almost the same thickness, but the gas permeation speed is the same as that of the electrodes F', E 'and D. 'In order. Table 2 shows that the porosity of the gas diffusion layer is 54% for carbon paper D made of carbon fiber using PAN as a raw material , whereas it is 61% and 69% for carbon papers E and F of Comparative Examples, respectively. Was. From this, it can be seen that if the thickness of the diffusion layer is the same, the gas permeation rate of the electrode increases as the porosity of the diffusion layer increases.
[0022]
The electrode G 'of the comparative example had the thinnest diffusion layer but the lowest gas permeation rate. This is because, as shown in FIG. 2, most of the pore volume is occupied by pores having a diameter of 10 to 300 μm in the carbon papers of the examples and the comparative examples, whereas the conductive sheet G has a diameter of 10 μm. The ~ 300 [mu] m pores occupy only 8% of the pore volume, and the small pores of 0.02-1 [mu] m diameter occupy 67% of the pore volume. As described above, since the conductive sheet G has a very small hole diameter as compared with the carbon papers of the examples and the comparative examples, it is considered that the gas permeation rate of the electrode G ′ is the smallest.
[0023]
In the examples of the present invention, the amount of the fluororesin is set to 30 to 60% by weight. However, if the amount of the fluororesin is less than 30%, the fluororesin cannot completely cover the carbon fibers and does not exhibit sufficient water repellency. As a result, flooding of the electrode occurs with water contained in the humidified gas, and the gas permeability is reduced. If the amount of the fluororesin exceeds 60% by weight, the diffusion layer is clogged with the fluororesin, the porosity is reduced, and the gas permeability is reduced. As described above, the porosity of the carbon papers of the present example and the comparative example is variable depending on the added amount of the fluororesin. In this example, the porosity after the water-repellent treatment is 54 to 60%. When the porosity after the water treatment was 45% or more, the same effect was obtained. On the other hand, when the porosity of the carbon paper after the water-repellent treatment was made larger than 70% by decreasing the amount of the fluororesin added, flooding occurred without showing sufficient water-repellency, and the gas permeability decreased.
[0024]
Although the carbon paper of the present invention has been subjected to the water repellent treatment using FEP, other water repellent materials include PTFE. However, while FEP has a melt viscosity of 10 4 to 10 5 poise, PTFE has a high melt viscosity of 10 10 to 10 11 poise. Therefore, when melted by heat treatment, FEP generates fluidity and uniformly coats the carbon fibers, but PTFE does not produce fluidity and is distributed in spots on the carbon fibers. Therefore, an electrode using a diffusion layer that has been subjected to a water-repellent treatment with PTFE will have a reduced water repellency, and will be clogged due to electrode wetting, resulting in reduced gas permeability of the electrode.
[0025]
FIG. 3 shows current-voltage characteristics of the polymer electrolyte fuel cells of the example of the present invention and the comparative example. The discharge test was performed by supplying a hydrogen gas humidified at a temperature of 90 ° C. to the negative electrode side and an oxygen gas humidified at a temperature of 80 ° C. to the positive electrode side. The internal resistance of the battery was measured with an alternating current of 1 kHz. The fuel cells C A , C B , C C , and C D of the examples of the present invention exhibited cell voltages of 0.69, 0.68, 0.66, and 0.64 V at a current density of 200 mA / cm 2 , respectively. . On the other hand, fuel cells C E Comparative Example, C F, C G, respectively at a current density of 200 mA / cm 2, of a battery voltage of 0.64,0.60,0.60V.
[0026]
Further, the internal resistance of the cell is fuel cell C A, C B, C C , whereas each in C D is 11.0,12.5,14.0,16.0Emuomega, fuel cells C E , C F, respectively at C G 16.0mΩ, 19.0mΩ, was 17.0Emuomega. In the batteries C A , C B , C C , and C D provided with electrodes using carbon fibers made of PAN, the resistances of the electrodes become smaller as the thickness of the gas diffusion layer becomes smaller because the specific resistances in the thickness direction are equal. And the internal resistance of the battery decreases. At the same time, the gas permeation rate increases, so that the discharge characteristics of the battery improve. The thickness of the gas diffusion layer is approximately equal have batteries C D and batteries C E, when comparing the C F, batteries C D and batteries C E showed a substantially same characteristics, batteries C F Showed characteristics lower than those of the batteries CD and CE .
[0027]
From Table 1, the specific resistances of the carbon papers A to D and the carbon paper E are almost the same as 80 and 75 mΩcm, respectively, but the specific resistance of the carbon paper F is as large as 120 mΩcm. As a result, in the battery CF , the thickness of the gas diffusion layer is substantially equal. That is, the thickness of the electrode is equal, the battery C D is the internal resistance of the battery becomes higher as compared with the C E, the battery voltage at 200 mA / cm 2 and ohmic loss is increased is considered to become lower.
[0028]
Further , the limiting current densities of the fuel cells C A , C B , C C , and C D are 670, 625, 570, and 500 mA / cm 2 , respectively, and the gas diffusion layer is thin, that is, the gas permeation rate of the electrode increases. Accordingly, the critical current density of the battery increased. The battery C E Comparative Example, C F, respectively limiting current densities of C G, was 520,450,410mA / cm 2. Gas transmission rate of the electrode F 'is the greatest, but the limiting current density of the cell C F is decreased. This is considered to be because the voltage drop due to the ohmic loss increases due to the large internal resistance of the battery.
[0029]
As described above, in the polymer electrolyte fuel cell, an electrode having a high gas permeation rate and a low resistance is required to improve its discharge characteristics. One way to realize such an electrode is to use a thinner gas diffusion layer having a small volume resistivity. However, as shown in Table 1, the strength of the carbon papers E and F made of carbon fibers made of cellulose or pitch is as small as several tens to 150 kg / cm 2 , so that the thickness is set to 0.3 mm or less. It was difficult. On the other hand, the carbon papers A to D made of carbon fibers using PAN as a raw material have a very high bending strength of 400 kg / cm 2 and can be reduced in thickness to 0.1 mm. An electrode for a polymer electrolyte fuel cell having a thin layer, a high gas permeation rate, and a low resistance was obtained.
[0030]
As described above, by configuring a solid polymer fuel cell using the electrode of the present invention, a solid polymer fuel cell exhibiting higher discharge performance can be realized.
[0031]
In this embodiment, a hydrogen-oxygen fuel cell is taken as an example of a polymer electrolyte fuel cell. However, a fuel cell using reformed hydrogen fueled by methanol, natural gas, naphtha, or the like, Can be applied to a polymer electrolyte fuel cell using air.
[0032]
【The invention's effect】
As described above, according to the present invention, by using a gas diffusion layer obtained by subjecting a carbon paper made of carbon fiber made of polyacrylonitrile to water-repellent treatment with a copolymer of ethylene tetrafluoride and propylene hexafluoride . The thickness of the gas diffusion layer and the electrode can be reduced, and the gas permeability can be improved. Further, the resistance of the electrodes and the internal resistance of the battery can be reduced, and a polymer electrolyte fuel cell having excellent discharge characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a unit cell of a polymer electrolyte fuel cell. FIG. 2 is a view showing a pore distribution of a gas diffusion layer according to an example of the present invention and a comparative example. FIG. Diagram showing the current-voltage characteristics of the polymer electrolyte fuel cell of the comparative example.
10 Ion exchange membrane 11 Negative electrode 12 Positive electrode

