JP2000235859A - Gas diffusing electrode and fuel cell provided with the same - Google Patents

Gas diffusing electrode and fuel cell provided with the same

Info

Publication number
JP2000235859A
JP2000235859A JP11036395A JP3639599A JP2000235859A JP 2000235859 A JP2000235859 A JP 2000235859A JP 11036395 A JP11036395 A JP 11036395A JP 3639599 A JP3639599 A JP 3639599A JP 2000235859 A JP2000235859 A JP 2000235859A
Authority
JP
Japan
Prior art keywords
electrolyte
catalyst
porous
gas diffusion
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11036395A
Other languages
Japanese (ja)
Other versions
JP2000235859A5 (en
JP4117430B2 (en
Inventor
Kazuhide Totsuka
戸塚  和秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP03639599A priority Critical patent/JP4117430B2/en
Priority to US09/482,107 priority patent/US6391487B1/en
Priority to DE10001170A priority patent/DE10001170A1/en
Publication of JP2000235859A publication Critical patent/JP2000235859A/en
Publication of JP2000235859A5 publication Critical patent/JP2000235859A5/ja
Application granted granted Critical
Publication of JP4117430B2 publication Critical patent/JP4117430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower the active over-voltage, resistant over-voltage and concentration over-voltage of an electrode by providing the porous electrolyte having three-dimensional communication holes, and providing catalyst and electrolyte in the described holes, and setting the ion exchange capacity of the porous electrolyte larger than the ion exchange capacity of the electrolyte in the holes. SOLUTION: In a first gas diffusing electrode 5, a first gas diffusing layer 4 is bonded to a first catalyst layer 1. A fine porous aggregate 3 including the catalyst and the electrolyte B is included in the holes of the porous electrolyte A having three-dimensional communication holes. The porous electrolyte A is formed with a route for proton conduction, and the catalyst and the electrolyte B included in the holes form a three-phase interface. Since the porous electrolyte A2 has high proton conductivity, proton conductivity of the first catalyst layer 1 is improved. Since the electrolyte B coating the catalyst in the first catalyst layer 1 and forming the three-phase interface has a relatively large solubility of the reactive material, supplying property of the reactive material such as oxygen and hydrogen to the reaction site is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
型燃料電池のガス拡散電極およびそれを備えた燃料電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas diffusion electrode of a solid polymer electrolyte fuel cell and a fuel cell having the same.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、アノー
ドに燃料として例えば水素を、またカソードに酸化剤と
して例えば酸素を供給して、電気化学的に反応させて電
力を得る電気化学装置である。アノードおよびカソード
はガス拡散電極であり、電解質膜の一方の面にアノード
を、もう一方の面にカソードを接合してガス拡散電極−
電解質膜接合体を構成する。
2. Description of the Related Art A solid polymer electrolyte fuel cell is an electrochemical device which supplies hydrogen, for example, as a fuel to an anode and oxygen, for example, as an oxidant to a cathode and electrochemically reacts to obtain electric power. . The anode and the cathode are gas diffusion electrodes, and the anode is joined to one surface of the electrolyte membrane and the cathode is joined to the other surface to form a gas diffusion electrode.
Construct an electrolyte membrane assembly.

【0003】ガス拡散電極はガス拡散層と触媒層とから
なり、アノードおよびカソードの触媒層は白金族金属の
金属粒子あるいはこれらの粒子を担持したカーボン粒子
などを触媒として備えており、ガス拡散層は撥水性を有
する多孔質なカーボンペーパーなどが用いられる。この
ガス拡散電極−電解質膜接合体をガス供給流路が形成さ
れたガス不透過性の一対のセパレータで挟持して基本単
位となる単電池を構成する。この単電池を複数個積層し
て固体高分子電解質型燃料電池を構成する。
The gas diffusion electrode is composed of a gas diffusion layer and a catalyst layer. The catalyst layers of the anode and the cathode are provided with metal particles of platinum group metals or carbon particles carrying these particles as catalysts. For example, porous carbon paper having water repellency is used. This gas diffusion electrode-electrolyte membrane assembly is sandwiched between a pair of gas-impermeable separators in which gas supply channels are formed to form a unit cell as a basic unit. A plurality of such unit cells are stacked to form a solid polymer electrolyte fuel cell.

