JPH06203848A - Manufacture of solid high polymer fuel cell - Google Patents

Manufacture of solid high polymer fuel cell

Info

Publication number
JPH06203848A
JPH06203848A JP4358058A JP35805892A JPH06203848A JP H06203848 A JPH06203848 A JP H06203848A JP 4358058 A JP4358058 A JP 4358058A JP 35805892 A JP35805892 A JP 35805892A JP H06203848 A JPH06203848 A JP H06203848A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
slurry
solvent
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4358058A
Other languages
Japanese (ja)
Inventor
Tsutomu Seki
務 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP4358058A priority Critical patent/JPH06203848A/en
Publication of JPH06203848A publication Critical patent/JPH06203848A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To simplify manufacturing processes by performing hot press with a film of ion exchange resin sandwiched between two electrode sheets each formed from a specific slurry, for bonding and integrating the electrode sheets and the film of ion exchange resin to each other. CONSTITUTION:A catalyst having platinum supported to carbon black, a solvent solution of ion exchange resin such as perfluorocarbon sulfonate resin serving as solid electrolyte, and a diluting solvent are mixed together to form a slurry. The slurry is formed into a film on an electrode base which is made water- repellent by a method that uses polytetrafluoroethylene, etc. Next, the solvent contained in the slurry is vaporized and removed to form electrode sheets. Hot press is carried out with a film of ion exchange resin serving as solid high polymer electrolyte sandwiched between the two electrode sheets, for bonding and integrating the electrode sheets and the film of ion exchange resin to each other. Current collectors are brought into close contact with both sides of this stack to obtain a fuel cell. Manufacturing processes can thus be simplified without use of polytetrachloroethylene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子型燃料電池
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術およびその課題】従来、固体高分子型燃料
電池の製造方法として、予め調整した電極触媒粒子とポ
リ四弗化エチレンとを混合して電極シートを成形し、こ
れをイオン交換樹脂膜に熱圧着する方法が知られている
(例えば、米国特許第3134697号、同第3297
484号、同第3432355号)。しかしながら、上
記方法は、電極シートの結着温度が高く、イオン交換樹
脂膜との熱圧着を同時に行なうことができず、電池性能
も満足すべき状態にない。
2. Description of the Related Art Conventionally, as a method for producing a polymer electrolyte fuel cell, electrode catalyst particles prepared in advance and polytetrafluoroethylene are mixed to form an electrode sheet, which is then used as an ion exchange resin membrane. There is known a method of thermocompression bonding to the above (for example, US Pat. Nos. 3,134,697 and 3297).
No. 484, No. 3432355). However, in the above method, the binding temperature of the electrode sheet is high, the thermocompression bonding with the ion exchange resin membrane cannot be performed at the same time, and the battery performance is not in a satisfactory state.

【0003】また、固体高分子型燃料電池の製造方法と
して、イオン交換樹脂膜内の表面近くに触媒粒子を化学
的還元により析出させる方法が知られている(例えば、
特公昭58−47471号公報)。しかしながら上記方
法は、触媒がイオン交換樹脂中にできるだけ微粒子とし
て存在し、換言すれば高分散して存在しかつ微粒子同士
が電気的接触を保つことが困難であるという欠点があ
る。
Further, as a method for producing a polymer electrolyte fuel cell, a method is known in which catalyst particles are deposited by chemical reduction near the surface in the ion exchange resin membrane (for example,
Japanese Patent Publication No. 58-47471). However, the above method has a drawback in that the catalyst exists in the ion exchange resin as fine particles as much as possible, in other words, exists in a highly dispersed state, and it is difficult for the fine particles to maintain electrical contact with each other.

