JP2005174861A - Manufacturing method for membrane electrode assembly for solid polymer fuel cell - Google Patents

Manufacturing method for membrane electrode assembly for solid polymer fuel cell Download PDF

Info

Publication number
JP2005174861A
JP2005174861A JP2003416551A JP2003416551A JP2005174861A JP 2005174861 A JP2005174861 A JP 2005174861A JP 2003416551 A JP2003416551 A JP 2003416551A JP 2003416551 A JP2003416551 A JP 2003416551A JP 2005174861 A JP2005174861 A JP 2005174861A
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
catalyst layer
polymer electrolyte
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003416551A
Other languages
Japanese (ja)
Inventor
Masaru Yoshitake
優 吉武
Shinji Terasono
真二 寺園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003416551A priority Critical patent/JP2005174861A/en
Publication of JP2005174861A publication Critical patent/JP2005174861A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a membrane electrode assembly for a solid polymer fuel cell capable of obtaining high output voltage by efficiently covering catalyst powder with a cation exchange resin to increase a reaction site in a three-phase zone. <P>SOLUTION: This manufacturing method comprises a step preparing a coating solution with solid concentration of 0.1-20 mass% and positive (plus) zeta potential of the particles in the liquid by preparing a dispersion liquid by mixing a cation exchange resin and a dispersion medium containing alcohol, then warming at temperature of 40-120°C so that a zeta potential of the cation exchange resin in the dispersion liquid changes from negative (minus) to positive (plus), in that condition, adding and mixing catalyst powder into the dispersion liquid so that the mass ratio of the catalyst powder and the cation exchange resin in solid content conversion is 50:50-85:15, a step forming a catalyst layer by applying the coating solution on a base material and drying it and a step arranging the catalyst layer adjacent to a polymer electrolyte film as at least one catalyst layer of a cathode and an anode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池用膜電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode assembly for a polymer electrolyte fuel cell.

燃料電池は、燃料となるガスの反応エネルギーを直接電気エネルギーに変換する電池であり、特に水素・酸素燃料電池は、その反応生成物が原理的に水のみであることから地球環境への影響がほとんどないことで知られている。なかでも、電解質として固体高分子膜を使用する固体高分子型燃料電池においては、近年、高いイオン導電性を有する高分子電解質膜が開発されており、常温でも作動できて、高出力密度が得られるため、エネルギー問題や地球環境問題への社会的要請の高まりとともに、電気自動車用等の移動車両や、小型コージェネレーションシステム等への電源として大きな期待が寄せられている。   A fuel cell is a cell that directly converts the reaction energy of the gas used as fuel into electrical energy. In particular, the hydrogen / oxygen fuel cell has no influence on the global environment because its reaction product is essentially water only. It is known for almost nothing. In particular, for polymer electrolyte fuel cells that use a polymer electrolyte membrane as an electrolyte, polymer electrolyte membranes having high ionic conductivity have been developed in recent years, and can operate at room temperature and achieve high output density. Therefore, with increasing social demand for energy problems and global environmental problems, there is a great expectation as a power source for mobile vehicles for electric vehicles, small cogeneration systems, and the like.

固体高分子型燃料電池では、通常、固体高分子電解質としてプロトン伝導性のイオン交換膜が使用され、特にスルホン酸基等を有するパーフルオロカーボン重合体からなるイオン交換膜が基本特性に優れていることが知られている。固体高分子型燃料電池では、イオン交換膜の両面に触媒層とさらにその外側にガス拡散層を配置し、燃料である水素を含むガス及び酸化剤となる酸素を含むガス(空気等)を、それぞれアノード及びカソードに供給することにより発電を行う。   In a polymer electrolyte fuel cell, a proton conductive ion exchange membrane is usually used as a solid polymer electrolyte, and in particular, an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group has excellent basic characteristics. It has been known. In a polymer electrolyte fuel cell, a catalyst layer and gas diffusion layers are arranged on both sides of an ion exchange membrane, and a gas containing hydrogen as a fuel and a gas containing oxygen (such as air) as an oxidant, Electric power is generated by supplying the anode and cathode respectively.

通常、固体高分子型燃料電池に使用される電極は、イオン交換樹脂で被覆された、金属粒子又は金属粒子を担持したカーボン粒子からなる触媒粉末(以下、両者をあわせて、触媒粉末という)を含有する触媒層と、この触媒層に反応ガスを供給するとともに触媒層において発生する電荷を集電するガス拡散層とから構成されている。そしてこの触媒層内には、上述の金属粒子又は金属粒子を担持したカーボン粒子の二次粒子同士間に形成される微小な細孔からなる空隙部が存在しており、この空隙部が反応ガスの拡散流路として機能している。固体高分子型燃料電池の電極部における反応は、電解質、触媒及びガス(水素又は酸素)が同時に存在する三相界面のみで進行することが知られている。   Usually, an electrode used for a polymer electrolyte fuel cell is a catalyst powder made of metal particles or carbon particles carrying metal particles coated with an ion exchange resin (hereinafter referred to as catalyst powder). The catalyst layer is composed of a gas diffusion layer that supplies a reaction gas to the catalyst layer and collects charges generated in the catalyst layer. In the catalyst layer, there are voids composed of fine pores formed between the secondary particles of the above-described metal particles or carbon particles supporting the metal particles, and these voids are the reaction gas. Functions as a diffusion flow path. It is known that the reaction at the electrode part of the polymer electrolyte fuel cell proceeds only at the three-phase interface where the electrolyte, catalyst and gas (hydrogen or oxygen) are present simultaneously.

この触媒層を形成させる基本的な方法としては、上述の触媒粉末を分散させた分散液に固体高分子電解質の溶液を混合して触媒層形成用の塗工液を調製した後、これを例えばテフロン(登録商標)基材上に塗工して、固体高分子電解質膜上に加熱圧着する方法や、塗工液を固体高分子電解質膜上に直接塗工する方法等が挙げられる。しかし、触媒粉末、特に金属粒子をカーボンに担持した触媒粉末については、通常、カーボン担体の細孔が発達しており、微細な細孔内部に担持されている金属微粒子に対してイオン交換樹脂で被覆することは困難であり、発電に実効的に働く反応面積は全金属粒子の表面積に比較して非常に少なかった。   As a basic method for forming this catalyst layer, after preparing a coating liquid for forming a catalyst layer by mixing a solid polymer electrolyte solution in a dispersion in which the above catalyst powder is dispersed, Examples thereof include a method of coating on a Teflon (registered trademark) substrate and heat-pressing on the solid polymer electrolyte membrane, and a method of directly coating the coating liquid on the solid polymer electrolyte membrane. However, for catalyst powders, particularly catalyst powders in which metal particles are supported on carbon, the pores of the carbon carrier are usually developed, and ion exchange resin is used for the metal fine particles supported in the fine pores. It was difficult to coat, and the reaction area that worked effectively for power generation was very small compared to the surface area of all metal particles.

このため、触媒層における三相界面をより増大させるためには、触媒粉末中の金属粒子がイオン交換樹脂で効率よく被覆されている状態が必要である。   For this reason, in order to further increase the three-phase interface in the catalyst layer, it is necessary that the metal particles in the catalyst powder be efficiently coated with the ion exchange resin.

しかし、一般に、ナフィオン溶液(Aldrich社製)やフレミオン溶液(旭硝子社製)に代表されるスルホン酸基等の陽イオン交換基を有するイオン交換樹脂の分散液では、陽イオン交換基が通常は外側に配向して分散液中に分散しているため、ゼータ電位が負(マイナス)の値を示すと考えられる。また、通常の触媒粉末においても、水やアルコールを含む分散液中においてはゼータ電位は負の値を示すことが知られており、特に、金属粒子を担持したカーボン粒子は、粒子の表面にキノン性カルボニル基、フェノール性水酸基、ラクトン環等の表面官能基が含まれることから、小さな負のゼータ電位を示す。このため、従来の製造方法では、塗工液中において、イオン交換樹脂と触媒粉末の両者が負のゼータ電位を有して分散した状態となり、この場合は、両者が静電的に反発し合うため、触媒粉末粒子をイオン交換樹脂で効率よく被覆することは容易ではなかった。   However, in general, in a dispersion of an ion exchange resin having a cation exchange group such as a sulfonic acid group represented by Nafion solution (manufactured by Aldrich) or Flemion solution (manufactured by Asahi Glass), the cation exchange group is usually outside. It is considered that the zeta potential shows a negative (minus) value because it is oriented in the dispersion and dispersed in the dispersion. In addition, even in ordinary catalyst powders, it is known that the zeta potential shows a negative value in a dispersion containing water or alcohol. In particular, carbon particles carrying metal particles are quinone on the surface of the particles. Since it contains surface functional groups such as a functional carbonyl group, a phenolic hydroxyl group, and a lactone ring, it exhibits a small negative zeta potential. For this reason, in the conventional manufacturing method, both the ion exchange resin and the catalyst powder are dispersed with a negative zeta potential in the coating liquid, and in this case, both of them repel each other electrostatically. Therefore, it is not easy to efficiently coat the catalyst powder particles with the ion exchange resin.

このため、従来では、三相界面を増大させ、反応サイトを拡大させるための方法として金属粒子を担持したカーボン粒子表面に塩基性官能基を結合させ、粒子同士の凝集を防ぐ方法(特許文献1)や、金属粒子を担持したカーボン粒子に親水性を付与し、イオン交換樹脂のスルホン酸基を配向させる方法(特許文献2)等が提案されている。   For this reason, conventionally, as a method for increasing the three-phase interface and expanding the reaction site, a method of preventing the particles from aggregating by bonding basic functional groups to the surface of carbon particles carrying metal particles (Patent Document 1). ), A method of imparting hydrophilicity to carbon particles carrying metal particles, and orienting sulfonic acid groups of an ion exchange resin (Patent Document 2) and the like have been proposed.

