JPH06203849A - Manufacture of solid high polymer fuel cell - Google Patents

Manufacture of solid high polymer fuel cell

Info

Publication number
JPH06203849A
JPH06203849A JP4358059A JP35805992A JPH06203849A JP H06203849 A JPH06203849 A JP H06203849A JP 4358059 A JP4358059 A JP 4358059A JP 35805992 A JP35805992 A JP 35805992A JP H06203849 A JPH06203849 A JP H06203849A
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
suspension
platinum
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4358059A
Other languages
Japanese (ja)
Inventor
Tsutomu Seki
務 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP4358059A priority Critical patent/JPH06203849A/en
Publication of JPH06203849A publication Critical patent/JPH06203849A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To simplify manufacturing processes by performing hot press with a film of ion exchange resin sandwiched between two electrode sheets each formed from a specific slurry, for bonding and integrating the electrode sheets and the film of ion exchange resin together. CONSTITUTION:A catalyst having platinum supported to carbon black, a solvent solution of ion exchange resin such as perfluorocarbon sulfonate resin, and a diluting solvent are mixed together to form a suspension. The suspension is accumulated on an electrode base made water-repellent and is filtered through the electrode base while being dispersed, to take the platinum-supporting catalyst and the ion exchange resin in the suspension into the electrode base so as to form electrode sheets. Next, hot press is carried out with a film of ion exchange resin serving as a solid high polymer electrolyte film sandwiched between the two electrode sheets so that the electrode sheets and the film of ion exchange resin are bonded and integrated together. Manufacturing processes can thus be simplified without use of polytetrafluoroethylene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体高分子型燃料電池の
製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術およびその課題】従来、固体高分子型燃料
電池の製造方法として、予め調整した電極触媒粒子とポ
リ四弗化エチレンとを混合して電極シートを成形し、こ
れをイオン交換樹脂膜に熱圧着する方法が知られている
(例えば、米国特許第3134697号、同第3297
484号、同第3432355号)。しかしながら、上
記方法は、電極シートの結着温度が高く、イオン交換樹
脂膜との熱圧着を同時に行なうことができず、電池性能
も満足すべき状態にない。
2. Description of the Related Art Conventionally, as a method for producing a polymer electrolyte fuel cell, electrode catalyst particles prepared in advance and polytetrafluoroethylene are mixed to form an electrode sheet, which is then used as an ion exchange resin membrane. There is known a method of thermocompression bonding to the above (for example, US Pat. Nos. 3,134,697 and 3297).
No. 484, No. 3432355). However, in the above method, the binding temperature of the electrode sheet is high, the thermocompression bonding with the ion exchange resin membrane cannot be performed at the same time, and the battery performance is not in a satisfactory state.

【0003】また、固体高分子型燃料電池の製造方法と
して、イオン交換樹脂膜内の表面近くに触媒粒子を化学
的還元により析出させる方法が知られている(例えば、
特公昭58−47471号公報)。しかしながら上記方
法は、触媒がイオン交換樹脂中にできるだけ微粒子とし
て存在し、換言すれば高分散して存在しかつ微粒子同士
が電気的接触を保つことが困難であるという欠点があ
る。
Further, as a method for producing a polymer electrolyte fuel cell, a method is known in which catalyst particles are deposited by chemical reduction near the surface in the ion exchange resin membrane (for example,
Japanese Patent Publication No. 58-47471). However, the above method has a drawback in that the catalyst exists in the ion exchange resin as fine particles as much as possible, in other words, exists in a highly dispersed state, and it is difficult for the fine particles to maintain electrical contact with each other.

