JP4810868B2 - ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL, AND METHOD FOR OPERATING THE SAME - Google Patents

ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL, AND METHOD FOR OPERATING THE SAME Download PDF

Info

Publication number
JP4810868B2
JP4810868B2 JP2005121028A JP2005121028A JP4810868B2 JP 4810868 B2 JP4810868 B2 JP 4810868B2 JP 2005121028 A JP2005121028 A JP 2005121028A JP 2005121028 A JP2005121028 A JP 2005121028A JP 4810868 B2 JP4810868 B2 JP 4810868B2
Authority
JP
Japan
Prior art keywords
cerium
group
manganese
fuel cell
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005121028A
Other languages
Japanese (ja)
Other versions
JP2006302600A (en
Inventor
了 本村
淳 渡壁
順一 田柳
貢 斎藤
哲司 下平
栄治 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005121028A priority Critical patent/JP4810868B2/en
Publication of JP2006302600A publication Critical patent/JP2006302600A/en
Application granted granted Critical
Publication of JP4810868B2 publication Critical patent/JP4810868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、高温での運転が可能であり、初期の出力電圧が高く、長期に渡って高い出力電圧を得られる固体高分子型燃料電池用の電解質膜に関する。   The present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell that can be operated at a high temperature, has a high initial output voltage, and can obtain a high output voltage over a long period of time.

燃料電池は、原料となるガスの反応エネルギーを直接電気エネルギーに変換する電池であり、水素・酸素燃料電池は、その反応生成物が原理的に水のみであり地球環境への影響がほとんどない。なかでも電解質として固体高分子膜を使用する固体高分子型燃料電池は、高いイオン導電性を有する高分子電解質膜が開発され、常温でも作動でき高出力密度が得られるため、近年のエネルギー、地球環境問題への社会的要請の高まりとともに、電気自動車用等の移動車両や、小型コージェネレーションシステムの電源として大きな期待が寄せられている。   A fuel cell is a cell that directly converts the reaction energy of a gas that is a raw material into electric energy. In a hydrogen / oxygen fuel cell, the reaction product is only water in principle and has little influence on the global environment. In particular, solid polymer fuel cells that use solid polymer membranes as electrolytes have been developed with high ionic conductivity polymer electrolyte membranes that can operate at room temperature and have high output density. With increasing social demand for environmental problems, there is great expectation as a power source for mobile vehicles for electric vehicles and small cogeneration systems.

従来、固体高分子型燃料電池の電解質膜として、CF=CFOCFCF(CF)O(CFSOHに基づく繰り返し単位とテトラフルオロエチレンに基づく繰り返し単位からなるスルホン酸基を有する共重合体(以下、スルホン酸型共重合体Aという)が用いられている。 Conventionally, as an electrolyte membrane of a polymer electrolyte fuel cell, a sulfonic acid group composed of a repeating unit based on CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H and a repeating unit based on tetrafluoroethylene has been used. Copolymer (hereinafter referred to as sulfonic acid type copolymer A) is used.

上記スルホン酸型共重合体Aは、軟化温度が70〜80℃付近であるため、この共重合体を使用した燃料電池の運転温度は通常80℃以下である。しかし、メタノール、天然ガス、ガソリン等を改質して得られる水素を燃料電池の燃料ガスとして使用する場合、一酸化炭素が微量でも含まれると電極触媒が被毒して燃料電池の出力が低下しやすくなる。したがって、これを防止するため運転温度を高めることが要望されている。また、燃料電池の冷却装置を小型化するためにも運転温度を高めることが要望されており、好ましくは120℃以上で運転できる膜が望まれている。しかし、従来の上記スルホン酸型共重合体Aは軟化温度が低いためこれらの要望に対応できなかった。   Since the sulfonic acid type copolymer A has a softening temperature of around 70 to 80 ° C, the operating temperature of a fuel cell using this copolymer is usually 80 ° C or lower. However, when hydrogen obtained by reforming methanol, natural gas, gasoline, etc. is used as the fuel gas for a fuel cell, the electrode catalyst is poisoned and the output of the fuel cell decreases if even a small amount of carbon monoxide is contained. It becomes easy to do. Therefore, it is desired to increase the operating temperature to prevent this. Further, in order to reduce the size of the fuel cell cooling device, it is desired to increase the operating temperature, and a membrane that can be operated at 120 ° C. or higher is desired. However, since the conventional sulfonic acid type copolymer A has a low softening temperature, it cannot meet these demands.

そこで、以下のような軟化温度が高い共重合体が開発されている。例えば、テトラフルオロエチレンに基づく繰り返し単位とCF=CFOCFCFSOHに基づく繰り返し単位とを含む共重合体(特許文献1参照)、テトラフルオロエチレンに基づく繰り返し単位とCF=CFCFOCFCFSOHに基づく繰り返し単位とを含む共重合体(特許文献2参照)、主鎖に脂肪族環構造を含む繰り返し単位を有するポリマーを与えるモノマーに基づく繰り返し単位とCF=CFOCFCF(CF)O(CFSOHに基づく繰り返し単位を有する共重合体(特許文献3参照)である。これらの共重合体を電解質膜として用いる燃料電池は80℃以上の高温においても運転することが可能である。 Therefore, a copolymer having a high softening temperature as described below has been developed. For example, a copolymer containing a repeating unit based on tetrafluoroethylene and a repeating unit based on CF 2 = CFOCF 2 CF 2 SO 3 H (see Patent Document 1), a repeating unit based on tetrafluoroethylene and CF 2 = CFCF 2 A copolymer containing a repeating unit based on OCF 2 CF 2 SO 3 H (see Patent Document 2), a repeating unit based on a monomer that gives a polymer having a repeating unit containing an aliphatic ring structure in the main chain, and CF 2 = CFOCF It is a copolymer having a repeating unit based on 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H (see Patent Document 3). A fuel cell using these copolymers as an electrolyte membrane can be operated even at a high temperature of 80 ° C. or higher.

一方、固体高分子型燃料電池のカソードにおける酸素の還元反応は過酸化水素(H)を経由して反応が進行することから、触媒層中で生成する過酸化水素又は過酸化物ラジカルによって、電解質膜の劣化を引き起こす可能性が懸念されている。また、アノードには、カソードから酸素分子が膜内を透過してくるため、同様に過酸化水素又は過酸化物ラジカルを生成することも懸念される。特に炭化水素系膜を固体高分子電解質膜とする場合は、ラジカルに対する安定性に乏しく、長期間にわたる運転においては大きな問題となっていた。 On the other hand, since the oxygen reduction reaction at the cathode of the polymer electrolyte fuel cell proceeds via hydrogen peroxide (H 2 O 2 ), hydrogen peroxide or peroxide radicals generated in the catalyst layer Therefore, there is a concern that the electrolyte membrane may be deteriorated. Moreover, since oxygen molecules permeate through the membrane from the cathode to the anode, there is a concern that hydrogen peroxide or peroxide radicals may be similarly generated. In particular, when a hydrocarbon-based membrane is used as a solid polymer electrolyte membrane, the stability against radicals is poor, which has been a serious problem in long-term operation.

パーフルオロカーボン重合体であるスルホン酸型共重合体Aからなるイオン交換膜を用いた燃料電池においても、高加湿下での運転では安定性が非常に高いものの、低加湿又は無加湿での運転条件においては、電圧低下が大きいことが報告されている(非特許文献1参照)。すなわち、低加湿又は無加湿での運転条件においては、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜においても過酸化水素又は過酸化物ラジカルにより電解質膜の劣化が進行するものと考えられる。   Even in a fuel cell using an ion exchange membrane made of a sulfonic acid type copolymer A, which is a perfluorocarbon polymer, is very stable when operated under high humidification, but operating conditions under low or no humidification. Is reported to have a large voltage drop (see Non-Patent Document 1). That is, under operating conditions with low or no humidification, it is considered that deterioration of the electrolyte membrane proceeds due to hydrogen peroxide or peroxide radicals even in an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group. .

特開昭63−297406号公報(第8頁、実施例1)JP 63-297406 A (page 8, Example 1) 特開2002−231268号公報(請求項1)JP 2002-231268 A (Claim 1) 特開2002−260705号公報(第18頁、合成例8)JP 2002-260705 A (page 18, synthesis example 8) 新エネルギー・産業技術総合開発機構主催 平成12年度固体高分子型燃料電池研究開発成果報告会要旨集、56頁16〜24行Summary of the 2000 Annual Report on Solid Polymer Fuel Cell Research and Development Results Sponsored by New Energy and Industrial Technology Development Organization, p. 56, lines 16-24

そこで本発明は、車載用、住宅用市場等への固体高分子形燃料電池を実用化において、高温の運転温度においても十分に高いエネルギー効率での発電が可能であり、供給ガスの加湿温度(露点)がセル温度よりも低い低加湿又は無加湿での運転、セル温度に近い温度で加湿する高加湿での運転のどちらにおいても、高い発電性能を有し、かつ長期間にわたって安定した発電が可能な固体高分子形燃料電池用膜を提供することを目的とする。   In view of this, the present invention is able to generate power with sufficiently high energy efficiency even at high operating temperatures in the practical application of polymer electrolyte fuel cells for in-vehicle and residential markets. In both low and non-humidity operation where the dew point is lower than the cell temperature and high humidification operation that humidifies at a temperature close to the cell temperature, it has high power generation performance and stable power generation over a long period of time. An object of the present invention is to provide a membrane for a solid polymer fuel cell.

本発明者らは、酸性基を有する含フッ素重合体からなるイオン交換膜を用いた燃料電池において、高温の運転温度下の使用に耐えられ、低加湿又は無加湿での運転条件における膜の劣化を防止することを目的に鋭意検討し、軟化温度の高い重合体からなる膜中にセリウム原子又はマンガン原子を含有させることにより電解質膜の劣化を格段に抑制できることを見出し、本発明に至った。   In the fuel cell using an ion exchange membrane made of a fluorine-containing polymer having an acidic group, the present inventors can withstand use under a high operating temperature and degrade the membrane under operating conditions with low or no humidification. As a result, the inventors of the present invention have intensively studied for the purpose of preventing the above-described problems, and found that the deterioration of the electrolyte membrane can be remarkably suppressed by containing a cerium atom or a manganese atom in the polymer film having a high softening temperature.

本発明は、軟化温度が90℃以上でありスルホン酸基を有する含フッ素重合体からなるイオン交換膜からなり、セリウム原子及びマンガン原子からなる群から選ばれる1種以上をイオンとして含み、セリウムイオンを、前記イオン交換膜に含まれる−SO 基の0.3〜20モル%含むことを特徴とする固体高分子型燃料電池用電解質膜を提供する。
また、本発明は、軟化温度が90℃以上でありスルホン酸基を有する含フッ素重合体からなるイオン交換膜からなり、セリウム原子及びマンガン原子からなる群から選ばれる1種以上をイオンとして含み、マンガンイオンを、前記イオン交換膜に含まれる−SO 基の0.5〜30モル%含むことを特徴とする固体高分子型燃料電池用電解質膜を提供する。
The present invention includes softening temperature is an ion exchange membrane made of a fluoropolymer having and sulfonic acid groups at 90 ° C. or higher, at least one member selected from the group consisting of cerium atoms and manganese atoms as ions, cerium ions Is contained in an amount of 0.3 to 20 mol% of —SO 3 group contained in the ion exchange membrane .
Further, the present invention comprises an ion exchange membrane comprising a fluorine-containing polymer having a softening temperature of 90 ° C. or higher and having a sulfonic acid group, and includes one or more selected from the group consisting of cerium atoms and manganese atoms as ions, Provided is an electrolyte membrane for a polymer electrolyte fuel cell comprising manganese ions in an amount of 0.5 to 30 mol% of —SO 3 groups contained in the ion exchange membrane .