しかし、上述の、金属粒子を担持したカーボン粒子を処理する方法では、触媒金属の活性が低下してしまう恐れや抵抗値の上昇を引き起こす可能性がある他、コスト的にも高くなるという問題があった。   However, in the above-described method for treating carbon particles carrying metal particles, there is a possibility that the activity of the catalytic metal may be reduced, the resistance value may be increased, and the cost is increased. there were.

また、他には、白金化合物とルテニウム化合物の水溶液をイオン交換樹脂を含有する分散液中で加圧、加熱することにより、還元して、白金とルテニウムの合金を分散液中で形成する方法が挙げられている(特許文献3)が、この方法では、触媒の濃度が非常に低い塗工液でなければならず、逆に濃度の高い塗工液を得ようとすると、触媒粒子が凝集するなどの問題が起きるため実用的でないという問題が挙げられる。   In addition, there is a method in which an aqueous solution of a platinum compound and a ruthenium compound is reduced by applying pressure and heating in a dispersion containing an ion exchange resin to form an alloy of platinum and ruthenium in the dispersion. Although it is mentioned (Patent Document 3), in this method, the concentration of the catalyst must be a very low coating solution, and conversely, when trying to obtain a coating solution having a high concentration, the catalyst particles aggregate. The problem that it is not practical because of the problems such as.

特開平8−78021号公報(特許請求の範囲)JP-A-8-78021 (Claims) 特開2002−324557号公報(特許請求の範囲)JP 2002-324557 A (Claims) 特開2003−123775号公報JP 2003-123775 A

本発明は、触媒粉末を陽イオン交換樹脂で効率よく被覆することにより三相界面における反応サイトを増大させ、高い出力電圧を得ることのできる固体高分子型燃料電池用膜電極接合体の製造方法を提供することを目的とする。   The present invention relates to a method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, which can increase the reaction sites at the three-phase interface by efficiently coating the catalyst powder with a cation exchange resin and obtain a high output voltage. The purpose is to provide.

本発明は、触媒粉末と陽イオン交換樹脂とを含む触媒層を有するカソード及びアノードと、前記カソードと前記アノードとの間に配置される高分子電解質膜とからなる固体高分子型燃料電池用膜電極接合体の製造方法であって、前記陽イオン交換樹脂とアルコールを含む分散媒とを含む分散液を作製した後、温度40〜120℃に加温することにより、前記分散液中の粒子のゼータ電位が負(マイナス)から正(プラス)にかわるようにし、その状態で前記分散液に、固形分換算での前記触媒粉末と陽イオン交換樹脂との質量比が50:50〜85:15となるように前記触媒粉末を添加、混合して、固形分濃度が0.1〜20質量%で、液中の粒子のゼータ電位が正(プラス)の塗工液を作製する工程、前記塗工液を基材上に塗工し、乾燥することにより触媒層を形成する工程、及び該触媒層をカソード及びアノードの少なくとも一方の触媒層として高分子電解質膜に隣接して配置する工程、を経ることを特徴とする固体高分子型燃料電池用膜電極接合体の製造方法を提供する。   The present invention relates to a membrane for a polymer electrolyte fuel cell comprising a cathode and an anode having a catalyst layer containing a catalyst powder and a cation exchange resin, and a polymer electrolyte membrane disposed between the cathode and the anode. A method for producing an electrode assembly, wherein a dispersion liquid containing the cation exchange resin and a dispersion medium containing alcohol is prepared, and then heated to a temperature of 40 to 120 ° C., whereby particles in the dispersion liquid are produced. The zeta potential is changed from negative (minus) to positive (plus), and in this state, the dispersion has a mass ratio of the catalyst powder to the cation exchange resin in terms of solid content of 50:50 to 85:15. The catalyst powder is added and mixed so that a solid content concentration of 0.1 to 20% by mass and a zeta potential of particles in the liquid is positive (plus); Apply the working fluid on the substrate and dry it A solid polymer fuel cell comprising: a step of forming a catalyst layer, and a step of arranging the catalyst layer adjacent to the polymer electrolyte membrane as at least one of a cathode and an anode catalyst layer. A method for producing a membrane electrode assembly for use is provided.

また、本発明は、触媒粉末と陽イオン交換樹脂とを含む触媒層を有するカソード及びアノードと、前記カソードと前記アノードとの間に配置される高分子電解質膜とからなる固体高分子型燃料電池用膜電極接合体の製造方法であって、固形分換算での前記触媒粉末と陽イオン交換樹脂との質量比が50:50〜85:15となるように、前記触媒粉末と前記陽イオン交換樹脂とアルコールを含む分散媒とを混合し、温度40〜120℃に加温して、撹拌することにより、固形分濃度が0.1〜20質量%で、液中の粒子のゼータ電位が正(プラス)の塗工液を作製する工程、前記塗工液を基材上に塗工し、乾燥することにより触媒層を形成する工程、及び該触媒層をカソード及びアノードの少なくとも一方の触媒層として高分子電解質膜に隣接して配置する工程、を経ることを特徴とする固体高分子型燃料電池用膜電極接合体の製造方法を提供する。   The present invention also provides a solid polymer fuel cell comprising a cathode and an anode having a catalyst layer containing a catalyst powder and a cation exchange resin, and a polymer electrolyte membrane disposed between the cathode and the anode. A method for producing a membrane electrode assembly for a catalyst, wherein the catalyst powder and the cation exchange are prepared so that a mass ratio of the catalyst powder and the cation exchange resin in terms of solid content is 50:50 to 85:15 The resin and the dispersion medium containing alcohol are mixed, heated to a temperature of 40 to 120 ° C., and stirred, so that the solid content concentration is 0.1 to 20% by mass and the zeta potential of the particles in the liquid is positive. A step of producing a (plus) coating solution, a step of forming a catalyst layer by coating the coating solution on a substrate and drying, and at least one of a cathode and an anode catalyst layer. As next to the polymer electrolyte membrane To provide a method of manufacturing a solid polymer electrolyte fuel cell membrane electrode assembly, characterized in that through the process, it is placed in.

本発明により、触媒粉末を陽イオン交換樹脂で効率よく被覆できるため三相界面を増大させることができ、初期の発電性能に優れると同時に長期間の発電を行っても安定した固体高分子型燃料電池用膜電極接合体を得ることができる。   According to the present invention, since the catalyst powder can be efficiently coated with a cation exchange resin, the three-phase interface can be increased, and it is excellent in initial power generation performance and at the same time is stable even after long-term power generation. A membrane electrode assembly for a battery can be obtained.

本発明により得られる固体高分子型燃料電池用膜電極接合体の一態様の断面図を図1に示す。以下、膜電極接合体7を図1に基づいて説明する。膜電極接合体7は、固体高分子電解質膜1と、この電解質膜1の膜面に密着したアノード触媒層2及びカソード触媒層3と、これら各触媒層に密着したガス拡散層4、4’とガスシール体6により構成される。膜電極接合体7の外側にはガス流路5aとなる溝が形成されたセパレータ5が配置されている。アノード側には、セパレータの溝を介して、例えばメタノールや天然ガス等の燃料を改質して得られる水素ガスが供給される。   FIG. 1 shows a cross-sectional view of one embodiment of a membrane electrode assembly for a polymer electrolyte fuel cell obtained by the present invention. Hereinafter, the membrane electrode assembly 7 will be described with reference to FIG. The membrane electrode assembly 7 includes a solid polymer electrolyte membrane 1, an anode catalyst layer 2 and a cathode catalyst layer 3 in close contact with the membrane surface of the electrolyte membrane 1, and gas diffusion layers 4, 4 ′ in close contact with these catalyst layers. And the gas seal body 6. On the outside of the membrane electrode assembly 7, a separator 5 in which a groove to be a gas flow path 5a is formed is disposed. For example, hydrogen gas obtained by reforming a fuel such as methanol or natural gas is supplied to the anode side through a groove of the separator.

固体高分子電解質膜1は、アノード触媒層2中で生成するプロトンを膜厚方向に沿ってカソード触媒層3へ選択的に透過させる役割を有する。また、固体高分子電解質膜1は、アノードに供給される水素とカソードに供給される酸素が混じり合わないようにするための隔膜としての機能も有する。   The solid polymer electrolyte membrane 1 has a role of selectively transmitting protons generated in the anode catalyst layer 2 to the cathode catalyst layer 3 along the film thickness direction. The solid polymer electrolyte membrane 1 also has a function as a diaphragm for preventing hydrogen supplied to the anode and oxygen supplied to the cathode from being mixed.

アノード触媒層2及びカソード触媒層3は、ガス拡散層4、4’と固体高分子電解質膜1との間に配置される。これにより、固体高分子型燃料電池用膜電極接合体が得られる。以下、本発明について詳述する。   The anode catalyst layer 2 and the cathode catalyst layer 3 are disposed between the gas diffusion layers 4, 4 ′ and the solid polymer electrolyte membrane 1. Thereby, a membrane electrode assembly for a polymer electrolyte fuel cell is obtained. Hereinafter, the present invention will be described in detail.

本発明では、触媒層を形成するための塗工液(以下、単に塗工液という)は、下記に詳述するとおり、触媒粉末と陽イオン交換樹脂とアルコールを含む分散媒とを含有し、塗工液中の粒子のゼータ電位を正(プラス)の状態にさせる工程を含むことを特徴とする。さらに、固形分濃度0.1〜20質量%で、かつ、固形分換算での触媒粉末と陽イオン交換樹脂との質量比が50:50〜85:15となるように塗工液を調整することも特徴とする。これにより、触媒粉末を陽イオン交換樹脂が効率よく被覆することができ、接合体を作製した場合、三相界面を増大させることができるので好ましい。本発明の塗工液は、カソード及びアノードのいずれの触媒層を形成する際においても使用でき、カソード及びアノードの両方の触媒層に使用することが特に好ましい。なお、ここで塗工液中の粒子とは触媒粉末粒子と陽イオン交換樹脂粒子とからなる。   In the present invention, a coating liquid for forming a catalyst layer (hereinafter simply referred to as a coating liquid) contains a catalyst powder, a cation exchange resin, and a dispersion medium containing alcohol, as described in detail below. It includes a step of bringing the zeta potential of the particles in the coating liquid into a positive (plus) state. Further, the coating liquid is adjusted so that the solid content concentration is 0.1 to 20% by mass and the mass ratio of the catalyst powder and the cation exchange resin in terms of solid content is 50:50 to 85:15. It is also characterized. Thereby, a cation exchange resin can coat | cover a catalyst powder efficiently, and when a conjugate | zygote is produced, since a three-phase interface can be increased, it is preferable. The coating liquid of the present invention can be used in forming any of the cathode and anode catalyst layers, and is particularly preferably used for both the cathode and anode catalyst layers. Here, the particles in the coating liquid are composed of catalyst powder particles and cation exchange resin particles.