【0004】固体高分子電解質型燃料電池を作動させる
と、次のような電気化学反応が進行する。
When a solid polymer electrolyte fuel cell is operated, the following electrochemical reaction proceeds.

【0005】アノード:2H2→4H++4e- カソード:O2+4H++4e-→2H2O 一般的に酸素と水素とを反応させる燃料電池において、
酸素の還元反応の活性化過電圧が大きいことが高い電流
密度での電圧の低下の原因のひとつであるので、電極に
白金族金属などの触媒を付与して活性化過電圧の低減が
はかられる。
Anode: 2H 2 → 4H + + 4e Cathode: O 2 + 4H + + 4e → 2H 2 O Generally, in a fuel cell for reacting oxygen and hydrogen,
A large activation overpotential of the oxygen reduction reaction is one of the causes of the voltage drop at a high current density. Therefore, a catalyst such as a platinum group metal is applied to the electrode to reduce the activation overpotential.

【0006】固体高分子電解質膜を備える固体高分子電
解質型燃料電池において、カソードおよびアノードの電
気化学反応はカソードやアノードに含まれる触媒と電解
質と反応物質とで形成される、いわゆる三相界面で進行
する。したがって、これらの燃料電池を高出力にするた
めには、触媒と電解質との接触面積を増大することが要
求される。
In a solid polymer electrolyte fuel cell having a solid polymer electrolyte membrane, an electrochemical reaction between a cathode and an anode is formed at a so-called three-phase interface formed by a catalyst, an electrolyte, and a reactant contained in the cathode and the anode. proceed. Therefore, in order to increase the output of these fuel cells, it is required to increase the contact area between the catalyst and the electrolyte.

【0007】固体高分子電解質型燃料電池を高出力にす
るために、電解質膜の表面に凹凸を設けて、触媒を含む
電極、特に電極中の触媒層と電解質膜の接触面積を増大
する方法が考案された。そのひとつは、固体高分子電解
質膜の表面積を増大して電極との接触面を増大させる方
法である。例えば、特開平3―158486号では凹凸
を有するロールを用いる方法、特開平4―169069
号ではスパッタリングを用いる方法、特開平4―220
957号ではプラズマエッチングを用いる方法や、特開
平6―279600号では布を埋め込んだ後に引き剥が
す方法によって固体高分子電解質膜の表面に凹凸を設け
る方法が提案されている。
[0007] In order to increase the output of a solid polymer electrolyte fuel cell, there is a method of increasing the contact area between an electrode containing a catalyst, particularly a catalyst layer in the electrode and the electrolyte membrane, by providing irregularities on the surface of the electrolyte membrane. Invented. One method is to increase the surface area of the solid polymer electrolyte membrane to increase the contact surface with the electrode. For example, JP-A-3-158486 discloses a method using a roll having irregularities, and JP-A-4-1690069.
Discloses a method using sputtering, see JP-A-4-220
No. 957 proposes a method using plasma etching, and Japanese Unexamined Patent Publication No. Hei 6-279600 proposes a method of providing unevenness on the surface of a solid polymer electrolyte membrane by a method of embedding a cloth and then peeling it off.