また、本発明は、上述の電解質膜を得る方法であって、スルホン酸基を有する含フッ素重合体の分散液中に、当該分散液に溶解可能な下記のセリウム化合物及びマンガン化合物からなる群から選択される1種以上を混合した後、得られた液を用いてキャスト製膜し、電解質膜を作製することを特徴とする固体高分子形燃料電池用電解質膜の製造方法を提供する。
(セリウム化合物)
炭酸セリウム(Ce (CO ・8H O)、酢酸セリウム(Ce(CH COO) ・H O)、塩化セリウム(CeCl ・6H O)、硝酸セリウム(Ce(NO ・6H O)、硫酸セリウム(Ce (SO ・8H O)、硫酸セリウム(Ce(SO ・4H O)、硝酸二アンモニウムセリウム(Ce(NH (NO )、硫酸四アンモニウムセリウム(Ce(NH (SO )・4H O)、及びセリウムアセチルアセトナート(Ce(CH COCHCOCH ・3H O)。
(マンガン化合物)
炭酸マンガン、酢酸マンガン(Mn(CH COO) ・4H O)、塩化マンガン(MnCl ・4H O)、硝酸マンガン(Mn(NO ・6H O)、硫酸マンガン(MnSO ・5H O)、酢酸マンガン(Mn(CH COO) ・2H O)、及びマンガンアセチルアセトナート(Mn(CH COCHCOCH )。
Further, the present invention provides a method of obtaining an electrolyte membrane described above, the dispersion of the fluoropolymer having sulfonic acid groups, from the group consisting of cerium following compounds soluble in the dispersion and manganese compounds Provided is a method for producing an electrolyte membrane for a polymer electrolyte fuel cell, wherein one or more selected types are mixed, and then the obtained liquid is cast to form an electrolyte membrane.
(Cerium compound)
Cerium carbonate (Ce 2 (CO 3 ) 3 · 8H 2 O), cerium acetate (Ce (CH 3 COO) 3 · H 2 O), cerium chloride (CeCl 3 · 6H 2 O), cerium nitrate (Ce (NO 3) ) 3 · 6H 2 O), cerium sulfate (Ce 2 (SO 4) 3 · 8H 2 O), cerium sulfate (Ce (SO 4) 2 · 4H 2 O), diammonium cerium nitrate (Ce (NH 4) 2 (NO 3 ) 6 ), tetraammonium cerium sulfate (Ce (NH 4 ) 4 (SO 4 ) 4 ) · 4H 2 O), and cerium acetylacetonate (Ce (CH 3 COCHCOCH 3 ) 3 · 3H 2 O).
(Manganese compounds)
Manganese carbonate, manganese acetate (Mn (CH 3 COO) 2 .4H 2 O), manganese chloride (MnCl 2 .4H 2 O), manganese nitrate (Mn (NO 3 ) 2 .6H 2 O), manganese sulfate (MnSO 4 · 5H 2 O), manganese acetate (Mn (CH 3 COO) 3 · 2H 2 O), and manganese acetylacetonate (Mn (CH 3 COCHCOCH 3) 2).

また、本発明は、触媒を含む触媒層を有するアノード及びカソードと、前記アノードと前記カソードとの間に配置される電解質膜とを備える固体高分子型燃料電池用膜電極接合体であって、前記電解質膜が上述の電解質膜からなることを特徴とする固体高分子型燃料電池用膜電極接合体を提供する。   Further, the present invention is a membrane electrode assembly for a polymer electrolyte fuel cell comprising an anode and a cathode having a catalyst layer containing a catalyst, and an electrolyte membrane disposed between the anode and the cathode, Provided is a membrane / electrode assembly for a polymer electrolyte fuel cell, wherein the electrolyte membrane comprises the above-described electrolyte membrane.

また、本発明は、上述の膜電極接合体を備える固体高分子型燃料電池の運転方法であって、アノード側に水素ガス、カソード側に酸素又は空気を供給し、90℃以上で発電することを特徴とする固体高分子型燃料電池の運転方法を提供する。   The present invention is also a method for operating a polymer electrolyte fuel cell comprising the membrane electrode assembly described above, wherein hydrogen gas is supplied to the anode side, oxygen or air is supplied to the cathode side, and power is generated at 90 ° C. or higher. A method for operating a polymer electrolyte fuel cell is provided.

本発明の電解質膜は、軟化温度が高く、過酸化水素又は過酸化物ラジカルに対して優れた耐性を有するため、本発明の電解質膜を有する膜電極接合体を備える固体高分子形燃料電池は、高温での運転が可能であり、耐久性に優れ、長期にわたって安定な発電が可能である。   Since the electrolyte membrane of the present invention has a high softening temperature and excellent resistance to hydrogen peroxide or peroxide radicals, a polymer electrolyte fuel cell comprising a membrane electrode assembly having the electrolyte membrane of the present invention is It can be operated at high temperatures, has excellent durability, and can stably generate power over a long period of time.

本発明の電解質膜は、軟化温度が90℃以上であり酸性基を有する含フッ素重合体からなるイオン交換膜から構成される。本明細書において軟化温度とは、重合体が軟化して貯蔵弾性率が急激に低下する温度領域において、昇温速度2℃/分、周波数1Hzでの動的粘弾性測定における損失弾性率が極大値を示す温度と定義する。軟化温度は95℃以上であることが好ましく、100℃以上であることがより好ましい。   The electrolyte membrane of the present invention is composed of an ion exchange membrane made of a fluorine-containing polymer having a softening temperature of 90 ° C. or higher and having an acidic group. In the present specification, the softening temperature is the maximum loss elastic modulus in dynamic viscoelasticity measurement at a temperature rising rate of 2 ° C./min and a frequency of 1 Hz in a temperature region where the polymer softens and the storage elastic modulus rapidly decreases. It is defined as the temperature that indicates the value. The softening temperature is preferably 95 ° C. or higher, and more preferably 100 ° C. or higher.

電解質膜の耐久性能を向上させるには含フッ素重合体であることが必要であり、特に酸性基以外の構造は、パーフルオロカーボン(エーテル結合性の酸素原子を含んでいてもよい。)であることが好ましい。   In order to improve the durability performance of the electrolyte membrane, it is necessary to be a fluorine-containing polymer, and in particular, the structure other than the acidic group is a perfluorocarbon (which may contain an etheric oxygen atom). Is preferred.

含フッ素重合体の酸性基は解離してプロトンを生成する機能を有していれば良く、特に制約されないが、強酸性基が好ましい。具体的には、スルホン酸基、スルホンイミド基、ホスホン酸基、カルボン酸基、ケトイミド基等があり、特に酸性度が強く、化学的安定性の高いスルホン酸基が好ましい。   The acidic group of the fluorine-containing polymer is not particularly limited as long as it has a function of dissociating to generate protons, and a strongly acidic group is preferable. Specifically, there are a sulfonic acid group, a sulfonimide group, a phosphonic acid group, a carboxylic acid group, a ketoimide group, and the like, and a sulfonic acid group that has particularly strong acidity and high chemical stability is preferable.

スルホン酸基を有するパーフルオロカーボン重合体としては、以下の[1]〜[5]の共重合体が好ましい。
[1]テトラフルオロエチレンに基づく繰り返し単位と、CF=CF(CFSOH(式中、aは0〜6の整数である。)に基づく繰り返し単位とを含む共重合体。合成の簡便性を考慮すると、aは2又は4であることが好ましい。
As the perfluorocarbon polymer having a sulfonic acid group, the following copolymers [1] to [5] are preferable.
[1] and repeating units based on tetrafluoroethylene, CF 2 = CF (CF 2 ) a SO 3 H ( wherein, a is an integer of 0-6.) A copolymer comprising the repeating units based on. In view of the convenience of synthesis, a is preferably 2 or 4.

[2]テトラフルオロエチレンに基づく繰り返し単位と、CF=CFO(CFSOH(式中、bは1〜6の整数である。)に基づく繰り返し単位とを含む共重合体。スルホン酸基を有する側鎖の長さ(bの炭素数)が短いほど、共重合体の軟化温度が高くなるが、合成の簡便性を考慮すると、bは2であることが好ましい。 [2] and repeating units based on tetrafluoroethylene, CF 2 = CFO (CF 2 ) b SO 3 H ( wherein, b is an integer of 1-6.) A copolymer comprising the repeating units based on. The shorter the length of the side chain having a sulfonic acid group (the number of carbon atoms in b), the higher the softening temperature of the copolymer. In consideration of the simplicity of synthesis, b is preferably 2.

[3]テトラフルオロエチレンに基づく繰り返し単位と、CF=CFCFO(CFSOH(式中、cは1〜6の整数である。)に基づく繰り返し単位とを含む共重合体。合成のしやすさを考慮すると、cは2であることが好ましい。 [3] and repeating units based on tetrafluoroethylene, CF 2 = CFCF 2 O ( CF 2) ( wherein, c is an integer of 1-6.) C SO 3 H copolymerization containing a repeating unit based on Coalescence. In consideration of easiness of synthesis, c is preferably 2.

[4]テトラフルオロエチレンに基づく繰り返し単位と、式(1)で表されるモノマー(ただし、R〜Rはそれぞれ独立にエーテル結合性酸素原子を含有してもよい炭素数1〜6のパーフルオロアルキル基又はフッ素原子であり、Rはエーテル性酸素原子を含有してもよい炭素数1〜6のパーフルオロアルキレン基である。)に基づく繰り返し単位とを含む共重合体。 [4] A repeating unit based on tetrafluoroethylene and a monomer represented by the formula (1) (wherein R 1 to R 3 may each independently contain an ether-bonded oxygen atom and have 1 to 6 carbon atoms) It is a perfluoroalkyl group or a fluorine atom, and R 4 is a C1-C6 perfluoroalkylene group which may contain an etheric oxygen atom.

Figure 0004810868
Figure 0004810868

上記エーテル結合性酸素原子を含有してもよいパーフルオロアルキル基又はエーテル性酸素原子を含有してもよいパーフルオロアルキレン基におけるエーテル性酸素原子は、炭素原子−炭素原子結合間に導入されていても炭素原子結合末端に挿入されていてもよい。式(1)で表されるモノマーとしては、合成のしやすさから、R〜Rはフッ素原子であり、Rは−CFOCFCF−である式(2)で表されるモノマーが好ましい。 The etheric oxygen atom in the perfluoroalkyl group that may contain an etheric oxygen atom or the perfluoroalkylene group that may contain an etheric oxygen atom is introduced between carbon-carbon atom bonds. May be inserted at the carbon atom bond terminal. The monomer represented by the formula (1) is represented by the formula (2) in which R 1 to R 3 are fluorine atoms and R 4 is —CF 2 OCF 2 CF 2 — for ease of synthesis. Monomers are preferred.

Figure 0004810868
Figure 0004810868

[5]テトラフルオロエチレンに基づく繰り返し単位と、CF=CF(OCFCFX)O(CFSOH(式中、dは0又は1、Xはフッ素原子又はトリフルオロメチル基であり、eは1〜5の整数である。)に基づく繰り返し単位と、式(3)で表されるモノマー及び式(4)で表されるモノマー(ただし、Rはエーテル結合性酸素原子を含有してもよい炭素数1〜5のパーフルオロアルキル基又はフッ素原子、R及びRはそれぞれ独立に炭素数1〜5のパーフルオロアルキル基又はフッ素原子である、又は、R及びRは共同で炭素数3〜5のパーフルオロアルキレン基を形成する。R〜R11はそれぞれ独立に炭素数1〜5のパーフルオロアルキル基又はフッ素原子である、又は、R〜R11のうち2つは共同で炭素数3〜5のパーフルオロアルキレン基を形成する。)からなる群から選択される少なくとも一つに基づく繰り返し単位とを含む共重合体。 [5] A repeating unit based on tetrafluoroethylene and CF 2 ═CF (OCF 2 CFX) d O (CF 2 ) e SO 3 H (wherein d is 0 or 1, X is a fluorine atom or a trifluoromethyl group) Wherein e is an integer of 1 to 5), a monomer represented by the formula (3) and a monomer represented by the formula (4) (wherein R 5 is an ether-bonded oxygen atom) A C 1-5 perfluoroalkyl group or fluorine atom, R 6 and R 7 may be each independently a C 1-5 perfluoroalkyl group or fluorine atom, or R 6 and R 7 jointly forms a perfluoroalkylene group having 3 to 5 carbon atoms, R 8 to R 11 are each independently a perfluoroalkyl group or fluorine atom having 1 to 5 carbon atoms, or R 8 to R 11 1 Copolymer two comprising the repeating units based on at least one selected from the group consisting of jointly form a perfluoroalkylene group having 3 to 5 carbon atoms.) Of.

Figure 0004810868
Figure 0004810868

式(3)で表されるモノマー及び式(4)で表されるモノマーからなる群から選択される少なくとも一つに基づく繰り返し単位を第三成分として有することにより、共重合体の軟化温度が高くなり、特に式(5)で表されるモノマーが好ましい。式(3)で表されるモノマー及び式(4)で表されるモノマーからなる群から選択される少なくとも一つに基づく繰り返し単位のポリマーの全繰り返し単位に対する割合は0.1〜50mol%であることが好ましい。   By having as a third component a repeating unit based on at least one selected from the group consisting of the monomer represented by formula (3) and the monomer represented by formula (4), the softening temperature of the copolymer is high. Especially, the monomer represented by the formula (5) is preferable. The ratio of the repeating unit based on at least one selected from the group consisting of the monomer represented by the formula (3) and the monomer represented by the formula (4) to the entire repeating unit of the polymer is 0.1 to 50 mol%. It is preferable.

