JP4848587B2 - ELECTROLYTE MATERIAL FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL - Google Patents

ELECTROLYTE MATERIAL FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL Download PDF

Info

Publication number
JP4848587B2
JP4848587B2 JP2001018979A JP2001018979A JP4848587B2 JP 4848587 B2 JP4848587 B2 JP 4848587B2 JP 2001018979 A JP2001018979 A JP 2001018979A JP 2001018979 A JP2001018979 A JP 2001018979A JP 4848587 B2 JP4848587 B2 JP 4848587B2
Authority
JP
Japan
Prior art keywords
fuel cell
polymer electrolyte
copolymer
solid polymer
electrolyte material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001018979A
Other languages
Japanese (ja)
Other versions
JP2002231268A (en
Inventor
淳 渡壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001018979A priority Critical patent/JP4848587B2/en
Publication of JP2002231268A publication Critical patent/JP2002231268A/en
Application granted granted Critical
Publication of JP4848587B2 publication Critical patent/JP4848587B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池用電解質材料とその製造方法、及び固体高分子型燃料電池に関する。
【0002】
【従来の技術】
従来より固体高分子型燃料電池を構成する電極の触媒層に含有されるプロトン伝導性ポリマー及び/又は高分子電解質膜として使用される電解質材料には、テトラフルオロエチレンと下記式(A)で表されるパーフルオロビニルエーテルとの共重合体を加水分解し、次いで酸型化処理することにより、−SO2F基を−SO3H基に変換したポリマーが用いられている。ただし、下記式(A)中、Yはフッ素原子又はトリフルオロメチル基、mは0〜3の整数、nは1〜12の整数、pは0又は1をそれぞれ示し、かつ(m+p)>0である。
【化2】