【0004】電気化学、53,No.10(198
5)、812〜817頁には、酸素極の電極触媒粉末と
して、10%の白金を担持したカーボン粉末を用い、該
電極触媒粉末に、NAFION−117(パーフルオロ
カーボンスルホン酸樹脂、デュポン社製、商品名)溶
液、すなわち濃度5%のNAFION−117の脂肪族
アルコールと水との混合溶媒溶液を種々の混合比で混合
し、さらに60%のPTFEを水懸濁液状で加え、得ら
れる混合物を混練した後、圧延してシート状とし、真空
乾燥して得られる酸素極シートをNAFION膜(デュ
ポン社製、固体高分子電解質膜、商品名)に100℃、
210kg/cm2 でホットプレスする酸素極の接合方
法が開示されており、該方法によれば固体電解質として
のNAFION膜に一体に接合された酸素極にイオン交
換樹脂を混入することによって電極反応サイトの三次元
化を図ると分極特性が著しく向上することが報告されて
いる。しかしながら、上記方法は、PTFEを使用して
いるため電池性能が十分でなく、混練・圧延工程を用い
るため電極シートの製造工程が複雑である。
Electrochemistry, 53, No. 10 (198
5), pp. 812-817, carbon powder carrying 10% platinum was used as the electrode catalyst powder for the oxygen electrode, and NAFION-117 (perfluorocarbon sulfonic acid resin, manufactured by DuPont, (Trade name) solution, that is, a mixed solvent solution of 5% concentration of NAFION-117 in aliphatic alcohol and water is mixed at various mixing ratios, and 60% of PTFE is added in the form of an aqueous suspension to obtain a mixture. After kneading, it is rolled into a sheet, and the oxygen electrode sheet obtained by vacuum drying is applied to a NAFION membrane (manufactured by DuPont, solid polymer electrolyte membrane, trade name) at 100 ° C.
A method for joining oxygen electrodes that is hot pressed at 210 kg / cm 2 is disclosed. According to the method, an ion exchange resin is mixed into an oxygen electrode that is integrally joined to a NAFION membrane as a solid electrolyte so that an electrode reaction site is formed. It has been reported that the polarization characteristics are remarkably improved when the three-dimensional structure is attempted. However, in the above method, since PTFE is used, the battery performance is not sufficient, and the kneading / rolling process is used, so the manufacturing process of the electrode sheet is complicated.

【0005】特開平4−162365号公報には、30
重量%の白金を担持したカーボンブラックを、ナフィオ
ン(NAFION)のブタノール溶液に浸漬し、次いで
真空乾燥して表面にナフィオンを付与した触媒微粒子を
作成すると共に、別途用意した無触媒カーボンブラック
を、ナフィオンのブタノール溶液に浸漬し、次いで真空
乾燥して表面にナフィオンを付与した無触媒微粒子を作
成し、次いでこの2種類の微粒子の混合物をポリテトラ
クロロエチレン(PTFE)ディスパージョンと混合
し、次いで濾過乾燥し、得られた混合物微粉体を、燃料
電池電極基材として通常用いられており、20重量%P
TFEで撥水化処理したカーボンペーパー上に、白金重
量が0.5mg/cm2 となるように散布し、次いで1
30℃で40kg/cm2 の加圧下で5秒間プレスして
電極を成形し、該電極2枚の間にイオン交換樹脂膜ナフ
ィオン117をはさみ、160℃、40kg/cm2
加圧下で5秒間プレスして一体化することよりなる燃料
電池用電極の作製法が開示されており、該方法によれば
少量の触媒で高性能の電極、低コストの電極が容易に得
られ、小型高出力密度の燃料電池の作成が可能となるこ
とが記載されている。しかしながら、上記方法は、製造
工程が極めて複雑である欠点があり、しかもPTFEが
結着する温度360℃以上での熱処理を行なっていない
ため電極の成形性に問題がある。
Japanese Unexamined Patent Publication No. 4-162365 discloses 30
Carbon black supporting wt% of platinum was immersed in a solution of NAFION in butanol, and then vacuum-dried to prepare catalyst fine particles with Nafion on the surface, and non-catalyst carbon black prepared separately was used. Of non-catalyst fine particles having Nafion added to the surface thereof, and then a mixture of these two kinds of fine particles is mixed with polytetrachloroethylene (PTFE) dispersion, followed by filtration and drying, The obtained mixture fine powder is usually used as a fuel cell electrode base material, and contains 20 wt% P
Platinum was sprayed onto TFE water repellent carbon paper so that the weight of platinum was 0.5 mg / cm 2, and then 1
An electrode is formed by pressing at 30 ° C. under a pressure of 40 kg / cm 2 for 5 seconds, an ion exchange resin membrane Nafion 117 is sandwiched between the two electrodes, and 160 ° C. under a pressure of 40 kg / cm 2 for 5 seconds. A method for producing an electrode for a fuel cell, which comprises pressing and integrating, is disclosed. According to the method, a high-performance electrode and a low-cost electrode can be easily obtained with a small amount of a catalyst, and a small size and high power density can be obtained. It is described that it is possible to produce the fuel cell of. However, the above method has a drawback that the manufacturing process is extremely complicated, and further, there is a problem in the formability of the electrode because the heat treatment is not performed at a temperature of 360 ° C. or higher at which PTFE is bound.