Figure 0004810868
Figure 0004810868

スルホン酸基を有するパーフルオロカーボン重合体は、対応するフルオロスルホニル基(−SOF基)を有するモノマーを共重合させた後、加水分解、酸型化処理を行うことにより得られる。 The perfluorocarbon polymer having a sulfonic acid group can be obtained by copolymerizing a monomer having a corresponding fluorosulfonyl group (—SO 2 F group) and then performing hydrolysis and acidification treatment.

スルホンイミド基(−SONHSO基)を有するパーフルオロカーボン重合体は、対応するフルオロスルホニル基(−SOF基)を有するモノマーの−SOF基をスルホンイミド基に変換したモノマーを共重合させる、又は対応する−SOF基を有するポリマーを合成し、該ポリマーの−SOF基を変換することによって得られる。−SOF基は、RSONHM(Rはパーフルオロアルキル基、Mはアルカリ金属又は1〜4級のアンモニウム)との反応により塩型のスルホンイミド基(−SONMSO基)に変換でき、さらに硫酸、硝酸、塩酸等の酸で処理することにより、酸型に変換できる。 The perfluorocarbon polymer having a sulfonimide group (—SO 2 NHSO 2 R f group) is a monomer obtained by converting a —SO 2 F group of a monomer having a corresponding fluorosulfonyl group (—SO 2 F group) into a sulfonimide group. the copolymerized, or corresponding to synthesize a polymer having -SO 2 F groups, it is obtained by converting the -SO 2 F groups of the polymer. The —SO 2 F group is converted into a salt-type sulfonimide group (—SO 2 NMSO 2 R by reaction with R f SO 2 NHM (R f is a perfluoroalkyl group, M is an alkali metal or a quaternary ammonium group). f group) and can be converted into an acid form by treatment with an acid such as sulfuric acid, nitric acid or hydrochloric acid.

ホスホン酸基を有するパーフルオロカーボン重合体としては、以下の共重合体が好ましい。テトラフルオロエチレンに基づく繰り返し単位と、CF=CFO(CFPO(OH)とに基づく繰り返し単位とを含む共重合体。 As the perfluorocarbon polymer having a phosphonic acid group, the following copolymers are preferred. A copolymer comprising a repeating unit based on tetrafluoroethylene and a repeating unit based on CF 2 ═CFO (CF 2 ) 3 PO (OH) 2 .

酸性基を有する含フッ素重合体のイオン交換容量は、0.7〜2.5ミリ当量/g乾燥樹脂であることが好ましく、特に1.0〜2.0ミリ当量/g乾燥樹脂であることが好ましい。イオン交換容量が0.7未満であると、含フッ素重合体のイオン導電性が不充分となる。一方、イオン交換容量が2.5を超えると、含水率が大きくなりすぎてこの含フッ素重合体を用いて膜を形成した場合、膜強度が不充分となる。特に後述するように電解質膜中にセリウムイオン又はマンガンイオンとして存在する場合は、イオン交換膜の酸性基をイオン交換しプロトン導電性が低下する傾向にあるため、含フッ素重合体のイオン交換容量は、1.2〜2.0ミリ当量/g乾燥樹脂であることが好ましい。   The ion exchange capacity of the fluorine-containing polymer having an acidic group is preferably 0.7 to 2.5 meq / g dry resin, particularly 1.0 to 2.0 meq / g dry resin. Is preferred. If the ion exchange capacity is less than 0.7, the ionic conductivity of the fluoropolymer will be insufficient. On the other hand, when the ion exchange capacity exceeds 2.5, the water content becomes too high, and the film strength becomes insufficient when a film is formed using this fluoropolymer. In particular, as will be described later, when cerium ions or manganese ions are present in the electrolyte membrane, the ion conductivity of the ion exchange membrane tends to be ion exchanged and proton conductivity tends to decrease. 1.2-2.0 meq / g dry resin is preferred.

スルホン酸基を有するパーフルオロカーボン重合体を用いる場合、重合体末端の不安定部位を安定化するために、フッ素ガスで処理してもよい。重合体の末端がフッ素化されていると、より過酸化水素や過酸化物ラジカルに対する安定性が優れるため耐久性が向上する。フッ素化反応において、フッ素ガスは、好ましくは不活性ガスで希釈されたフッ素ガスを用いる。   When a perfluorocarbon polymer having a sulfonic acid group is used, it may be treated with a fluorine gas in order to stabilize the unstable site at the end of the polymer. When the terminal of the polymer is fluorinated, the durability against hydrogen peroxide and peroxide radicals is further improved, so that the durability is improved. In the fluorination reaction, the fluorine gas is preferably a fluorine gas diluted with an inert gas.

本発明の電解質膜は、膜中にセリウム原子及びマンガン原子からなる群から選ばれる1種以上が存在することにより、耐久性に優れる。膜中におけるセリウム原子又はマンガン原子の存在形態は特に限定されないが、例えば、セリウムイオン、マンガンイオン、セリウム化合物、マンガン化合物等の形態があり、特にセリウムイオン又はマンガンイオンの形態が好ましい。なお、単体金属及び合金の形態は、電解質膜が短絡する可能性があるので好ましくない。   The electrolyte membrane of the present invention is excellent in durability due to the presence of one or more selected from the group consisting of cerium atoms and manganese atoms in the membrane. Although the form of the cerium atom or manganese atom in the film is not particularly limited, for example, there are forms such as cerium ion, manganese ion, cerium compound, manganese compound, and the form of cerium ion or manganese ion is particularly preferable. In addition, since the form of a single metal and an alloy may cause a short circuit of an electrolyte membrane, it is not preferable.

例えば、セリウムイオン又はマンガンイオン(以下、セリウムイオン等という)の場合は、イオンとして存在すれば電解質膜中にどのような状態で存在してもかまわないが、イオン交換膜中の酸性基の一部がセリウムイオン等でイオン交換された状態を挙げることができる。また、セリウムイオン等を均一に含有している必要はない。2層以上の層からなるイオン交換膜(積層膜)であってその全ての層ではなく少なくとも1層がセリウムイオン等でイオン交換されている、すなわち厚さ方向に不均一にセリウムイオン等を含んでいてもよい。したがって、特にアノード側について過酸化水素又は過酸化物ラジカルに対する耐久性を高める必要がある場合は、アノードに一番近い層のみセリウムイオン等を含有するイオン交換膜からなる層とすることもできる。   For example, in the case of cerium ion or manganese ion (hereinafter referred to as cerium ion or the like), it may be present in any state in the electrolyte membrane as long as it exists as an ion, but one of the acidic groups in the ion exchange membrane may be present. A state in which the part is ion-exchanged with cerium ions or the like can be mentioned. Moreover, it is not necessary to contain cerium ion etc. uniformly. It is an ion exchange membrane (laminated membrane) consisting of two or more layers, and at least one of the layers is ion-exchanged with cerium ions or the like, that is, it contains cerium ions and the like nonuniformly in the thickness direction. You may go out. Therefore, when it is necessary to increase the durability against hydrogen peroxide or peroxide radicals particularly on the anode side, only the layer closest to the anode can be a layer made of an ion exchange membrane containing cerium ions or the like.

酸性基を有する含フッ素重合体中にセリウムイオン等を含有させて本発明の電解質膜を得る方法は特に限定されないが、例えば以下の方法が挙げられる。
(1)酸性基を有する含フッ素重合体の分散液中に、当該分散液に溶解可能なセリウム化合物又はマンガン化合物からなる群から選択される1種以上を混合した後、得られた液を用いてキャスト製膜し、電解質膜を作製する方法。
(2)セリウムイオン等が含まれる溶液中に酸性基を有する含フッ素重合体からなる膜を浸漬する方法。
(3)セリウム又はマンガンの有機金属錯塩を酸性基を有する含フッ素重合体からなるイオン交換膜と接触させてセリウムイオン等を含有させる方法等。
The method for obtaining the electrolyte membrane of the present invention by containing cerium ions or the like in the fluorine-containing polymer having an acidic group is not particularly limited, and examples thereof include the following methods.
(1) In a dispersion of a fluorine-containing polymer having an acidic group, one or more selected from the group consisting of a cerium compound or a manganese compound that can be dissolved in the dispersion is mixed, and then the obtained liquid is used. A method for producing an electrolyte membrane by casting a film.
(2) A method of immersing a film made of a fluoropolymer having an acidic group in a solution containing cerium ions and the like.
(3) A method of bringing a cerium or manganese organometallic complex salt into contact with an ion exchange membrane made of a fluorine-containing polymer having an acidic group to contain cerium ions or the like.

量産性を考慮すると上記(1)の方法が工程が最も簡便であり好ましい。
上記の方法によって得られる電解質膜は、酸性基の一部がセリウムイオン等によりイオン交換されていると考えられる。
Considering mass productivity, the method (1) is preferable because the process is the simplest.
In the electrolyte membrane obtained by the above method, it is considered that a part of acidic groups is ion-exchanged with cerium ions or the like.

ここでセリウムイオンは+3価でも+4価でもよく、セリウムイオンを含む溶液を得るために液状媒体(例えば、水、アルコール等)に溶解可能なセリウム化合物が使用される。+3価のセリウムイオンを含む塩を具体的に挙げると、例えば、炭酸セリウム(Ce(CO・8HO)、酢酸セリウム(Ce(CHCOO)・HO)、塩化セリウム(CeCl・6HO)、硝酸セリウム(Ce(NO・6HO)、硫酸セリウム(Ce(SO・8HO)等が挙げられる。+4価のセリウムイオンを含む塩としては、例えば、硫酸セリウム(Ce(SO・4HO)、硝酸二アンモニウムセリウム(Ce(NH(NO)、硫酸四アンモニウムセリウム(Ce(NH(SO)・4HO)等が挙げられる。またセリウムの有機金属錯塩としてはセリウムアセチルアセトナート(Ce(CHCOCHCOCH・3HO)等が挙げられる。 Here, the cerium ions may be +3 or +4, and a cerium compound that can be dissolved in a liquid medium (for example, water, alcohol, etc.) is used to obtain a solution containing cerium ions. Specific examples of salts containing + trivalent cerium ions include, for example, cerium carbonate (Ce 2 (CO 3 ) 3 · 8H 2 O), cerium acetate (Ce (CH 3 COO) 3 · H 2 O), and chloride. Examples thereof include cerium (CeCl 3 .6H 2 O), cerium nitrate (Ce (NO 3 ) 3 .6H 2 O), cerium sulfate (Ce 2 (SO 4 ) 3 .8H 2 O), and the like. Examples of the salt containing +4 valent cerium ions include cerium sulfate (Ce (SO 4 ) 2 .4H 2 O), diammonium cerium nitrate (Ce (NH 4 ) 2 (NO 3 ) 6 ), and tetraammonium cerium sulfate. (Ce (NH 4 ) 4 (SO 4 ) 4 ) · 4H 2 O) and the like. Examples of the organometallic complex salt of cerium include cerium acetylacetonate (Ce (CH 3 COCHCOCH 3 ) 3 .3H 2 O).

マンガンイオンの場合は、価数は+2価でも+3価でもよく、マンガンイオンを含む溶液を得るために液状媒体に溶解可能なマンガン化合物が使用される。+2価のマンガンイオンを含む塩を具体的に挙げると、例えば、酢酸マンガン(Mn(CHCOO)・4HO)、塩化マンガン(MnCl・4HO)、硝酸マンガン(Mn(NO・6HO)、硫酸マンガン(MnSO・5HO)等が挙げられる。+3価のマンガンイオンを含む塩としては、例えば、酢酸マンガン(Mn(CHCOO)・2HO)等が挙げられる。またマンガンの有機金属錯塩としてはマンガンアセチルアセトナート(Mn(CHCOCHCOCH)等が挙げられる。 In the case of manganese ions, the valence may be +2 or +3, and a manganese compound that can be dissolved in a liquid medium is used to obtain a solution containing manganese ions. Specific examples of the salt containing +2 valent manganese ions include manganese acetate (Mn (CH 3 COO) 2 .4H 2 O), manganese chloride (MnCl 2 .4H 2 O), manganese nitrate (Mn (NO 3) 2 · 6H 2 O) , and the like manganese sulfate (MnSO 4 · 5H 2 O) . Examples of the salt containing + trivalent manganese ions include manganese acetate (Mn (CH 3 COO) 3 .2H 2 O). Examples of the organometallic complex salt of manganese include manganese acetylacetonate (Mn (CH 3 COCHCOCH 3 ) 2 ).