本発明では、陽イオン交換樹脂を使用する。陽イオン交換樹脂における陽イオン交換基としては、スルホン酸基、カルボン酸基、ホスホン酸基、スルホンイミド基等が挙げられる。陽イオン交換樹脂としては、スルホン酸基を有するものが特に好ましい。   In the present invention, a cation exchange resin is used. Examples of the cation exchange group in the cation exchange resin include a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a sulfonimide group. As the cation exchange resin, those having a sulfonic acid group are particularly preferable.

本発明では、陽イオン交換樹脂はイオン交換容量が0.5〜1.5ミリ当量/g乾燥樹脂であることが好ましい。陽イオン交換樹脂のイオン交換容量が0.5ミリ当量/g乾燥樹脂未満であると、得られた触媒層の抵抗値が発電時に上昇するおそれがあるので好ましくなく、イオン交換容量が1.5ミリ当量/g乾燥樹脂超であると、得られた触媒層の含水率が増大し、膨潤しやすくなり、細孔が閉塞するおそれがあるので好ましくない。イオン交換容量は0.8〜1.2ミリ当量/g乾燥樹脂が特に好ましい。   In the present invention, the cation exchange resin is preferably a dry resin having an ion exchange capacity of 0.5 to 1.5 meq / g. If the ion exchange capacity of the cation exchange resin is less than 0.5 meq / g dry resin, the resistance value of the resulting catalyst layer may increase during power generation, which is not preferable. If it is more than milliequivalent / g dry resin, the water content of the obtained catalyst layer is increased, the resin layer tends to swell, and the pores may be clogged. The ion exchange capacity is particularly preferably 0.8 to 1.2 meq / g dry resin.

陽イオン交換樹脂としては、CF=CF−(OCFCFX)−O−(CF−SOHで表されるパーフルオロビニル化合物(mは0〜3の整数を示し、nは1〜12の整数を示し、pは0又は1を示し、Xはフッ素原子又はトリフルオロメチル基を示す。)に基づく重合単位と、テトラフルオロエチレンに基づく重合単位とを含む共重合体であることが好ましい。 The cation exchange resin, CF 2 = CF- (OCF 2 CFX) m -O p - (CF 2) a perfluorovinyl compound represented by n -SO 3 H (m is an integer of 0 to 3, n represents an integer of 1 to 12, p represents 0 or 1, and X represents a fluorine atom or a trifluoromethyl group.) and a copolymer comprising a polymer unit based on tetrafluoroethylene It is preferable that

上記フルオロビニル化合物の好ましい例としては、下記式(1)〜(3)で表される化合物が挙げられる。ただし、下記式中、qは1〜8の整数、rは1〜8の整数、tは1〜3の整数を示す。
CF=CFO(CF−SOH ・・・(1)
CF=CFOCFCF(CF)O(CF−SOH・・・(2)
CF=CF(OCFCF(CF))O(CF−SOH・・・(3)。
Preferable examples of the fluorovinyl compound include compounds represented by the following formulas (1) to (3). However, in the following formula, q is an integer of 1 to 8, r is an integer of 1 to 8, and t is an integer of 1 to 3.
CF 2 = CFO (CF 2) q -SO 3 H ··· (1)
CF 2 = CFOCF 2 CF (CF 3) O (CF 2) r -SO 3 H ··· (2)
CF 2 = CF (OCF 2 CF (CF 3)) t O (CF 2) 2 -SO 3 H ··· (3).

なお、陽イオン交換樹脂は、具体的には、ナフィオン(商品名:Aldrich社製)やフレミオン(商品名:旭硝子社製)等が挙げられる。   Specific examples of the cation exchange resin include Nafion (trade name: manufactured by Aldrich) and Flemion (trade name: manufactured by Asahi Glass).

本発明では、アルコールを含む分散媒を使用する。アルコールを含む分散媒には、アルコール以外に、適宜必要に応じて、他の溶剤を混合することができる。他の溶剤としては、例えば、水、アセトン等が挙げられる。他の溶剤とアルコールは、10:1〜1:10の割合で混合して使用することができる。   In the present invention, a dispersion medium containing alcohol is used. In addition to alcohol, other solvents can be mixed with the dispersion medium containing alcohol as needed. Examples of other solvents include water and acetone. Other solvents and alcohol can be mixed and used at a ratio of 10: 1 to 1:10.

本発明において、アルコールとしては、特に限定されないが、炭素原子数が1〜5の、分子内にOH基を1つ以上含むものが好ましい。具体的には、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、n−ペンタノール、エチレングリコール、ペンタフルオロエタノール、ヘプタフルオロブタノールが挙げられる。これらのアルコールは単独でも使用してもよく、2種以上混合してもよい。アルコールは、分子内にOH基を1つ有する直鎖のものが特に好ましく、エタノールが特に好ましい。   In the present invention, the alcohol is not particularly limited, but an alcohol having 1 to 5 carbon atoms and containing one or more OH groups in the molecule is preferable. Specific examples include ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-pentanol, ethylene glycol, pentafluoroethanol, and heptafluorobutanol. These alcohols may be used alone or in combination of two or more. The alcohol is particularly preferably a straight chain having one OH group in the molecule, and ethanol is particularly preferable.

本発明では、触媒粉末は、金属粒子からなるものか又は金属粒子がカーボンに担持されたものである。また、本発明における触媒粉末は、上述のアルコール中においてゼータ電位が負(マイナス)の値を示す。金属粒子を触媒として、そのまま使用する場合は、白金又は白金との合金が好ましい。白金との合金として使用する金属としては、金、銀、ルテニウム、パラジウム、ロジウム、イリジウム、コバルト、鉄、マンガン、クロム等が好ましいが、必ずしもこれらに限定されない。   In the present invention, the catalyst powder is made of metal particles or metal particles supported on carbon. Further, the catalyst powder in the present invention exhibits a negative (minus) value of zeta potential in the above-mentioned alcohol. When using metal particles as a catalyst as they are, platinum or an alloy with platinum is preferable. As a metal used as an alloy with platinum, gold, silver, ruthenium, palladium, rhodium, iridium, cobalt, iron, manganese, chromium and the like are preferable, but not necessarily limited thereto.

また、金属粒子をカーボンに担持された触媒粉末の場合は、いずれの金属でも使用でき、金属粒子としては、特に限定されず、白金、金、銀、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、クロム、鉄、チタン、マンガン、コバルト、ニッケル、モリブデン、タングステン、アルミニウム、ケイ素、亜鉛及びスズからなる群より選ばれる1種以上のものが好ましい。金属粒子をカーボンに担持された触媒粉末の場合において、使用される金属粒子としては、なかでも、白金との合金が好ましく、白金とルテニウムの合金が、触媒の活性が安定することから特に好ましい。   Further, in the case of catalyst powder in which metal particles are supported on carbon, any metal can be used, and the metal particles are not particularly limited, and are platinum, gold, silver, ruthenium, rhodium, palladium, osmium, iridium, chromium. One or more selected from the group consisting of iron, titanium, manganese, cobalt, nickel, molybdenum, tungsten, aluminum, silicon, zinc and tin are preferred. In the case of catalyst powder in which metal particles are supported on carbon, the metal particles used are preferably an alloy with platinum, and an alloy of platinum and ruthenium is particularly preferable because the activity of the catalyst is stable.

また、金属粒子をカーボンに担持された触媒粉末の場合、担体となるカーボンは比表面積が50〜1500m/gであることが好ましい。比表面積50m/g未満であると、触媒となる金属粒子の担持率を上げることが難しく、得られた触媒層の出力特性が低下するおそれのあることから好ましくなく、比表面積が1500m/g超であると、細孔が微細すぎるために陽イオン交換樹脂による被覆が難しくなり、得られた触媒層の出力特性が低下するおそれがあることから好ましくない。比表面積は200〜900m/gが特に好ましい。 Further, in the case of a catalyst powder in which metal particles are supported on carbon, the carbon serving as a carrier preferably has a specific surface area of 50 to 1500 m 2 / g. If it is less than a specific surface area of 50 m 2 / g, it is difficult to increase the loading of metal particles as a catalyst, it is not preferred since the output characteristics of the obtained catalyst layer are likely to decrease, the specific surface area of 1500 m 2 / If it exceeds g, since the pores are too fine, coating with a cation exchange resin becomes difficult, and the output characteristics of the obtained catalyst layer may be deteriorated. The specific surface area is particularly preferably 200 to 900 m 2 / g.

また、触媒粉末の粒子は平均粒径0.05〜5μmであることが好ましい。平均粒径0.05μm未満であると、得られた触媒層が緻密な構造となりカソードやアノードにおいて生成水の排出がしにくくなるので好ましくなく、平均粒径5μm超であると、触媒粉末に対するイオン交換樹脂による被覆がしにくくなり被覆面積が減少するため触媒層の性能が低下するおそれがあるので好ましくない。   The catalyst powder particles preferably have an average particle size of 0.05 to 5 μm. If the average particle size is less than 0.05 μm, the resulting catalyst layer has a dense structure and it is difficult to discharge generated water at the cathode or anode. Since it is difficult to coat with an exchange resin and the coating area is reduced, the performance of the catalyst layer may be lowered, which is not preferable.