【0006】本発明は、従来技術におけるポリテトラク
ロロエチレンを用いることなく、著しく簡略化された製
造工程ですぐれた電池性能を有する固体高分子電解質型
燃料電池を提供することを目的としている。
An object of the present invention is to provide a solid polymer electrolyte fuel cell which has excellent cell performance in a significantly simplified manufacturing process without using polytetrachloroethylene in the prior art.

【0007】[0007]

【問題を解決するための手段】本発明は、白金をカーボ
ンブラックに担持してなる触媒、固体高分子電解質とし
てのイオン交換樹脂の溶媒溶液および稀釈用溶媒を混合
してスラリーを形成させ、該スラリーを撥水化処理され
た電極基材上に膜状に施工し、該スラリー中に含有され
る溶媒を蒸発・除去して電極シートを形成させ、該電極
シート2枚の間に固体高分子電解質膜としてのイオン交
換樹脂膜を挟んでホットプレスして該電極シートと該イ
オン交換樹脂膜とを接合・一体化することを特徴とする
固体高分子型燃料電池を提供するものである。
According to the present invention, a catalyst prepared by supporting platinum on carbon black, a solvent solution of an ion exchange resin as a solid polymer electrolyte, and a diluting solvent are mixed to form a slurry. The slurry is applied on the water-repellent electrode base material in a film form, the solvent contained in the slurry is evaporated and removed to form an electrode sheet, and a solid polymer is provided between the two electrode sheets. The polymer electrolyte fuel cell is characterized in that the electrode sheet and the ion-exchange resin membrane are joined and integrated by hot pressing with an ion-exchange resin membrane as an electrolyte membrane sandwiched therebetween.

【0008】本発明において、白金をカーボンブラック
に担持してなる触媒の白金担持量は、通常5〜40重量
%、好ましくは25〜40重量%の範囲にある。
In the present invention, the amount of platinum supported on the catalyst in which platinum is supported on carbon black is usually 5 to 40% by weight, preferably 25 to 40% by weight.

【0009】本発明における固体高分子電解質膜として
のイオン交換樹脂の例として、例えばNAFION−1
17(パーフルオロカーボンスルホン酸樹脂、デュポン
社製、商品名)があげられる。該イオン交換樹脂の溶媒
溶液としては、NAFION−117のアルコール溶
液、脂肪族アルコールと水との混合溶媒溶液などがあげ
られ、その濃度は、通常0.1〜5重量%、好ましくは
1〜5重量%の範囲にある。
As an example of the ion exchange resin as the solid polymer electrolyte membrane in the present invention, for example, NAFION-1
17 (perfluorocarbon sulfonic acid resin, manufactured by DuPont, trade name). Examples of the solvent solution of the ion exchange resin include an alcohol solution of NAFION-117, a mixed solvent solution of an aliphatic alcohol and water, and the concentration thereof is usually 0.1 to 5% by weight, preferably 1 to 5%. It is in the range of% by weight.