上記の化合物のなかでも、上記(1)の製法により電解質膜を作製する場合、含フッ素重合体の分散液に溶解可能なセリウム化合物又はマンガン化合物からなる群から選択される1種以上としては、炭酸セリウム又は炭酸マンガンが好ましい。含フッ素重合体の分散液中で炭酸セリウム等は溶解し、セリウムイオン等を生じると同時に、炭酸はガスとして除去できるので好ましい。また、上記(2)の製法により電解質膜を作製する場合は、硝酸セリウム、硫酸セリウム、硝酸マンガン又は硫酸マンガンの水溶液を用いると、取扱いが容易であり好ましい。これらの水溶液で酸性基を有する含フッ素重合体をイオン交換した際に生成する硝酸又は硫酸は、容易に水溶液中に溶解し、除去できる。   Among the above compounds, when preparing an electrolyte membrane by the production method of (1) above, as one or more selected from the group consisting of a cerium compound or a manganese compound that can be dissolved in a dispersion of a fluoropolymer, Cerium carbonate or manganese carbonate is preferred. Cerium carbonate and the like are dissolved in the dispersion of the fluoropolymer to produce cerium ions and the like, and at the same time, carbonic acid can be removed as a gas, which is preferable. Moreover, when producing an electrolyte membrane by the manufacturing method of said (2), it is easy to handle and it is preferable to use an aqueous solution of cerium nitrate, cerium sulfate, manganese nitrate or manganese sulfate. Nitric acid or sulfuric acid produced when ion-exchange of a fluorine-containing polymer having an acidic group in these aqueous solutions can be easily dissolved and removed in the aqueous solution.

例えばセリウムイオンが3価であり、酸性基がスルホン酸基である場合、スルホン酸基がセリウムイオンによりイオン交換されると、下記に示すようにCe3+が3個の−SO と結合する。 For example, when the cerium ion is trivalent and the acidic group is a sulfonic acid group, when the sulfonic acid group is ion-exchanged with the cerium ion, Ce 3+ bonds to three —SO 3 as shown below. .

Figure 0004810868
Figure 0004810868

含フッ素重合体の酸性基がスルホン酸基である場合、電解質膜中に含まれるセリウムイオンの数は、膜中の−SO 基の0.3〜20モル%であることが好ましい(以下、この割合を「セリウムイオンの含有率」という。)。セリウムイオンが完全に上記の構造になっている場合には、セリウムイオンでイオン交換されたスルホン酸基が、スルホン酸基とセリウムイオンでイオン交換されたスルホン酸基との合量の0.9〜60モル%であることと同義である。セリウムイオンの含有率は、より好ましくは0.7〜16モル%、さらに好ましくは1〜13モル%である。 When the acidic group of the fluoropolymer is a sulfonic acid group, the number of cerium ions contained in the electrolyte membrane is preferably 0.3 to 20 mol% of the —SO 3 group in the membrane (hereinafter referred to as “the sulfonic acid group”). This ratio is referred to as “cerium ion content”). When the cerium ion has the above-described structure, the sulfonic acid group ion-exchanged with the cerium ion is 0.9% of the total amount of the sulfonic acid group and the sulfonic acid group ion-exchanged with the cerium ion. It is synonymous with being ~ 60 mol%. The content of cerium ions is more preferably 0.7 to 16 mol%, still more preferably 1 to 13 mol%.

セリウムイオンの含有率が上述の範囲よりも小さいと過酸化水素又は過酸化物ラジカルに対する十分な安定性が確保できないおそれがある。またセリウムイオンの含有率が上述の範囲よりも大きいと、水素イオンの十分な伝導性を確保することができず、膜抵抗が増大して発電特性が低下するおそれがある。   If the cerium ion content is lower than the above range, sufficient stability against hydrogen peroxide or peroxide radicals may not be ensured. On the other hand, if the content of cerium ions is larger than the above range, sufficient conductivity of hydrogen ions cannot be ensured, resulting in an increase in membrane resistance and a decrease in power generation characteristics.

また、マンガンイオンが+2価である場合、スルホン酸基がマンガンイオンによりイオン交換されると、2個のプロトンとマンガンイオンが置き換わり、Mn2+が2個の−SO と結合することになる。 Further, when the manganese ion is +2 valent, when the sulfonic acid group is ion-exchanged by the manganese ion, two protons and manganese ions are replaced, and Mn 2+ is bonded to two —SO 3 —. .

含フッ素重合体の酸性基がスルホン酸基である場合、電解質膜中に含まれるマンガンイオンの数は、膜中の−SO 基の0.5〜30モル%であることが好ましい(以下、この割合を「マンガンイオンの含有率」という。)。マンガンイオンが完全に2個の−SO 基と結合している場合には、マンガンイオンでイオン交換されたスルホン酸基が、スルホン酸基とマンガンイオンでイオン交換されたスルホン酸基との合量の1〜60モル%であることと同義である。マンガンイオンの含有率は、より好ましくは1〜25モル%、さらに好ましくは1.5〜20モル%である。 When the acidic group of the fluoropolymer is a sulfonic acid group, the number of manganese ions contained in the electrolyte membrane is preferably 0.5 to 30 mol% of the —SO 3 group in the membrane (hereinafter referred to as “the sulfonic acid group”). This ratio is referred to as “manganese ion content”). In the case where the manganese ion is completely bonded to two —SO 3 groups, the sulfonic acid group ion-exchanged with the manganese ion is converted into a sulfonic acid group ion-exchanged with the manganese ion. It is synonymous with 1 to 60 mol% of the total amount. The content of manganese ions is more preferably 1 to 25 mol%, still more preferably 1.5 to 20 mol%.

マンガンイオンの含有率がこの範囲よりも小さいと過酸化水素又は過酸化物ラジカルに対する十分な安定性が確保できないおそれがある。またマンガンイオンの含有率が上述の範囲よりも大きいと、水素イオンの十分な伝導性を確保することができず、膜抵抗が増大して発電特性が低下するおそれがある。   If the content of manganese ions is smaller than this range, sufficient stability against hydrogen peroxide or peroxide radicals may not be ensured. On the other hand, when the content of manganese ions is larger than the above range, sufficient conductivity of hydrogen ions cannot be ensured, resulting in an increase in membrane resistance and a decrease in power generation characteristics.

なお、本発明の電解質膜が積層膜からなる場合は、電解質膜全体の−SO 基に対するセリウムイオン等の割合が上述の範囲に入っていればよく、セリウムイオン等を含む層自体のセリウムイオン等の含有率は上述の範囲より高くてもよい。また積層膜の作製方法としては、例えば上述の(1)〜(3)のいずれかの方法によりセリウムイオン等を含む陽イオン交換膜を作製しておき、セリウムイオン等を含まないイオン交換膜と積層する工程を経て作製することが好ましいが、特に限定されない。 When the electrolyte membrane of the present invention is a laminated membrane, the ratio of cerium ions to the —SO 3 group in the entire electrolyte membrane should be in the above range, and the cerium of the layer itself containing cerium ions etc. The content of ions or the like may be higher than the above range. In addition, as a method for producing a laminated film, for example, a cation exchange membrane containing cerium ions or the like is produced by any one of the methods (1) to (3) described above, and an ion exchange membrane containing no cerium ions or the like Although it is preferable to produce through the process of laminating, it is not particularly limited.

電解質膜中にセリウム化合物又はマンガン化合物(以下、「セリウム化合物等」という。)を含有させることによっても、電解質膜の耐久性を向上させることもできる。セリウム化合物等が水溶性の場合は、上述のように膜中でイオンとして存在すると考えられるが、セリウム化合物等が水に難溶性であっても本発明の電解質膜は過酸化水素又は過酸化物ラジカルに対して優れた耐性を有し、耐久性に優れる。その理由は明確ではないが、以下のいずれかの機構を考えている。1つには、難溶性セリウム化合物等が膜中で解離する、又は部分的に溶解することによりセリウムイオン等が生成し、酸性基の一部がセリウムイオン等でイオン交換され、当該イオンが電解質膜の過酸化水素又は過酸化物ラジカル耐性を効果的に向上させていると考えられる。もう一つとしては、難溶性セリウム化合物等の中のセリウム元素等が、触媒層から膜中に拡散してくる過酸化水素を効果的に分解する機能を有していると考えられる。   The durability of the electrolyte membrane can also be improved by including a cerium compound or a manganese compound (hereinafter referred to as “cerium compound etc.”) in the electrolyte membrane. When the cerium compound or the like is water-soluble, it is considered that it exists as an ion in the film as described above. However, even if the cerium compound or the like is poorly soluble in water, the electrolyte membrane of the present invention is not limited to hydrogen peroxide or peroxide. Excellent resistance to radicals and excellent durability. The reason is not clear, but one of the following mechanisms is considered. For example, cerium ions and the like are generated by dissociation or partial dissolution of a hardly soluble cerium compound or the like, and a part of the acidic group is ion-exchanged with cerium ions or the like, and the ions are converted into an electrolyte. It is considered that the hydrogen peroxide or peroxide radical resistance of the film is effectively improved. Another is considered that the cerium element in the hardly soluble cerium compound has a function of effectively decomposing hydrogen peroxide diffused from the catalyst layer into the film.

具体的な難溶性セリウム化合物としては、リン酸第一セリウム、リン酸第二セリウム、酸化セリウム、水酸化第一セリウム、水酸化第二セリウム、フッ化セリウム、シュウ酸セリウム、タングステン酸セリウム、ヘテロポリ酸のセリウム塩が挙げられる。難溶性マンガン化合物としては、酸化マンガン(II)、四酸化三マンガン、酸化マンガン(III)、酸化マンガン(IV)、酸化マンガン(VII)等が挙げられる。   Specific poorly soluble cerium compounds include: cerium phosphate, cerium phosphate, cerium oxide, cerium hydroxide, cerium hydroxide, cerium fluoride, cerium oxalate, cerium tungstate, heteropoly The cerium salt of an acid is mentioned. Examples of the hardly soluble manganese compound include manganese (II) oxide, trimanganese tetroxide, manganese (III) oxide, manganese (IV) oxide, manganese oxide (VII) and the like.

酸性基を有する含フッ素重合体中に難溶性セリウム化合物等を含有させて本発明の電解質膜を得る方法は特に限定されないが、例えば以下の方法が挙げられる。
(1)酸性基を有する含フッ素重合体の分散液中に難溶性セリウム化合物等を添加して分散液中に含有させた後、得られた液を用いてキャスト法等により製膜する方法。このとき難溶性セリウム化合物等は該化合物を高度に分散できる溶媒(分散媒)とあらかじめ混合しておいてから酸性基を有する含フッ素重合体の溶液又は分散液と混合してもよい。
The method for obtaining the electrolyte membrane of the present invention by incorporating a sparingly soluble cerium compound or the like into the fluorine-containing polymer having an acidic group is not particularly limited, and examples thereof include the following methods.
(1) A method in which a hardly soluble cerium compound or the like is added to a dispersion of a fluorine-containing polymer having an acidic group and is contained in the dispersion, and then the resulting solution is used to form a film by a casting method or the like. At this time, the hardly soluble cerium compound or the like may be mixed in advance with a solvent (dispersion medium) capable of highly dispersing the compound and then mixed with a solution or dispersion of a fluoropolymer having an acidic group.

(2)セリウムイオン等が含まれる溶液中に酸性基を有する含フッ素重合体からなる膜を浸漬してイオンを膜中に含有させた後、リン酸、シュウ酸、NaFや水酸化ナトリウム等の、セリウムイオン等と反応して難溶性セリウム化合物等を形成する物質を含む溶液に浸漬して、難溶性セリウム化合物等を膜中に析出させる方法。   (2) After immersing a film made of a fluorine-containing polymer having an acidic group in a solution containing cerium ions and the like to contain ions in the film, phosphoric acid, oxalic acid, NaF, sodium hydroxide, etc. A method of immersing in a solution containing a substance that reacts with cerium ions or the like to form a hardly soluble cerium compound or the like, and deposits the hardly soluble cerium compound or the like in the film.

(3)酸性基を有する含フッ素重合体の分散液中に該分散液に溶解可能なセリウム化合物等を添加して酸性基をセリウムイオン等によりイオン交換した後、該分散液にリン酸、シュウ酸、NaFや水酸化ナトリウム等の、セリウムイオン等と反応して難溶性セリウム化合物等を形成する物質又はそれを含む溶液を添加して、該分散液中に難溶性セリウム化合物等を生成させ、得られた液を用いてキャスト法等により製膜する方法。上記含フッ素重合体の分散液中に該分散液に溶解可能なセリウム化合物等としては、例えば酢酸セリウム、塩化セリウム、硝酸セリウム、硫酸セリウム、酢酸マンガン、塩化マンガン、硝酸マンガン、硫酸マンガン等が挙げられる。   (3) A cerium compound or the like that can be dissolved in the dispersion is added to the dispersion of the fluoropolymer having acidic groups, and the acidic groups are ion-exchanged with cerium ions or the like. A substance that reacts with cerium ions or the like, such as acid, NaF or sodium hydroxide, to form a hardly soluble cerium compound or the like or a solution containing the same is added to form a hardly soluble cerium compound or the like in the dispersion; A method of forming a film by a casting method or the like using the obtained liquid. Examples of the cerium compound that can be dissolved in the dispersion of the fluoropolymer include cerium acetate, cerium chloride, cerium nitrate, cerium sulfate, manganese acetate, manganese chloride, manganese nitrate, manganese sulfate, and the like. It is done.