Figure 0004848587
【0003】
上記のポリマーの中でも、特に、テトラフルオロエチレンと下記式(B)〜(D)で表されるモノマーの共重合により得られるポリマーを酸型化したものが好ましく用いられている。ただし、下記式(B)〜(D)中、qは1〜8の整数、rは1〜8の整数、sは2又は3をそれぞれ示す。
【化3】
Figure 0004848587
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の共重合体は、高い電池出力を達成し得るイオン伝導性、長期にわたる作動を可能とする耐久性等の特性には優れていたが、製造コストが高く安価に製造できないという問題があった。
【0005】
上記従来の共重合体の製造コストが高くなることの大きな要因としては、高コストのヘキサフルオロプロピレンオキシドを中間体として用いて合成された−SO2F基を含有するビニルエーテルモノマーをテトラフルオロエチレンと共重合させることにより製造していることが挙げられる。
【0006】
これに対して米国特許4,273,729号公報には、ヘキサフルオロプロピレンオキシドを用いずに合成した下記式(2)で表されるモノマーとテトラフルオロエチレンとの共重合体が開示されている。
【化4】
Figure 0004848587
【0007】
しかしながら、上記の共重合体の−SO2F基を酸型化して−SO3H基とした後、電極や高分子電解質膜の構成材料として使用した固体高分子型燃料電池は十分な電池出力を得ることができなかった。
【0008】
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、上述の従来の電解質材料と同等のイオン伝導性及び耐久性を有する合成の容易な固体高分子型燃料電池用電解質材料と、それを用いて構成された固体高分子型燃料電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、米国特許4,273,729号公報に記載の共重合体は、酸型化した後のイオン交換容量が0.85[ミリ当量/グラム乾燥樹脂]以下であり、十分なイオン伝導性を有していないことが、高い電池出力を得ることができない要因となっていることを見出した。
【0010】
そして、本発明者らは、ヘキサフルオロプロピレンオキシドを原料として用いずに合成した安価な式(1)で表されるモノマーに基づく繰り返し単位とテトラフルオロエチレンに基づく繰り返し単位とを含む共重合体であっても、そのイオン交換容量を所定の範囲に調節して合成したものは十分なイオン伝導性と耐久性とを兼ね備えていることを見出し、本発明に到達した。
【0011】
すなわち、本発明は、下記式(2)で表されるモノマーとテトラフルオロエチレンとを80〜350℃で共重合させて共重合体を得、該共重合体を加水分解処理し、次いで酸型化処理することを特徴とする固体高分子型燃料電池用電解質材料の製造方法と、該製造方法により得られた固体高分子型燃料電池用電解質材料、及び、当該固体高分子型燃料電池用電解質材料からなり、かつ、その膜厚が5〜70μmであることを特徴とする高分子電解質膜がアノードとカソードとの間に配置された構成を有する固体高分子型燃料電池を提供する。
【化5】
Figure 0004848587
【0012】
本発明の固体高分子型燃料電池用電解質材料は、ヘキサフルオロプロピレンオキシドを原料として使用せずに合成することができるので、上述の従来の電解質材料に比較して、製造コストを大幅に削減することが可能である。また、本発明の固体高分子型燃料電池用電解質材料は、そのイオン交換容量(以下、ARという)が0.9〜1.5[ミリ当量/グラム乾燥樹脂](以下、meq./gとする)であるので、従来の電解質材料と同等の優れたイオン伝導性及び耐久性を有している。
【0013】
ここで、ARが0.9未満であると、イオン伝導性が不十分となるおそれがある。一方、ARが1.5を超えると、合成することが困難となる。また、上記と同様の観点から、本発明の固体高分子型燃料電池用電解質材料のARは、1.0〜1.3meq./gであることが好ましい。
【0014】
また、本発明の固体高分子型燃料電池は、上記の固体高分子型燃料電池用電解質材料からなる高分子電解質膜を少なくとも備えているので、上述の従来の固体高分子型燃料電池と同等の出力特性及び電池寿命を有しており、然も、モノマー製造工程を短縮することができる。すなわち、例えば、従来用いられている式(D)で示した化合物は、FSO2CF2COFから、ヘキサフルオロプロピレンオキシド付加、熱分解の2段の工程を経て合成されるが、式(2)で示したモノマーは後述のスキームAに示すようにFSO2CF2COFから一段の反応で合成できる。なお、本発明の固体高分子型燃料電池は、アノード及び/又はカソードの触媒層にも上記の本発明の固体高分子型燃料電池用電解質材料を含有させてもよい。
【0015】
ここで、本発明の固体高分子型燃料電池に使用される高分子電解質膜の膜厚が5μm未満であると、膜の強度が不十分となる。一方、膜厚が70μmを超えると、電解質抵抗が大きくなり十分な電池出力が得られなくなる。また、上記と同様の観点から、本発明の固体高分子型燃料電池に使用される高分子電解質膜の膜厚は10〜50μmであることが好ましい。
【0016】
【発明の実施の形態】
以下、本発明の固体高分子型燃料電池用電解質材料及び固体高分子型燃料電池について更に詳細に説明する。
【0017】
本発明の固体高分子型燃料電池用電解質材料は、先に述べた式(2)で表されるモノマーとテトラフルオロエチレンとを共重合させ、得られる共重合体を加水分解し、酸と接触させることにより得ることができる。
【0018】
また、本発明の固体高分子型燃料電池は、アノードと、カソードと、アノードとカソードとの間に配置された高分子電解質膜とを有している。そして、本発明の固体高分子型燃料電池は、本発明の固体高分子型燃料電池用電解質材料からなり、かつ、膜厚が5〜70μmである高分子電解質膜を備えていること以外の構成は特に限定されない。例えば、従来公知の固体高分子型燃料電池と同様の構成を有してしてもい。なお、前述のようにアノード及び/又はカソードの触媒層にも従来のパーフルオロスルホン酸ポリマーのかわりに本発明の固体高分子型燃料電池用電解質材料を含有させてもよい。また、本発明の固体高分子型燃料電池の製造方法も特に限定されず、本発明の固体高分子型燃料電池用電解質材料からなる高分子電解質膜を製造する方法、電極と高分子電解質膜とから燃料電池を作製する方法についても特に限定されず、従来公知の方法を採用することができる。
【0019】
本発明において用いられる式(2)で表されるモノマーは、例えば、米国特許4,273,729号等により下記スキームAに示す公知の合成反応により製造することができる。
【化6】
Figure 0004848587
【0020】
また、式(2)で表されるモノマーとテトラフルオロエチレンとの重合反応は、ラジカルが生起する条件のもとで、例えば、バルク重合法、溶液重合法、又は懸濁重合法により行われる。また、ラジカルを生起させる方法としては、紫外線、γ線、電子線等の放射線を照射する方法、ラジカル重合反応に一般的に用いられているラジカル開始剤を添加する方法等が挙げられる。
【0021】
更に、本発明において、上記のモノマーの重合反応の反応温度は、50〜350℃であることが好ましい。重合反応の反応温度が50℃未満であると、反応容器内等の反応系内の圧力が不十分となり、圧力で重合反応の進行を制御することが困難となる傾向がある。その結果、ARが0.9meq./g以上の共重合体を再現性よく得ることが困難となる。また、この場合には、式(2)で表されるモノマーの重合反応性が小さすぎて、分子量、収率が小さくなる傾向がある。一方、重合反応の反応温度が350℃を超えると、生成する共重合体の耐熱性が不十分である。
【0022】
また、本発明において、ラジカル開始剤を用いて上記モノマーの重合反応を行なう場合、ラジカル開始剤としては、例えばビス(フルオロアシル)パーオキシド類、ビス(クロロフルオロアシル)パーオキシド類、ジアルキルパーオキシジカーボネート類、ジアシルパーオキシド類、パーオキシエステル類、アゾ化合物類、過硫酸塩類、3級炭素−3級単炭素、3級炭素−4級炭素又は4級炭素−4級炭素結合を有するパーフルオロカーボン類、N−F結合を含有するパーフルオロカーボン化合物類等が挙げられる。なお、生成する共重合体の分子量を高める観点から、上記のラジカル開始剤の中でも含フッ素開始剤を用いることが好ましく、パーフルオロカーボン化合物系の開始剤を使用することがより好ましい。
【0023】
更に、本発明において、上記モノマーの重合反応を溶液重合法により行なう場合、使用する溶媒の沸点は、取り扱い性の観点から、通常は20〜350℃、好ましくは40〜150℃である。また、使用可能な溶媒は、特に限定されないが、例えば、以下のものが挙げられる。すなわち、1)パーフルオロトリブチルアミン、パーフルオロトリプロピルアミン等のポリフルオロトリアルキルアミン化合物、2)パーフルオロヘキサン、パーフルオロオクタン、パーフルオロデカン、パーフルオロドデカン、パーフルオロ(2,7−ジメチルオクタン)、2H,3H−パーフルオロペンタン、1H−パーフルオロヘキサン、1H−パーフルオロオクタン、1H−パーフルオロデカン、1H,4H−パーフルオロブタン、1H,1H,1H,2H,2H−パーフルオロヘキサン、1H,1H,1H,2H,2H−パーフルオロオクタン、1H,1H,1H,2H,2H−パーフルオロデカン、3H,4H−パーフルオロ(2−メチルペンタン)、2H,3H−パーフルオロ(2−メチルペンタン)等のフルオロアルカン、3)3,3−ジクロロ−1,1,1,2,2−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1,1−ジクロロ−1−フルオロエタン等のクロロフルオロアルカン、4)パーフルオロデカリン、パーフルオロシクロヘキサン、パーフルオロ(1,2−ジメチルシクロヘキサン)、パーフルオロ(1,3−ジメチルシクロヘキサン)、パーフルオロ(1,3,5−トリメチルシクロヘキサン)、パーフルオロジメチルシクロブタン(構造異性を問わない)等のポリフルオロシクロアルカン、5)パーフルオロ(2−ブチルテトラヒドロフラン)等のポリフルオロ環状エーテル化合物、6)n−C37OCH3、n−C37OCH2CF3、n−C37OCHFCF3、n−C37OC25、n−C49OCH3、iso−C49OCH3、n−C49OC25、iso−C49OC25、n−C49OCH2CF3、n−C511OCH3、n−C613OCH3、n−C511OC25、CF3OCF(CF3)CF2OCH3、CF3OCHFCH2OCH3、CF3OCHFCH2OC25、n−C37OCF2CF(CF3)OCHFCF3等のヒドロフルオロエーテル類、7)フッ素含有低分子量ポリエーテル等が挙げられる。なお、上記の溶媒は、単独で用いてもよく2種以上を混合して用いてもよい。
【0024】
また、上記の溶媒の他に1,1,2−トリクロロ−1,2,2−トリフルオロエタン、1,1,1−トリクロロ−2,2,2−トリフルオロエタン、1,1,1,3−テトラクロロ−2,2,3,3−テトラフルオロプロパン、1,1,3,4−テトラクロロ−1,2,2,3,4,4−ヘキサフルオロブタン等のクロロフルオロカーボン類も技術的には使用できるが、地球環境保護の観点から好ましくない。更に、本発明においては、液体又は超臨界の二酸化炭素を用いて重合反応を行なうこともできる。
【0025】
なお、式(2)で表されるモノマーとテトラフルオロエチレンとの共重合体は、少量成分として他の含フッ素モノマーに基づく繰り返し単位を含んでいてもよい。このような少量成分となる他のパーフルオロモノマーとしては、例えば、フッ化ビニリデン、トリフルオロエチレン、フッ化ビニル、エチレン、クロロトリフルオロエチレン、パーフルオロ(3−ブテニルビニルエーテル)、パーフルオロ(アリルエーテル)、パーフルオロ(2,2−ジメチル−1,3−ジオキソール)、パーフルオロ(1,3−ジオキソール)、2,2,4−トリフルオロ−5−トリフルオロメトキシ−1,3−ジオキソール、パーフルオロ(2-メチレン-4-メチル−1,3−ジオキソラン)、1,1’−[(ジフルオロメチレン)ビス(オキシ)]ビス[1,2,2−トリフルオロエチレン]、ヘキサフルオロプロピレン、下記式(3)で表されるパーフルオロビニルエーテル化合物等が挙げられる。なお、下記式(3)中、Rfは炭素数1〜8のパーフルオロアルキル基であって、枝分かれ構造であってもよく、エーテル性酸素原子を含有してもよい。
CF2=CFORf …(3)
【0026】
かくして得られる共重合体の中でも特にパーフルオロ構造を有するポリマーが燃料電池の耐久性の観点から好ましい。
【0027】
上記に挙げたフッ化ビニリデンと、式(2)で表されるモノマーとの共重合反応では、ARの高い共重合体が容易に得られることが知られている。そして該共重合体をフッ素ガスを用いてフッ素化することによっても、本発明の固体高分子型燃料電池用電解質材料となる共重合体を合成することができる。なお、この場合のフッ素化反応は、不活性ガスで希釈されたフッ素ガスを用い、含フッ素溶媒中において行なうことが好ましい。得られるポリマーはパーフルオロポリマーであることが好ましい。
【0028】
前述のようにして合成した共重合体は粉体の状態、或いは、溶融押し出しや加熱プレス等によりフィルム化した後、加水分解処理され、次いで酸型化処理される。加水分解処理においては、例えば、NaOHやKOH等の塩基の水溶液或いはメタノールやエタノール等のアルコール類やジメチルスルホキシド等の極性溶媒と水との混合液中において、合成した共重合体中の−SO2F基が加水分解され、−SO3Na基や−SO3K基等に変換される。また、次いで行われる酸型化処理においては、塩酸、硝酸、硫酸等の酸の水溶液中において共重合体中の−SO3Na基や−SO3K基等の金属イオンがプロトンに置換されて酸型化され、スルホン酸基(−SO3H基)に変換される。また、加水分解処理及び酸型化処理は通常0℃〜120℃の温度で行われる。
【0029】
ここで、本発明の固体高分子型燃料電池用電解質材料を固体高分子型燃料電池を構成する高分子電解質膜の構成材料として使用する場合には、上述のように重合反応により合成した共重合体をフィルム化した後、加水分解処理及び酸型化処理を施してもよいが、粉体の状態で加水分解処理及び酸型化処理を施した後、溶媒に溶解させてキャスト法で成膜してもよい。なお、この場合、高分子電解質膜はポリテトラフルオロエチレン(以下、PTFEという)多孔体やPTFE繊維(フィブリル)等で補強することも可能である。
【0030】
本発明の固体高分子型燃料電池用電解質材料を固体高分子型燃料電池を構成する電極の触媒層に含有される樹脂として使用する場合には、上記の酸型化処理を施してスルホン酸基に変換した後の共重合体を有機溶媒や有機溶媒と水の混合溶媒に溶解又は分散させた液状組成物として使用することができる。
【0031】