本発明では、下記に示す2つの態様のいずれかの方法により、塗工液を作製する。   In this invention, a coating liquid is produced by the method of either of the two aspects shown below.

まず、第1の態様としては、陽イオン交換樹脂とアルコールを含む分散媒とを混合して分散液を作製した後、温度40〜120℃に加温して、陽イオン交換樹脂のゼータ電位を負から正の状態に反転させ、次いで、その状態を維持したままで、分散液に触媒粉末を添加、混合する方法による。これにより、本発明では、触媒粉末と陽イオン交換樹脂とが粒子を形成する際、ゼータ電位が負に帯電した触媒粉末粒子に対してゼータ電位が正に帯電した陽イオン交換樹脂が静電的に吸着することができ、被覆率を上げることができる。   First, as a 1st aspect, after mixing a cation exchange resin and the dispersion medium containing alcohol and producing a dispersion liquid, it heats at the temperature of 40-120 degreeC, and sets the zeta potential of a cation exchange resin. By reversing from a negative state to a positive state and then maintaining the state, the catalyst powder is added to the dispersion and mixed. Accordingly, in the present invention, when the catalyst powder and the cation exchange resin form particles, the cation exchange resin having a positive zeta potential with respect to the catalyst powder particles having a negative zeta potential is electrostatically charged. It can be adsorbed on the surface and the coverage can be increased.

本発明において、陽イオン交換樹脂を含有する分散液における陽イオン交換樹脂のゼータ電位が負から正に反転する機構は、解明されておらず、明確ではないが、温度40℃以上になると、分散液中に存在する陽イオン交換樹脂のイオン交換基が会合体の内部で集まり、外部に配向した疎水性のイオン交換樹脂の骨格にアルコールの疎水基が配位して、アルコールの外側に位置するOH基のHが正に帯電するために、ゼータ電位が正の値を示すものと考えられる。温度が120℃超になると、樹脂やアルコールの分子運動が激しくなり、上述のような配合ができず、分散液中の粒子のゼータ電位が正にならないおそれがあるので好ましくない。陽イオン交換樹脂とアルコールとを混合して分散液を作製した後、加温する温度は45〜80℃が特に好ましい。   In the present invention, the mechanism by which the zeta potential of the cation exchange resin in the dispersion containing the cation exchange resin is reversed from negative to positive has not been elucidated and is not clear. The ion exchange groups of the cation exchange resin present in the liquid gather inside the aggregate, and the hydrophobic group of the alcohol is coordinated to the skeleton of the hydrophobic ion exchange resin oriented to the outside, and is located outside the alcohol. It is considered that the zeta potential shows a positive value because H of the OH group is positively charged. If the temperature exceeds 120 ° C., the molecular motion of the resin or alcohol becomes intense, the above-mentioned blending cannot be performed, and the zeta potential of the particles in the dispersion may not be positive. The temperature for heating after mixing a cation exchange resin and alcohol to prepare a dispersion is particularly preferably 45 to 80 ° C.

陽イオン交換樹脂を含有する分散液は、陽イオン交換樹脂のゼータ電位が+10〜+160mVの状態で触媒粉末と混合することが好ましい。これにより、陽イオン交換樹脂による触媒粉末の被覆が効率よくでき、性能の優れた触媒層が得られるので好ましい。陽イオン交換樹脂のゼータ電位は+10〜+80mVが特に好ましい。   The dispersion containing the cation exchange resin is preferably mixed with the catalyst powder in a state where the zeta potential of the cation exchange resin is +10 to +160 mV. This is preferable because the catalyst powder can be efficiently coated with the cation exchange resin and a catalyst layer with excellent performance can be obtained. The zeta potential of the cation exchange resin is particularly preferably +10 to +80 mV.

一方、塗工液を作製する第2の態様としては、触媒粉末と陽イオン交換樹脂とアルコールを含む分散媒とを混合して、40〜120℃の温度下で保持しながら、撹拌する方法による。この方法においても、上述の方法と同様、塗工液中において、ゼータ電位が負から正に反転した陽イオン交換樹脂が、ゼータ電位が負の触媒粉末を効率よく被覆できる。この方法の場合には、陽イオン交換樹脂による被覆を促進させるため、3時間〜30時間程度の分散、撹拌操作を行うことが好ましい。撹拌操作の時間は、触媒粉末粒子の凝集を引き起こさない程度であれば、特に限定はされない。塗工液を加温する温度は45〜80℃が特に好ましい。   On the other hand, as a 2nd aspect which produces a coating liquid, it is based on the method of stirring, mixing catalyst powder, a cation exchange resin, and the dispersion medium containing alcohol, and hold | maintaining at the temperature of 40-120 degreeC. . Also in this method, as in the above-described method, the cation exchange resin whose zeta potential is reversed from negative to positive in the coating solution can efficiently coat the catalyst powder having a negative zeta potential. In the case of this method, it is preferable to carry out dispersion and stirring operations for about 3 to 30 hours in order to promote coating with the cation exchange resin. The stirring operation time is not particularly limited as long as it does not cause aggregation of the catalyst powder particles. As for the temperature which heats a coating liquid, 45-80 degreeC is especially preferable.

なお、本発明において、触媒粉末は、必要に応じて、水に分散してから、陽イオン交換樹脂を含有する分散液を混合することができる。触媒粉末を水に分散する場合、固形分濃度は3〜20質量%であることが好ましい。   In the present invention, if necessary, the catalyst powder can be dispersed in water and then mixed with a dispersion containing a cation exchange resin. When the catalyst powder is dispersed in water, the solid content concentration is preferably 3 to 20% by mass.

本発明では、塗工液は固形分濃度0.1〜20質量%であることが必要である。固形分濃度が0.1質量%未満であると、塗工液の塗工により触媒層を作製するにあたり、何回も繰り返し塗工しなければ所定の厚さの触媒層が得られず生産効率が悪くなる。また、固形分濃度が20質量%超であると、塗工液の粘度が高くなり、塗工して得られる触媒層が不均一となるおそれがある。固形分濃度で1〜10質量%であることが特に好ましい。   In the present invention, the coating liquid needs to have a solid content concentration of 0.1 to 20% by mass. When the solid content concentration is less than 0.1% by mass, a catalyst layer having a predetermined thickness cannot be obtained unless it is repeatedly applied to produce a catalyst layer by applying a coating solution. Becomes worse. On the other hand, if the solid content concentration is more than 20% by mass, the viscosity of the coating liquid increases, and the catalyst layer obtained by coating may become non-uniform. The solid content concentration is particularly preferably 1 to 10% by mass.

また、本発明では、触媒粉末と陽イオン交換樹脂との質量比が、50:50〜85:15となるように塗工液を作製することが必要である。この質量比において50:50より触媒の量が少ないと、触媒担体の細孔が陽イオン樹脂でつぶれてしまい、反応場が少なくなるため固体高分子型燃料電池としての性能が低下するおそれがある。また、この質量比において85:15より触媒の量が多いと、陽イオン交換樹脂による触媒粉末の被覆が不充分になるおそれがあり、固体高分子型燃料電池としての性能が低下するおそれがある。触媒粉末と陽イオン交換樹脂との質量比は、60:40〜80:20となるように作製することが特に好ましい。   Moreover, in this invention, it is necessary to produce a coating liquid so that mass ratio of catalyst powder and cation exchange resin may be 50: 50-85: 15. If the amount of the catalyst is less than 50:50 at this mass ratio, the pores of the catalyst support are crushed by the cation resin, and the reaction field is reduced, so that the performance as a polymer electrolyte fuel cell may be deteriorated. . Further, when the amount of the catalyst is larger than 85:15 in this mass ratio, the coating of the catalyst powder with the cation exchange resin may be insufficient, and the performance as a solid polymer fuel cell may be deteriorated. . It is particularly preferable that the mass ratio of the catalyst powder and the cation exchange resin is 60:40 to 80:20.

本発明では、塗工液を作製する際、具体的には、ホモジナイザ、ホモミキサ等の撹拌機を使用したり、高速回転ジェット流方式や摩砕機を使用する等の高速回転を使用する方法、高圧乳化装置等の高圧をかけて狭い部分から分散液を押出すことで分散液にせん弾力を付与する方法等が挙げられる。   In the present invention, when preparing the coating liquid, specifically, a method using a high-speed rotation such as using a stirrer such as a homogenizer or a homomixer, or using a high-speed rotating jet flow method or an attritor, a high pressure Examples thereof include a method of imparting elasticity to the dispersion by extruding the dispersion from a narrow portion under high pressure such as an emulsifier.

得られた塗工液は、ろ過することが好ましい。ろ過により、塗工液中の触媒粉末粒子の凝集体を取り除くことができ、塗工液の凝集を抑える効果があるため、触媒層を形成する際の塗工する直前に行うことが好ましい。ろ過の方法は、塗工液を加圧してフィルタを通してもよく、吸引してフィルタを通してもよい。フィルタの孔径は5〜100μmであることが好ましい。孔径が5μm未満であると、ろ過しにくく目詰まりを引き起こしやすいことから好ましくなく、孔径が100μm超であると、細かな粒子を取り除くことができないので好ましくない。孔径は20〜60μmが特に好ましい。   The obtained coating liquid is preferably filtered. The filtration can remove aggregates of the catalyst powder particles in the coating liquid and has an effect of suppressing the aggregation of the coating liquid. Therefore, it is preferably performed immediately before coating when forming the catalyst layer. As a method of filtration, the coating solution may be pressurized and passed through a filter, or may be sucked and passed through a filter. It is preferable that the hole diameter of a filter is 5-100 micrometers. If the pore diameter is less than 5 μm, it is not preferable because it is difficult to filter and easily clogs, and if the pore diameter exceeds 100 μm, fine particles cannot be removed. The pore diameter is particularly preferably 20 to 60 μm.