Claims (2)

ポリアクリロニトリルを原料とする炭素繊維からなり厚みが0.1〜0.3mm、気孔率が45〜70%、厚み方向の固有抵抗が80mΩcm以下である炭素紙に、4フッ化エチレンと6フッ化プロピレンとの共重合体からなるフッ素樹脂による撥水処理を行ったガス拡散層を用い、前記ガス拡散層中の前記フッ素樹脂の含有量が30〜60重量%であることを特徴とする固体高分子型燃料電池用電極。Consisting of carbon fibers and polyacrylonitrile as a raw material, the thickness is 0.1 to 0.3 mm, porosity of 45-70% resistivity in the thickness direction to a carbon paper or less 80Emuomegacm, 4-ethylene fluoride and hexafluoro Using a gas diffusion layer which has been subjected to a water-repellent treatment with a fluororesin made of a copolymer with propylene chloride , wherein the content of the fluororesin in the gas diffusion layer is 30 to 60% by weight. Electrodes for polymer fuel cells. 請求項1記載の電極を正極もしくは負極の少なくとも一方に用いたことを特徴とする固体高分子型燃料電池。A polymer electrolyte fuel cell, wherein the electrode according to claim 1 is used for at least one of a positive electrode and a negative electrode.
JP08165393A 1993-04-08 1993-04-08 Electrode for polymer electrolyte fuel cell and fuel cell using the same Expired - Fee Related JP3547013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08165393A JP3547013B2 (en) 1993-04-08 1993-04-08 Electrode for polymer electrolyte fuel cell and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08165393A JP3547013B2 (en) 1993-04-08 1993-04-08 Electrode for polymer electrolyte fuel cell and fuel cell using the same