【0008】あるいは、固体高分子電解質膜の表面に孔
を設けて、電解質膜と触媒層との接触面を増大する方法
がある。例えば、特開昭58―7432号では、電解質
を溶解する分散媒体を小滴に結晶化させた後これを取り
除く方法、特開昭62―146926号では粒子を埋め
込んだ後にこれを取り除く方法あるいは、特開平5―1
94764号には低分子有機材料を混合した後これを取
り除く方法が提案されている。
Alternatively, there is a method in which holes are provided in the surface of the solid polymer electrolyte membrane to increase the contact surface between the electrolyte membrane and the catalyst layer. For example, JP-A-58-7432 discloses a method of crystallizing a dispersion medium for dissolving an electrolyte into small droplets and removing the droplets. JP-A-62-146926 discloses a method of removing particles after embedding the particles, or JP-A-5-1
No. 94764 proposes a method of mixing and removing low-molecular-weight organic materials.

【0009】もうひとつは、電解質膜の表面に白金族金
属を担持して、電解質と触媒との接触界面を増大させる
方法である。例えば、特公昭59−42078号や特公
平2−43830号では電解質の表面に無電解メッキを
施す方法が提案されている。
Another method is to carry a platinum group metal on the surface of the electrolyte membrane to increase the contact interface between the electrolyte and the catalyst. For example, Japanese Patent Publication No. 59-42078 and Japanese Patent Publication No. 2-43830 propose a method of performing electroless plating on the surface of an electrolyte.

【0010】さらに、触媒層に電解質を添加して触媒と
電解質との接触面を増大させる方法がある。例えば、特
公平2―7398号では触媒と電解質の溶液とPTFE
などのフッ素樹脂の混合物から電極を作製する方法や、
特公平2―7399では電解質で被覆した触媒とPTF
Eなどのフッ素樹脂から電極作製する方法が提案されて
いる。また,USP5211984号では,触媒と電解
質の溶液との混合物から電極を作製する方法が提案され
ている。
Further, there is a method of increasing the contact surface between the catalyst and the electrolyte by adding an electrolyte to the catalyst layer. For example, in Japanese Patent Publication No. 2-7398, a solution of a catalyst and an electrolyte and PTFE
Such as a method of producing an electrode from a mixture of fluororesins,
Japanese Patent Publication No. 2-7399 states that catalyst coated with electrolyte and PTF
A method for producing an electrode from a fluororesin such as E has been proposed. Further, US Pat. No. 5,221,1984 proposes a method for producing an electrode from a mixture of a catalyst and an electrolyte solution.

【0011】[0011]

【発明が解決しようとする課題】上記のような、ロール
を用いる方法、スパッタリングを用いる方法、プラズマ
エッチングを用いる方法あるいは布を用いる方法では、
凹凸を設ける処理工程が煩雑であり、生産性に劣ること
や、形成された凹凸が粗くて電極との界面の接触面積を
増大させるには不十分であるという問題があった。
As described above, in the method using a roll, the method using sputtering, the method using plasma etching, or the method using cloth,
There is a problem that the process of providing the unevenness is complicated, resulting in inferior productivity, and that the formed unevenness is coarse and insufficient to increase the contact area at the interface with the electrode.

【0012】結晶化した分散媒体、埋め込んだ粒子ある
いは混合した低分子有機材料を取り除くことにより孔を
形成する方法では、分散媒体、粒子あるいは低分子有機
材料を完全に取り除くことは困難であり、これらの残留
物は電解質膜と電極との接触の妨げとなり、電極活性の
低下の原因となる。あるいは、これらの残留物は電解質
膜と電極間のイオン伝導の妨げとなる。また、これらを
取り除く工程において施される加熱や溶媒処理により電
解質の劣化がおこり、イオン伝導性が低下する。上記の
理由により、これらの電解質膜を用いた燃料電池の性能
が低下するという問題があった。
In the method of forming pores by removing the crystallized dispersion medium, embedded particles or mixed low-molecular-weight organic material, it is difficult to completely remove the dispersion medium, particles or low-molecular-weight organic material. Residues hinder contact between the electrolyte membrane and the electrode and cause a decrease in electrode activity. Alternatively, these residues hinder ionic conduction between the electrolyte membrane and the electrode. In addition, the electrolyte is deteriorated by the heating or solvent treatment performed in the step of removing them, and the ionic conductivity is reduced. For the above reasons, there is a problem that the performance of a fuel cell using these electrolyte membranes is reduced.