【0010】本発明において使用される稀釈用溶媒は、
スラリーの均一化のために用いられるものであって、そ
の例として、脂肪族アルコールと水との混合溶媒、好ま
しくはi−プロパノールあるいはn−ブタノールと水と
の混合溶媒などをあげることができる。
The diluting solvent used in the present invention is
It is used for homogenizing the slurry, and examples thereof include a mixed solvent of an aliphatic alcohol and water, preferably a mixed solvent of i-propanol or n-butanol and water.

【0011】本発明において、白金担持触媒、イオン交
換樹脂の溶媒溶液および稀釈用溶媒の混合方法として
は、混合順序に特に制限はなく、同時に混合してもよ
く、例えば超音波ホモジナイザーなどを用いて均一に混
合するのが好ましく、この混合によりスラリーが形成さ
れる。
In the present invention, the method of mixing the platinum-supported catalyst, the solvent solution of the ion exchange resin and the solvent for dilution is not particularly limited in the order of mixing and they may be mixed at the same time, for example, using an ultrasonic homogenizer. It is preferable to mix uniformly, and this mixing forms a slurry.

【0012】本発明において、白金担持触媒、イオン交
換樹脂の溶媒溶液および稀釈用溶媒の混合割合として
は、該イオン交換樹脂の溶媒溶液の量が、イオン交換樹
脂として該触媒100重量部当り5〜50重量部、好ま
しくは10〜50重量部の範囲にあり、該稀釈溶媒の量
が、該イオン交換樹脂の溶媒溶液100重量部当り、1
00〜400重量部、好ましくは200〜400重量部
の範囲にある。イオン交換樹脂の溶媒溶液の量が、イオ
ン交換樹脂として触媒100重量部当り5重量部未満で
あっては樹脂が触媒粒子に充分に行きわたらず成膜性の
点で好ましくなく、50重量部を超えると触媒粒子のな
いイオン交換膜の部分が生じ好ましくない。稀釈用溶媒
の量が、該イオン交換膜の溶媒溶液100重量部当り1
00重量部未満では均一なスラリーを得ることが困難で
好ましくなく、400重量部を超えると後述する溶媒の
蒸発・除去に多くの時間を必要とするため好ましくな
い。また、稀釈用溶媒の量は、形成されるスラリーの固
形分濃度が2.5〜25重量%、好ましくは5〜25重
量%の範囲となる量であり、該スラリーの固形分濃度が
2.5重量%未満では後述する溶媒の蒸発・除去に多く
の時間を必要とするため好ましくなく、5重量%を超え
ると均一なスラリーを得ることが困難で好ましくない。
In the present invention, the mixing ratio of the platinum-supported catalyst, the solvent solution of the ion exchange resin and the diluting solvent is such that the amount of the solvent solution of the ion exchange resin is 5 to 100 parts by weight of the catalyst as the ion exchange resin. It is in the range of 50 parts by weight, preferably 10 to 50 parts by weight, and the amount of the diluted solvent is 1 per 100 parts by weight of the solvent solution of the ion exchange resin.
The amount is in the range of 00 to 400 parts by weight, preferably 200 to 400 parts by weight. When the amount of the solvent solution of the ion exchange resin is less than 5 parts by weight per 100 parts by weight of the catalyst as the ion exchange resin, the resin does not sufficiently reach the catalyst particles, which is not preferable in terms of film-forming property. If it exceeds the above range, a portion of the ion exchange membrane having no catalyst particles is generated, which is not preferable. The amount of the diluting solvent is 1 per 100 parts by weight of the solvent solution of the ion exchange membrane.
If it is less than 00 parts by weight, it is difficult to obtain a uniform slurry, which is not preferable, and if it exceeds 400 parts by weight, it takes a long time to evaporate and remove the solvent described later, which is not preferable. Further, the amount of the diluting solvent is such that the solid content concentration of the slurry formed is in the range of 2.5 to 25% by weight, preferably 5 to 25% by weight, and the solid content concentration of the slurry is 2. If it is less than 5% by weight, it takes a long time to evaporate and remove the solvent described later, and if it exceeds 5% by weight, it is difficult to obtain a uniform slurry, which is not preferable.

【0013】このようにして形成されたスラリーは、撥
水化処理した電極基材上に、白金量として0.01〜4
mg/cm2 の範囲でそれぞれ膜状に施工される。該白
金量が0.01mg/cm2 未満では触媒の活性点が少
なすぎて一定量以上の電流を流すことができないので好
ましくなく、4mg/cm2 を超えると反応層の厚みが
大きくなり抵抗が大きくなる点で好ましくない。電極基
材としては従来公知のもの、例えばカーボンペーパーを
用いることができ、該カーボンペーパーとしては、気孔
率50〜90%、好ましくは70〜80%のものを用い
ることができる。電極基材の撥水化処理は、例えばPT
FE(ポリテトラフルオロエチレン)を用いる公知の方
法で行なうことができる。該スラリーを電極基材上に施
工する方法としては、従来公知の各種塗布方法、印刷
法、ドクターブレード法などがあげられる。
The slurry thus formed has a platinum content of 0.01 to 4 on the water-repellent electrode base material.
Each film is applied in the range of mg / cm 2 . If the amount of platinum is less than 0.01 mg / cm 2 , the number of active sites of the catalyst is too small to pass a current of a certain amount or more, which is not preferable, and if it exceeds 4 mg / cm 2 , the thickness of the reaction layer increases and the resistance increases. It is not preferable because it becomes large. As the electrode base material, a conventionally known material such as carbon paper can be used, and the carbon paper having a porosity of 50 to 90%, preferably 70 to 80% can be used. The water repellent treatment of the electrode base material is, for example, PT
It can be carried out by a known method using FE (polytetrafluoroethylene). Examples of the method for applying the slurry on the electrode base material include various conventionally known coating methods, printing methods, doctor blade methods and the like.

【0014】このようにして、電極基板上に施工された
スラリー中に含有される溶媒を蒸発・除去して電極シー
トが形成される。溶媒の蒸発・除去は、例えば80℃で
真空乾燥によって行なうことができる。
In this way, the solvent contained in the slurry applied on the electrode substrate is evaporated and removed to form the electrode sheet. Evaporation / removal of the solvent can be performed by vacuum drying at 80 ° C., for example.

【0015】次いで、このようにして形成された電極シ
ート2枚の間に固体高分子電解質膜としてのイオン交換
樹脂膜を挟んでホットプレスして電極シートとイオン交
換樹脂膜とを接合・一体化する。このホットプレスは、
通常温度140〜200℃、圧力25〜200kgf/
cm2 およびプレス時間3〜180秒の加圧条件下に行
なうことができる。
Next, an ion exchange resin membrane as a solid polymer electrolyte membrane is sandwiched between the two electrode sheets thus formed and hot pressed to join and integrate the electrode sheet and the ion exchange resin membrane. To do. This hot press
Normal temperature 140 ~ 200 ℃, pressure 25 ~ 200kgf /
It can be carried out under pressure conditions of cm 2 and pressing time of 3 to 180 seconds.

【0016】このようにして形成されたイオン交換樹脂
膜と電極シートとの接合体の両面に、常法により集電体
を密着させ、さらに水素出入口および酸素出入口を設け
ることにより固体高分子型燃料電池を得ることができ
る。
A solid polymer fuel is prepared by bringing a current collector into close contact with both sides of the thus formed bonded body of the ion exchange resin membrane and the electrode sheet by a conventional method, and further providing a hydrogen inlet / outlet and an oxygen inlet / outlet. You can get a battery.

【0017】[0017]

【発明の効果】本発明によれば、従来技術におけるポリ
テトラクロロエチレンを用いることなく、著しく簡略化
された製造工程ですぐれた電池性能、特に比較的低い温
度でも大きな電流を得ることのできる利点を有する固体
高分子型燃料電池が提供される。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain excellent battery performance in a significantly simplified manufacturing process, particularly to obtain a large current even at a relatively low temperature, without using polytetrachloroethylene in the prior art. A polymer electrolyte fuel cell is provided.

【0018】[0018]

【実施例】以下実施例により本発明をさらに詳しく説明
する。
The present invention will be described in more detail with reference to the following examples.

【0019】実施例1 カーボンブラックに40重量%の白金を担持してなる触
媒100g、5重量%ナフィオン117のアルコール溶
液800gおよび水とアルコールとの重量比1:4の混
合溶媒1600gよりなる混合物を超音波ホモジナイザ
ーを用いて均一に混合して固形分濃度5.8重量%のス
ラリーを形成した。25重量%PTFE溶液を用いて常
法により撥水化処理した、気孔率75%で厚さ0.4m
mのカーボンペーパー上にスラリーを白金量が4mg/
cm2 となるように均一に塗布し、真空乾燥により溶媒
を蒸発・除去して電極シートを形成した。形成された電
極シート2枚の間にNAFION−117膜を挟み、1
50℃、200kgf/cm2 の加圧下60秒間プレス
して電極シートとNAFION−117膜とを接合・一
体化し、得られた電極シートとNAFION−117膜
との接合体の両面に、常法により集電体を密着させ、さ
らに水素出入口および酸素出入口を設けることにより固
体高分子型燃料電池を得た。得られた電池の両極に各々
水素及び酸素を常圧で毎分0.2リットル導入し、電池
の温度を60℃に保ち、水素ガスを加湿して運転を行な
ったところ、0.4ボルトおよび5アンペアの条件で数
時間以上にわたり発電を確認した。
Example 1 A mixture of 100 g of a catalyst comprising 40% by weight of platinum supported on carbon black, 800 g of an alcohol solution of 5% by weight of Nafion 117 and 1600 g of a mixed solvent of water and alcohol in a weight ratio of 1: 4 was prepared. The mixture was uniformly mixed using an ultrasonic homogenizer to form a slurry having a solid content concentration of 5.8% by weight. Water-repellent treatment was performed by a conventional method using a 25 wt% PTFE solution, and the porosity was 75% and the thickness was 0.4 m.
The amount of platinum on the carbon paper of m is 4 mg /
It was evenly applied to have a size of cm 2, and the solvent was evaporated and removed by vacuum drying to form an electrode sheet. NAFION-117 film is sandwiched between two formed electrode sheets, and 1
The electrode sheet and the NAFION-117 membrane are joined and integrated by pressing at 50 ° C. under a pressure of 200 kgf / cm 2 for 60 seconds, and both surfaces of the obtained joined body of the electrode sheet and the NAFION-117 membrane are coated by a conventional method. A solid polymer fuel cell was obtained by bringing the current collector into close contact and further providing a hydrogen inlet / outlet and an oxygen inlet / outlet. Hydrogen and oxygen were introduced into both electrodes of the obtained battery at normal pressure in an amount of 0.2 liters per minute, the temperature of the battery was kept at 60 ° C., and the hydrogen gas was humidified. Power generation was confirmed for several hours or more under the condition of 5 amps.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 白金をカーボンブラックに担持してなる
触媒、固体高分子電解質としてのイオン交換樹脂の溶媒
溶液および稀釈用溶媒を混合してスラリーを形成させ、
該スラリーを撥水化処理された電極基材上に膜状に施工
し、該スラリー中に含有される溶媒を蒸発・除去して電
極シートを形成させ、該電極シート2枚の間に固体高分
子電解質膜としてのイオン交換樹脂膜を挟んでホットプ
レスして該電極シートと該イオン交換樹脂膜とを接合・
一体化することを特徴とする固体高分子型燃料電池の製
造方法。
1. A catalyst comprising platinum supported on carbon black, a solvent solution of an ion exchange resin as a solid polymer electrolyte, and a diluting solvent are mixed to form a slurry,
The slurry is applied in a film form on the water-repellent-treated electrode base material, the solvent contained in the slurry is evaporated and removed to form an electrode sheet, and the solid sheet is placed between the two electrode sheets. The ion exchange resin membrane as a molecular electrolyte membrane is sandwiched and hot pressed to join the electrode sheet and the ion exchange resin membrane.
A method for manufacturing a polymer electrolyte fuel cell, characterized by being integrated.
【請求項2】 該イオン交換樹脂の溶媒溶液の量が、イ
オン交換樹脂として該触媒100重量部当り5〜50重
量部の範囲にあり、該稀釈溶媒の量が、該イオン交換樹
脂の溶媒溶液100重量部当り、100〜400重量部
の範囲にあり、該スラリーの固形分濃度が2.5〜25
重量%の範囲にある請求項1記載の方法。
2. The amount of the solvent solution of the ion exchange resin is in the range of 5 to 50 parts by weight per 100 parts by weight of the catalyst as the ion exchange resin, and the amount of the diluted solvent is the solvent solution of the ion exchange resin. It is in the range of 100 to 400 parts by weight per 100 parts by weight, and the solid content concentration of the slurry is 2.5 to 25.
The method of claim 1 in the range of weight percent.
【請求項3】 施工されるスラリー量が、白金量として
それぞれ0.01〜4mg/cm2 の範囲にある請求項
1記載の方法。
3. The method according to claim 1, wherein the amount of slurry applied is in the range of 0.01 to 4 mg / cm 2 as the amount of platinum.
JP4358058A 1992-12-25 1992-12-25 Manufacture of solid high polymer fuel cell Pending JPH06203848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4358058A JPH06203848A (en) 1992-12-25 1992-12-25 Manufacture of solid high polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4358058A JPH06203848A (en) 1992-12-25 1992-12-25 Manufacture of solid high polymer fuel cell