有機溶媒は特に限定されないが、この酸型化した後の共重合体は−OH基を有する有機溶媒に溶解又は良好に分散できるため、−OH基を有する有機溶媒を使用することが好ましく、アルコール性の−OH基を有する有機溶媒がより好ましい。具体的には、例えば、メタノール、エタノール、1−プロパノール、2,2,2−トリフルオロエタノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、2,2,3,3−テトラフルオロ−1−プロパノール、4,4,5,5,5−ペンタフルオロ−1−ペンタノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、3,3,3−トリフルオロ−1−プロパノール、3,3,4,4,5,5,6,6,6−ノナフルオロ−1−ヘキサノール、3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロ−1−オクタノール等が挙げられる。また、−OH基を有する有機溶媒としては、上記のアルコール以外に酢酸等のカルボキシル基を有する有機溶媒も使用することができる。
【0032】
上記のような−OH基を有する有機溶媒を含む溶媒に酸型化した後の共重合体を溶解又は分散させて得られる液状組成物を使用して固体高分子形燃料電池のアノード及び/又はカソードの触媒層を作製することができる。例えば、この液状組成物を使用してガス拡散性に優れるカソードが得られる。この液状組成物中の共重合体の濃度は、液状組成物全質量の1〜50%であることが好ましく、3〜30%であることがより好ましい。この濃度が1%未満であると電極作製時に多量の有機溶媒が必要となる。また、この濃度が50%を超えると液状組成物の粘度が高くなりすぎて取扱性が悪くなる傾向がある。
【0033】
本発明の固体高分子型燃料電池は、上記の共重合体を含む液状組成物に、白金触媒微粒子を担持させた導電性のカーボンブラック粉末を混合して分散させ、得られた均一の分散液を用いて、例えば、以下の2つのいずれかの方法で作製することができる。第1の方法は、高分子電解質膜の両面に上記の分散液を塗布乾燥後、ガス拡散層となるカーボンクロス又はカーボンペーパーで密着する方法である。第2の方法は上記の分散液をガス拡散層となるカーボンクロス上又はカーボンペーパー上に塗布乾燥後、高分子電解質膜の一方の面にアノードを、他方の面にカソードをそれぞれ密着させる方法である。このようにして、高分子電解質膜の一方の面にアノード、他方の面にカソードがそれぞれ隣接して配置されたいわゆる膜−電極接合体が得られる。そして、得られた膜−電極接合体は、例えば燃料ガス又は酸素を含む酸化剤ガス(空気、酸素等)の通路となる溝が形成されたセパレータの間に挟まれ、セルに組み込まれることにより本発明の固体高分子型燃料電池が得られる。
【0034】
また、本発明の固体高分子電解質型燃料電池の電極に含有される樹脂(以下、電極樹脂という)は、本発明の固体高分子電解質材料のみからなってもよいが、本発明の固体高分子電解質材料と前述した従来公知の電解質材料との混合物としてもよく、従来公知の電解質材料のみとしてもよい。
【0035】
更に、本発明の固体高分子型燃料電池において、カソード及び/又はアノード(以下、特に区別する必要がない限り単に電極という)に含まれる触媒と電極樹脂とは、質量比で触媒:電極樹脂=20:80〜95:5であることが、電極の導電性と水の排出性の観点から好ましい。なお、ここでいう触媒の質量は、カーボン等の担体に担持された担持触媒の場合には該担体の質量も含む。
【0036】
【実施例】
以下、実施例及び比較例を挙げて本発明の固体高分子型燃料電池用電解質材料及び固体高分子型燃料電池ついて更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
【0037】
(実施例1)
重合開始剤としてパーフルオロ過酸化ベンゾイルを用い、80℃にて式(1)で表されるモノマーとテトラフルオロエチレンとを共重合させてARが0.95meq./gの共重合体を得た。この共重合体を熱プレスすることにより厚さ50μmのフィルムを作製した。次に、フィルムをKOH/ジメチルスルホキシド/水=15:30:55(質量比)の溶液に浸漬し、90℃で加水分解処理を施した。次に、加水分解処理後のフィルムを1mol/Lの塩酸を用いて酸型化処理し、その後、水洗、乾燥させた。
【0038】
次に、下記式(4)で表されるモノマーに基づく繰り返し単位とテトラフルオロエチレンに基づく繰り返し単位とからなる共重合体(AR=1.1meq./g)のエタノール溶液を用いて、該共重合体と白金担持カーボン(白金担持量=40質量%)との質量比が3:7となるように白金担持カーボンを上記溶液に混合して塗工液とし、該塗工液をガス拡散層となるカーボンクロス上に塗工し、白金担持量0.4mg/cm2の触媒層をガス拡散層上に形成したガス拡散電極を得た。
【化7】
Figure 0004848587
【0039】
次に、先に述べたフィルムを固体高分子電解質膜として上記ガス拡散電極2枚の間に挟み、平板プレス機を用いてプレスし、さらに加熱プレスして膜−電極接合体を作製した。この膜−電極接合体の外側にガスの流路が形成されたチタン製のセパレータ、さらにその外側にPTFE製のガス供給室、さらにその外側にヒーターを配置し、有効膜面積10cm2の固体高分子型燃料電池を組み立てた。
【0040】
固体高分子型燃料電池の温度を80℃に保ち、カソードに酸素、アノードに水素をそれぞれ80℃で加湿しつつ大気圧で供給し発電させた。そして、出力電流密度が0.3A/cm2のときの端子間電圧を測定したところ、0.67Vであった。また、出力電流密度が0.8A/cm2のときの端子間電圧を測定したところ、0.54Vであった。
【0041】
(比較例1)
固体高分子電解質膜として膜厚が約50μmのナフィオン112(AR=0.91meq./g)を用いた以外は、実施例1と同様の構成を有する固体高分子型燃料電池を作製した。この固体高分子型燃料電池を実施例1と同様の条件のもとで発電させた。そして、出力電流密度が0.3A/cm2のときと、0.8A/cm2のときの端子間電圧を測定したところ、それぞれ0.66V、0.51Vであった。
【0042】
上記の実施例1及び比較例1の固体高分子型燃料電池の出力特性の結果より、実施例1の固体高分子型燃料電池は比較例1の固体高分子型燃料電池と同等の性能が得られることが確認された。
【0043】
【発明の効果】
以上説明したように、本発明によれば、従来公知の電解質材料と同等のイオン伝導性及び耐久性を有し、従来よりも短い工程で安価に製造できる固体高分子型燃料電池用電解質材料と、それを用いて構成された固体高分子型燃料電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolyte material for a polymer electrolyte fuel cell, a method for producing the same, and a polymer electrolyte fuel cell.
[0002]
[Prior art]
Conventionally, an electrolyte material used as a proton conductive polymer and / or a polymer electrolyte membrane contained in a catalyst layer of an electrode constituting a solid polymer fuel cell is represented by tetrafluoroethylene and the following formula (A). Polymers in which —SO 2 F groups are converted to —SO 3 H groups by hydrolyzing a copolymer with perfluorovinyl ether and then acidifying treatment are used. However, in the following formula (A), Y represents a fluorine atom or a trifluoromethyl group, m represents an integer of 0 to 3, n represents an integer of 1 to 12, p represents 0 or 1, and (m + p)> 0. It is.
[Chemical 2]
Figure 0004848587
[0003]
Among the above polymers, those obtained by acidifying a polymer obtained by copolymerization of tetrafluoroethylene and monomers represented by the following formulas (B) to (D) are preferably used. In the following formulas (B) to (D), q represents an integer of 1 to 8, r represents an integer of 1 to 8, and s represents 2 or 3.
[Chemical 3]
Figure 0004848587
[0004]
[Problems to be solved by the invention]
However, the above conventional copolymer was excellent in characteristics such as ion conductivity that can achieve high battery output and durability that enables operation over a long period of time, but the problem is that the manufacturing cost is high and cannot be manufactured inexpensively. was there.
[0005]
A major factor that increases the production cost of the conventional copolymer is that a vinyl ether monomer containing a —SO 2 F group synthesized using high-cost hexafluoropropylene oxide as an intermediate and tetrafluoroethylene It is mentioned that it is produced by copolymerization.
[0006]
In contrast, US Pat. No. 4,273,729 discloses a copolymer of a monomer represented by the following formula (2) and tetrafluoroethylene synthesized without using hexafluoropropylene oxide. .
[Formula 4]
Figure 0004848587
[0007]
However, after a -SO 3 H group by acid form -SO 2 F groups of the copolymer, a polymer electrolyte fuel cell using as the constituent material of the electrode and the polymer electrolyte membrane sufficient cell output Could not get.
[0008]
The present invention has been made in view of the above-described problems of the prior art, and is an easily synthesized synthetic polymer electrolyte fuel cell electrolyte material having ion conductivity and durability equivalent to those of the above-described conventional electrolyte materials. An object of the present invention is to provide a polymer electrolyte fuel cell constructed using the same.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that the copolymer described in US Pat. No. 4,273,729 has an ion exchange capacity of 0.85 [ It was found that the lack of sufficient ionic conductivity is a factor that a high battery output cannot be obtained.
[0010]
And the present inventors are a copolymer containing a repeating unit based on a monomer represented by the inexpensive formula (1) synthesized without using hexafluoropropylene oxide as a raw material and a repeating unit based on tetrafluoroethylene. Even so, the inventors have found that a compound synthesized by adjusting its ion exchange capacity within a predetermined range has sufficient ion conductivity and durability, and has reached the present invention.
[0011]
That is, in the present invention, a monomer represented by the following formula (2) and tetrafluoroethylene are copolymerized at 80 to 350 ° C. to obtain a copolymer, the copolymer is hydrolyzed, and then acid type Process for producing a polymer electrolyte fuel cell electrolyte material, a polymer electrolyte fuel cell electrolyte material obtained by the production method , and the polymer electrolyte fuel cell electrolyte Provided is a solid polymer fuel cell having a configuration in which a polymer electrolyte membrane made of a material and having a thickness of 5 to 70 μm is disposed between an anode and a cathode.