【0013】無電解メッキなどの方法で電解質膜の表面
に形成される白金族金属は、表面積が小さく触媒として
の活性は低く、この方法による触媒活性の向上は不十分
であった。
The platinum group metal formed on the surface of the electrolyte membrane by a method such as electroless plating has a small surface area and a low activity as a catalyst, and the improvement of the catalyst activity by this method is insufficient.

【0014】触媒と電解質とからなる触媒層に関して、
そのプロトン伝導性が低くプロトン移動の抵抗が大きい
こと、あるいはプロトン移動の抵抗に起因する電圧の低
下の影響が小さい部分は電解質膜の近傍にあることが、
J.Electrochem.Soc.,140,35
13(1993)で指摘されている。このような触媒層
では、触媒量を増加するとその触媒層の厚みも増大する
ので、高い電流密度では触媒層のプロトン移動の抵抗に
起因する電圧の低下の影響が大きくなる。
With respect to a catalyst layer comprising a catalyst and an electrolyte,
That the proton conductivity is low and the resistance of proton transfer is large, or that the part where the influence of the decrease in voltage due to the resistance of proton transfer is small is near the electrolyte membrane,
J. Electrochem. Soc. , 140 , 35
13 (1993). In such a catalyst layer, as the amount of the catalyst increases, the thickness of the catalyst layer also increases. Therefore, at a high current density, the effect of the voltage drop due to the resistance of the catalyst layer to proton transfer increases.

【0015】つまり、触媒量の増加による活性化過電圧
が減少する効果と、触媒層の厚みの増加による抵抗過電
圧が増大する効果とは二律背反の関係にある。このため
に、触媒量の増加の割りには特性の向上が大きくないと
いう問題があった。
That is, the effect of reducing the activation overvoltage due to the increase in the amount of catalyst and the effect of increasing the resistance overvoltage due to the increase in the thickness of the catalyst layer have a trade-off relationship. For this reason, there is a problem that the improvement of the characteristics is not so large as to the increase in the amount of the catalyst.

【0016】[0016]

【課題を解決するための手段】本発明は上記の課題を解
決するものであり、その目的は、触媒層中の触媒量を増
加することにより、電極反応が進行するいわゆる三相界
面を多く形成して活性化過電圧を減少させ、かつその触
媒層のプロトン伝導性を向上してプロトンの移動の抵抗
に起因する電圧の降下を抑制し、さらに触媒層に適度な
孔を形成すること、および触媒層中の三相界面を形成す
る電解質中への反応物質の溶解度を高めることにより、
濃度過電圧を減少させ、高出力な燃料電池を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to increase the amount of a catalyst in a catalyst layer to form a large number of so-called three-phase interfaces in which an electrode reaction proceeds. Reducing the activation overpotential, and improving the proton conductivity of the catalyst layer to suppress the voltage drop caused by the resistance of proton transfer, and further forming an appropriate hole in the catalyst layer, and By increasing the solubility of the reactants in the electrolyte forming the three-phase interface in the layer,
An object of the present invention is to provide a high-output fuel cell by reducing concentration overvoltage.

【0017】固体高分子電解質型燃料電池の電解質に
は、パーフロロスルホン酸樹脂のようなプロトン導電性
を有するイオン交換樹脂が用いられ、触媒層中では触媒
が電解質としてのイオン交換樹脂で被覆されており、反
応物質がその電解質中に溶解し、拡散することによって
供給され、触媒と電解質と反応物質が接触するいわゆる
三相界面を形成する。
As the electrolyte of the solid polymer electrolyte fuel cell, an ion exchange resin having proton conductivity such as perfluorosulfonic acid resin is used. In the catalyst layer, the catalyst is coated with the ion exchange resin as the electrolyte. The reactants are supplied by dissolving and diffusing into the electrolyte, forming a so-called three-phase interface where the catalyst, the electrolyte and the reactants come into contact.