Publications (1)

Publication Number Publication Date
JPH06203848A true JPH06203848A (en) 1994-07-22

Family

ID=18457320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4358058A Pending JPH06203848A (en) 1992-12-25 1992-12-25 Manufacture of solid high polymer fuel cell

Country Status (1)

Country Link
JP (1) JPH06203848A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703076B1 (en) * 1999-10-28 2004-03-09 Forschungszentrum Julich Gmbh Production of catalyst layers on diaphragms for low-temperature fuel cells
KR100446607B1 (en) * 1998-05-04 2004-11-06 삼성전자주식회사 Method for preparing slurry for forming catalytic layer of proton exchange membrane(pem) fuel cell to avoid problem caused by residual alcohol, method for manufacturing pem fuel cell using the same and pem fuel cell obtained thereby
JP2005174861A (en) * 2003-12-15 2005-06-30 Asahi Glass Co Ltd Manufacturing method for membrane electrode assembly for solid polymer fuel cell
WO2006004120A1 (en) * 2004-07-06 2006-01-12 Matsushita Electric Industrial Co., Ltd. Process for producing gas diffusion electrode and polymer electrolyte fuel cell, and gas diffusion electrode and polymer electrolyte fuel cell
US7169500B2 (en) 2002-10-26 2007-01-30 Samsung Sdi Co., Ltd. Membrane-electrode assembly of fuel cell, production method of the same, and fuel cell employing the same
JP2007095712A (en) * 2007-01-15 2007-04-12 Toshiba Corp Solid polymer fuel cell and method of manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446607B1 (en) * 1998-05-04 2004-11-06 삼성전자주식회사 Method for preparing slurry for forming catalytic layer of proton exchange membrane(pem) fuel cell to avoid problem caused by residual alcohol, method for manufacturing pem fuel cell using the same and pem fuel cell obtained thereby
US6703076B1 (en) * 1999-10-28 2004-03-09 Forschungszentrum Julich Gmbh Production of catalyst layers on diaphragms for low-temperature fuel cells
US7169500B2 (en) 2002-10-26 2007-01-30 Samsung Sdi Co., Ltd. Membrane-electrode assembly of fuel cell, production method of the same, and fuel cell employing the same
JP2005174861A (en) * 2003-12-15 2005-06-30 Asahi Glass Co Ltd Manufacturing method for membrane electrode assembly for solid polymer fuel cell
WO2006004120A1 (en) * 2004-07-06 2006-01-12 Matsushita Electric Industrial Co., Ltd. Process for producing gas diffusion electrode and polymer electrolyte fuel cell, and gas diffusion electrode and polymer electrolyte fuel cell
JPWO2006004120A1 (en) * 2004-07-06 2008-04-24 松下電器産業株式会社 Gas diffusion electrode and polymer electrolyte fuel cell manufacturing method, gas diffusion electrode and polymer electrolyte fuel cell
US7883817B2 (en) 2004-07-06 2011-02-08 Panasonic Corporation Method for producing gas diffusion electrode and method for producing polymer electrolyte fuel cell, and gas diffusion electrode and polymer electrolyte fuel cell
JP2012209268A (en) * 2004-07-06 2012-10-25 Panasonic Corp Method for producing gas diffusion electrode and polymer electrolyte fuel cell, and gas diffusion electrode and polymer electrolyte fuel cell
JP5153139B2 (en) * 2004-07-06 2013-02-27 パナソニック株式会社 Gas diffusion electrode and method for producing polymer electrolyte fuel cell
JP2007095712A (en) * 2007-01-15 2007-04-12 Toshiba Corp Solid polymer fuel cell and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP3555196B2 (en) Fuel cell and method of manufacturing the same
KR100647296B1 (en) Metal catalyst and a fuel cell employing an electrode including the same
US6391487B1 (en) Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
JPH04162365A (en) Method for preparing electrode of fuel cell
JPH09199138A (en) Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
JP2002543578A (en) Electrochemical use of amorphous fluoropolymer.
GB2316802A (en) Gas diffusion electrodes based on polyethersulfone Carbon blends
JPH08236123A (en) Fuel cell electrode and manufacture thereof
JPH08148152A (en) Solid polymeric fuel cell electrode and manufacture thereof
JPH06203848A (en) Manufacture of solid high polymer fuel cell
JP2004335252A (en) Electrode catalyst for fuel cell, and its manufacturing method
JPH06203849A (en) Manufacture of solid high polymer fuel cell
JPH08115726A (en) Preparation of electrode for high-molecular solid electrolytic type electrochemistry cell
US6136463A (en) HSPES membrane electrode assembly
JPH08148151A (en) Fuel cell electrode and manufacture thereof
JPH07176310A (en) Electrode and junction body between electrode and ion exchange membrane
JPH08148153A (en) Solid polymeric fuel cell electrode and manufacture thereof
JPH08148167A (en) Jointed body of polymeric electrolytic film and electrode, and jointing method therefor
JPH10189002A (en) Electrode for fuel cell and its manufacture
CA2181560C (en) Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
JPH0644984A (en) Electrode for solid high polymer electrolyte fuel cell
JP2000235859A (en) Gas diffusing electrode and fuel cell provided with the same
JP4011330B2 (en) Electrocatalyst layer formation method
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
JPH08185867A (en) Electrode for solid high polymer type fuel cell and its manufacture