[Chemical formula 5]
Figure 0004848587
[0012]
Since the electrolyte material for a polymer electrolyte fuel cell of the present invention can be synthesized without using hexafluoropropylene oxide as a raw material, the manufacturing cost is greatly reduced as compared with the above-described conventional electrolyte material. It is possible. Further, a polymer electrolyte fuel cell electrolyte material of the present invention, the ion exchange capacity (hereinafter, referred to as A R) is 0.9 to 1.5 [meq / g dry resin (hereinafter meq. / G Therefore, it has excellent ion conductivity and durability equivalent to the conventional electrolyte material.
[0013]
Here, if A R is less than 0.9, there is a possibility that the ion conductivity becomes insufficient. On the other hand, when A R exceeds 1.5, it is difficult to synthesize. From the same viewpoint as above, A R of the solid polymer fuel cell electrolyte material of the present invention, 1.0~1.3Meq. / G is preferable.
[0014]
In addition, since the polymer electrolyte fuel cell of the present invention includes at least a polymer electrolyte membrane made of the above electrolyte material for a polymer electrolyte fuel cell, it is equivalent to the above-described conventional polymer electrolyte fuel cell. It has output characteristics and battery life, and the monomer production process can be shortened. That is, for example, a conventionally used compound represented by the formula (D) is synthesized from FSO 2 CF 2 COF through two steps of hexafluoropropylene oxide addition and thermal decomposition. Can be synthesized from FSO 2 CF 2 COF in a one-step reaction as shown in Scheme A below. In the polymer electrolyte fuel cell of the present invention, the above-mentioned electrolyte material for a polymer electrolyte fuel cell of the present invention may also be contained in the catalyst layer of the anode and / or the cathode.
[0015]
Here, when the thickness of the polymer electrolyte membrane used in the solid polymer fuel cell of the present invention is less than 5 μm, the strength of the membrane becomes insufficient. On the other hand, if the film thickness exceeds 70 μm, the electrolyte resistance increases and sufficient battery output cannot be obtained. From the same viewpoint as described above, the thickness of the polymer electrolyte membrane used in the solid polymer fuel cell of the present invention is preferably 10 to 50 μm.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the electrolyte material for a polymer electrolyte fuel cell and the polymer electrolyte fuel cell of the present invention will be described in more detail.
[0017]
The electrolyte material for a polymer electrolyte fuel cell of the present invention is obtained by copolymerizing the monomer represented by the formula (2) and tetrafluoroethylene, hydrolyzing the obtained copolymer, and contacting with an acid. Can be obtained.
[0018]
The polymer electrolyte fuel cell of the present invention has an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode. The solid polymer fuel cell of the present invention is composed of the polymer electrolyte membrane for the solid polymer fuel cell of the present invention and having a polymer electrolyte membrane having a film thickness of 5 to 70 μm. Is not particularly limited. For example, you may have the structure similar to a conventionally known polymer electrolyte fuel cell. As described above, the catalyst layer for the anode and / or cathode may contain the electrolyte material for a polymer electrolyte fuel cell of the present invention instead of the conventional perfluorosulfonic acid polymer. Also, the method for producing the solid polymer fuel cell of the present invention is not particularly limited, and the method for producing a polymer electrolyte membrane comprising the electrolyte material for a solid polymer fuel cell of the present invention, an electrode and a polymer electrolyte membrane, Also, the method for producing a fuel cell from the above is not particularly limited, and a conventionally known method can be employed.
[0019]
The monomer represented by the formula (2) used in the present invention can be produced by, for example, a known synthetic reaction shown in the following scheme A by US Pat. No. 4,273,729.
[Chemical 6]
Figure 0004848587
[0020]
In addition, the polymerization reaction between the monomer represented by the formula (2) and tetrafluoroethylene is performed, for example, by a bulk polymerization method, a solution polymerization method, or a suspension polymerization method under conditions where radicals are generated. Examples of the method for generating radicals include a method of irradiating radiation such as ultraviolet rays, γ rays, and electron beams, a method of adding a radical initiator generally used in radical polymerization reactions, and the like.
[0021]
Furthermore, in this invention, it is preferable that the reaction temperature of polymerization reaction of said monomer is 50-350 degreeC. When the reaction temperature of the polymerization reaction is less than 50 ° C., the pressure in the reaction system such as the reaction vessel becomes insufficient, and it tends to be difficult to control the progress of the polymerization reaction with the pressure. As a result, A R is 0.9 meq. It becomes difficult to obtain a copolymer of at least / g with good reproducibility. In this case, the polymerization reactivity of the monomer represented by the formula (2) is too small, and the molecular weight and the yield tend to be small. On the other hand, when the reaction temperature of the polymerization reaction exceeds 350 ° C., the resulting copolymer has insufficient heat resistance.
[0022]
In the present invention, when the polymerization reaction of the above monomers is performed using a radical initiator, examples of the radical initiator include bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, and dialkyl peroxydicarbonates. , Diacyl peroxides, peroxyesters, azo compounds, persulfates, tertiary carbon-tertiary monocarbon, tertiary carbon-quaternary carbon or perfluorocarbon having a quaternary carbon-quaternary carbon bond And perfluorocarbon compounds containing an N—F bond. From the viewpoint of increasing the molecular weight of the copolymer to be produced, it is preferable to use a fluorine-containing initiator among the above radical initiators, and it is more preferable to use a perfluorocarbon compound-based initiator.
[0023]