【0018】一般に、電解質としてのイオン交換樹脂
は、イオン交換容量が大きければプロトン伝導性が高
く、逆にイオン交換容量が小さければ反応物質の溶解度
が高いという特性がある。この特性を用いて、触媒層中
に含まれる電解質のプロトン伝導性と反応物質の供給性
とを機能別に向上させることにより、触媒層全体として
のプロトン伝導性および反応物質の供給性の両立をはか
る。
Generally, an ion exchange resin as an electrolyte has a property that the proton conductivity is high when the ion exchange capacity is large, and the solubility of the reactant is high when the ion exchange capacity is small. By using this characteristic to improve the proton conductivity of the electrolyte contained in the catalyst layer and the supply property of the reactant for each function, it is possible to achieve both the proton conductivity and the supply property of the reactant as the whole catalyst layer. .

【0019】すなわち、触媒層中に、イオン交換容量が
比較的大きくプロトン伝導性の高い樹脂で三次元連通性
の孔を有する多孔質電解質を形成してプロトン伝導性を
向上させ、多孔質電解質の孔中にイオン交換容量が比較
的小さく反応物質の溶解度の大きい樹脂で被覆した触媒
を備えて、いわゆる三相界面への反応反応物質の供給性
を向上する。
That is, a porous electrolyte having three-dimensionally communicating pores is formed of a resin having a relatively large ion exchange capacity and a high proton conductivity in the catalyst layer to improve the proton conductivity. By providing a catalyst coated with a resin having a relatively small ion exchange capacity and a high solubility of the reactant in the pores, the supply of the reactant to the so-called three-phase interface is improved.

【0020】第一の発明は、触媒層とガス拡散層とを備
えたガス拡散電極において、触媒層が三次元連通性の孔
を有する多孔質電解質Aとその孔中に触媒と電解質Bを
含む微多孔性集合体を備えた構造であり、その多孔質電
解質Aのイオン交換容量がその孔中の電解質Bのイオン
交換容量より大きいことを特徴とするガス拡散電極であ
る。
According to a first aspect of the present invention, in a gas diffusion electrode having a catalyst layer and a gas diffusion layer, the catalyst layer includes a porous electrolyte A having three-dimensionally communicating pores, and a catalyst and an electrolyte B in the pores. A gas diffusion electrode having a structure including a microporous aggregate, wherein the ion exchange capacity of the porous electrolyte A is larger than the ion exchange capacity of the electrolyte B in the pores.

【0021】第二の発明は、第一の発明において、多孔
質電解質Aとその孔中の電解質Bとが、共にパーフロロ
スルホン酸樹脂であることを特徴とする。
The second invention is characterized in that, in the first invention, both the porous electrolyte A and the electrolyte B in the pores thereof are perfluorosulfonic acid resins.

【0022】第三の発明は、第一の発明または第二の発
明のガス拡散電極を備えることを特徴とする固体高分子
電解質型燃料電池である。
A third invention is a solid polymer electrolyte fuel cell including the gas diffusion electrode according to the first invention or the second invention.

【0023】[0023]

【発明の実施の形態】本発明になるガス拡散層の触媒層
において、三次元連通性の孔を有する多孔質電解質Aは
プロトン伝導の経路を形成し、その孔中に含まれた触媒
と電解質Bはいわゆる三相界面を形成する。触媒層中の
プロトン伝導の経路を形成する多孔質電解質Aはプロト
ン伝導性が高いので、触媒層のプロトン伝導度が向上す
る。また、触媒層中にあって触媒を被覆し、三相界面を
形成する電解質Bは比較的反応物質の溶解度が大きいの
で、反応サイトへの酸素や水素などの反応物質の供給性
が向上する。
BEST MODE FOR CARRYING OUT THE INVENTION In the catalyst layer of the gas diffusion layer according to the present invention, the porous electrolyte A having three-dimensionally communicating pores forms a proton conduction path, and the catalyst contained in the pores and the electrolyte are contained. B forms a so-called three-phase interface. Since the porous electrolyte A forming the proton conduction path in the catalyst layer has high proton conductivity, the proton conductivity of the catalyst layer is improved. Further, since the electrolyte B in the catalyst layer, which covers the catalyst and forms a three-phase interface, has a relatively high solubility of the reactant, the supply of the reactant such as oxygen and hydrogen to the reaction site is improved.