(4)酸性基を有する含フッ素重合体の前駆体に難溶性セリウム化合物等を添加し、2軸押出し成形による混練、ペレット化、一軸押出し成形によるフィルム化、そして加水分解、酸型化処理により製膜する方法が考えられる。ここで含フッ素重合体の前駆体とは、イオン交換基として機能する酸性基に変換可能な官能基を有する重合体であり、例えば酸性基がスルホン酸基の場合には、−SOF基を有する重合体のことを言う。 (4) Adding a sparingly soluble cerium compound or the like to the precursor of a fluorine-containing polymer having an acidic group, kneading by biaxial extrusion molding, pelletization, film formation by uniaxial extrusion molding, hydrolysis, acidification treatment A method of forming a film is conceivable. Here, the precursor of the fluoropolymer is a polymer having a functional group that can be converted into an acidic group that functions as an ion exchange group. For example, when the acidic group is a sulfonic acid group, a —SO 2 F group The polymer which has this.

上記の方法のなかでも特に(2)の方法が好ましい。セリウムイオン等の置換量の制御が可能であり、また、製膜時の膜の厚み調整が可能であり均一な厚みの膜を得やすいからである。   Among the above methods, the method (2) is particularly preferable. This is because the amount of substitution of cerium ions and the like can be controlled, and the thickness of the film can be adjusted during film formation, so that a film having a uniform thickness can be easily obtained.

本発明において、電解質膜中に含まれる難溶性セリウム化合物等の好ましい割合としては、電解質膜全質量の0.3〜80%(質量比)であることが好ましく、より好ましくは0.4〜70%、さらに好ましくは0.5〜50%である。膜中の難溶性セリウム化合物等の含有量がこの範囲よりも少ないと、過酸化水素又は過酸化物ラジカルに対する十分な安定性が確保できないおそれがある。また含有量がこの範囲よりも多いと、電流遮蔽が発生するため、膜抵抗が増大して発電特性が低下するおそれがある。   In the present invention, a preferred ratio of the hardly soluble cerium compound or the like contained in the electrolyte membrane is preferably 0.3 to 80% (mass ratio) of the total mass of the electrolyte membrane, more preferably 0.4 to 70. %, More preferably 0.5 to 50%. If the content of the hardly soluble cerium compound or the like in the film is less than this range, sufficient stability against hydrogen peroxide or peroxide radicals may not be ensured. On the other hand, if the content is larger than this range, current shielding occurs, so that the membrane resistance increases and the power generation characteristics may be deteriorated.

本発明の電解質膜を有する固体高分子形燃料電池は、例えば以下のような構成である。すなわち、本発明の電解質膜の両面に、触媒とイオン交換樹脂とを含む触媒層を有するアノード及びカソードが配置された膜電極接合体を備える。膜電極接合体のアノード及びカソードは、好ましくは触媒層の外側(膜と反対側)にカーボンクロスやカーボンペーパー等からなるガス拡散層が配置される。膜電極接合体の両面には、燃料ガス又は酸化剤ガスの通路となる溝が形成されセパレータが配置され、セパレータを介して膜電極接合体が複数積層されたスタックを構成し、アノード側には水素ガスが供給され、カソード側には酸素又は空気が供給される構成である。アノードにおいてはH→2H+2eの反応が起こり、カソードにおいては1/2O+2H+2e→HOの反応が起こり、化学エネルギーが電気エネルギーに変換される。
また、本発明の電解質膜は、アノード側に燃料ガスではなくメタノールを供給する直接メタノール燃料電池にも使用できる。
The polymer electrolyte fuel cell having the electrolyte membrane of the present invention has the following configuration, for example. That is, a membrane / electrode assembly in which an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin are arranged on both surfaces of the electrolyte membrane of the present invention is provided. The anode and cathode of the membrane electrode assembly are preferably provided with a gas diffusion layer made of carbon cloth, carbon paper or the like outside the catalyst layer (opposite the membrane). Grooves serving as fuel gas or oxidant gas passages are formed on both surfaces of the membrane electrode assembly to form a stack in which a plurality of membrane electrode assemblies are stacked via the separator. Hydrogen gas is supplied, and oxygen or air is supplied to the cathode side. A reaction of H 2 → 2H + + 2e occurs at the anode, and a reaction of 1 / 2O 2 + 2H + + 2e → H 2 O occurs at the cathode, and chemical energy is converted into electric energy.
The electrolyte membrane of the present invention can also be used in a direct methanol fuel cell in which methanol is supplied to the anode side instead of fuel gas.

上述の触媒層は通常の手法に従い、例えば以下のようにして得られる。まず、白金触媒又は白金合金触媒微粒子を担持させた導電性のカーボンブラック粉末と酸性基を有する含フッ素重合体の溶液を混合し均一な分散液を得て、例えば以下のいずれかの方法でガス拡散電極を形成して膜電極接合体を得る。   The catalyst layer described above is obtained in the following manner, for example, according to a normal method. First, a conductive carbon black powder carrying platinum catalyst or platinum alloy catalyst fine particles and a solution of a fluorine-containing polymer having an acidic group are mixed to obtain a uniform dispersion. For example, gas can be obtained by any of the following methods: A diffusion electrode is formed to obtain a membrane electrode assembly.

第1の方法は、電解質膜の両面に上記分散液を塗布し乾燥後、両面を2枚のカーボンクロス又はカーボンペーパーで密着する方法である。第2の方法は、上記分散液を2枚のカーボンクロス又はカーボンペーパー上に塗布乾燥後、分散液が塗布された面が上記電解質膜と密着するように、上記電解質膜の両面から挟みこむ方法である。なお、ここでカーボンクロス又はカーボンペーパーは触媒を含む層により均一にガスを拡散させるためのガス拡散層としての機能と集電体としての機能を有するものである。また、別途用意した基材に上記分散液を塗工して触媒層を作製し、転写等の方法により電解質膜と接合させた後に基材をはく離し、上記ガス拡散層で挟み込む方法も使用できる。   The first method is a method in which the dispersion liquid is applied to both surfaces of the electrolyte membrane, dried, and then both surfaces are adhered to each other with two carbon cloths or carbon paper. The second method is a method in which the dispersion liquid is applied onto two carbon cloths or carbon papers and then sandwiched from both surfaces of the electrolyte membrane so that the surface on which the dispersion liquid is applied is in close contact with the electrolyte membrane. It is. Here, the carbon cloth or the carbon paper has a function as a gas diffusion layer and a function as a current collector for diffusing the gas uniformly by the layer containing the catalyst. In addition, a method can be used in which a catalyst layer is prepared by applying the dispersion to a separately prepared substrate, bonded to the electrolyte membrane by a method such as transfer, and then peeled off and sandwiched between the gas diffusion layers. .

触媒層中に含まれる酸性基を有する含フッ素重合体は特に限定されないが、本発明の電解質膜を構成する樹脂と同様に、軟化温度が90℃以上であり酸性基を有する含フッ素共重合体であることが好ましい。触媒層は、本発明の電解質膜と同様にセリウム原子及びマンガン原子からなる群から選ばれる1種以上を含んでいてもよい。セリウム原子及びマンガン原子からなる群から選ばれる1種以上を含む触媒層は、アノードにもカソードにも適用でき、樹脂の分解は効果的に抑制されるので、固体高分子形燃料電池はさらに耐久性が付与される。   Although the fluorine-containing polymer having an acidic group contained in the catalyst layer is not particularly limited, like the resin constituting the electrolyte membrane of the present invention, the fluorine-containing copolymer having an acidic group having a softening temperature of 90 ° C. or higher. It is preferable that Similarly to the electrolyte membrane of the present invention, the catalyst layer may contain one or more selected from the group consisting of cerium atoms and manganese atoms. The catalyst layer containing one or more selected from the group consisting of cerium atoms and manganese atoms can be applied to both the anode and the cathode, and the decomposition of the resin is effectively suppressed, so that the polymer electrolyte fuel cell is more durable. Sex is imparted.

本発明の電解質膜は、一部がセリウム原子及びマンガン原子からなる群から選ばれる1種以上を含む、酸性基を有する含フッ素共重合体のみからなる膜であってもよいが、他の成分を含んでいてもよく、ポリテトラフルオロエチレンやパーフルオロアルキルエーテル等の他の樹脂等の繊維、織布、不織布、多孔体等により補強されている膜であってもよい。   The electrolyte membrane of the present invention may be a membrane consisting only of a fluorine-containing copolymer having an acidic group, including one or more selected from the group consisting of cerium atoms and manganese atoms, but other components It may be a film reinforced with fibers such as other resins such as polytetrafluoroethylene and perfluoroalkyl ether, woven fabrics, nonwoven fabrics, porous bodies and the like.

半発明の膜電極接合体を備える固体高分子型燃料電池は、90℃以上で運転し、発電することができる。燃料ガスとしてメタノール、天然ガス、ガソリン等を改質して得られる水素を使用する場合、一酸化炭素が微量でも含まれると電極触媒が被毒して燃料電池の出力が低下しやすくなる。運転温度を90℃以上にすると被毒を抑制することが可能となる。運転温度を120℃以上にするとより好ましく、被毒を抑制する効果がより高くなる。   A polymer electrolyte fuel cell including the membrane electrode assembly of the semi-invention can be operated at 90 ° C. or higher to generate electric power. When hydrogen obtained by reforming methanol, natural gas, gasoline, or the like is used as the fuel gas, if a small amount of carbon monoxide is contained, the electrode catalyst is poisoned and the output of the fuel cell is likely to decrease. When the operating temperature is 90 ° C. or higher, poisoning can be suppressed. The operating temperature is more preferably 120 ° C. or higher, and the effect of suppressing poisoning is higher.

以下、本発明を具体的に実施例(例1〜6)及び比較例(例7〜12)を用いて説明するが、本発明はこれらに限定されない
[例1]
特表2002−528433号公報(第25頁、実施例1)に記載の方法と同様の方法でCF=CFCFCFSOFを合成した。内容積100mLのステンレス製オートクレーブに、(CFC−O−O−C(CF(5.6mg)、CF=CFCFCFSOF(63.75g)を仕込み、液体窒素による冷却下、充分脱気した。その後、100℃に昇温して、テトラフルオロエチレンを系内に導入し圧力を0.59MPaGに保持した。そこへ窒素ガスを加えて1.05MPaGとした。その後130℃に昇温して1.3MPaGとした。130℃で17時間撹拌後、系内のガスをパージし、オートクレーブを冷却して反応を終了させた。
EXAMPLES Hereinafter, the present invention will be specifically described using Examples (Examples 1 to 6) and Comparative Examples (Examples 7 to 12), but the present invention is not limited to these [Example 1].
CF 2 = CFCF 2 CF 2 SO 2 F was synthesized by the same method as that described in JP-T-2002-528433 (page 25, Example 1). (CF 3 ) 3 C—O—O—C (CF 3 ) 3 (5.6 mg), CF 2 = CFCF 2 CF 2 SO 2 F (63.75 g) was charged into a stainless steel autoclave having an internal volume of 100 mL, The liquid was sufficiently deaerated under cooling with liquid nitrogen. Thereafter, the temperature was raised to 100 ° C., tetrafluoroethylene was introduced into the system, and the pressure was maintained at 0.59 MPaG. Nitrogen gas was added thereto to obtain 1.05 MPaG. Thereafter, the temperature was raised to 130 ° C. to 1.3 MPaG. After stirring at 130 ° C. for 17 hours, the gas in the system was purged, and the autoclave was cooled to complete the reaction.

生成物をCClFCFCHClFで希釈後、CHCClFを添加し、ポリマーを凝集してろ過した。その後、CClFCFCHClF中でポリマーを撹拌し、CHCClFで再凝集し、80℃で一晩減圧乾燥した。生成量は2.5gであった。 After diluting the product with CClF 2 CF 2 CHClF, CH 3 CCl 2 F was added and the polymer was flocculated and filtered. The polymer was then stirred in CClF 2 CF 2 CHClF, re-agglomerated with CH 3 CCl 2 F, and dried in vacuo at 80 ° C. overnight. The amount produced was 2.5 g.