上記2つの製造方法で得られた塗工液はいずれも、塗工液中の粒子のゼータ電位が正に保たれた状態で塗工することが好ましい。得られた塗工液は、上述の通り、ゼータ電位が正に帯電した陽イオン交換樹脂に、ゼータ電位が負の触媒粉末が静電的に吸着して、その結合が強固であるため、一旦結合して粒子を形成すると、分散媒中で基本的には安定して存在すると考えられる。このため、得られた塗工液は、常温まで冷えた場合でも基材上に塗工することにより触媒層を形成しても、得られた触媒層の特性は、ほとんど低下することがないので好ましい。   It is preferable that the coating liquids obtained by the above two production methods are applied in a state where the zeta potential of the particles in the coating liquid is kept positive. As described above, the obtained coating liquid is positively charged with a positively charged zeta potential, and the catalyst powder having a negative zeta potential is electrostatically adsorbed and its bond is strong. When bonded to form particles, it is considered that the particles basically exist stably in the dispersion medium. For this reason, even if the obtained coating liquid is cooled to room temperature, even if the catalyst layer is formed by coating on the substrate, the properties of the obtained catalyst layer are hardly deteriorated. preferable.

また、本発明では、塗工液中の粒子のゼータ電位が+5〜+100mVの状態で塗工することが好ましい。ゼータ電位が+5mV未満であると、塗工液において触媒粉末を陽イオン交換樹脂が充分に被覆することができておらず、得られた触媒層の特性が低下するおそれがあるので好ましくなく、ゼータ電位が+100mV超であると、塗工液において触媒粉末の量が陽イオン交換樹脂に比べて少なすぎるため触媒層を形成するのには何回も塗工することが必要となり生産性が悪くなるので好ましくない。ゼータ電位は+10〜+50mVが特に好ましい。   Moreover, in this invention, it is preferable to apply in the state whose zeta potential of the particle | grains in a coating liquid is + 5- + 100 mV. If the zeta potential is less than +5 mV, the catalyst powder is not sufficiently covered with the cation exchange resin in the coating solution, and the properties of the obtained catalyst layer may be deteriorated. If the potential is more than +100 mV, the amount of catalyst powder in the coating solution is too small compared to the cation exchange resin, so that it is necessary to apply many times to form the catalyst layer, resulting in poor productivity. Therefore, it is not preferable. The zeta potential is particularly preferably +10 to +50 mV.

本発明では、膜電極接合体を製造する方法としては、例えばイオン交換膜上に塗工液を直接塗工した後、乾燥して触媒層を形成し、ガス拡散層で挟み込む方法が挙げられる。また、カーボンペーパー、カーボンクロス又はカーボンフェルト等のガス拡散層となる基材上に塗工液を塗工し乾燥させて触媒層を形成した後、これを固体高分子電解質膜にホットプレス等の方法により接合する方法も採用できる。また、塗工液中に含まれる溶剤に対して十分な安定性を示す、例えば、ポリプロピレン、ポリエチレンテレフタレート、エチレン/テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン等の基材フィルム上に塗工液を塗工しこれを乾燥し、固体高分子電解質膜にホットプレスした後、基材フィルムを剥離し、ガス拡散層で挟み込む方法等も採用できる。   In the present invention, examples of the method for producing a membrane electrode assembly include a method in which a coating solution is directly applied on an ion exchange membrane, and then dried to form a catalyst layer and sandwiched between gas diffusion layers. In addition, after applying a coating liquid on a base material to be a gas diffusion layer such as carbon paper, carbon cloth or carbon felt and drying to form a catalyst layer, this is applied to a solid polymer electrolyte membrane such as hot press A joining method can also be employed. In addition, the coating solution exhibits sufficient stability against the solvent contained in the coating solution, for example, on a base film such as polypropylene, polyethylene terephthalate, ethylene / tetrafluoroethylene copolymer, polytetrafluoroethylene, etc. It is also possible to employ a method in which the substrate film is coated, dried, hot-pressed onto a solid polymer electrolyte membrane, the substrate film is peeled off, and sandwiched between gas diffusion layers.

触媒層を形成する際の塗工液の塗工方法としては、アプリケータ、バーコータ、ダイコータ、スプレ等を使用する方法や、スクリーン印刷法、グラビア印刷法等を適用できる。   As a coating method of the coating liquid when forming the catalyst layer, a method using an applicator, a bar coater, a die coater, a spray, etc., a screen printing method, a gravure printing method, or the like can be applied.

本発明の触媒層は、厚さ3〜30μmであることが好ましい。厚さ3μm未満であると、触媒層へ供給されるガスが膜を透過しやすくなり、また、得られる接合体の強度が低下するので好ましくなく、厚さ30μm超であると、触媒層において供給されるガスが拡散しずらくなり、反応が進みづらくなるので好ましくない。厚さ5〜20μmが特に好ましい。   The catalyst layer of the present invention preferably has a thickness of 3 to 30 μm. If the thickness is less than 3 μm, the gas supplied to the catalyst layer tends to permeate the membrane, and the strength of the resulting bonded body is reduced, which is not preferable. If the thickness exceeds 30 μm, the gas is supplied in the catalyst layer. Gas is difficult to diffuse and reaction is difficult to proceed. A thickness of 5 to 20 μm is particularly preferable.

また、塗工液には、必要に応じて撥水剤、造孔剤、増粘剤、希釈溶媒等を添加し、電極反応で生成する水の排出性を高めること、触媒層自体の形状安定性を保持すること、塗工時の塗工むらの改善や塗工安定性等を高めることも可能である。   In addition, water repellents, pore formers, thickeners, diluting solvents, etc. may be added to the coating liquid as necessary to improve the drainage of water produced by electrode reactions, and to stabilize the shape of the catalyst layer itself. It is also possible to maintain the properties, improve coating unevenness during coating, and improve coating stability.

本発明の膜電極接合体を備える固体高分子型燃料電池では、カソードには酸素を含むガス、アノードには水素を含むガスが供給される。具体的には、例えばガスの流路となる溝が形成されたセパレータを膜電極接合体の両方の電極の外側に配置し、ガスの流路にガスを流すことにより膜電極接合体に燃料となるガスを供給し発電させる。セパレータの材質としては、金属製、カーボン製、黒鉛と樹脂を混合した材料等があり、幅広く使用することができる。   In the polymer electrolyte fuel cell including the membrane electrode assembly of the present invention, a gas containing oxygen is supplied to the cathode, and a gas containing hydrogen is supplied to the anode. Specifically, for example, a separator in which a groove to be a gas flow path is formed is disposed outside both electrodes of the membrane electrode assembly, and gas is allowed to flow to the membrane electrode assembly by flowing gas through the gas flow path. To generate electricity. Examples of the material for the separator include metal, carbon, a material in which graphite and a resin are mixed, and the like can be used widely.

以下、本発明を具体的に実施例(例1、5〜7)及び比較例(例2〜4及び例8〜10)を用いて説明するが、本発明はこれらに限定されない。   Hereinafter, the present invention will be specifically described using Examples (Examples 1 and 5 to 7) and Comparative Examples (Examples 2 to 4 and Examples 8 to 10), but the present invention is not limited thereto.

[例1]
白金がカーボン担体(比表面積800m/g)に触媒全質量の46.5質量%担持された触媒(田中貴金属工業社製、商品名:TEC10E50E)2gに蒸留水10.2gを添加して混合液を得た。この混合液に、CF=CF/CF=CFOCFCF(CF)O(CFSOH共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂、以下、共重合体aという)をエタノールに分散させた固形分濃度9質量%の分散液11.2gを添加した後、ホモジナイザ(キネマチカ社製、商品名:ポリトロン)を使用して撹拌して、塗工液を得た。この時点での塗工液のゼータ電位をゼータ電位分析機(Matec Applied Science社製、型式:ESA9800、以下同じ)で測定したところ、常温(温度20℃)で、−31mVであった。次に、この塗工液を温度50℃の浸とう機で8時間分散させた後、再度、ゼータ電位を測定したところ、温度50℃で+30mVであった。この塗工液を、温度50℃に維持した状態でポリプロピレン製の基材フィルムの上にバーコータで塗工した後、温度80℃の乾燥器内で30分間乾燥させて触媒層を形成した。なお、触媒層形成前の基材フィルムのみと触媒層形成後の基材フィルムの質量を測定することにより、触媒層に含まれる単位面積あたりの白金の量を算出したところ、0.5mg/cmであった。
[Example 1]
10.2 g of distilled water was added to and mixed with 2 g of a catalyst (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) in which platinum was supported on a carbon support (specific surface area 800 m 2 / g) on 46.5% by mass of the total mass of the catalyst. A liquid was obtained. CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.1 meq / g dry resin, hereinafter, After adding 11.2 g of a dispersion having a solid content concentration of 9% by mass in which polymer a) is dispersed in ethanol, the mixture is stirred using a homogenizer (manufactured by Kinematica, trade name: Polytron) to obtain a coating solution. Got. The zeta potential of the coating solution at this time was measured with a zeta potential analyzer (manufactured by Matec Applied Science, model: ESA9800, hereinafter the same) and found to be −31 mV at room temperature (temperature 20 ° C.). Next, after this coating liquid was dispersed for 8 hours by a dipping machine at a temperature of 50 ° C., the zeta potential was measured again, and it was +30 mV at a temperature of 50 ° C. The coating liquid was applied on a polypropylene base film with a bar coater while maintaining the temperature at 50 ° C., and then dried in a dryer at a temperature of 80 ° C. for 30 minutes to form a catalyst layer. In addition, when the amount of platinum per unit area contained in the catalyst layer was calculated by measuring the mass of only the base film before the catalyst layer formation and the base film after the catalyst layer formation, 0.5 mg / cm 2 .