【0024】三次元連通性の孔を有する多孔質電解質A
においては、電解質Aが三次元網目状の骨格構造を形成
し、同時に、厚み方向および面方向に三次元的に連通し
た孔が形成されている。多孔質電解質Aは、三次元的に
微細孔が形成されているので、その表面積は極めて大き
い。このために、多孔質電解質Aと、その孔中に備えら
れた触媒を被覆する電解質Bとの間のプロトンの授受が
おこなわれる接触面積が多くなる。よって、反応に関与
するプロトンは、プロトン伝導性が高い多孔質電解質A
を移動することになり、プロトン伝導性の低い電解質B
の部分での移動が最小限になるので、プロトンの移動に
よる電圧低下を防止できる。
Porous electrolyte A having three-dimensionally communicating pores
In, the electrolyte A forms a three-dimensional network-like skeleton structure, and at the same time, three-dimensionally communicating holes are formed in the thickness direction and the plane direction. The surface area of the porous electrolyte A is extremely large because micropores are formed three-dimensionally. For this reason, the contact area in which protons are exchanged between the porous electrolyte A and the electrolyte B that covers the catalyst provided in the pores increases. Therefore, the protons involved in the reaction are produced by the porous electrolyte A having high proton conductivity.
And the electrolyte B having low proton conductivity
Is minimized, so that a voltage drop due to the movement of protons can be prevented.

【0025】本発明になるガス拡散電極の触媒層におい
て、三次元連通性の孔を有する多孔質電解質Aの孔中に
備えられた触媒と電解質Bを含む微多孔性集合体は、た
とえばPTFEなどの撥水性粒子やカーボンあるいは金
属などの導電性粒子を含んでもよく、要は、その孔中に
少なくとも触媒と電解質Bを含む微多孔性集合体が備わ
っていればよい。触媒は、白金族金属やその合金あるい
はそれらの酸化物、またはカーボンなど導電性を有する
担体に白金族金属やその合金あるいはそれらの酸化物を
担持したものを用いることができる。
In the catalyst layer of the gas diffusion electrode according to the present invention, the microporous aggregate containing the catalyst and the electrolyte B provided in the pores of the porous electrolyte A having three-dimensionally communicating pores is, for example, PTFE or the like. Or a conductive particle such as carbon or metal. In short, the microporous aggregate containing at least the catalyst and the electrolyte B may be provided in the pores. As the catalyst, a platinum group metal, an alloy thereof, or an oxide thereof, or a catalyst in which a platinum group metal, an alloy thereof, or an oxide thereof is supported on a conductive carrier such as carbon can be used.