得られたポリマーについて、窒素ガスで20%に希釈したフッ素ガスを0.3MPaGまで導入し、180℃で4時間保持した。その後、熱プレスにより厚さ約50μmの膜を得た。加水分解は始めにKOHの水とジメチルスルホキシドを溶媒とする溶液(KOH/水/ジメチルスルホキシド=15/55/30質量比)に浸漬、次に塩酸に浸漬して酸型に変換し、超純水で洗浄した。
得られたイオン交換膜を滴定によりイオン交換容量を測定したところ、1.13ミリ当量/g乾燥樹脂であった。
About the obtained polymer, the fluorine gas diluted to 20% with nitrogen gas was introduce | transduced to 0.3 MPaG, and it hold | maintained at 180 degreeC for 4 hours. Thereafter, a film having a thickness of about 50 μm was obtained by hot pressing. Hydrolysis is first immersed in a solution of KOH water and dimethyl sulfoxide as a solvent (KOH / water / dimethyl sulfoxide = 15/55/30 mass ratio), then immersed in hydrochloric acid to convert to acid form, Washed with water.
When the ion exchange capacity of the obtained ion exchange membrane was measured by titration, it was 1.13 meq / g dry resin.

この膜に対して軟化温度の測定を行った。動的粘弾性測定装置DVA200(アイティー計測社製)を用いて、試料幅0.5cm、つかみ間長2cm、周波数1Hz、昇温速度2℃/分にて動的粘弾性の測定を行った。損失弾性率の最大値から求めた軟化温度は130℃であった。   The softening temperature was measured for this film. Using a dynamic viscoelasticity measuring device DVA200 (manufactured by IT Measurement Co., Ltd.), dynamic viscoelasticity was measured at a sample width of 0.5 cm, a length between grips of 2 cm, a frequency of 1 Hz, and a heating rate of 2 ° C./min. . The softening temperature obtained from the maximum value of the loss modulus was 130 ° C.

得られた膜のスルホン酸基量の10%の量に相当するセリウムイオン(+3価)を含むように、硝酸セリウム(Ce(NO・6HO)12.0mgを500mLの蒸留水に溶解し、この中に上記イオン交換膜0.8gを浸漬し、室温で40時間、スターラーを用いて撹拌を行ってイオン交換膜中にセリウムイオンを含有させる。なお、浸漬前後の硝酸セリウム溶液をイオンクロマトグラフィーにより分析し、イオン交換膜のセリウムイオンの含有率(膜中の−SO 基の数に対するセリウムイオンの割合)を算出すると10%である。 As containing the resulting film of cerium corresponding to 10% of the amount of the sulfonic acid group amount ions (+3), the cerium nitrate (Ce (NO 3) 3 · 6H 2 O) 12.0mg of 500mL of distilled water Then, 0.8 g of the ion exchange membrane is immersed in the solution, and stirred with a stirrer at room temperature for 40 hours to contain cerium ions in the ion exchange membrane. The cerium nitrate solution before and after the immersion was analyzed by ion chromatography, and the content of cerium ions in the ion exchange membrane (the ratio of cerium ions to the number of —SO 3 groups in the membrane) was calculated to be 10%.

CF=CF/CF=CFOCFCF(CF)O(CFSOH共重合体(イオン交換容量1.2ミリ当量/g乾燥樹脂)を内面がハステロイC合金で作られた耐圧オートクレーブを用いてエタノールに分散させ、質量比で固形分が10%のエタノール分散液を得る。これを電解質液Aとする。カーボンブラック粉末に白金を質量比で50%担持した触媒20gに水126gを添加し超音波を10分かけて均一に分散させた。これに電解質液A80gを添加し、さらに54gのエタノールを添加して固形分濃度を10%とし、これをカソード触媒層作製用塗工液とする。この塗工液をエチレン/テトラフルオロエチレン共重合体からなるシート(商品名:アフレックス100N、旭硝子社製、以下、単にETFEシートという。)上に塗布乾燥し、白金量が0.5mg/cmのカソード触媒層を作製する。 CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.2 meq / g dry resin) made of Hastelloy C alloy on the inner surface The obtained pressure-resistant autoclave is dispersed in ethanol to obtain an ethanol dispersion having a solid content of 10% by mass ratio. This is designated as electrolyte solution A. 126 g of water was added to 20 g of a catalyst in which 50% by mass of platinum was supported on carbon black powder, and ultrasonic waves were uniformly dispersed over 10 minutes. Electrolyte solution A80g is added to this, 54g of ethanol is further added, solid content concentration is made into 10%, and this is made into the coating solution for cathode catalyst layer preparation. This coating solution is applied and dried on a sheet (trade name: Aflex 100N, manufactured by Asahi Glass Co., Ltd., hereinafter simply referred to as ETFE sheet) made of an ethylene / tetrafluoroethylene copolymer, and the platinum amount is 0.5 mg / cm. 2 cathode catalyst layers are prepared.

また、カーボンブラック粉末に白金とルテニウムの合金を質量比で53%(白金/ルテニウム比=30/23)担持した触媒20gに水124gを添加し超音波を10分かけて均一に分散させ、これに上記電解質液A75gを添加し、さらに56gのエタノールを追加し固形分濃度を10%(質量比)とし、これをアノード触媒層作製用塗工液とする。この塗工液をETFE基材フィルム上に塗布乾燥し、白金量が0.35mg/cmのアノード触媒層を作製する。 In addition, 124 g of water was added to 20 g of a catalyst in which an alloy of platinum and ruthenium was supported by 53% (platinum / ruthenium ratio = 30/23) on a carbon black powder, and ultrasonic waves were uniformly dispersed over 10 minutes. The electrolyte solution A (75 g) was added to the mixture, and 56 g of ethanol was further added to adjust the solid content concentration to 10% (mass ratio). This was used as the anode catalyst layer preparation coating solution. This coating solution is applied onto an ETFE substrate film and dried to produce an anode catalyst layer having a platinum amount of 0.35 mg / cm 2 .

電解質膜をカソード触媒層及びアノード触媒層で挟み、加熱プレス(プレス条件:120℃、2分、3MPa)でプレスして両触媒層を膜に接合し、基材フィルムを剥離して電極面積25cmの膜触媒層接合体を得る。 The electrolyte membrane is sandwiched between the cathode catalyst layer and the anode catalyst layer and pressed with a hot press (press conditions: 120 ° C., 2 minutes, 3 MPa) to bond both catalyst layers to the membrane, and the base film is peeled off to remove an electrode area of 25 cm. 2 membrane catalyst layer assembly is obtained.

膜触媒層接合体を2枚のカーボンペーパーからなるガス拡散層で挟み込んで膜電極接合体を得る。ここで使用したカーボンペーパーは、片側の表面にカーボンとポリテトラフルオロエチレンとからなる層を有しており、該層が膜触媒層接合体の触媒層と接触するように配置する。この膜電極接合体を発電用セルに組み込み、水素(利用率50%)及び空気(利用率50%)を圧力が0.2MPa、露点が100℃の加湿したガスとしてセル内に供給する。セル温度を120℃とし、電流密度を0.2A/cmに固定してセル電圧を記録する。初期の電圧及び0.5Vに低下するまでの時間を調べる。結果を表2に示す。表2において、0.5Vに低下するまでの時間が2000時間以上であるものを◎、900時間以上2000時間未満であるものを○、900時間未満であるものを×で表す。 The membrane electrode assembly is obtained by sandwiching the membrane catalyst layer assembly between two carbon paper gas diffusion layers. The carbon paper used here has a layer made of carbon and polytetrafluoroethylene on the surface of one side, and is arranged so that the layer is in contact with the catalyst layer of the membrane-catalyst layer assembly. This membrane electrode assembly is incorporated into a power generation cell, and hydrogen (utilization rate 50%) and air (utilization rate 50%) are supplied into the cell as a humidified gas having a pressure of 0.2 MPa and a dew point of 100 ° C. The cell voltage is recorded at a cell temperature of 120 ° C. and a current density fixed at 0.2 A / cm 2 . Examine the initial voltage and time to drop to 0.5V. The results are shown in Table 2. In Table 2, the case where the time until the voltage drops to 0.5 V is 2000 hours or more is indicated by ◎, the case where the time is 900 hours or more and less than 2000 hours is indicated by ◯, and the case where the time is less than 900 hours is indicated by ×.

[例2]
特開昭63−297406号公報(第8頁、実施例1)に記載の方法と同様の方法により、テトラフルオロエチレンに基づく繰り返し単位と、CF=CFO(CFSOHに基づく繰り返し単位を有するポリマーからなるイオン交換膜を形成し、イオン交換容量及び軟化温度を測定すると、表1に示す結果のとおりとなる。さらに、イオン交換膜にセリウムイオンを含有させた電解質膜を得て、例1と同様の方法でセリウムイオンの含有率を測定すると、表1に示す結果のとおりとなる。また、例1と同様の方法で膜電極接合体を得て、セル電圧を調べると、表2に示す結果のとおりとなる。
[Example 2]
Based on a repeating unit based on tetrafluoroethylene and CF 2 ═CFO (CF 2 ) 2 SO 3 H by a method similar to the method described in JP-A-63-297406 (page 8, Example 1) When an ion exchange membrane made of a polymer having a repeating unit is formed and the ion exchange capacity and softening temperature are measured, the results shown in Table 1 are obtained. Furthermore, when an electrolyte membrane containing cerium ions in an ion exchange membrane is obtained and the content of cerium ions is measured by the same method as in Example 1, the results shown in Table 1 are obtained. Moreover, when the membrane electrode assembly was obtained by the same method as in Example 1 and the cell voltage was examined, the results shown in Table 2 were obtained.

[例3]
米国特許出願公開第2004/0121210号明細書(第2頁、段落0028)に記載の方法と同様の方法でテトラフルオロエチレンに基づく繰り返し単位と、CF=CFO(CFSOHに基づく繰り返し単位を有するポリマーからなるイオン交換膜を形成し、イオン交換容量及び軟化温度を測定すると、表1に示す結果のとおりとなる。さらに、イオン交換膜にセリウムイオンを含有させた電解質膜を得て、例1と同様の方法でセリウムイオンの含有率を測定すると、表1に示す結果のとおりとなる。また、例1と同様の方法で膜電極接合体を得て、セル電圧を調べると、表2に示す結果のとおりとなる。
[Example 3]
In a manner similar to that described in US 2004/0121210 (page 2, paragraph 0028), repeating units based on tetrafluoroethylene and CF 2 ═CFO (CF 2 ) 4 SO 3 H When an ion exchange membrane made of a polymer having a repeating unit based thereon is formed and the ion exchange capacity and softening temperature are measured, the results shown in Table 1 are obtained. Furthermore, when an electrolyte membrane containing cerium ions in an ion exchange membrane is obtained and the content of cerium ions is measured by the same method as in Example 1, the results shown in Table 1 are obtained. Moreover, when the membrane electrode assembly was obtained by the same method as in Example 1 and the cell voltage was examined, the results shown in Table 2 were obtained.

[例4]
特開2002−231268号公報(第6頁、実施例1)に記載の方法と同様の方法により、テトラフルオロエチレンに基づく繰り返し単位と、CF=CFCFO(CFSOHに基づく繰り返し単位を有するポリマーからなるイオン交換膜を形成し、イオン交換容量及び軟化温度を測定すると、表1に示す結果のとおりとなる。さらに、イオン交換膜にセリウムイオンを含有させた電解質膜を得て、例1と同様の方法でセリウムイオンの含有率を測定すると、表1に示す結果のとおりとなる。また、例1と同様の方法で膜電極接合体を得て、セル電圧を調べると、表2に示す結果のとおりとなる。
[Example 4]
According to a method similar to the method described in JP-A-2002-231268 (page 6, Example 1), a repeating unit based on tetrafluoroethylene and CF 2 = CFCF 2 O (CF 2 ) 2 SO 3 H When an ion exchange membrane made of a polymer having a repeating unit based thereon is formed and the ion exchange capacity and softening temperature are measured, the results shown in Table 1 are obtained. Furthermore, when an electrolyte membrane containing cerium ions in an ion exchange membrane is obtained and the content of cerium ions is measured by the same method as in Example 1, the results shown in Table 1 are obtained. Moreover, when the membrane electrode assembly was obtained by the same method as in Example 1 and the cell voltage was examined, the results shown in Table 2 were obtained.

[例5]
国際公開第2004/97851号パンフレット(第33頁、例7)に記載の方法と同様の方法により、テトラフルオロエチレンに基づく繰り返し単位と、下記モノマー(2)に基づく繰り返し単位を有するポリマーからなるイオン交換膜を形成し、イオン交換容量及び軟化温度を測定すると、表1に示す結果のとおりとなる。さらに、イオン交換膜にセリウムイオンを含有させた電解質膜を得て、例1と同様の方法でセリウムイオンの含有率を測定すると、表1に示す結果のとおりとなる。また、例1と同様の方法で膜電極接合体を得て、セル電圧を調べると、表2に示す結果のとおりとなる。
[Example 5]
Ion comprising a polymer having a repeating unit based on tetrafluoroethylene and a repeating unit based on the following monomer (2) by a method similar to the method described in WO 2004/97851 pamphlet (page 33, Example 7) When the exchange membrane is formed and the ion exchange capacity and the softening temperature are measured, the results shown in Table 1 are obtained. Furthermore, when an electrolyte membrane containing cerium ions in an ion exchange membrane is obtained and the content of cerium ions is measured by the same method as in Example 1, the results shown in Table 1 are obtained. Moreover, when the membrane electrode assembly was obtained by the same method as in Example 1 and the cell voltage was examined, the results shown in Table 2 were obtained.