次に、固体高分子電解質膜として、スルホン酸基を有するパーフルオロカーボン重合体からなる厚さ50μmのイオン交換膜(旭硝子社製、商品名:フレミオン、イオン交換容量1.1ミリ当量/g乾燥樹脂)を使用し、この膜の両面に基材フィルム上に形成された触媒層をそれぞれ配置し、ホットプレス法により転写してアノード触媒層及びカソード触媒層を形成し、電極面積が25cmである固体高分子膜と触媒層からなる接合体を作製した。さらに、ガス拡散層2枚の間に挟んで膜電極接合体を作製した。 Next, as a solid polymer electrolyte membrane, an ion exchange membrane having a thickness of 50 μm made of a perfluorocarbon polymer having a sulfonic acid group (manufactured by Asahi Glass Co., Ltd., trade name: Flemion, ion exchange capacity 1.1 meq / g dry resin) ), The catalyst layers formed on the base film are arranged on both sides of the membrane, and transferred by a hot press method to form an anode catalyst layer and a cathode catalyst layer, and the electrode area is 25 cm 2 A joined body comprising a solid polymer membrane and a catalyst layer was produced. Further, a membrane electrode assembly was produced by sandwiching between two gas diffusion layers.

(評価)
得られた膜電極接合体を発電用セルに組み込み、常圧にて、水素(利用率70%)/空気(利用率40%)を供給し、セル温度70℃において電流密度0.2A/cmにおける固体高分子型燃料電池の初期特性評価及び耐久性評価を行った。アノード側は露点70℃、カソード側は露点70℃としてそれぞれ水素及び空気を加湿してセル内に供給し、運転初期のセル電圧及び運転開始後の経過時間とセル電圧との関係を測定した。結果を表1に示す。また、アノード側に水素ガスを53cm/分で、カソード側に窒素ガスを2000cm/分で供給し、アノード側を参照極、カソード側を作用極としてポテンシオスタットとファンクションジェネレータを組み合わせた測定用装置でカソード側のサイクリックボルタンメトリ(CV)を測定した。さらに、膜−電極接合体を取りはずして反転させ、カソード側に水素ガスを53cm/分で、アノード側に窒素ガスを2000cm/分で供給し、同様の方法によりアノード側のCVの測定を行い、カソード、アノードそれぞれについて触媒層の単位面積あたりの電気化学的なクーロン量を測定した。クーロン量の測定結果を表2に示す。
(Evaluation)
The obtained membrane electrode assembly is assembled into a power generation cell, hydrogen (utilization rate 70%) / air (utilization rate 40%) is supplied at normal pressure, and the current density is 0.2 A / cm at a cell temperature of 70 ° C. Initial characteristic evaluation and durability evaluation of the polymer electrolyte fuel cell in No. 2 were performed. Hydrogen and air were humidified and supplied to the cell with a dew point of 70 ° C. on the anode side and a dew point of 70 ° C. on the cathode side, respectively, and the relationship between the cell voltage at the initial stage of operation and the elapsed time after the start of operation and the cell voltage were measured. The results are shown in Table 1. Also, hydrogen gas is supplied to the anode side at 53 cm 3 / min, nitrogen gas is supplied to the cathode side at 2000 cm 3 / min, and a combination of potentiostat and function generator is used with the anode side as a reference electrode and the cathode side as a working electrode. The cyclic voltammetry (CV) on the cathode side was measured with an apparatus for the purpose. Further, the membrane-electrode assembly was removed and inverted, and hydrogen gas was supplied to the cathode side at 53 cm 3 / min and nitrogen gas was supplied to the anode side at 2000 cm 3 / min, and CV measurement on the anode side was measured in the same manner. The amount of electrochemical coulomb per unit area of the catalyst layer was measured for each of the cathode and anode. Table 2 shows the measurement results of the amount of coulomb.

[例2]
例1において、塗工液を温度50℃の浸とう機で8時間分散処理を行わず、塗工液を温度20℃の状態で基材フィルム上に塗工したこと以外は、例1と同様にして操作を行い、膜電極接合体を作製した。得られた膜電極接合体を使用して、例1と同様に評価した結果を表1、2に示す。
[Example 2]
Example 1 is the same as Example 1 except that the coating liquid is not applied for 8 hours in a dipping machine at a temperature of 50 ° C., and the coating liquid is applied on a substrate film at a temperature of 20 ° C. The membrane electrode assembly was produced by operating as described above. The results of evaluation in the same manner as in Example 1 using the obtained membrane / electrode assembly are shown in Tables 1 and 2.

[例3]
例1において、塗工液を温度50℃の代わりに温度35℃の浸とう機で8時間分散処理を行うことにより、得られる塗工液のゼータ電位は−32mVである。引き続き、この塗工液を温度35℃に維持した状態で基材フィルム上に塗工すること以外は、例1と同様にして操作を行うと、膜電極接合体が作製される。この膜電極接合体を使用して、例1と同様に評価することにより得られる結果を表1、2に示す。
[Example 3]
In Example 1, the zeta potential of the coating solution obtained is -32 mV by carrying out a dispersion treatment for 8 hours with a dipping machine at a temperature of 35 ° C. instead of a temperature of 50 ° C. Subsequently, a membrane / electrode assembly is produced by performing the same operation as in Example 1 except that the coating liquid is applied on the base film while maintaining the temperature at 35 ° C. Tables 1 and 2 show the results obtained by evaluating in the same manner as in Example 1 using this membrane / electrode assembly.

[例4]
例1において、塗工液を温度50℃の浸とう機で8時間分散処理を行う代わりに、オートクレーブ中で温度125℃で1時間分散処理を行い、その後、放置して室温(温度20℃)まで冷却すること以外は同様にして操作を行うことにより、得られる塗工液のゼータ電位は−30mVである。引き続き、この塗工液を温度20℃に維持した状態で基材フィルム上に塗工すること以外は、例1と同様にして操作を行うと、膜電極接合体が作製される。この膜電極接合体を使用して、例1と同様に評価することにより得られる結果を表1、2に示す。
[Example 4]
In Example 1, instead of carrying out the dispersion treatment for 8 hours with a dipping machine at a temperature of 50 ° C., the coating solution was subjected to a dispersion treatment for 1 hour at a temperature of 125 ° C. in an autoclave and then allowed to stand at room temperature (temperature 20 ° C.) The zeta potential of the resulting coating solution is −30 mV by operating in the same manner except for cooling to. Subsequently, a membrane / electrode assembly is produced by performing the same operation as in Example 1 except that the coating liquid is applied to the base film while being maintained at a temperature of 20 ° C. Tables 1 and 2 show the results obtained by evaluating in the same manner as in Example 1 using this membrane / electrode assembly.

[例5]
例1において、共重合体aの代わりに、Aldrich社製の5%ナフィオン溶液(イオン交換容量0.91ミリ当量/g乾燥樹脂)20.2gを使用すること以外は、例1と同様にして操作を行うことにより、ゼータ電位が温度20℃で−14mVの塗工液が得られる。この塗工液を例1と同様にして温度50℃の浸とう機で8時間分散処理を行い、その後、常温(温度20℃)まで放冷することにより、得られる塗工液のゼータ電位は+15mVである。この塗工液を使用して、例1と同様にして操作を行うと、膜電極接合体が作製される。この膜電極接合体を使用して、例1と同様に評価することにより得られる結果を表1、2に示す。なお、例1と同様にして触媒層に含まれる単位面積あたりの白金の量を算出すると、0.5mg/cmである。
[Example 5]
In Example 1, the same procedure as in Example 1 was used, except that 20.2 g of a 5% Nafion solution (ion exchange capacity 0.91 meq / g dry resin) manufactured by Aldrich was used instead of copolymer a. By performing the operation, a coating solution having a zeta potential of −14 mV at a temperature of 20 ° C. is obtained. The coating solution is subjected to a dispersion treatment for 8 hours in a 50 ° C. dipping machine in the same manner as in Example 1, and then allowed to cool to room temperature (temperature 20 ° C.), whereby the zeta potential of the resulting coating solution is +15 mV. When this coating solution is used in the same manner as in Example 1, a membrane / electrode assembly is produced. Tables 1 and 2 show the results obtained by evaluating in the same manner as in Example 1 using this membrane / electrode assembly. In addition, when the amount of platinum per unit area contained in the catalyst layer was calculated in the same manner as in Example 1, it was 0.5 mg / cm 2 .

[例6]
共重合体aをエタノールに分散させた固形分濃度11.7質量%の分散液16.8gに蒸留水25.1gを加えた後、恒温水槽を使用して温度50℃に加温してイオン交換樹脂を含有する分散液を得た。この得られたイオン交換樹脂溶を含有する分散液のゼータ電位を測定したところ、温度50℃で+40mVであった。これとは別に、例1と同じ触媒10gに蒸留水60.7g及びエタノール40.4gを添加した後、例1と同じホモジナイザで撹拌して触媒を含有する分散液を得た。この得られた触媒を含有する分散液のゼータ電位を測定したところ、温度20℃で−25mVであった。この触媒を含有する分散液40gを、先に準備した温度50℃に加温されたイオン交換樹脂を含有する分散液に添加して、塗工液を得た。得られた塗工液のゼータ電位は温度50℃で+35mVであった。この塗工液を温度50℃に維持した状態で、例1と同様にして操作を行い、膜電極接合体を作製した。得られた膜電極接合体を使用して、例1と同様に評価した結果を表1、2に示す。なお、例1と同様にして触媒層に含まれる単位面積あたりの白金の量を算出したところ、0.5mg/cmであった。
[Example 6]
After adding 25.1 g of distilled water to 16.8 g of a dispersion having a solid content concentration of 11.7% by mass in which copolymer a is dispersed in ethanol, the mixture is heated to a temperature of 50 ° C. using a thermostatic water bath and ionized. A dispersion containing the exchange resin was obtained. When the obtained zeta potential of the dispersion containing the ion exchange resin solution was measured, it was +40 mV at a temperature of 50 ° C. Separately, 60.7 g of distilled water and 40.4 g of ethanol were added to 10 g of the same catalyst as in Example 1, and then stirred with the same homogenizer as in Example 1 to obtain a dispersion containing the catalyst. When the zeta potential of the resulting dispersion containing the catalyst was measured, it was -25 mV at a temperature of 20 ° C. A dispersion containing 40 g of this catalyst was added to the dispersion containing the ion exchange resin heated to a temperature of 50 ° C. prepared previously to obtain a coating solution. The resulting coating solution had a zeta potential of +35 mV at a temperature of 50 ° C. With this coating solution maintained at a temperature of 50 ° C., the same operation as in Example 1 was carried out to produce a membrane electrode assembly. The results of evaluation in the same manner as in Example 1 using the obtained membrane / electrode assembly are shown in Tables 1 and 2. In addition, when the amount of platinum per unit area contained in the catalyst layer was calculated in the same manner as in Example 1, it was 0.5 mg / cm 2 .