【0026】本発明になるガス拡散電極の製造工程の一
例を図2に示す。製造工程は五工程に分けることができ
る。第一工程では、プロトン伝導性の高いすなわちイオ
ン交換容量が大きいイオン交換樹脂を用いて三次元連通
性の孔を有する多孔質電解質Aを形成する。第二工程で
は、白金胆持カーボン触媒などの触媒を、反応物質の溶
解度が大きいすなわちイオン交換容量が小さいイオン交
換樹脂からなる電解質Bを含む溶液に分散させた触媒分
散物を調製する。第三工程では、三次元連通性の孔を有
する多孔質電解質Aに触媒分散物を塗布する。第四工程
では、圧迫を加えるなどの方法により、その触媒分散物
を三次元連通性の孔を有する多孔質電解質Aの孔中の内
部に充填して、その孔中に触媒と電解質Bとを含む微多
孔性集合体を備える。第五工程では、ガス拡散層として
撥水性を付与したカーボンペーパーを接合してガス拡散
電極を作製する。
FIG. 2 shows an example of the manufacturing process of the gas diffusion electrode according to the present invention. The manufacturing process can be divided into five steps. In the first step, a porous electrolyte A having three-dimensionally communicating pores is formed using an ion exchange resin having high proton conductivity, that is, a large ion exchange capacity. In the second step, a catalyst dispersion is prepared by dispersing a catalyst such as a platinum-supported carbon catalyst in a solution containing an electrolyte B made of an ion exchange resin having a high solubility of a reactant, that is, a small ion exchange capacity. In the third step, the catalyst dispersion is applied to the porous electrolyte A having three-dimensionally communicating pores. In the fourth step, the catalyst dispersion is filled into the pores of the porous electrolyte A having three-dimensionally communicating pores by a method such as pressing, and the catalyst and the electrolyte B are filled in the pores. Comprising a microporous assembly. In the fifth step, a gas diffusion electrode is prepared by bonding water-repellent carbon paper as a gas diffusion layer.

【0027】つぎに、本発明になるガス拡散電極の具体
的な作製方法の一例について説明する。
Next, an example of a specific method for manufacturing the gas diffusion electrode according to the present invention will be described.

【0028】第一工程において、アルコール類を含有す
る溶媒に電解質Aを溶解した溶液を、燃料電池の電解質
膜Cの少なくとも一方の面に塗布したのち、アルコール
性水酸基以外の極性基を有する有機溶媒に浸漬して、三
次元連通性の孔を有する多孔質電解質A作製される。
In the first step, a solution in which the electrolyte A is dissolved in a solvent containing alcohols is applied to at least one surface of the electrolyte membrane C of the fuel cell, and then the organic solvent having a polar group other than the alcoholic hydroxyl group is applied. To produce a porous electrolyte A having three-dimensionally communicating pores.

【0029】アルコール類を含有する溶媒に電解質Aを
溶解した溶液は、パーフロロスルホン酸樹脂を水とアル
コールの混合溶媒に溶解したものである。この混合溶媒
に使用するアルコールとしては、炭素数が4以下のメタ
ノール、エタノール、1−プロパノール、2−プロパノ
ール、1−ブタノール、2−ブタノールあるいはこれら
の混合物を用いることができる。電解質Aを溶解した溶
液を燃料電池の電解質膜Cへ付与する方法としては、ス
プレー、ドクターブレード法、スクリーン印刷法など従
来公知の方法を用いた塗布や含浸などの方法を用いるこ
とができる。
The solution obtained by dissolving the electrolyte A in a solvent containing alcohols is obtained by dissolving a perfluorosulfonic acid resin in a mixed solvent of water and alcohol. As the alcohol used in the mixed solvent, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol or a mixture thereof having 4 or less carbon atoms can be used. As a method of applying the solution in which the electrolyte A is dissolved to the electrolyte membrane C of the fuel cell, a method such as application or impregnation using a conventionally known method such as spraying, doctor blade method, screen printing method, or the like can be used.

【0030】燃料電池の電解質膜Cとしては、プロトン
導電性を有する高分子膜を用いることができ、例えばパ
ーフロロスルホン酸樹脂膜を用いることができる。
As the electrolyte membrane C of the fuel cell, a polymer membrane having proton conductivity can be used, and for example, a perfluorosulfonic acid resin membrane can be used.