Furthermore, in this invention, when performing the polymerization reaction of the said monomer by a solution polymerization method, the boiling point of the solvent to be used is 20-350 degreeC normally from a viewpoint of handleability, Preferably it is 40-150 degreeC. Moreover, although the solvent which can be used is not specifically limited, For example, the following are mentioned. 1) Polyfluorotrialkylamine compounds such as perfluorotributylamine and perfluorotripropylamine, 2) perfluorohexane, perfluorooctane, perfluorodecane, perfluorododecane, perfluoro (2,7-dimethyloctane) ) 2H, 3H-perfluoropentane, 1H-perfluorohexane, 1H-perfluorooctane, 1H-perfluorodecane, 1H, 4H-perfluorobutane, 1H, 1H, 1H, 2H, 2H-perfluorohexane, 1H, 1H, 1H, 2H, 2H-perfluorooctane, 1H, 1H, 1H, 2H, 2H-perfluorodecane, 3H, 4H-perfluoro (2-methylpentane), 2H, 3H-perfluoro (2- Fluoroalkanes such as methylpentane), ) 3,3-dichloro-1,1,1,2,2-pentafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1,1-dichloro-1-fluoro Chlorofluoroalkanes such as ethane, 4) Perfluorodecalin, perfluorocyclohexane, perfluoro (1,2-dimethylcyclohexane), perfluoro (1,3-dimethylcyclohexane), perfluoro (1,3,5-trimethylcyclohexane) ), Polyfluorocycloalkanes such as perfluorodimethylcyclobutane (regardless of structural isomerism), 5) polyfluorocyclic ether compounds such as perfluoro (2-butyltetrahydrofuran), 6) n-C 3 F 7 OCH 3 , n -C 3 F 7 OCH 2 CF 3 , n-C 3 F 7 OCHFCF 3, n-C 3 F 7 OC 2 5, n-C 4 F 9 OCH 3, iso-C 4 F 9 OCH 3, n-C 4 F 9 OC 2 H 5, iso-C 4 F 9 OC 2 H 5, n-C 4 F 9 OCH 2 CF 3 , n-C 5 F 11 OCH 3 , n-C 6 F 13 OCH 3 , n-C 5 F 11 OC 2 H 5 , CF 3 OCF (CF 3 ) CF 2 OCH 3 , CF 3 OCHFCH 2 OCH 3 , CF 3 OCHFCH 2 OC 2 H 5, n-C 3 F 7 OCF 2 CF (CF 3) OCHFCF hydrofluoroether such as 3, 7) a fluorine-containing low molecular weight polyether and the like. In addition, said solvent may be used independently and may mix and use 2 or more types.
[0024]
In addition to the above solvents, 1,1,2-trichloro-1,2,2-trifluoroethane, 1,1,1-trichloro-2,2,2-trifluoroethane, 1,1,1, Also chlorofluorocarbons such as 3-tetrachloro-2,2,3,3-tetrafluoropropane and 1,1,3,4-tetrachloro-1,2,2,3,4,4-hexafluorobutane However, it is not preferable from the viewpoint of protecting the global environment. Furthermore, in the present invention, the polymerization reaction can also be carried out using liquid or supercritical carbon dioxide.
[0025]
The copolymer of the monomer represented by the formula (2) and tetrafluoroethylene may contain a repeating unit based on another fluorine-containing monomer as a minor component. Examples of such other perfluoromonomer as a small component include, for example, vinylidene fluoride, trifluoroethylene, vinyl fluoride, ethylene, chlorotrifluoroethylene, perfluoro (3-butenyl vinyl ether), and perfluoro (allyl). Ether), perfluoro (2,2-dimethyl-1,3-dioxole), perfluoro (1,3-dioxole), 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole, Perfluoro (2-methylene-4-methyl-1,3-dioxolane), 1,1 ′-[(difluoromethylene) bis (oxy)] bis [1,2,2-trifluoroethylene], hexafluoropropylene, Examples include perfluorovinyl ether compounds represented by the following formula (3). In the following formula (3), R f is a perfluoroalkyl group having 1 to 8 carbon atoms, may have a branched structure, and may contain an etheric oxygen atom.
CF 2 = CFOR f (3)
[0026]
Among the copolymers thus obtained, a polymer having a perfluoro structure is particularly preferable from the viewpoint of durability of the fuel cell.
[0027]
Vinylidene fluoride listed above, the copolymerization reaction of a monomer represented by the formula (2), it is known that higher copolymer of A R can be easily obtained. And the copolymer used as the electrolyte material for polymer electrolyte fuel cells of this invention is compoundable also by fluorinating this copolymer using a fluorine gas. In this case, the fluorination reaction is preferably performed in a fluorine-containing solvent using a fluorine gas diluted with an inert gas. The resulting polymer is preferably a perfluoropolymer.
[0028]
The copolymer synthesized as described above is formed into a powder state, or formed into a film by melt extrusion, heating press, or the like, hydrolyzed, and then acidified. In the hydrolysis treatment, for example, —SO 2 in the synthesized copolymer in an aqueous solution of a base such as NaOH or KOH or a mixed solution of an alcohol such as methanol or ethanol or a polar solvent such as dimethyl sulfoxide and water. The F group is hydrolyzed and converted to a —SO 3 Na group, —SO 3 K group or the like. In the subsequent acidification treatment, metal ions such as —SO 3 Na groups and —SO 3 K groups in the copolymer are replaced with protons in an aqueous solution of an acid such as hydrochloric acid, nitric acid, and sulfuric acid. It is converted into an acid form and converted into a sulfonic acid group (—SO 3 H group). Moreover, a hydrolysis process and an acidification process are normally performed at the temperature of 0 to 120 degreeC.
[0029]
Here, when the electrolyte material for a polymer electrolyte fuel cell according to the present invention is used as a constituent material of a polymer electrolyte membrane constituting a polymer electrolyte fuel cell, the copolymer synthesized by the polymerization reaction as described above is used. After the coalescence is formed into a film, it may be subjected to hydrolysis treatment and acidification treatment. However, after the hydrolysis treatment and acidification treatment are carried out in the state of powder, it is dissolved in a solvent and formed into a film by a casting method. May be. In this case, the polymer electrolyte membrane can be reinforced with polytetrafluoroethylene (hereinafter referred to as PTFE) porous material, PTFE fiber (fibril), or the like.
[0030]
When the electrolyte material for a polymer electrolyte fuel cell according to the present invention is used as a resin contained in the catalyst layer of the electrode constituting the polymer electrolyte fuel cell, the above-mentioned acidification treatment is applied to the sulfonic acid group. The copolymer after conversion into can be used as a liquid composition in which the copolymer is dissolved or dispersed in an organic solvent or a mixed solvent of an organic solvent and water.
[0031]
The organic solvent is not particularly limited, but since the copolymer after acidification can be dissolved or satisfactorily dispersed in the organic solvent having —OH group, it is preferable to use an organic solvent having —OH group. An organic solvent having a functional -OH group is more preferred. Specifically, for example, methanol, ethanol, 1-propanol, 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoro-1-propanol, 2,2,3,3- Tetrafluoro-1-propanol, 4,4,5,5,5-pentafluoro-1-pentanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 3,3,3- Trifluoro-1-propanol, 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexanol, 3,3,4,4,5,5,6,6,7,7 , 8, 8, 8-tridecafluoro-1-octanol and the like. Moreover, as an organic solvent which has -OH group, the organic solvent which has carboxyl groups, such as an acetic acid other than said alcohol, can also be used.