Figure 0004810868
Figure 0004810868

[例6]
特開2002−260705号公報(第18頁、合成例8)に記載の方法と同様の方法により、テトラフルオロエチレンに基づく繰り返し単位と、下記化合物(5)に基づく繰り返し単位と、CF=CFOCFCF(CF)O(CFSOHに基づく繰り返し単位とを有するポリマーを合成する。下記化合物(5)に基づく繰り返し単位は、42mol%である。
[Example 6]
According to a method similar to that described in JP-A-2002-260705 (page 18, Synthesis Example 8), a repeating unit based on tetrafluoroethylene, a repeating unit based on the following compound (5), and CF 2 ═CFOCF A polymer having 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H based repeating units is synthesized. The repeating unit based on the following compound (5) is 42 mol%.

得られたポリマーをKOHの水とジメチルスルホキシド(KOH/水/ジメチルスルホキシド=15/55/30質量比)を溶媒とする溶液に浸漬、次に塩酸に浸漬して酸型に変換し、超純水で洗浄した。酸型に変換されたポリマーをエタノールと水の混合溶媒(70/30質量比)に分散させ、質量比で固形分が9%の分散液を得た。その分散液100gに対し、炭酸セリウム水和物(Ce(CO・8HO)0.29gを加え、セリウムイオンを含有した分散液を得る。次にこの分散液を100μmのETFEシート上に、ダイコータにて、塗工して製膜する。これを80℃で30分乾燥し、さらに150℃で30分のアニールを施し、膜厚50μmのイオン交換膜を形成する。イオン交換膜のイオン交換容量及び軟化温度を測定すると、表1に示す結果のとおりとなる。 The obtained polymer was immersed in a solution containing KOH water and dimethyl sulfoxide (KOH / water / dimethyl sulfoxide = 15/55/30 mass ratio) as a solvent, and then immersed in hydrochloric acid to be converted into an acid form. Washed with water. The polymer converted into the acid form was dispersed in a mixed solvent of ethanol and water (70/30 mass ratio) to obtain a dispersion having a solid content of 9% by mass ratio. To 100 g of the dispersion, 0.29 g of cerium carbonate hydrate (Ce 2 (CO 3 ) 3 · 8H 2 O) is added to obtain a dispersion containing cerium ions. Next, this dispersion is coated on a 100 μm ETFE sheet with a die coater to form a film. This is dried at 80 ° C. for 30 minutes, and further annealed at 150 ° C. for 30 minutes to form an ion exchange membrane having a thickness of 50 μm. When the ion exchange capacity and softening temperature of the ion exchange membrane are measured, the results shown in Table 1 are obtained.

さらに、イオン交換膜にセリウムイオンを含有させた電解質膜を得て、例1と同様の方法でセリウムイオンの含有率を測定すると、表1に示す結果のとおりとなる。また、例1と同様の方法で膜電極接合体を得て、セル電圧を調べると、表2に示す結果のとおりとなる。   Furthermore, when an electrolyte membrane containing cerium ions in an ion exchange membrane is obtained and the content of cerium ions is measured by the same method as in Example 1, the results shown in Table 1 are obtained. Moreover, when the membrane electrode assembly was obtained by the same method as in Example 1 and the cell voltage was examined, the results shown in Table 2 were obtained.

Figure 0004810868
Figure 0004810868

[例7〜11]
例2〜6においてセリウムイオンを含有させないほかは同様にして、電解質膜を形成し、膜電極接合体を得る。セル電圧を調べると、表2に示す結果のとおりとなる。
[Examples 7 to 11]
An electrolyte membrane is formed in the same manner as in Examples 2 to 6 except that cerium ions are not contained, and a membrane electrode assembly is obtained. When the cell voltage is examined, the result shown in Table 2 is obtained.

[例12]
テトラフルオロエチレンに基づく繰り返し単位と、CF=CFOCFCF(CF)O(CFSOHに基づく繰り返し単位を有するポリマーからなるイオン交換膜を形成し、イオン交換容量及び軟化温度を測定すると、表1に示す結果のとおりとなる。例1と同様の方法で膜電極接合体を得て、セル電圧を調べると、表2に示す結果のとおりとなる。
[Example 12]
An ion exchange membrane comprising a repeating unit based on tetrafluoroethylene and a polymer having a repeating unit based on CF 2 ═CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H is formed, and the ion exchange capacity and softening temperature When measured, the results shown in Table 1 are obtained. When a membrane electrode assembly was obtained in the same manner as in Example 1 and the cell voltage was examined, the results shown in Table 2 were obtained.

Figure 0004810868
Figure 0004810868

Figure 0004810868
Figure 0004810868

本発明の電解質膜は、軟化温度が高く、燃料電池の発電により生成される過酸化水素又は過酸化物ラジカルに対する耐久性が極めて優れている。したがって、本発明の電解質膜を有する膜電極接合体を備える固体高分子形燃料電池は、高温運転の低加湿発電、高加湿発電のいずれにおいても長期の耐久性を有する。
The electrolyte membrane of the present invention has a high softening temperature and extremely excellent durability against hydrogen peroxide or peroxide radicals generated by power generation of a fuel cell. Therefore, the polymer electrolyte fuel cell including the membrane electrode assembly having the electrolyte membrane of the present invention has long-term durability in both high-humidity low-humidity power generation and high-humidity power generation.

Claims (14)

軟化温度が90℃以上でありスルホン酸基を有する含フッ素重合体からなるイオン交換膜からなり、セリウム原子及びマンガン原子からなる群から選ばれる1種以上をイオンとして含み、
セリウムイオンを、前記イオン交換膜に含まれる−SO 基の0.3〜20モル%含むことを特徴とする固体高分子型燃料電池用電解質膜。
Softening temperature is an ion exchange membrane made of a fluoropolymer having and sulfonic acid groups at 90 ° C. or higher, at least one member selected from the group consisting of cerium atoms and manganese atoms include as an ion,
An electrolyte membrane for a polymer electrolyte fuel cell comprising cerium ions in an amount of 0.3 to 20 mol% of —SO 3 groups contained in the ion exchange membrane.
軟化温度が90℃以上でありスルホン酸基を有する含フッ素重合体からなるイオン交換膜からなり、セリウム原子及びマンガン原子からなる群から選ばれる1種以上をイオンとして含み、It consists of an ion exchange membrane consisting of a fluorine-containing polymer having a softening temperature of 90 ° C. or higher and having a sulfonic acid group, and contains one or more selected from the group consisting of cerium atoms and manganese atoms as ions,
マンガンイオンを、前記イオン交換膜に含まれる−SOManganese ions are contained in the ion exchange membrane -SO 3 基の0.5〜30モル%含むことを特徴とする固体高分子型燃料電池用電解質膜。An electrolyte membrane for a polymer electrolyte fuel cell, comprising 0.5 to 30 mol% of the group.
前記スルホン酸基を有する含フッ素重合体は、スルホン酸基を有するパーフルオロカーボン重合体(エーテル結合性の酸素原子を含んでいてもよい。)である請求項1又は2に記載の固体高分子型燃料電池用電解質膜。 The fluoropolymer having sulfonic acid groups is a polymer electrolyte according to claim 1 or a perfluorocarbon polymer having sulfonic acid groups (which may contain ether bond oxygen atom.) Fuel cell electrolyte membrane. 前記スルホン酸基を有するパーフルオロカーボン重合体は、テトラフルオロエチレンに基づく繰り返し単位と、CF=CF(CFSOH(式中、aは0〜6の整数である。)に基づく繰り返し単位とを含む共重合体である請求項に記載の固体高分子型燃料電池用電解質膜。 The perfluorocarbon polymer having a sulfonic acid group is based on a repeating unit based on tetrafluoroethylene and CF 2 = CF (CF 2 ) a SO 3 H (wherein, a is an integer of 0 to 6). The electrolyte membrane for a polymer electrolyte fuel cell according to claim 3 , which is a copolymer containing a repeating unit. 前記スルホン酸基を有するパーフルオロカーボン重合体は、テトラフルオロエチレンに基づく繰り返し単位と、CF=CFO(CFSOH(式中、bは1〜6の整数である。)に基づく繰り返し単位とを含む共重合体である請求項に記載の固体高分子型燃料電池用電解質膜。 The perfluorocarbon polymer having a sulfonic acid group is based on a repeating unit based on tetrafluoroethylene and CF 2 = CFO (CF 2 ) b SO 3 H (wherein b is an integer of 1 to 6). The electrolyte membrane for a polymer electrolyte fuel cell according to claim 3 , which is a copolymer containing a repeating unit. 前記スルホン酸基を有するパーフルオロカーボン重合体は、テトラフルオロエチレンに基づく繰り返し単位と、CF=CFCFO(CFSOH(式中、cは1〜6の整数である。)に基づく繰り返し単位とを含む共重合体である請求項に記載の固体高分子型燃料電池用電解質膜。 The perfluorocarbon polymer having a sulfonic acid group includes a repeating unit based on tetrafluoroethylene and CF 2 = CFCF 2 O (CF 2 ) c SO 3 H (wherein c is an integer of 1 to 6). The electrolyte membrane for a polymer electrolyte fuel cell according to claim 3 , which is a copolymer containing a repeating unit based on. 前記スルホン酸基を有するパーフルオロカーボン重合体は、テトラフルオロエチレンに基づく繰り返し単位と、式(1)で表されるモノマー(ただし、R〜Rはそれぞれ独立にエーテル結合性酸素原子を含有してもよい炭素数1〜6のパーフルオロアルキル基又はフッ素原子であり、Rはエーテル性酸素原子を含有してもよい炭素数1〜6のパーフルオロアルキレン基である。)に基づく繰り返し単位とを含む共重合体である請求項に記載の固体高分子燃料電池用電解質膜。
Figure 0004810868
The perfluorocarbon polymer having a sulfonic acid group includes a repeating unit based on tetrafluoroethylene and a monomer represented by the formula (1) (wherein R 1 to R 3 each independently contain an etheric oxygen atom. R 4 is a perfluoroalkyl group having 1 to 6 carbon atoms or a fluorine atom, and R 4 is a perfluoroalkylene group having 1 to 6 carbon atoms which may contain an etheric oxygen atom. solid polymer electrolyte membrane according to claim 3 which is a copolymer comprising and.
Figure 0004810868
前記式(1)で表されるモノマーは、式(2)で表される請求項に記載の固体高分子燃料電池用電解質膜。
Figure 0004810868
The monomer represented by formula (1) are solid polymer electrolyte membrane according to claim 7 of the formula (2).
Figure 0004810868
前記スルホン酸基を有するパーフルオロカーボン重合体は、テトラフルオロエチレンに基づく繰り返し単位と、CF=CF(OCFCFX)O(CFSOH(式中、dは0又は1、Xはフッ素原子又はトリフルオロメチル基であり、eは1〜5の整数である。)に基づく繰り返し単位と、式(3)で表されるモノマー及び式(4)で表されるモノマー(ただし、Rはエーテル結合性酸素原子を含有してもよい炭素数1〜5のパーフルオロアルキル基又はフッ素原子、R及びRはそれぞれ独立に炭素数1〜5のパーフルオロアルキル基又はフッ素原子である、又は、R及びRは共同で炭素数3〜5のパーフルオロアルキレン基を形成する。R〜R11はそれぞれ独立に炭素数1〜5のパーフルオロアルキル基又はフッ素原子である、又は、R〜R11のうち2つは共同で炭素数3〜5のパーフルオロアルキレン基を形成する。)からなる群から選択される少なくとも一つに基づく繰り返し単位とを含む共重合体である請求項に記載の固体高分子燃料電池用電解質膜。
Figure 0004810868
The perfluorocarbon polymer having a sulfonic acid group includes a repeating unit based on tetrafluoroethylene, CF 2 ═CF (OCF 2 CFX) d O (CF 2 ) e SO 3 H (wherein d is 0 or 1, X is a fluorine atom or a trifluoromethyl group, and e is an integer of 1 to 5.), a monomer represented by formula (3) and a monomer represented by formula (4) (provided that , R 5 may contain an etheric oxygen atom, a C 1-5 perfluoroalkyl group or fluorine atom, and R 6 and R 7 are each independently a C 1-5 perfluoroalkyl group or fluorine. is an atom, or, R 6 and R 7 jointly form a perfluoroalkylene group having 3 to 5 carbon atoms .R 8 to R 11 Pafuruoroa of 1 to 5 carbon atoms are each independently A kill group or a fluorine atom, or two repeats based on at least one selected from the group consisting of forming a perfluoroalkylene group having 3 to 5 carbon atoms.) Jointly of R 8 to R 11 solid polymer electrolyte membrane according to claim 3 which is a copolymer containing a unit.
Figure 0004810868
前記式(3)で表されるモノマー及び式(4)で表されるモノマーからなる群から選択される少なくとも一つは、式(5)で表される請求項に記載の固体高分子型燃料電池用電解質膜。
Figure 0004810868
The solid polymer type according to claim 9 , wherein at least one selected from the group consisting of the monomer represented by the formula (3) and the monomer represented by the formula (4) is represented by the formula (5). Fuel cell electrolyte membrane.
Figure 0004810868
請求項10のいずれか一項に記載の電解質膜の製造方法であって、スルホン酸基を有する含フッ素重合体の分散液中に、当該分散液に溶解可能な下記のセリウム化合物及びマンガン化合物からなる群から選択される1種以上を混合した後、得られた液を用いてキャスト製膜し、電解質膜を作製することを特徴とする固体高分子燃料電池用電解質膜の製造方法。
(セリウム化合物)
炭酸セリウム(Ce (CO ・8H O)、酢酸セリウム(Ce(CH COO) ・H O)、塩化セリウム(CeCl ・6H O)、硝酸セリウム(Ce(NO ・6H O)、硫酸セリウム(Ce (SO ・8H O)、硫酸セリウム(Ce(SO ・4H O)、硝酸二アンモニウムセリウム(Ce(NH (NO )、硫酸四アンモニウムセリウム(Ce(NH (SO )・4H O)、及びセリウムアセチルアセトナート(Ce(CH COCHCOCH ・3H O)。
(マンガン化合物)
炭酸マンガン、酢酸マンガン(Mn(CH COO) ・4H O)、塩化マンガン(MnCl ・4H O)、硝酸マンガン(Mn(NO ・6H O)、硫酸マンガン(MnSO ・5H O)、酢酸マンガン(Mn(CH COO) ・2H O)、及びマンガンアセチルアセトナート(Mn(CH COCHCOCH )。
A process for producing an electrolyte membrane according to any one of claims 1 to 10, the dispersion of the fluoropolymer having sulfonic acid groups, cerium following compounds soluble in the dispersion and manganese after mixing one or more selected from the group consisting of compounds obtained liquid was cast film using a method for producing a polymer electrolyte fuel cell electrolyte membrane, characterized in that to produce the electrolyte membrane .
(Cerium compound)
Cerium carbonate (Ce 2 (CO 3 ) 3 · 8H 2 O), cerium acetate (Ce (CH 3 COO) 3 · H 2 O), cerium chloride (CeCl 3 · 6H 2 O), cerium nitrate (Ce (NO 3) ) 3 · 6H 2 O), cerium sulfate (Ce 2 (SO 4) 3 · 8H 2 O), cerium sulfate (Ce (SO 4) 2 · 4H 2 O), diammonium cerium nitrate (Ce (NH 4) 2 (NO 3 ) 6 ), tetraammonium cerium sulfate (Ce (NH 4 ) 4 (SO 4 ) 4 ) · 4H 2 O), and cerium acetylacetonate (Ce (CH 3 COCHCOCH 3 ) 3 · 3H 2 O).
(Manganese compounds)
Manganese carbonate, manganese acetate (Mn (CH 3 COO) 2 .4H 2 O), manganese chloride (MnCl 2 .4H 2 O), manganese nitrate (Mn (NO 3 ) 2 .6H 2 O), manganese sulfate (MnSO 4 · 5H 2 O), manganese acetate (Mn (CH 3 COO) 3 · 2H 2 O), and manganese acetylacetonate (Mn (CH 3 COCHCOCH 3) 2).
前記溶解可能なセリウム化合物及びマンガン化合物からなる群から選択される1種以上は、炭酸セリウム又は炭酸マンガンである請求項11に記載の固体高分子燃料電池用電解質膜の製造方法。 The soluble cerium compound and one or more selected from the group consisting of manganese compounds, method for producing a polymer electrolyte fuel cell electrolyte membrane according to claim 11 which is a carbonate of cerium or manganese carbonate. 触媒を含む触媒層を有するアノード及びカソードと、前記アノードと前記カソードとの間に配置される電解質膜とを備える固体高分子型燃料電池用膜電極接合体であって、前記電解質膜が請求項1〜10のいずれか一項に記載の電解質膜からなることを特徴とする固体高分子型燃料電池用膜電極接合体。 A membrane electrode assembly for a polymer electrolyte fuel cell, comprising: an anode and a cathode having a catalyst layer containing a catalyst; and an electrolyte membrane disposed between the anode and the cathode, wherein the electrolyte membrane is claimed. A membrane electrode assembly for a polymer electrolyte fuel cell, comprising the electrolyte membrane according to any one of 1 to 10 . 請求項13に記載の膜電極接合体を備える固体高分子型燃料電池の運転方法であって、アノード側に水素ガス、カソード側に酸素又は空気を供給し、90℃以上で発電することを特徴とする固体高分子型燃料電池の運転方法。 14. A method for operating a polymer electrolyte fuel cell comprising the membrane electrode assembly according to claim 13 , wherein hydrogen gas is supplied to the anode side, oxygen or air is supplied to the cathode side, and power is generated at 90 ° C. or higher. A method for operating a polymer electrolyte fuel cell.
JP2005121028A 2005-04-19 2005-04-19 ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL, AND METHOD FOR OPERATING THE SAME Active JP4810868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121028A JP4810868B2 (en) 2005-04-19 2005-04-19 ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL, AND METHOD FOR OPERATING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121028A JP4810868B2 (en) 2005-04-19 2005-04-19 ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL, AND METHOD FOR OPERATING THE SAME