【0004】電気化学、53,No.10(198
5)、812〜817頁には、酸素極の電極触媒粉末と
して、10%の白金を担持したカーボン粉末を用い、該
電極触媒粉末に、NAFION−117(パーフルオロ
カーボンスルホン酸樹脂、デュポン社製、商品名)溶
液、すなわち濃度5%のNAFION−117の脂肪族
アルコールと水との混合溶媒溶液を種々の混合比で混合
し、さらに60%のPTFEを水懸濁液状で加え、得ら
れる混合物を混練した後、圧延してシート状とし、真空
乾燥して得られる酸素極シートをNAFION膜(デュ
ポン社製、固体高分子電解質膜、商品名)に100℃、
210kg/cm2 でホットプレスする酸素極の接合方
法が開示されており、該方法によれば固体電解質として
のNAFION膜に一体に接合された酸素極にイオン交
換樹脂を混入することによって電極反応サイトの三次元
化を図ると分極特性が著しく向上することが報告されて
いる。しかしながら、上記方法は、PTFEを使用して
いるため電池性能が十分でなく、混練・圧延工程を用い
るため電極シートの製造工程が複雑である。
Electrochemistry, 53, No. 10 (198
5), pp. 812-817, carbon powder carrying 10% platinum was used as the electrode catalyst powder for the oxygen electrode, and NAFION-117 (perfluorocarbon sulfonic acid resin, manufactured by DuPont, (Trade name) solution, that is, a mixed solvent solution of 5% concentration of NAFION-117 in aliphatic alcohol and water is mixed at various mixing ratios, and 60% of PTFE is added in the form of an aqueous suspension to obtain a mixture. After kneading, it is rolled into a sheet, and the oxygen electrode sheet obtained by vacuum drying is applied to a NAFION membrane (manufactured by DuPont, solid polymer electrolyte membrane, trade name) at 100 ° C.
A method for joining oxygen electrodes by hot pressing at 210 kg / cm 2 is disclosed. According to the method, an electrode reaction site is formed by mixing an ion exchange resin into an oxygen electrode integrally joined to a NAFION membrane as a solid electrolyte. It has been reported that the polarization characteristics are remarkably improved when the three-dimensional structure is attempted. However, in the above method, since PTFE is used, the battery performance is not sufficient, and the kneading / rolling process is used, so the manufacturing process of the electrode sheet is complicated.

【0005】特開平4−162365号公報には、30
重量%の白金を担持したカーボンブラックを、ナフィオ
ン(NAFION)のブタノール溶液に浸漬し、次いで
真空乾燥して表面にナフィオンを付与した触媒微粒子を
作成すると共に、別途用意した無触媒カーボンブラック
を、ナフィオンのブタノール溶液に浸漬し、次いで真空
乾燥して表面にナフィオンを付与した無触媒微粒子を作
成し、次いでこの2種類の微粒子の混合物をポリテトラ
クロロエチレン(PTFE)ディスパージョンと混合
し、次いで濾過乾燥し、得られた混合物微粉体を、燃料
電池電極基材として通常用いられており、20重量%P
TFEで撥水化処理したカーボンペーパー上に、白金重
量が0.5mg/cm2 となるように散布し、次いで1
30℃で40kg/cm2 の加圧下で5秒間プレスして
電極を成形し、該電極2枚の間にイオン交換樹脂膜ナフ
ィオン117をはさみ、160℃、40kg/cm2
加圧下で5秒間プレスして一体化することよりなる燃料
電池用電極の作製法が開示されており、該方法によれば
少量の触媒で高性能の電極、低コストの電極が容易に得
られ、小型高出力密度の燃料電池の作成が可能となるこ
とが記載されている。しかしながら、上記方法は、製造
工程が極めて複雑である欠点があり、しかもPTFEが
結着する温度360℃以上での熱処理を行なっていない
ため電極の成形性に問題がある。
Japanese Unexamined Patent Publication No. 4-162365 discloses 30
Carbon black supporting wt% platinum was immersed in a solution of NAFION in butanol, and then vacuum dried to prepare catalyst fine particles with Nafion on the surface, and a non-catalyst carbon black prepared separately was used. Of non-catalyst fine particles having Nafion added to the surface thereof, and then a mixture of these two kinds of fine particles is mixed with polytetrachloroethylene (PTFE) dispersion, followed by filtration and drying, The obtained mixture fine powder is usually used as a fuel cell electrode base material, and contains 20 wt% P
Platinum was sprayed onto TFE water repellent carbon paper so that the weight of platinum was 0.5 mg / cm 2, and then 1
An electrode is formed by pressing at 30 ° C. under a pressure of 40 kg / cm 2 for 5 seconds, an ion exchange resin membrane Nafion 117 is sandwiched between the two electrodes, and 160 ° C. under a pressure of 40 kg / cm 2 for 5 seconds. A method for producing an electrode for a fuel cell, which comprises pressing and integrating, is disclosed. According to the method, a high-performance electrode and a low-cost electrode can be easily obtained with a small amount of a catalyst, and a small size and high power density can be obtained. It is described that it is possible to produce the fuel cell of. However, the above method has a drawback that the manufacturing process is extremely complicated, and further, there is a problem in the formability of the electrode because the heat treatment is not performed at a temperature of 360 ° C. or higher at which PTFE is bound.