[0032]
An anode of a polymer electrolyte fuel cell and / or a liquid composition obtained by dissolving or dispersing a copolymer after acidification in a solvent containing an organic solvent having an —OH group as described above A catalyst layer for the cathode can be produced. For example, a cathode having excellent gas diffusibility can be obtained using this liquid composition. The concentration of the copolymer in the liquid composition is preferably 1 to 50%, more preferably 3 to 30% of the total mass of the liquid composition. If this concentration is less than 1%, a large amount of an organic solvent is required at the time of electrode preparation. On the other hand, if this concentration exceeds 50%, the viscosity of the liquid composition tends to be too high and the handleability tends to deteriorate.
[0033]
The solid polymer fuel cell of the present invention is obtained by mixing and dispersing a conductive carbon black powder carrying platinum catalyst fine particles in a liquid composition containing the above copolymer, and obtaining a uniform dispersion obtained For example, it can be produced by one of the following two methods. The first method is a method in which the above dispersion liquid is applied and dried on both surfaces of the polymer electrolyte membrane, and then adhered with a carbon cloth or carbon paper that becomes a gas diffusion layer. The second method is a method in which the above dispersion is applied and dried on a carbon cloth or carbon paper serving as a gas diffusion layer, and then an anode is adhered to one surface of the polymer electrolyte membrane and a cathode is adhered to the other surface. is there. In this way, a so-called membrane-electrode assembly is obtained in which the anode is disposed on one surface of the polymer electrolyte membrane and the cathode is disposed adjacent to the other surface. The obtained membrane-electrode assembly is sandwiched between separators in which grooves serving as passages for, for example, an oxidant gas (air, oxygen, etc.) containing fuel gas or oxygen are inserted into a cell. The polymer electrolyte fuel cell of the present invention is obtained.
[0034]
Further, the resin (hereinafter referred to as electrode resin) contained in the electrode of the solid polymer electrolyte fuel cell of the present invention may consist only of the solid polymer electrolyte material of the present invention. A mixture of the electrolyte material and the above-described conventionally known electrolyte material may be used, or only a conventionally known electrolyte material may be used.
[0035]
Furthermore, in the polymer electrolyte fuel cell of the present invention, the catalyst and electrode resin contained in the cathode and / or anode (hereinafter simply referred to as an electrode unless otherwise distinguished) are catalyst: electrode resin = A ratio of 20:80 to 95: 5 is preferable from the viewpoint of electrode conductivity and water dischargeability. In addition, the mass of the catalyst here includes the mass of the carrier in the case of a supported catalyst supported on a carrier such as carbon.
[0036]
【Example】
Hereinafter, the electrolyte material for a polymer electrolyte fuel cell and the polymer electrolyte fuel cell of the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. .
[0037]
Example 1
Using perfluoro benzoyl peroxide as a polymerization initiator, is copolymerized with a monomer and tetrafluoroethylene represented by the formula (1) at 80 ° C. and A R is 0.95Meq. / G copolymer was obtained. A film having a thickness of 50 μm was produced by hot pressing the copolymer. Next, the film was immersed in a solution of KOH / dimethyl sulfoxide / water = 15: 30: 55 (mass ratio), and hydrolyzed at 90 ° C. Next, the hydrolyzed film was acidified with 1 mol / L hydrochloric acid, then washed with water and dried.
[0038]
Next, using an ethanol solution of a copolymer (A R = 1.1 meq./g) composed of a repeating unit based on a monomer represented by the following formula (4) and a repeating unit based on tetrafluoroethylene, The platinum-supporting carbon is mixed with the above solution so that the mass ratio of the copolymer to the platinum-supporting carbon (platinum-supporting amount = 40% by mass) is 3: 7. Coating was performed on the carbon cloth to be a layer, and a gas diffusion electrode in which a catalyst layer having a platinum loading of 0.4 mg / cm 2 was formed on the gas diffusion layer was obtained.
[Chemical 7]
Figure 0004848587
[0039]
Next, the above-mentioned film was sandwiched between the two gas diffusion electrodes as a solid polymer electrolyte membrane, pressed using a flat plate press, and further heated to produce a membrane-electrode assembly. A titanium separator having a gas flow path formed on the outside of the membrane-electrode assembly, a PTFE gas supply chamber on the outside, and a heater on the outside thereof, and a solid height of 10 cm 2 effective membrane area. A molecular fuel cell was assembled.
[0040]
The temperature of the polymer electrolyte fuel cell was kept at 80 ° C., and oxygen was supplied to the cathode and hydrogen was supplied to the anode at 80 ° C., respectively, to generate electricity. Then, when the output current density was measured voltage between the terminals when the 0.3 A / cm 2, was 0.67 V. Further, the voltage between the terminals when the output current density was 0.8 A / cm 2 was measured and found to be 0.54V.
[0041]
(Comparative Example 1)
A solid polymer fuel cell having the same configuration as in Example 1 was prepared except that Nafion 112 (A R = 0.91 meq./g) having a thickness of about 50 μm was used as the solid polymer electrolyte membrane. This polymer electrolyte fuel cell was generated under the same conditions as in Example 1. Then, the output current density in the case of 0.3 A / cm 2, was measured voltage between the terminals when the 0.8 A / cm 2, respectively 0.66 V, was 0.51 V.
[0042]
From the results of the output characteristics of the polymer electrolyte fuel cells of Example 1 and Comparative Example 1 above, the polymer electrolyte fuel cell of Example 1 has the same performance as the polymer electrolyte fuel cell of Comparative Example 1. It was confirmed that
[0043]
【The invention's effect】
As described above, according to the present invention, an electrolyte material for a polymer electrolyte fuel cell, which has ion conductivity and durability equivalent to those of conventionally known electrolyte materials and can be manufactured at a lower cost than in the past, In addition, a polymer electrolyte fuel cell configured using the same can be provided.

Claims (3)

下記式(2)で表されるモノマーとテトラフルオロエチレンとを80〜350℃で共重合させて共重合体を得、該共重合体を加水分解処理し、次いで酸型化処理することを特徴とする固体高分子型燃料電池用電解質材料の製造方法。A monomer represented by the following formula (2) and tetrafluoroethylene are copolymerized at 80 to 350 ° C. to obtain a copolymer, the copolymer is hydrolyzed, and then acidified. A method for producing an electrolyte material for a polymer electrolyte fuel cell.
Figure 0004848587
Figure 0004848587
請求項1に記載の製造方法で得られた、イオン交換容量が0.9〜1.5[ミリ当量/グラム乾燥樹脂]であることを特徴とする固体高分子型燃料電池用電解質材料。An electrolyte material for a polymer electrolyte fuel cell obtained by the production method according to claim 1, having an ion exchange capacity of 0.9 to 1.5 [milli equivalent / gram dry resin]. アノードと、カソードと、前記アノードと前記カソードとの間に配置された高分子電解質膜とを有する固体高分子型燃料電池であって、前記高分子電解質膜が、請求項に記載の固体高分子型燃料電池用電解質材料からなり、かつ、その膜厚が5〜70μmであることを特徴とする固体高分子型燃料電池。 3. A solid polymer fuel cell comprising an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode, wherein the polymer electrolyte membrane is a solid polymer fuel cell according to claim 2. A polymer electrolyte fuel cell comprising an electrolyte material for a molecular fuel cell and having a thickness of 5 to 70 μm.
JP2001018979A 2001-01-26 2001-01-26 ELECTROLYTE MATERIAL FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL Expired - Lifetime JP4848587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001018979A JP4848587B2 (en) 2001-01-26 2001-01-26 ELECTROLYTE MATERIAL FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001018979A JP4848587B2 (en) 2001-01-26 2001-01-26 ELECTROLYTE MATERIAL FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL

Publications (2)

Publication Number Publication Date
JP2002231268A JP2002231268A (en) 2002-08-16
JP4848587B2 true JP4848587B2 (en) 2011-12-28

Family

ID=18884930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001018979A Expired - Lifetime JP4848587B2 (en) 2001-01-26 2001-01-26 ELECTROLYTE MATERIAL FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL

Country Status (1)

Country Link
JP (1) JP4848587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116652A1 (en) 2018-12-07 2020-06-11 Agc株式会社 Production method of fluorine-containing polymer containing fluorosulfonyl group, production method of fluorine-containing polymer containing salt-type sulfonic acid group, and production method of fluorine-containing polymer containing acid-type sulfonic acid group

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004029011D1 (en) 2003-01-20 2010-10-21 Asahi Glass Co Ltd METHOD OF MANUFACTURING ELECTROLYTE MATERIAL FOR FESTPOLYMER FUEL CELLS AND MEMBRANE ELECTRODE ASSEMBLY FOR FESTPOLYMER FUEL CELLS
EP2916377B1 (en) * 2003-05-13 2016-07-20 Asahi Glass Company, Limited Process for the production of a membrane-electrode assembly
ATE484081T1 (en) 2004-06-22 2010-10-15 Asahi Glass Co Ltd ELECTROLYTE MEMBRANE FOR A SOLID POLYMER FUEL CELL, PRODUCTION METHOD THEREOF, AND MEMBRANE ELECTRODE ASSEMBLY FOR A SOLID POLYMER FUEL CELL
US7943249B2 (en) 2004-06-22 2011-05-17 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
JP4910269B2 (en) * 2004-07-16 2012-04-04 旭硝子株式会社 ELECTROLYTE MATERIAL FOR SOLID POLYMER TYPE FUEL CELL, METHOD FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER FUEL CELL
JP4810868B2 (en) * 2005-04-19 2011-11-09 旭硝子株式会社 ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL, AND METHOD FOR OPERATING THE SAME
JP5092348B2 (en) * 2005-10-26 2012-12-05 旭硝子株式会社 Method for producing perfluoropolymer, production apparatus, and method for producing electrolyte membrane for polymer electrolyte fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7712836L (en) * 1976-12-02 1978-06-03 Du Pont POLYFLUOROALLYLOXY COMPOUNDS
US4273729A (en) * 1979-03-14 1981-06-16 E. I. Du Pont De Nemours And Company Polyfluoroallyloxy compounds, their preparation and copolymers therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116652A1 (en) 2018-12-07 2020-06-11 Agc株式会社 Production method of fluorine-containing polymer containing fluorosulfonyl group, production method of fluorine-containing polymer containing salt-type sulfonic acid group, and production method of fluorine-containing polymer containing acid-type sulfonic acid group

Also Published As

Publication number Publication date
JP2002231268A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
US7557178B2 (en) Process for producing electrolyte material for polymer electrolyte fuel cells, and membrane-electrode assembly for polymer electrolyte fuel cells
US8227139B2 (en) Polymer electrolyte fuel cell, electrolyte material therefore and method for its production
US8097383B2 (en) Electrolyte material for polymer electrolyte fuel cells, electrolyte membrane and membrane/electrode assembly
JP4032738B2 (en) Solid polymer electrolyte material, liquid composition, solid polymer fuel cell, fluoropolymer and fluoropolymer
US6610789B2 (en) Block polymer, process for producing a polymer, and polymer electrolyte fuel cell
JP4774988B2 (en) Solid polymer electrolyte material, production method, and membrane electrode assembly for solid polymer fuel cell
JP5286797B2 (en) Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
US7488788B2 (en) Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
JP6172142B2 (en) Electrolyte material, liquid composition, and membrane electrode assembly for polymer electrolyte fuel cell
CN107108781B (en) Electrolyte material, liquid composition, and membrane electrode assembly for polymer electrolyte fuel cell
KR20090112632A (en) Polymer, solid polymer electrolyte membrane for solid polymer fuel cell, and membrane electrode assembly
JP4848587B2 (en) ELECTROLYTE MATERIAL FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL
US20070141427A1 (en) Electrolyte polymer for fuel cells, process for its production, electrolyte membrane and membrane/electrode assembly
JP5028711B2 (en) Polymer electrolyte fuel cell
JP4792640B2 (en) Block polymer, polymer production method, and liquid composition containing block polymer
JP2001176524A (en) Solid high molecular electrolytic fuel cell
JP4910269B2 (en) ELECTROLYTE MATERIAL FOR SOLID POLYMER TYPE FUEL CELL, METHOD FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER FUEL CELL
JP5082470B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050603

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R151 Written notification of patent or utility model registration

Ref document number: 4848587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term