Publications (2)

Publication Number Publication Date
JPH06295728A JPH06295728A (en) 1994-10-21
JP3547013B2 true JP3547013B2 (en) 2004-07-28

Family

ID=13752296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08165393A Expired - Fee Related JP3547013B2 (en) 1993-04-08 1993-04-08 Electrode for polymer electrolyte fuel cell and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP3547013B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929146B2 (en) * 1997-11-07 2007-06-13 松下電器産業株式会社 Polymer electrolyte fuel cell system
CA2294803A1 (en) * 1998-05-27 1999-12-02 Toray Industries, Inc. Carbon fibre paper for a polymer electrolyte fuel cell
JP4780814B2 (en) * 1998-12-15 2011-09-28 三洋電機株式会社 Fuel cell
JP4071032B2 (en) * 2002-04-23 2008-04-02 株式会社日立製作所 Solid polymer fuel cell and power generation system using the same
JP4727912B2 (en) * 2003-06-26 2011-07-20 本田技研工業株式会社 Fuel cell stack
JP2006004858A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Porous electrode base material and its manufacturing method
CN100527496C (en) * 2004-06-21 2009-08-12 三菱丽阳株式会社 Porous electrode base material and process for producing the same
WO2006043394A1 (en) * 2004-10-19 2006-04-27 Matsushita Electric Industrial Co., Ltd. Membrane electrode assembly, method for producing same and polymer electrolyte fuel cell
JP5174128B2 (en) * 2010-11-15 2013-04-03 三洋電機株式会社 Gas diffusion layer, fuel cell electrode and fuel cell

Also Published As

Publication number Publication date
JPH06295728A (en) 1994-10-21

Similar Documents

Publication Publication Date Title
JP5107050B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
US6733915B2 (en) Gas diffusion backing for fuel cells
US20060014072A1 (en) Electrode for fuel cell and process for the preparation thereof
US20090305096A1 (en) Liquid fuel supply type fuel cell, fuel cell electrode, and methods for manufacturing same
WO2005088749A1 (en) Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell
JP2001338655A (en) Fuel cell
JP2002313359A (en) Solid polymer fuel cell
JP3459615B2 (en) Electrode for fuel cell and fuel cell
JP2007128671A (en) Gas diffusion electrode, film-electrode assembly and manufacturing method of the same, and solid polymer fuel cell
KR20020070515A (en) Fuel Cell
JP3547013B2 (en) Electrode for polymer electrolyte fuel cell and fuel cell using the same
JP5079195B2 (en) Gas diffusion electrode for fuel cell and manufacturing method thereof
JP4780814B2 (en) Fuel cell
JP2007012424A (en) Gas diffusion electrode, membrane-electrode joined body and its manufacturing method, and solid polymer fuel cell
JPH07326363A (en) Ion conductivity imparting electrode and jointing material for electrode and electrolyte and cell using the ion conductivity imparting electrode
JP2004079506A (en) Liquid fuel cell
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP3813406B2 (en) Fuel cell
KR100658739B1 (en) Polymer membrane for fuel cell and method for preparating the same
JP2008210725A (en) Gas diffusion electrode, membrane-electrode assembly and its manufacturing method, and solid polymer fuel cell
JP5391968B2 (en) Gas diffusion layer for polymer electrolyte fuel cell and method for producing the same
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP2007134306A (en) Direct oxidation fuel cell and membrane electrode assembly thereof
JP3712959B2 (en) Fuel cell electrode and method of manufacturing the same
EP1298744A1 (en) Fuel cell

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees