JPH06260184A - Fuel cell with solid highpolymer electrolyte - Google Patents

Fuel cell with solid highpolymer electrolyte

Info

Publication number
JPH06260184A
JPH06260184A JP5067646A JP6764693A JPH06260184A JP H06260184 A JPH06260184 A JP H06260184A JP 5067646 A JP5067646 A JP 5067646A JP 6764693 A JP6764693 A JP 6764693A JP H06260184 A JPH06260184 A JP H06260184A
Authority
JP
Japan
Prior art keywords
fuel cell
cation exchange
membrane
exchange membrane
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5067646A
Other languages
Japanese (ja)
Inventor
Masayuki Tamura
正之 田村
Kiyoshige Jitsukata
清成 實方
Haruhisa Miyake
晴久 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5067646A priority Critical patent/JPH06260184A/en
Publication of JPH06260184A publication Critical patent/JPH06260184A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a high performance fuel cell which uses a solid high- polymer electrolyte having a low electric resistance. CONSTITUTION:The solid electrolyte used consists of a positive ion exchange film which is made from a perfluorocarbon polymeride film having an AC specific resistance value of 5-11OMEGAcm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体高分子電解質型燃料
電池に関する。
FIELD OF THE INVENTION The present invention relates to a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】近年プロトン伝導性の高分子膜を電解質
として用いる燃料電池(固体高分子電解質型燃料電池)
の研究が進んでいる。固体高分子電解質型燃料電池は、
低温で作動し出力密度が高く小型化が可能であるという
特徴を有し、車載用電源等の用途に対し有力視されてい
る。
2. Description of the Related Art Recently, a fuel cell using a proton-conducting polymer membrane as an electrolyte (solid polymer electrolyte fuel cell)
Research is progressing. The solid polymer electrolyte fuel cell is
It operates at low temperature, has a high output density, and can be downsized, and is regarded as a promising candidate for applications such as in-vehicle power supplies.

【0003】[0003]

【発明が解決しようとする課題】上記用途に用いられる
高分子膜は、通常厚さ100〜200μmのプロトン伝
導性イオン交換膜が用いられ、特にスルホン酸基を有す
るパーフルオロカーボン重合体からなる陽イオン交換膜
が基本特性に優れ、広く検討されている。しかし、現在
提案されている陽イオン交換膜の電気抵抗は、より高出
力密度の電池を得る観点から必ずしも十分に低いとはい
えない。
As the polymer membrane used for the above-mentioned application, a proton conductive ion exchange membrane having a thickness of 100 to 200 μm is usually used, and in particular, a cation composed of a perfluorocarbon polymer having a sulfonic acid group. Exchange membranes have excellent basic characteristics and have been widely studied. However, the electric resistance of currently proposed cation exchange membranes is not necessarily sufficiently low from the viewpoint of obtaining batteries with higher power density.

【0004】陽イオン交換膜の電気抵抗を低減する方法
にはスルホン酸基濃度の増加と膜厚の低減があるが、ス
ルホン酸基濃度の著しい増加は膜の機械的強度を低下さ
せたり、長期運転において膜がクリープしやすくなり耐
久性を低下させるなどの問題が生じる。一方膜厚の低減
は膜の機械的強度を低下させたり、更にガス拡散電極と
の接合等の加工性・取扱い性を低下させるなどの問題が
生じる。かくして、電気抵抗が低くかつ機械的強度が高
い陽イオン交換膜の開発が望まれていた。
Methods for reducing the electrical resistance of cation exchange membranes include increasing the concentration of sulfonic acid groups and reducing the film thickness, but a significant increase in the concentration of sulfonic acid groups reduces the mechanical strength of the membrane, During operation, the film easily creeps, which causes problems such as deterioration of durability. On the other hand, the reduction of the film thickness causes problems such as deterioration of the mechanical strength of the film and further deterioration of workability and handleability such as bonding with the gas diffusion electrode. Thus, it has been desired to develop a cation exchange membrane having low electric resistance and high mechanical strength.

【0005】[0005]

【課題を解決するための手段】本発明は前述の問点を解
決すべくなされたものであり、スルホン酸基を含有する
パーフルオロカーボン重合体の陽イオン交換膜を固体高
分子電解質とする燃料電池において、陽イオン交換膜が
5〜11Ωcmの交流比抵抗値を有することを特徴とす
る固体高分子電解質型燃料電池を提供するものである。
The present invention has been made to solve the above problems, and is a fuel cell using a cation exchange membrane of a perfluorocarbon polymer containing a sulfonic acid group as a solid polymer electrolyte. In the above, there is provided a solid polymer electrolyte fuel cell, wherein the cation exchange membrane has an AC specific resistance value of 5 to 11 Ωcm.

【0006】本発明で陽イオン交換膜の交流比抵抗値
は、1Mの硫酸水溶液中に25℃で24時間浸漬した陽
イオン交換膜(イオン交換基は酸型)について測定した
ものであり、数1のように算出される。
In the present invention, the AC specific resistance value of the cation exchange membrane is measured on a cation exchange membrane (the ion exchange group is an acid type) immersed in a 1 M aqueous sulfuric acid solution at 25 ° C. for 24 hours. It is calculated as 1.

【0007】[0007]

【数1】交流比抵抗値(Ωcm)=抵抗(Ω)×膜有効
面積(cm2 )÷膜厚(cm)
[Equation 1] AC specific resistance value (Ωcm) = resistance (Ω) × film effective area (cm 2 ) ÷ film thickness (cm)

【0008】本発明で陽イオン交換膜の交流比抵抗値が
上記上限値より大きい場合には膜抵抗が上昇し、電池の
出力が低下し、一方下限値より小さい場合には膜強度及
び膜取扱い性が低下するため好ましくない。なかでも交
流比抵抗値は、6〜10Ωcmが特に好ましい。
In the present invention, when the AC specific resistance value of the cation exchange membrane is larger than the above upper limit value, the membrane resistance is increased and the output of the battery is lowered, while when it is less than the lower limit value, the membrane strength and the membrane handling are improved. It is not preferable because it deteriorates the property. Among them, the AC specific resistance value is particularly preferably 6 to 10 Ωcm.

【0009】本発明で陽イオン交換膜の交流比抵抗値を
上記範囲にせしめる方法としては、イオン交換基を導入
する加水分解処理において、膜の膨潤度を50〜90重
量%にすることや、陽イオン交換膜を純水中で煮沸、あ
るいは加圧、加温することにより膨潤度を65〜110
重量%にすることなどが好ましく採用できる。
In the present invention, the method for keeping the AC specific resistance value of the cation exchange membrane within the above range is to adjust the swelling degree of the membrane to 50 to 90% by weight in the hydrolysis treatment in which an ion exchange group is introduced. The cation exchange membrane is boiled in pure water, or pressurized and heated to increase the degree of swelling to 65 to 110.
It can be preferably adopted that the content is set to weight%.

【0010】パーフルオロカーボン重合体の陽イオン交
換膜は、好ましくは単層のフィルムからなるが、その厚
みは30〜300μm、さらには50〜250μmであ
るようにするのが好ましい。上記下限値より小さい場合
には、膜強度及び電極接合等における取扱い性が低下
し、一方上限値より大きい場合には膜抵抗が上昇し、電
池の出力が低下するため好ましくない。
The cation exchange membrane of the perfluorocarbon polymer is preferably a single layer film, and the thickness thereof is preferably 30 to 300 μm, more preferably 50 to 250 μm. When it is smaller than the lower limit, the membrane strength and handleability in electrode bonding and the like are deteriorated. On the other hand, when it is larger than the upper limit, the membrane resistance is increased and the battery output is reduced, which is not preferable.

【0011】本発明に用いられるスルホン酸基を含有す
るパーフルオロカーボン重合体としては、テトラフルオ
ロエチレンとCF2 =CF−(OCF2 CFX)m −O
q −(CF2n −A(式中m=0〜3、n=0〜1
2、q=0又は1、X=F又はCF3 、A=スルホン酸
型官能基)で表されるフルオロビニル化合物との共重合
体が好ましく採用できる。上記フルオロビニル化合物の
好ましい例としては、化1に示す化合物などが挙げられ
る。
The perfluorocarbon polymer containing a sulfonic acid group used in the present invention includes tetrafluoroethylene and CF 2 ═CF— (OCF 2 CFX) m —O.
q - (CF 2) n -A ( wherein m = 0~3, n = 0~1
A copolymer with a fluorovinyl compound represented by 2, q = 0 or 1, X = F or CF 3 , and A = sulfonic acid type functional group) can be preferably used. Preferred examples of the fluorovinyl compound include the compounds shown in Chemical formula 1 and the like.

【0012】[0012]

【化1】 CF2 =CFO(CF21-8 SO2 F CF2 =CFOCF2 CF(CF3 )O(CF21-8 SO2 F CF2 =CF(CF20-8 SO2 F CF2 =CF(OCF2 CF(CF3 ))1-5 O(CF22 SO2Embedded image CF 2 ═CFO (CF 2 ) 1-8 SO 2 F CF 2 ═CFOCF 2 CF (CF 3 ) O (CF 2 ) 1-8 SO 2 F CF 2 ═CF (CF 2 ) 0-8 SO 2 F CF 2 = CF (OCF 2 CF (CF 3 )) 1-5 O (CF 2 ) 2 SO 2 F

【0013】なお、フルオロカーボン重合体を構成する
モノマーである上記テトラフルオロエチレンの代わりに
ヘキサフルオロプロピレン、クロロトリフルオロエチレ
ン、パーフルオロアルコキシビニルエーテルのようなパ
ーフルオロオレフィンを用いることもできる。
Incidentally, perfluoroolefin such as hexafluoropropylene, chlorotrifluoroethylene or perfluoroalkoxy vinyl ether may be used in place of the above tetrafluoroethylene which is a monomer constituting the fluorocarbon polymer.

【0014】上記パーフルオロカーボン重合体フィルム
からなる陽イオン交換膜は、フィブリル状、織布状、又
は不織布状のパーフルオロカーボン重合体で補強するこ
ともできる。
The cation exchange membrane composed of the perfluorocarbon polymer film may be reinforced with a fibril-like, woven cloth-like or non-woven cloth-like perfluorocarbon polymer.

【0015】本発明の、陽イオン交換膜は通常の既知の
手法にしたがってその表面にガス拡散電極を密着させ、
次いで集電体を取り付け、燃料電池として組み立てられ
る。ガス拡散電極は、通常白金触媒微粒子を担持させた
導電性のカーボンブラック粉末をポリテトラフルオロエ
チレン(PTFE)などの疎水性樹脂結着材で保持させ
た多孔質体のシートよりなるが、該多孔質体がスルホン
酸型パーフルオロカーボン重合体や該重合体で被覆され
た微粒子を含んでいてもよい。ガス拡散電極とスルホン
酸型パーフルオロカーボン重合体とは加熱プレス法等に
より密着される。集電体は燃料ガス又は酸化剤ガスの通
路となる溝が形成された導電性カーボン板等が用いられ
る。
The cation exchange membrane of the present invention has a gas diffusion electrode adhered to the surface thereof according to a conventional known method,
Then, a current collector is attached and the fuel cell is assembled. The gas diffusion electrode is usually composed of a sheet of a porous body in which conductive carbon black powder carrying platinum catalyst fine particles is held by a hydrophobic resin binder such as polytetrafluoroethylene (PTFE). The substance may contain a sulfonic acid type perfluorocarbon polymer or fine particles coated with the polymer. The gas diffusion electrode and the sulfonic acid type perfluorocarbon polymer are adhered to each other by a hot pressing method or the like. As the current collector, a conductive carbon plate or the like in which a groove serving as a passage for the fuel gas or the oxidant gas is formed is used.

【0016】[0016]

【実施例】特開平2−88645号公報に記載されてい
る方法に準拠し、CF2 =CF2とCF2 =CFOCF2
CFCF3 O(CF22 SO2 Fとの共重合体から
なるイオン交換容量1.1ミリ当量/g乾燥樹脂を22
0℃で押し出し製膜し、厚さ100μmのフィルムを得
た。
EXAMPLES In accordance with the method described in JP-A-2-88645, CF 2 ═CF 2 and CF 2 ═CFOCF 2
Ion exchange capacity of 1.1 meq / g dry resin composed of a copolymer with CFCF 3 O (CF 2 ) 2 SO 2 F
Film extrusion was carried out at 0 ° C. to obtain a film having a thickness of 100 μm.

【0017】上記の共重合体フィルムを、ジメチルスル
ホキシド30重量%、苛性カリ15重量%との混合水溶
液中で加水分解を行い、水洗した後1Nの塩酸中に浸漬
した。次に膜を水洗し、膜の四辺を専用治具で拘束した
後60℃、1時間乾燥し陽イオン交換膜を製造した。こ
の陽イオン交換膜の交流比抵抗値を測定したところ、8
Ωcmであった。
The above-mentioned copolymer film was hydrolyzed in a mixed aqueous solution of 30% by weight of dimethyl sulfoxide and 15% by weight of caustic potash, washed with water and then immersed in 1N hydrochloric acid. Next, the membrane was washed with water, the four sides of the membrane were restrained with dedicated jigs, and then dried at 60 ° C. for 1 hour to produce a cation exchange membrane. When the AC specific resistance value of this cation exchange membrane was measured, it was 8
It was Ωcm.

【0018】この陽イオン交換膜を用いた燃料電池特性
を評価した。すなわち、白金触媒微粒子を担持させたカ
ーボンブラック粉末にPTFEを混入し、ロールプレス
を用いて厚さ250μmのシート状のガス拡散電極を作
製した。上記2枚のガス拡散電極の間に上記陽イオン交
換膜を挿入し平板熱プレス機を用いて積層することによ
り膜電極接合体を作製した。膜電極接合体の白金触媒量
は膜面積1cm2 当たり1mgであった。
The fuel cell characteristics using this cation exchange membrane were evaluated. That is, PTFE was mixed with carbon black powder supporting platinum catalyst fine particles, and a 250 μm thick sheet-shaped gas diffusion electrode was produced by using a roll press. A membrane electrode assembly was produced by inserting the cation exchange membrane between the two gas diffusion electrodes and stacking them using a flat plate heat press. The amount of platinum catalyst in the membrane electrode assembly was 1 mg per 1 cm 2 of membrane area.

【0019】次に、膜電極接合体をチタン製の集電体、
PTFE製のガス供給室、ヒーターの順番で両側からは
さみ、有効膜面積9cm2 の燃料電池を組み上げたセル
の温度を80℃に保ち、正極に酸素、負極に水素をそれ
ぞれ5気圧で供給したときの電流密度に対する端子電圧
を測定したところ、電流密度1A/cm2 でセル電圧
0.65Vであった。
Next, the membrane electrode assembly was replaced with a titanium current collector,
When a gas supply chamber made of PTFE and a heater are sandwiched from both sides in this order, the temperature of the cell in which a fuel cell having an effective membrane area of 9 cm 2 is assembled is maintained at 80 ° C, and oxygen is supplied to the positive electrode and hydrogen to the negative electrode at 5 atm, respectively. When the terminal voltage with respect to the current density was measured, the cell voltage was 0.65 V at a current density of 1 A / cm 2 .

【0020】[0020]

【比較例】特開平2−88645号公報に記載されてい
る方法に準拠し、CF2 =CF2とCF2 =CFOCF2
CFCF3 O(CF22 SO2 Fとの共重合体から
なるイオン交換容量1.0ミリ当量/g乾燥樹脂を22
0℃で押し出し製膜し、厚さ100μmのフィルムを得
た。これに実施例と同様な処理を施し、陽イオン交換膜
を製造した。この膜の交流比抵抗値は12.6Ωcmで
あった。
[Comparative Example] CF 2 ═CF 2 and CF 2 ═CFOCF 2 based on the method described in JP-A-2-88645.
An ion exchange capacity of 1.0 meq / g dry resin composed of a copolymer with CFCF 3 O (CF 2 ) 2 SO 2 F is used.
Film extrusion was carried out at 0 ° C. to obtain a film having a thickness of 100 μm. This was subjected to the same treatment as in the example to produce a cation exchange membrane. The AC specific resistance value of this film was 12.6 Ωcm.

【0021】実施例と同様な方法により燃料電池を組み
上げた後、同様な条件下で電流密度に対する端子電圧を
測定したところ電流密度1A/cm2 でセル電圧0.6
0Vであった。
After assembling the fuel cell by the same method as in the example, the terminal voltage with respect to the current density was measured under the same conditions. When the current density was 1 A / cm 2 , the cell voltage was 0.6
It was 0V.

【0022】上記の結果からわかるように、実施例の陽
イオン交換膜は比較例の膜に比べ、燃料電池を組み上げ
たときのエネルギー損失が小さい。
As can be seen from the above results, the cation exchange membrane of the example has a smaller energy loss when the fuel cell is assembled than the membrane of the comparative example.