[例7]
例6において、恒温水槽を温度70℃としたこと以外は、例6と同様の操作を行い、イオン交換樹脂を含有する分散液を得た。得られたイオン交換樹脂を含有する分散液のゼータ電位は温度70℃で+45mVであった。引き続き、恒温水槽を温度70℃としたこと以外は、例6と同様の操作を行い、塗工液を得た。得られた塗工液のゼータ電位は温度70℃で+38mVであった。この得られた塗工液を温度50℃に下げた後、その温度を維持した状態で、例1と同様にして操作を行い、膜電極接合体を作製した。得られた膜電極接合体を使用して、例1と同様に評価した結果を表1、2に示す。
[Example 7]
In Example 6, the same operation as in Example 6 was performed except that the temperature of the constant temperature water bath was set to 70 ° C., to obtain a dispersion containing an ion exchange resin. The dispersion containing the obtained ion exchange resin had a zeta potential of +45 mV at a temperature of 70 ° C. Subsequently, the same operation as in Example 6 was performed except that the temperature of the constant temperature water bath was set to 70 ° C. to obtain a coating solution. The resulting coating solution had a zeta potential of +38 mV at a temperature of 70 ° C. After the obtained coating liquid was lowered to a temperature of 50 ° C., the operation was performed in the same manner as in Example 1 while maintaining the temperature, and a membrane electrode assembly was produced. The results of evaluation in the same manner as in Example 1 using the obtained membrane / electrode assembly are shown in Tables 1 and 2.

[例8]
例6において、恒温水槽を使用せずに室温(温度20℃)で操作を行うこと以外は、例6と同様にして操作を行い、イオン交換樹脂を含有する分散液を得る。得られるイオン交換樹脂を含有する分散液のゼータ電位は温度20℃で−38mVである。引き続き、恒温水槽を使用せずに室温(温度20℃)で操作を行うこと以外は、例6と同様にして操作を行い、塗工液を得る。得られる塗工液のゼータ電位は温度20℃で−33mVである。この塗工液を温度20℃に維持した状態で、例1と同様にして操作を行うと、膜電極接合体が作製される。この膜電極接合体を使用して、例1と同様に評価することにより得られる結果を表1、2に示す。
[Example 8]
In Example 6, the operation is performed in the same manner as in Example 6 except that the operation is performed at room temperature (temperature of 20 ° C.) without using a constant temperature water bath to obtain a dispersion containing an ion exchange resin. The resulting dispersion containing the ion exchange resin has a zeta potential of −38 mV at a temperature of 20 ° C. Subsequently, an operation is performed in the same manner as in Example 6 except that the operation is performed at room temperature (temperature of 20 ° C.) without using a constant temperature water bath to obtain a coating liquid. The resulting coating liquid has a zeta potential of −33 mV at a temperature of 20 ° C. When this coating solution is maintained at a temperature of 20 ° C. and operated in the same manner as in Example 1, a membrane / electrode assembly is produced. Tables 1 and 2 show the results obtained by evaluating in the same manner as in Example 1 using this membrane / electrode assembly.

[例9]
例6において、恒温水槽を温度35℃とすること以外は、例6と同様の操作を行い、イオン交換樹脂を含有する分散液を得る。得られるイオン交換樹脂を含有する分散液のゼータ電位は温度35℃で−39mVである。引き続き、恒温水槽を温度35℃とすること以外は、例6と同様の操作を行い、塗工液を得る。得られる塗工液のゼータ電位は温度35℃で−33mVである。この塗工液を温度35℃に維持した状態で、例1と同様にして操作を行うと、膜電極接合体が作製される。この膜電極接合体を使用して、例1と同様に評価することにより得られる結果を表1、2に示す。
[Example 9]
In Example 6, the same operation as in Example 6 is performed except that the constant temperature water bath is set to a temperature of 35 ° C. to obtain a dispersion containing an ion exchange resin. The resulting dispersion containing the ion exchange resin has a zeta potential of −39 mV at a temperature of 35 ° C. Subsequently, the same operation as in Example 6 is performed except that the constant temperature water bath is set to a temperature of 35 ° C. to obtain a coating liquid. The resulting coating liquid has a zeta potential of −33 mV at a temperature of 35 ° C. When this coating solution is maintained at a temperature of 35 ° C. and operated in the same manner as in Example 1, a membrane electrode assembly is produced. Tables 1 and 2 show the results obtained by evaluating in the same manner as in Example 1 using this membrane / electrode assembly.

[例10]
例6において、恒温水槽を使用する代わりに、オートクレーブ中で温度125℃で1時間分散処理を行い、その後、放置して室温(温度20℃)まで冷却する操作を行うこと以外は、同様にして操作を行い、イオン交換樹脂を含有する分散液を得る。得られるイオン交換樹脂を含有する分散液のゼータ電位は温度20℃で−35mVである。引き続き、恒温水槽を使用せずに室温(温度20℃)で操作を行うこと以外は、例6と同様の操作を行い、塗工液を得る。得られる塗工液のゼータ電位は温度20℃で−30mVである。この塗工液を温度20℃に維持した状態で、例1と同様にして操作を行うと、膜電極接合体が作製される。この膜電極接合体を使用して、例1と同様に評価することにより得られる結果を表1、2に示す。
[Example 10]
In Example 6, instead of using a constant temperature water bath, a dispersion treatment was performed in an autoclave at a temperature of 125 ° C. for 1 hour, and then left to cool to room temperature (temperature of 20 ° C.). Operation is performed to obtain a dispersion containing an ion exchange resin. The resulting dispersion containing the ion exchange resin has a zeta potential of −35 mV at a temperature of 20 ° C. Subsequently, the same operation as in Example 6 is performed except that the operation is performed at room temperature (temperature 20 ° C.) without using a constant temperature water bath, to obtain a coating liquid. The resulting coating liquid has a zeta potential of −30 mV at a temperature of 20 ° C. When this coating solution is maintained at a temperature of 20 ° C. and operated in the same manner as in Example 1, a membrane / electrode assembly is produced. Tables 1 and 2 show the results obtained by evaluating in the same manner as in Example 1 using this membrane / electrode assembly.

Figure 2005174861
Figure 2005174861

Figure 2005174861
Figure 2005174861

本発明の固体高分子型燃料電池用膜電極接合体の実施態様を示す断面図。Sectional drawing which shows the embodiment of the membrane electrode assembly for polymer electrolyte fuel cells of this invention.

符号の説明Explanation of symbols

1:固体高分子電解質膜、
2:アノード触媒層、
3:カソード触媒層、
4、4’:ガス拡散層、
5:セパレータ、
5a:セパレータのガス供給溝、
6:ガスシール体、
7:膜電極接合体。
1: solid polymer electrolyte membrane,
2: Anode catalyst layer,
3: Cathode catalyst layer,
4, 4 ': Gas diffusion layer,
5: Separator,
5a: separator gas supply groove,
6: Gas seal body,
7: Membrane electrode assembly.

Claims (5)