【0006】本発明は、従来技術におけるポリテトラク
ロロエチレンを用いることなく、著しく簡略化された製
造工程ですぐれた電池性能を有する固体高分子型燃料電
池を提供することを目的としている。
An object of the present invention is to provide a polymer electrolyte fuel cell which has excellent cell performance in a significantly simplified manufacturing process without using polytetrachloroethylene in the prior art.

【0007】[0007]

【問題を解決するための手段】本発明は、白金をカーボ
ンブラックに担持してなる触媒、固体高分子電解質とし
てのイオン交換樹脂の溶媒溶液および稀釈用溶媒を混合
して懸濁液を形成させ、該懸濁液を撥水化処理された電
極基材上に堆積させ、次いで加圧または吸引により該懸
濁液を、好ましくは分散させながら、電極基材で濾過し
て該懸濁液中の白金担持触媒およびイオン交換樹脂を電
極基材内に取り込ませることにより電極シートを形成
し、該電極シート2枚の間に固体高分子電解質膜として
のイオン交換樹脂膜を挟み、ホットプレスして該電極シ
ートと該イオン交換樹脂膜とを接合・一体化することを
特徴とする固体高分子型燃料電池を提供するものであ
る。
According to the present invention, a catalyst comprising platinum supported on carbon black, a solvent solution of an ion exchange resin as a solid polymer electrolyte, and a diluting solvent are mixed to form a suspension. In the suspension, the suspension is deposited on a water repellent-treated electrode base material, and then the suspension is filtered by an electrode base material while being preferably dispersed by pressure or suction. An electrode sheet is formed by incorporating the platinum-supported catalyst and the ion exchange resin in the electrode base material, and an ion exchange resin membrane as a solid polymer electrolyte membrane is sandwiched between the two electrode sheets and hot pressed. It is intended to provide a polymer electrolyte fuel cell characterized by joining and integrating the electrode sheet and the ion exchange resin membrane.

【0008】本発明において、白金をカーボンブラック
に担持してなる触媒の白金担持量は、通常5〜40重量
%、好ましくは25〜40重量%の範囲にある。
In the present invention, the amount of platinum supported on the catalyst in which platinum is supported on carbon black is usually 5 to 40% by weight, preferably 25 to 40% by weight.

【0009】本発明における固体高分子電解質としての
イオン交換樹脂の例として、例えばNAFION−11
7(パーフルオロカーボンスルホン酸樹脂、デュポン社
製、商品名)があげられる。該イオン交換樹脂の溶媒溶
液としては、NAFION−117のアルコール溶液、
脂肪族アルコールと水との混合溶媒溶液などがあげら
れ、その濃度は、通常0.1〜5重量%、好ましくは1
〜5重量%の範囲にある。
As an example of the ion exchange resin as the solid polymer electrolyte in the present invention, for example, NAFION-11.
7 (perfluorocarbon sulfonic acid resin, manufactured by DuPont, trade name). As a solvent solution of the ion exchange resin, an alcohol solution of NAFION-117,
Examples thereof include a mixed solvent solution of an aliphatic alcohol and water, and the concentration thereof is usually 0.1 to 5% by weight, preferably 1
Is in the range of up to 5% by weight.

【0010】本発明において使用される稀釈用溶媒は、
懸濁液を得るために用いられるものであって、その例と
して、脂肪族アルコールと水との混合溶媒、好ましくは
i−プロパノールあるいはn−ブタノールと水との混合
溶媒などをあげることができる。
The diluting solvent used in the present invention is
It is used to obtain a suspension, and examples thereof include a mixed solvent of an aliphatic alcohol and water, preferably i-propanol or a mixed solvent of n-butanol and water.

【0011】本発明において、白金担持触媒、イオン交
換樹脂の溶媒溶液および稀釈用溶媒の混合方法として
は、混合順序に特に制限はなく、同時に混合してもよ
く、例えば超音波ホモジナイザーなどを用いて均一に混
合するのが好ましく、この混合により懸濁液が形成され
る。
In the present invention, the method of mixing the platinum-supported catalyst, the solvent solution of the ion exchange resin and the solvent for dilution is not particularly limited in the order of mixing and they may be mixed at the same time, for example, using an ultrasonic homogenizer. Homogeneous mixing is preferred, and this mixing forms a suspension.

【0012】本発明において、白金担持触媒、イオン交
換樹脂の溶媒溶液および稀釈用溶媒の混合割合として
は、該イオン交換樹脂の溶媒溶液の量が、イオン交換樹
脂として該触媒100重量部当り5〜50重量部、好ま
しくは10〜50重量部の範囲にあり、該稀釈溶媒の量
が、該イオン交換樹脂の溶媒溶液100重量部当り、1
00〜400重量部、好ましくは350〜400重量部
の範囲にある。イオン交換樹脂の溶媒溶液の量が、イオ
ン交換樹脂として触媒100重量部当り5重量部未満で
あっては樹脂が触媒粒子に充分に行きわたらず成膜性の
点で好ましくなく、50重量部を超えると触媒粒子の存
在しないイオン交換膜の部分が生じ好ましくない。稀釈
用溶媒の量が、該イオン交換膜の溶媒溶液100重量部
当り100重量部未満では懸濁液を得ることは困難で好
ましくなく、400重量部を超えると後述する濾過に時
間がかかりすぎるという点で好ましくない。また、稀釈
用溶媒の量は、形成されるスラリーの固形分濃度が2.
5〜25重量%、好ましくは25〜3重量%の範囲とな
る量であり、該スラリーの固形分濃度が2.5重量%未
満では後述する濾過に時間がかかりすぎるという問題が
あり、25重量%を超えると懸濁液を得ることは困難で
あって好ましくない。
In the present invention, the mixing ratio of the platinum-supported catalyst, the solvent solution of the ion exchange resin and the diluting solvent is such that the amount of the solvent solution of the ion exchange resin is 5 to 100 parts by weight of the catalyst as the ion exchange resin. It is in the range of 50 parts by weight, preferably 10 to 50 parts by weight, and the amount of the diluted solvent is 1 per 100 parts by weight of the solvent solution of the ion exchange resin.
It is in the range of 00 to 400 parts by weight, preferably 350 to 400 parts by weight. When the amount of the solvent solution of the ion exchange resin is less than 5 parts by weight per 100 parts by weight of the catalyst as the ion exchange resin, the resin does not sufficiently reach the catalyst particles, which is not preferable in terms of film-forming property. If it exceeds the above range, a portion of the ion exchange membrane in which catalyst particles do not exist is generated, which is not preferable. If the amount of the diluting solvent is less than 100 parts by weight per 100 parts by weight of the solvent solution of the ion exchange membrane, it is difficult to obtain a suspension, which is not preferable, and if it exceeds 400 parts by weight, the filtration described below takes too much time. It is not preferable in terms. Further, the amount of the diluent solvent is such that the solid content concentration of the slurry formed is 2.
The amount is in the range of 5 to 25% by weight, preferably 25 to 3% by weight, and if the solid content concentration of the slurry is less than 2.5% by weight, there is a problem that filtration takes too long, which will be described later. If it exceeds%, it is difficult to obtain a suspension, which is not preferable.

【0013】このようにして形成されたスラリーは、撥
水化処理した電極基材上に、白金量として0.01〜4
mg/cm2 の範囲でそれぞれ堆積される。白金量が
0.01mg/cm2 未満では触媒の活性点が少なすぎ
て一定量以上の電流を流すことができないので好ましく
なく、4mg/cm2 を超えると反応層の厚みが大きく
なり抵抗が大きくなる点で好ましくない。次いで堆積さ
れた懸濁液を加圧するか、あるいは電極基材に対し、懸
濁液と反対側を負圧にして吸引することにより、該懸濁
液を、好ましくは超音波ホモジナイザーなどを用いて分
散させながら、電極基材で濾過して該懸濁液中の白金担
持触媒およびイオン交換樹脂を電極基材内に取り込ませ
ることにより電極シートが形成される。必要に応じて、
懸濁液中の白金担持触媒およびイオン交換樹脂がなくな
るまで濾過を繰り返して行なう。ここに加圧は、例えば
加圧濾過装置により行ない、吸引は例えば吸引濾過装置
により行なわれる。
The slurry thus formed has a platinum content of 0.01 to 4 on the water-repellent electrode base material.
Each is deposited in the range of mg / cm 2 . When the amount of platinum is less than 0.01 mg / cm 2 , the active sites of the catalyst are too small to allow a certain amount of current to flow, which is not preferable, and when it exceeds 4 mg / cm 2 , the thickness of the reaction layer becomes large and the resistance becomes large. Is not preferable. Then, the deposited suspension is pressurized, or a negative pressure is applied to the side opposite to the suspension with respect to the electrode base material to suck the suspension, preferably using an ultrasonic homogenizer or the like. An electrode sheet is formed by filtering with an electrode base material while being dispersed and incorporating the platinum-supported catalyst and the ion exchange resin in the suspension into the electrode base material. If necessary,
The filtration is repeated until the platinum-supported catalyst and the ion exchange resin in the suspension are exhausted. Pressurization is performed here by, for example, a pressure filtration device, and suction is performed by, for example, a suction filtration device.

【0014】このようにして、施工された電極中に残存
する溶媒を蒸発・除去して電極シートが形成される。残
存溶媒の蒸発・除去は、例えば80℃真空乾燥によって
行なうことができる。
In this way, the solvent remaining in the applied electrode is evaporated and removed to form an electrode sheet. Evaporation and removal of the residual solvent can be performed by vacuum drying at 80 ° C., for example.

【0015】次いで、このようにして形成された電極シ
ート2枚の間に固体高分子電解質膜としてのイオン交換
樹脂膜を挟んでホットプレスして電極シートとイオン交
換樹脂膜とを接合・一体化する。このホットプレスは、
通常温度140〜200℃、圧力25〜200kgf/
cm2 およびプレス時間3〜180秒の加圧条件下に行
なうことができる。
Next, an ion exchange resin membrane as a solid polymer electrolyte membrane is sandwiched between the two electrode sheets thus formed and hot pressed to join and integrate the electrode sheet and the ion exchange resin membrane. To do. This hot press
Normal temperature 140 ~ 200 ℃, pressure 25 ~ 200kgf /
It can be carried out under pressure conditions of cm 2 and pressing time of 3 to 180 seconds.

【0016】このようにして形成されたイオン交換樹脂
膜と電極シートとの接合体の両面に、常法により集電体
を密着させ、さらに水素出入口および酸素出入口を設け
ることにより固体高分子型燃料電池を得ることができ
る。
A solid polymer fuel is prepared by bringing a current collector into close contact with both sides of the thus formed bonded body of the ion exchange resin membrane and the electrode sheet by a conventional method, and further providing a hydrogen inlet / outlet and an oxygen inlet / outlet. You can get a battery.

【0017】[0017]

【発明の効果】本発明によれば、従来技術におけるポリ
テトラフルオロエチレンを用いることなく、著しく簡略
化された製造工程ですぐれた電池性能、特に低温におい
ても大きな電流を得ることができる利点を有する固体高
分子型燃料電池が提供される。本発明方法によれば、懸
濁液の濾過の際、濾液が通過した部分が電極の作動時に
おいては良好な物質移動の通路となり、物質移動が良好
で触媒利用率の高い固体高分子型燃料電池用電極が得ら
れる。本発明方法によれば、懸濁液の加圧または吸引に
よる濾過の際、懸濁液を分散させながら行なうことによ
り、触媒層中の白金担持触媒粒子と固体高分子電解質た
るイオン交換樹脂の両者が偏ることなく混合され、白金
担持触媒の利用率が向上し、電池の性能をさらに向上さ
せることができる。
EFFECTS OF THE INVENTION According to the present invention, there is an advantage that excellent battery performance can be obtained by a remarkably simplified manufacturing process, especially a large current can be obtained even at a low temperature, without using polytetrafluoroethylene in the prior art. A polymer electrolyte fuel cell is provided. According to the method of the present invention, when the suspension is filtered, the portion through which the filtrate has passed serves as a path for good mass transfer during operation of the electrode, and the solid polymer fuel has good mass transfer and high catalyst utilization rate. A battery electrode is obtained. According to the method of the present invention, when the suspension is filtered by pressurization or suction, it is carried out while dispersing the suspension, so that both the platinum-supported catalyst particles in the catalyst layer and the ion exchange resin as the solid polymer electrolyte are obtained. Are uniformly mixed, the utilization rate of the platinum-supported catalyst is improved, and the performance of the battery can be further improved.

【0018】[0018]

【実施例】以下実施例により本発明をさらに詳しく説明
する。
The present invention will be described in more detail with reference to the following examples.

【0019】実施例1 カーボンブラックに40重量%の白金を担持してなる触
媒100g、5重量%ナフィオン117のアルコール溶
液800gおよび水とアルコールとの重量比4:1の混
合溶媒3200gよりなる混合物を超音波ホモジナイザ
ーを用いて均一に混合して固形分濃度3.5重量%の懸
濁液を形成した。25重量%PTFE溶液を用いて常法
により撥水化処理した、気孔率75%で厚さ0.4mm
のカーボンペーパー上に懸濁液を白金量が4mg/cm
2 となるように堆積させ、200kPaの差圧の条件下
に懸濁液を濾過して懸濁液中の白金担持触媒およびナフ
ィオン117をカーボンペーパー内に取り込ませて電極
シートを形成した。形成された電極シート2枚の間にN
AFION117膜を挟み、150℃、200kgf/
cm2 の加圧下60秒間プレスして電極シートとNAF
ION−117膜とを接合・一体化し、得られた電極シ
ートとNAFION−117膜との接合体の両面に、常
法により集電体を密着させ、さらに水素出入口および酸
素出入口を設けることにより固体高分子型燃料電池を得
た。得られた電池の電池性能について、水素流量0.2
リットル/min、常圧、酸素流量0.2リットル/m
in、常圧で各ガスをおのおの電池の各極に導入し、電
池温度を60℃、水素ガスを加湿して発電試験を行なっ
たところ図1のような電流−電圧曲線を得た。
Example 1 A mixture of 100 g of a catalyst in which 40% by weight of platinum was supported on carbon black, 800 g of an alcohol solution of 5% by weight of Nafion 117 and 3200 g of a mixed solvent of water and alcohol in a weight ratio of 4: 1 was used. The mixture was uniformly mixed using an ultrasonic homogenizer to form a suspension having a solid content concentration of 3.5% by weight. Water-repellent treatment was performed by a conventional method using a 25 wt% PTFE solution, and the porosity was 75% and the thickness was 0.4 mm.
Of platinum on carbon paper of 4mg / cm
Then , the suspension was filtered under a pressure difference of 200 kPa, and the platinum-supported catalyst and Nafion 117 in the suspension were taken into carbon paper to form an electrode sheet. N between the two formed electrode sheets
AFION117 membrane sandwiched, 150 ℃, 200kgf /
Pressed for 60 seconds under pressure of cm 2 and electrode sheet and NAF
The ION-117 membrane is joined and integrated, and a current collector is adhered to both sides of the obtained joined body of the electrode sheet and the NAFION-117 membrane by a conventional method, and a hydrogen inlet and an oxygen inlet are provided to form a solid. A polymer fuel cell was obtained. Regarding the battery performance of the obtained battery, the hydrogen flow rate was 0.2.
Liter / min, normal pressure, oxygen flow rate 0.2 liter / m
When each gas was introduced into each electrode of each battery at in and normal pressure, the battery temperature was 60 ° C., the hydrogen gas was humidified, and a power generation test was performed. As a result, a current-voltage curve as shown in FIG. 1 was obtained.

【0020】実施例2 堆積された懸濁液を超音波ホモジナイザーで分散させな
がら濾過する以外、実施例1と同様にして固体高分子型
燃料電池を得、それについて実施例1と同様の電池性能
テストを行なったところ、図1のような電流−電圧曲線
を得た。
Example 2 A polymer electrolyte fuel cell was obtained in the same manner as in Example 1 except that the deposited suspension was filtered while being dispersed by an ultrasonic homogenizer, and the same cell performance as in Example 1 was obtained. When the test was conducted, a current-voltage curve as shown in FIG. 1 was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の好ましい態様によって得られる電
池の性能における電圧と電流密度との関係を示すグラフ
であり、1は実施例1の結果を示し、2は実施例2の結
果を示す。
FIG. 1 is a graph showing the relationship between voltage and current density in the performance of batteries obtained by a preferred embodiment of the method of the present invention, where 1 shows the results of Example 1 and 2 shows the results of Example 2.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 白金をカーボンブラックに担持してなる
触媒、固体高分子電解質としてのイオン交換樹脂の溶媒
溶液および稀釈用溶媒を混合して懸濁液を形成させ、該
懸濁液を撥水化処理された電極基材上に堆積させ、次い
で加圧または吸引により該懸濁液を電極基材で濾過して
該懸濁液中の白金担持触媒およびイオン交換樹脂を電極
基材内に取り込ませることにより電極シートを形成し、
該電極シート2枚の間に固体高分子電解質膜としてのイ
オン交換樹脂膜を挟み、ホットプレスして該電極シート
と該イオン交換樹脂膜とを接合・一体化することを特徴
とする固体高分子型燃料電池の製造方法。
1. A catalyst in which platinum is supported on carbon black, a solvent solution of an ion exchange resin as a solid polymer electrolyte, and a diluting solvent are mixed to form a suspension, and the suspension is water-repellent. Of the platinum-supported catalyst and the ion exchange resin in the suspension by incorporating the platinum-supported catalyst and the ion-exchange resin in the suspension by depositing on the treated electrode base material and then filtering the suspension through the electrode base material by pressurization or suction. To form an electrode sheet,
A solid polymer, wherein an ion exchange resin membrane as a solid polymer electrolyte membrane is sandwiched between two electrode sheets and hot pressed to bond and integrate the electrode sheet and the ion exchange resin membrane. Type fuel cell manufacturing method.
【請求項2】 該イオン交換樹脂の溶媒溶液の量が、イ
オン交換樹脂として該触媒100重量部当り5〜50重
量部の範囲にあり、該稀釈溶媒の量が、該イオン交換樹
脂の溶媒溶液100重量部当り、100〜400重量部
の範囲にあり、該スラリーの固形分濃度が2.5〜25
重量%の範囲にある請求項1記載の方法。
2. The amount of the solvent solution of the ion exchange resin is in the range of 5 to 50 parts by weight per 100 parts by weight of the catalyst as the ion exchange resin, and the amount of the diluted solvent is the solvent solution of the ion exchange resin. It is in the range of 100 to 400 parts by weight per 100 parts by weight, and the solid content concentration of the slurry is 2.5 to 25.
The method of claim 1 in the range of weight percent.
【請求項3】 堆積される懸濁液の量が、白金量として
それぞれ0.01〜4mg/cm2 の範囲にある請求項
1記載の方法。
3. The method according to claim 1, wherein the amount of the deposited suspension is in the range of 0.01 to 4 mg / cm 2 , respectively, as the amount of platinum.
【請求項4】 該濾過が、懸濁液中の白金担持触媒およ
びイオン交換樹脂がなくなるまで繰り返される請求項1
記載の方法。
4. The filtration is repeated until the platinum-supported catalyst and the ion exchange resin in the suspension are exhausted.
The method described.
【請求項5】 該濾過が、堆積された懸濁液を分散させ
ながら行なわれる請求項1記載の方法。
5. The method according to claim 1, wherein the filtering is performed while dispersing the deposited suspension.
JP4358059A 1992-12-25 1992-12-25 Manufacture of solid high polymer fuel cell Pending JPH06203849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4358059A JPH06203849A (en) 1992-12-25 1992-12-25 Manufacture of solid high polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4358059A JPH06203849A (en) 1992-12-25 1992-12-25 Manufacture of solid high polymer fuel cell

Publications (1)

Publication Number Publication Date
JPH06203849A true JPH06203849A (en) 1994-07-22

Family

ID=18457325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4358059A Pending JPH06203849A (en) 1992-12-25 1992-12-25 Manufacture of solid high polymer fuel cell

Country Status (1)

Country Link
JP (1) JPH06203849A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050143A1 (en) * 1996-06-25 1997-12-31 The Dais Corporation Gas diffusion electrode
US6246568B1 (en) 1997-06-16 2001-06-12 Matsushita Electric Industrial Co., Ltd. Electric double-layer capacitor and method for manufacturing the same
US6703076B1 (en) * 1999-10-28 2004-03-09 Forschungszentrum Julich Gmbh Production of catalyst layers on diaphragms for low-temperature fuel cells
US6977234B2 (en) 2001-01-19 2005-12-20 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell electrolyte film-electrode bond
JP2006512724A (en) * 2002-12-30 2006-04-13 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalyst-containing gas diffusion layer for fuel cell and method for producing the same
US7169500B2 (en) 2002-10-26 2007-01-30 Samsung Sdi Co., Ltd. Membrane-electrode assembly of fuel cell, production method of the same, and fuel cell employing the same
US20100183941A1 (en) * 2007-06-15 2010-07-22 Sumitomo Chemical Company, Limited Assembly of membrane, electrode, gas diffusion layer and gasket, method for producing the same, and solid polymer fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050143A1 (en) * 1996-06-25 1997-12-31 The Dais Corporation Gas diffusion electrode
US6246568B1 (en) 1997-06-16 2001-06-12 Matsushita Electric Industrial Co., Ltd. Electric double-layer capacitor and method for manufacturing the same
US6703076B1 (en) * 1999-10-28 2004-03-09 Forschungszentrum Julich Gmbh Production of catalyst layers on diaphragms for low-temperature fuel cells
US6977234B2 (en) 2001-01-19 2005-12-20 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell electrolyte film-electrode bond
EP2009720A2 (en) 2001-01-19 2008-12-31 Panasonic Corporation Electrolyte membrane-electrode assembly for fuel cell
USRE41651E1 (en) * 2001-01-19 2010-09-07 Panasonic Corporation Method for manufacturing fuel cell electrolyte film-electrode bond
US7169500B2 (en) 2002-10-26 2007-01-30 Samsung Sdi Co., Ltd. Membrane-electrode assembly of fuel cell, production method of the same, and fuel cell employing the same
JP2006512724A (en) * 2002-12-30 2006-04-13 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalyst-containing gas diffusion layer for fuel cell and method for producing the same
US20100183941A1 (en) * 2007-06-15 2010-07-22 Sumitomo Chemical Company, Limited Assembly of membrane, electrode, gas diffusion layer and gasket, method for producing the same, and solid polymer fuel cell

Similar Documents

Publication Publication Date Title
US5395705A (en) Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
US5607785A (en) Polymer electrolyte electrochemical cell and process of preparing same
US6416898B1 (en) Fuel cell comprising an inorganic glass layer
JP5551215B2 (en) Method for producing polymer electrolyte fuel cell
JPH09199138A (en) Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
JPH08329962A (en) Polymer solid electrolyte film/electrode integrally molded body and manufacture thereof
JPH0817440A (en) Electrode for polymer electrolyte-type electrochemical cell
JP4709477B2 (en) Method for producing electrode catalyst for fuel cell
JP3555209B2 (en) Power generation layer of fuel cell and method of manufacturing the same
JPH06203849A (en) Manufacture of solid high polymer fuel cell
JPH08148152A (en) Solid polymeric fuel cell electrode and manufacture thereof
JPH09180730A (en) Electrode for solid high molecular fuel cell and manufacture thereof
US20050147868A1 (en) Fuel cell
JPH08148151A (en) Fuel cell electrode and manufacture thereof
JPH06203848A (en) Manufacture of solid high polymer fuel cell
US20110207014A1 (en) Fuel cell membrane electrode assembly and method for producing the same
JPH09219206A (en) Electrochemical element
JPH07176310A (en) Electrode and junction body between electrode and ion exchange membrane
JPH08111226A (en) Solid polyelectrolyte type electrochemistry cell and its preparation
JPH08130019A (en) Manufacture of electrode for polymer solid-electrolytic electrochemical cell
JPH08148167A (en) Jointed body of polymeric electrolytic film and electrode, and jointing method therefor
JPH10189002A (en) Electrode for fuel cell and its manufacture
CA2181560C (en) Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
JPH08148153A (en) Solid polymeric fuel cell electrode and manufacture thereof
JP2000235859A (en) Gas diffusing electrode and fuel cell provided with the same