【0023】[0023]

【発明の効果】従来膜にない低い電気抵抗を有する陽イ
オン交換膜を固体高分子電解質とすることにより、高性
能の固体高分子電解質型燃料電池が得られる。
EFFECTS OF THE INVENTION By using a cation exchange membrane having a low electric resistance, which is not available in conventional membranes, as a solid polymer electrolyte, a high performance solid polymer electrolyte fuel cell can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】スルホン酸基を有するパーフルオロカーボ
ン重合体からなる陽イオン交換膜を固体高分子電解質型
とする燃料電池において、上記陽イオン交換膜が5〜1
1Ωcmの交流比抵抗値を有することを特徴とする固体
高分子電解質型燃料電池。
1. A fuel cell in which a cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is a solid polymer electrolyte type, and the cation exchange membrane has 5-1.
A solid polymer electrolyte fuel cell having an AC specific resistance of 1 Ωcm.
【請求項2】陽イオン交換膜の膜厚が30〜300μm
である請求項1の固体高分子電解質型燃料電池。
2. The thickness of the cation exchange membrane is 30 to 300 μm.
The solid polymer electrolyte fuel cell according to claim 1.
【請求項3】パーフルオロカーボン重合体がCF2 =C
2 とCF2 =CF−(OCF2 CFX)m −Oq
(CF2n −A(式中m=0〜3、n=0〜12、q
=0又は1、X=F又はCF3 、A=スルホン酸型官能
基)との共重合体からなる請求項1又は2の固体高分子
電解質型燃料電池。
3. The perfluorocarbon polymer is CF 2 ═C.
F 2 and CF 2 = CF- (OCF 2 CFX ) m -O q -
(CF 2) n -A (wherein m = 0~3, n = 0~12, q
= 0 or 1, X = F or CF 3 , A = sulfonic acid type functional group), and the solid polymer electrolyte fuel cell according to claim 1 or 2.
JP5067646A 1993-03-03 1993-03-03 Fuel cell with solid highpolymer electrolyte Pending JPH06260184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5067646A JPH06260184A (en) 1993-03-03 1993-03-03 Fuel cell with solid highpolymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5067646A JPH06260184A (en) 1993-03-03 1993-03-03 Fuel cell with solid highpolymer electrolyte

Publications (1)

Publication Number Publication Date
JPH06260184A true JPH06260184A (en) 1994-09-16

Family

ID=13350996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5067646A Pending JPH06260184A (en) 1993-03-03 1993-03-03 Fuel cell with solid highpolymer electrolyte

Country Status (1)

Country Link
JP (1) JPH06260184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059216A1 (en) * 1998-05-13 1999-11-18 Daikin Industries, Ltd. Material for solid polyelectrolyte suitable for use in fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059216A1 (en) * 1998-05-13 1999-11-18 Daikin Industries, Ltd. Material for solid polyelectrolyte suitable for use in fuel cell
US7455934B1 (en) 1998-05-13 2008-11-25 Daikin Industries, Ltd. Fluorocopolymer material with sulfonic acid functional groups as a solid polyelectrolyte for use in fuel cells
US8754140B2 (en) 1998-05-13 2014-06-17 Daikin Industries, Ltd. Material for solid polyelectrolyte suitable for use in fuel cell

Similar Documents

Publication Publication Date Title
JP3342726B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same
US7488788B2 (en) Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
EP1806371B1 (en) Electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
WO2011013578A1 (en) Electrolyte material, liquid composition, and membrane -electrode assembly for polymer electrolyte fuel cell
US6869714B2 (en) Electrode-membrane assembly and process for the preparation thereof
WO2011013577A1 (en) Electrolyte material, liquid composition, and membrane electrode assembly for solid polymer fuel cells
CN107108781B (en) Electrolyte material, liquid composition, and membrane electrode assembly for polymer electrolyte fuel cell
JP3382654B2 (en) Solid polymer electrolyte fuel cell
EP1263073A1 (en) Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production
US20080026276A1 (en) Proton-Conducting Material, Solid Polymer Electrolyte Membrane, and Fuel Cell
US20070218334A1 (en) Methods for making sulfonated non-aromatic polymer electrolyte membranes
JP3541466B2 (en) Improved solid polymer electrolyte fuel cell
JP3382655B2 (en) Improved solid polymer electrolyte fuel cell
JP4848587B2 (en) ELECTROLYTE MATERIAL FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL
JP2001243964A (en) Solid polymer electrolyte fuel cell
JPH09219206A (en) Electrochemical element
JPH06231782A (en) Improved solid high polymer electrolytic type fuel cell
JP4218255B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JPH06231778A (en) Solid high polymer electrolytic fuel cell
JPH06260184A (en) Fuel cell with solid highpolymer electrolyte
JPH06260185A (en) Fuel cell with solid highpolymer electrolyte
JP5773863B2 (en) Redox flow secondary battery
JP2000268834A (en) Proton conductive fuel cell
JPH06275301A (en) Fuel cell
JP2002343380A (en) Electrolyte film for solid polymer fuel cell, and manufacturing method of the same