Publications (2)

Publication Number Publication Date
JP2006302600A JP2006302600A (en) 2006-11-02
JP4810868B2 true JP4810868B2 (en) 2011-11-09

Family

ID=37470662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121028A Active JP4810868B2 (en) 2005-04-19 2005-04-19 ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL, AND METHOD FOR OPERATING THE SAME

Country Status (1)

Country Link
JP (1) JP4810868B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031718A (en) * 2004-06-22 2007-02-08 Asahi Glass Co Ltd Liquid composition, method for producing the same, and method for producing membrane electrode assembly for solid polymer fuel cell
JPWO2007007767A1 (en) * 2005-07-12 2009-01-29 旭硝子株式会社 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP2012092345A (en) * 2004-06-22 2012-05-17 Asahi Glass Co Ltd Liquid composition, method for producing the same, and method for manufacturing membrane-electrode assembly for polymer electrolyte fuel cell
US9455465B2 (en) 2004-06-22 2016-09-27 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
WO2020116648A1 (en) 2018-12-07 2020-06-11 Agc株式会社 Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095089B2 (en) * 2005-05-31 2012-12-12 株式会社豊田中央研究所 Solid polymer electrolyte, solid polymer fuel cell, and manufacturing method thereof
JP5011662B2 (en) * 2005-07-01 2012-08-29 旭硝子株式会社 Method for producing electrolyte membrane for polymer electrolyte fuel cell
TW200847513A (en) * 2006-11-27 2008-12-01 Sumitomo Chemical Co Method for manufacturing polyelectrolyte membrane, and polyelectrolyte membrane
TW200847514A (en) * 2006-11-27 2008-12-01 Sumitomo Chemical Co Process for producing polymer electrolyte membrane and polymer electrolyte membrane
JP5090717B2 (en) * 2006-11-28 2012-12-05 株式会社豊田中央研究所 Polymer electrolyte fuel cell
JP4867843B2 (en) * 2007-08-09 2012-02-01 旭硝子株式会社 Fluorosulfonyl group-containing monomer and polymer thereof, and sulfonic acid group-containing polymer
EP3012895A3 (en) * 2007-11-09 2016-06-01 3M Innovative Properties Company Polymer electrolytes including heteropolyacids
JP5277921B2 (en) * 2008-12-10 2013-08-28 トヨタ自動車株式会社 Polymer electrolyte membrane precursor and method for producing polymer electrolyte membrane
JP5521427B2 (en) * 2009-07-31 2014-06-11 旭硝子株式会社 Fuel cell system
JP5957954B2 (en) * 2012-02-29 2016-07-27 東レ株式会社 POLYMER ELECTROLYTE MOLDED BODY, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITION AND SOLID POLYMER TYPE FUEL CELL USING THE SAME
KR102301841B1 (en) 2019-11-21 2021-09-14 한국에너지기술연구원 Method for manufacturing membrane electrode assembly, membrane electrode assembly and fuel cell
CN115991821B (en) * 2021-10-18 2023-12-22 山东东岳未来氢能材料股份有限公司 Proton exchange membrane containing phosphonic acid structural unit and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940525A (en) * 1987-05-08 1990-07-10 The Dow Chemical Company Low equivalent weight sulfonic fluoropolymers
MY135964A (en) * 1998-10-26 2008-07-31 Du Pont Ionomers and polymers for electrochemical uses
JP4032738B2 (en) * 2000-12-26 2008-01-16 旭硝子株式会社 Solid polymer electrolyte material, liquid composition, solid polymer fuel cell, fluoropolymer and fluoropolymer
JP4848587B2 (en) * 2001-01-26 2011-12-28 旭硝子株式会社 ELECTROLYTE MATERIAL FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL
JP2004134294A (en) * 2002-10-11 2004-04-30 Toyota Central Res & Dev Lab Inc Solid polyelectrolyte
WO2004097851A1 (en) * 2003-04-28 2004-11-11 Asahi Glass Company Limited Solid polymeric electrolyte material, process for producing the same and membrane/electrode assembly for solid polymer fuel cell
JP4326271B2 (en) * 2003-06-26 2009-09-02 株式会社豊田中央研究所 Solid polymer electrolytes containing transition metal oxides
JP4979179B2 (en) * 2003-08-22 2012-07-18 株式会社豊田中央研究所 Solid polymer fuel cell and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031718A (en) * 2004-06-22 2007-02-08 Asahi Glass Co Ltd Liquid composition, method for producing the same, and method for producing membrane electrode assembly for solid polymer fuel cell
JP2012092345A (en) * 2004-06-22 2012-05-17 Asahi Glass Co Ltd Liquid composition, method for producing the same, and method for manufacturing membrane-electrode assembly for polymer electrolyte fuel cell
US8546004B2 (en) 2004-06-22 2013-10-01 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US9331354B2 (en) 2004-06-22 2016-05-03 Asahi Glass Company, Limited Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US9455465B2 (en) 2004-06-22 2016-09-27 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US10153506B2 (en) 2004-06-22 2018-12-11 AGC Inc. Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US10916790B2 (en) 2004-06-22 2021-02-09 AGC Inc. Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
JPWO2007007767A1 (en) * 2005-07-12 2009-01-29 旭硝子株式会社 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
WO2020116648A1 (en) 2018-12-07 2020-06-11 Agc株式会社 Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
US11898018B2 (en) 2018-12-07 2024-02-13 AGC Inc. Liquid composition, polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2006302600A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4810868B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL, AND METHOD FOR OPERATING THE SAME
JP5287969B2 (en) Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP6231588B2 (en) High durability fuel cell components with cerium oxide additive
JP3915846B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof, and membrane electrode assembly for polymer electrolyte fuel cell
US20080118808A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
JP5498643B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL SYSTEM INCLUDING THE SAME
JP5247974B2 (en) Method for producing electrolyte membrane for polymer electrolyte hydrogen / oxygen fuel cell
JP4997971B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP5011662B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
US20090110967A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production, membrane/electrode assembly for polymer electrolyte fuel cell and method of operating polymer electrolyte fuel cell
JP4972867B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP4765908B2 (en) Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP2006099999A (en) Electrolyte membrane for solid polymer fuel cell, its manufacturing method, and membrane electrode assembly for solid polymer fuel cell
JP5286651B2 (en) Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2006318755A (en) Film-electrode assembly for solid polymer fuel cell
JP2007188706A (en) Electrolyte membrane for polymer electrolyte fuel cell, and membrane-electrode assembly for polymer electrolyte fuel cell
JP2007031718A5 (en)
JP4765401B2 (en) Method for producing membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell
US7977008B2 (en) High temperature proton exchange membrane using ionomer/solid proton conductor, preparation method thereof and fuel cell containing the same
EP2202830A1 (en) Membrane electrode assembly and fuel cell
JP2008098179A (en) Electrolyte membrane for solid polymer electrolyte fuel cell, its manufacturing method, and membrane electrode assembly for polymer electrolyte fuel cell
JP2006210166A (en) Electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly for polymer electrolyte fuel cell
JP5109244B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R151 Written notification of patent or utility model registration

Ref document number: 4810868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250