触媒粉末と陽イオン交換樹脂とを含む触媒層を有するカソード及びアノードと、前記カソードと前記アノードとの間に配置される高分子電解質膜とからなる固体高分子型燃料電池用膜電極接合体の製造方法であって、
前記陽イオン交換樹脂とアルコールを含む分散媒とを混合して分散液を作製した後、温度40〜120℃に加温することにより、前記分散液中の粒子のゼータ電位が負(マイナス)から正(プラス)にかわるようにし、その状態で前記分散液に、固形分換算での前記触媒粉末と陽イオン交換樹脂との質量比が50:50〜85:15となるように前記触媒粉末を添加、混合して、固形分濃度が0.1〜20質量%で、液中の粒子のゼータ電位が正(プラス)の塗工液を作製する工程、
前記塗工液を基材上に塗工し、乾燥することにより触媒層を形成する工程、
及び該触媒層をカソード及びアノードの少なくとも一方の触媒層として高分子電解質膜に隣接して配置する工程、
を経ることを特徴とする固体高分子型燃料電池用膜電極接合体の製造方法。
A membrane electrode assembly for a polymer electrolyte fuel cell, comprising a cathode and an anode having a catalyst layer containing a catalyst powder and a cation exchange resin, and a polymer electrolyte membrane disposed between the cathode and the anode. A manufacturing method comprising:
The cation exchange resin and a dispersion medium containing alcohol are mixed to prepare a dispersion, and then heated to a temperature of 40 to 120 ° C., whereby the zeta potential of the particles in the dispersion is changed from negative (minus). In this state, the catalyst powder is changed so that the mass ratio of the catalyst powder to the cation exchange resin in terms of solid content is 50:50 to 85:15. Adding and mixing to produce a coating liquid in which the solid content concentration is 0.1 to 20% by mass and the zeta potential of particles in the liquid is positive (plus);
Applying the coating solution onto a substrate and forming a catalyst layer by drying;
And disposing the catalyst layer adjacent to the polymer electrolyte membrane as at least one of a cathode and an anode catalyst layer,
A process for producing a membrane / electrode assembly for a polymer electrolyte fuel cell, wherein
前記分散液中の粒子のゼータ電位が+10〜+160mVの状態で、前記分散液に前記触媒粉末を添加、混合する請求項1に記載の固体高分子型燃料電池用膜電極接合体の製造方法。   The method for producing a membrane electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the catalyst powder is added to and mixed with the dispersion in a state where the zeta potential of particles in the dispersion is +10 to +160 mV. 触媒粉末と陽イオン交換樹脂とを含む触媒層を有するカソード及びアノードと、前記カソードと前記アノードとの間に配置される高分子電解質膜とからなる固体高分子型燃料電池用膜電極接合体の製造方法であって、
固形分換算での前記触媒粉末と陽イオン交換樹脂との質量比が50:50〜85:15となるように、前記触媒粉末と前記陽イオン交換樹脂とアルコールを含む分散媒とを混合し、温度40〜120℃に加温して、撹拌することにより、固形分濃度が0.1〜20質量%で、液中の粒子のゼータ電位が正(プラス)の塗工液を作製する工程、
前記塗工液を基材上に塗工し、乾燥することにより触媒層を形成する工程、
及び該触媒層をカソード及びアノードの少なくとも一方の触媒層として高分子電解質膜に隣接して配置する工程、
を経ることを特徴とする固体高分子型燃料電池用膜電極接合体の製造方法。
A membrane electrode assembly for a polymer electrolyte fuel cell, comprising a cathode and an anode having a catalyst layer containing a catalyst powder and a cation exchange resin, and a polymer electrolyte membrane disposed between the cathode and the anode. A manufacturing method comprising:
The catalyst powder, the cation exchange resin and a dispersion medium containing alcohol are mixed so that the mass ratio of the catalyst powder and the cation exchange resin in terms of solid content is 50:50 to 85:15, A step of producing a coating liquid in which the solid content concentration is 0.1 to 20% by mass and the zeta potential of particles in the liquid is positive (plus) by heating to a temperature of 40 to 120 ° C. and stirring;
Applying the coating solution onto a substrate and forming a catalyst layer by drying;
And disposing the catalyst layer adjacent to the polymer electrolyte membrane as at least one of a cathode and an anode catalyst layer,
A process for producing a membrane / electrode assembly for a polymer electrolyte fuel cell, wherein
前記塗工液中の粒子のゼータ電位が+5〜+100mVの状態で、前記塗工液を塗工する請求項1〜3のいずれかに記載の固体高分子型燃料電池用膜電極接合体の製造方法。   The production of a membrane electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the coating liquid is applied in a state where the zeta potential of particles in the coating liquid is +5 to +100 mV. Method. 前記陽イオン交換樹脂が、CF=CF−(OCFCFX)−O−(CF−SOHで表されるパーフルオロビニル化合物(mは0〜3の整数を示し、nは1〜12の整数を示し、pは0又は1を示し、Xはフッ素原子又はトリフルオロメチル基を示す。)に基づく重合単位と、テトラフルオロエチレンに基づく重合単位とを含む共重合体である請求項1〜4のいずれかに記載の固体高分子型燃料電池用膜電極接合体の製造方法。
The cation exchange resin, CF 2 = CF- (OCF 2 CFX) m -O p - (CF 2) a perfluorovinyl compound represented by n -SO 3 H (m is an integer of 0 to 3, n represents an integer of 1 to 12, p represents 0 or 1, and X represents a fluorine atom or a trifluoromethyl group.) and a copolymer comprising a polymer unit based on tetrafluoroethylene The method for producing a membrane electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 4.
JP2003416551A 2003-12-15 2003-12-15 Manufacturing method for membrane electrode assembly for solid polymer fuel cell Pending JP2005174861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416551A JP2005174861A (en) 2003-12-15 2003-12-15 Manufacturing method for membrane electrode assembly for solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416551A JP2005174861A (en) 2003-12-15 2003-12-15 Manufacturing method for membrane electrode assembly for solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2005174861A true JP2005174861A (en) 2005-06-30

Family

ID=34735717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416551A Pending JP2005174861A (en) 2003-12-15 2003-12-15 Manufacturing method for membrane electrode assembly for solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2005174861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004644A1 (en) 2006-07-04 2008-01-10 Sumitomo Chemical Company, Limited Polymer electrolyte emulsion and use thereof
JP2016085907A (en) * 2014-10-28 2016-05-19 トヨタ自動車株式会社 Method for manufacturing catalyst ink for fuel battery electrode

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305249A (en) * 1991-04-03 1992-10-28 Matsushita Electric Ind Co Ltd Production of catalyst for liquid fuel battery and production of electrode thereof
JPH06203848A (en) * 1992-12-25 1994-07-22 Tokyo Gas Co Ltd Manufacture of solid high polymer fuel cell
JPH1116586A (en) * 1997-06-20 1999-01-22 Japan Storage Battery Co Ltd Manufacture of high polymer electrolyte film-gas diffusion electrode body
JP2001118580A (en) * 1999-10-19 2001-04-27 Japan Storage Battery Co Ltd Electrode of fuel cell and method for manufacturing the same
JP2001160400A (en) * 1999-12-01 2001-06-12 Asahi Glass Co Ltd Manufacturing method of gas diffusion electrode for solid elctrolyte fuel cell
JP2001160398A (en) * 1999-12-01 2001-06-12 Japan Storage Battery Co Ltd Gas diffusion electrode for fuel cell and fuel cell using the same
JP2001291520A (en) * 2000-04-06 2001-10-19 Japan Storage Battery Co Ltd Manufacturing method of electrode for fuel cell
JP2002184414A (en) * 2000-12-15 2002-06-28 Asahi Glass Co Ltd Method of manufacturing gas diffusion electrode and method of manufacturing solid polymer fuel cell
JP2003051320A (en) * 2001-05-31 2003-02-21 Asahi Glass Co Ltd Membrane-electrode junction for solid polymer type fuel cell and its manufacturing method
JP2004241289A (en) * 2003-02-07 2004-08-26 Fuji Electric Holdings Co Ltd Method for manufacturing electrode of solid high polymer fuel cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305249A (en) * 1991-04-03 1992-10-28 Matsushita Electric Ind Co Ltd Production of catalyst for liquid fuel battery and production of electrode thereof
JPH06203848A (en) * 1992-12-25 1994-07-22 Tokyo Gas Co Ltd Manufacture of solid high polymer fuel cell
JPH1116586A (en) * 1997-06-20 1999-01-22 Japan Storage Battery Co Ltd Manufacture of high polymer electrolyte film-gas diffusion electrode body
JP2001118580A (en) * 1999-10-19 2001-04-27 Japan Storage Battery Co Ltd Electrode of fuel cell and method for manufacturing the same
JP2001160400A (en) * 1999-12-01 2001-06-12 Asahi Glass Co Ltd Manufacturing method of gas diffusion electrode for solid elctrolyte fuel cell
JP2001160398A (en) * 1999-12-01 2001-06-12 Japan Storage Battery Co Ltd Gas diffusion electrode for fuel cell and fuel cell using the same
JP2001291520A (en) * 2000-04-06 2001-10-19 Japan Storage Battery Co Ltd Manufacturing method of electrode for fuel cell
JP2002184414A (en) * 2000-12-15 2002-06-28 Asahi Glass Co Ltd Method of manufacturing gas diffusion electrode and method of manufacturing solid polymer fuel cell
JP2003051320A (en) * 2001-05-31 2003-02-21 Asahi Glass Co Ltd Membrane-electrode junction for solid polymer type fuel cell and its manufacturing method
JP2004241289A (en) * 2003-02-07 2004-08-26 Fuji Electric Holdings Co Ltd Method for manufacturing electrode of solid high polymer fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004644A1 (en) 2006-07-04 2008-01-10 Sumitomo Chemical Company, Limited Polymer electrolyte emulsion and use thereof
JP2016085907A (en) * 2014-10-28 2016-05-19 トヨタ自動車株式会社 Method for manufacturing catalyst ink for fuel battery electrode

Similar Documents

Publication Publication Date Title
JP4629699B2 (en) Supported catalyst and production method thereof, electrode and fuel cell using the same
CN109417180A (en) Membrane electrode assembly and preparation method thereof and fuel cell including the membrane electrode assembly
JP2009152143A (en) Membrane electrode assembly for polymer electrolyte fuel cell, and method of manufacturing membrane electrode assembly for polymer electrolyte fuel cell
JP2020145210A (en) Method of manufacturing electrode, electrode manufactured by the same, membrane-electrode assembly including the same, and fuel cell including the same
JP2009117248A (en) Fuel cell
CN100377401C (en) Ink for forming catalyst layer, and electrode and membrane-electrode assembly using the same
JP2007501496A (en) Hybrid membrane / electrode assembly with reduced interfacial resistance and method for producing the same
JP2008135274A (en) Method of manufacturing fuel cell
JP5256448B2 (en) Electrode and manufacturing method thereof
US10985381B2 (en) Nanostructured electrode for polymer electrolyte membrane fuel cell, and manufacturing method therefor
JP2002184414A (en) Method of manufacturing gas diffusion electrode and method of manufacturing solid polymer fuel cell
JP5669201B2 (en) Composition for forming catalyst layer and method for producing catalyst layer
KR101769681B1 (en) Catalyst electrode layer, membrane-electrode assembly, and fuel cell
US20050271930A1 (en) Polymer electrolyte fuel cell and manufacturing method thereof
CN101978536B (en) Membrane electrode assembly and fuel cell
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP2005174861A (en) Manufacturing method for membrane electrode assembly for solid polymer fuel cell
JP2001160398A (en) Gas diffusion electrode for fuel cell and fuel cell using the same
KR101561101B1 (en) Polymer catalyst Slurry composition, porous electrodes produced thereby, membrane-electrode assembly comprising the porous electrodes, and method for the MEA
JPH1116586A (en) Manufacture of high polymer electrolyte film-gas diffusion electrode body
JP2004139789A (en) Catalyst powder for fuel cell and its manufacturing method as well as polyelectrolyte membrane/electrode joint body and polyelectrolyte fuel cell equipped with the same
JP2005108827A (en) Ink for catalyst layer formation and electrode using the same and membrane electrode junction
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2006277984A (en) Manufacturing method of membrane electrode assembly
KR101181854B1 (en) A method for preparing an electrode for fuel cell, a fuel cell system comprising the electrodes prepared therefrom, and an apparatus for preparing an electrode for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004