【0031】アルコール性水酸基以外の極性基を有する
有機溶媒としては、分子内にアルコキシカルボニル基を
有する炭素鎖の炭素数が1〜7の有機溶媒、例えば、ぎ
酸プロピル、ぎ酸ブチル、ぎ酸イソブチル、酢酸エチ
ル、酢酸プロピル、酢酸イソプロピル、酢酸アリル、酢
酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペ
ンチル、プロピオン酸メチル、プロピオン酸エチル、プ
ロピオン酸プロピル、アクリル酸メチル、アクリル酸ブ
チル、アクリル酸イソブチル、酪酸メチル、イソ酪酸メ
チル、酪酸エチル、イソ酪酸エチル、メタクリル酸メチ
ル、酪酸プロピル、イソ酪酸イソプロピル、酢酸2−エ
トキシエチル、酢酸2−(2エトキシエトキシ)エチル
等の単独若しくは混合物、又は分子内にエーテル結合を
有する炭素鎖の炭素数が3〜5の有機溶媒、例えば、ジ
プロピルエーテル、ジブチルエーテル、エチレングリコ
ールジメチルエーテル、エチレングリコールジエチルエ
ーテル、トリプロピレングリコールモノメチルエーテ
ル、テトラヒドロフラン等の単独若しくは混合物、又は
分子内にカルボニル基を有する炭素鎖の炭素数が4〜8
の有機溶媒、例えば、メチルブチルケトン、メチルイソ
ブチルケトン、メチルヘキシルケトン、ジプロピルケト
ン等の単独若しくは混合物、又は分子内にアミノ基を有
する炭素鎖の炭素数が1〜5の有機溶媒、例えば、イソ
プロピルアミン、イソブチルアミン、ターシャルブチル
アミン、イソペンチルアミン、ジエチルアミン等の単独
若しくは混合物、又は分子内にカルボキシル基を有する
炭素鎖の炭素数が1〜6の有機溶媒、例えば、プロピオ
ン酸、吉草酸、カプロン酸、ヘプタン酸等の単独若しく
は混合物、又はこれらの組み合わせから得られるものを
用いることができる。ただし、三次元連通性の孔を有す
る多孔質電解質Aを形成するために用いるアルコール性
水酸基以外の極性基を有する有機溶媒は、アルコキシカ
ルボニル基を有するものが好ましい。
Examples of the organic solvent having a polar group other than the alcoholic hydroxyl group include organic solvents having an alkoxycarbonyl group in the molecule and having 1 to 7 carbon atoms, such as propyl formate, butyl formate, and formic acid. Isobutyl, ethyl acetate, propyl acetate, isopropyl acetate, allyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl acrylate, butyl acrylate, isobutyl acrylate, Methyl butyrate, methyl isobutyrate, ethyl butyrate, ethyl isobutyrate, methyl methacrylate, propyl butyrate, isopropyl isobutyrate, 2-ethoxyethyl acetate, 2- (2-ethoxyethoxy) ethyl acetate, etc., alone or in mixture, or in the molecule Carbon of carbon chain with ether bond Is an organic solvent having 3 to 5, for example, dipropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tripropylene glycol monomethyl ether, alone or a mixture of tetrahydrofuran, or a carbon chain having a carbonyl group in the molecule. 4-8 carbon atoms
Organic solvents, for example, methyl butyl ketone, methyl isobutyl ketone, methyl hexyl ketone, alone or a mixture of dipropyl ketone, or an organic solvent having 1 to 5 carbon atoms in the carbon chain having an amino group in the molecule, for example, Isopropylamine, isobutylamine, tert-butylamine, isopentylamine, a single or mixture of diethylamine, or an organic solvent having 1 to 6 carbon atoms in the carbon chain having a carboxyl group in the molecule, for example, propionic acid, valeric acid, Caproic acid, heptanoic acid, etc., alone or in combination, or a combination thereof can be used. However, the organic solvent having a polar group other than the alcoholic hydroxyl group used for forming the porous electrolyte A having three-dimensionally communicating pores preferably has an alkoxycarbonyl group.

【0032】第二工程において、触媒を分散媒に分散
し,これに電解質Bを溶解した溶液を加えて十分に混合
して触媒分散物を調製する。分散媒としては、 水や炭
素数が4以下のアルコールたとえばメタノール、エタノ
ール、1−プロパノール、2−プロパノール、1−ブタ
ノール、2−ブタノールあるいはこれらの混合物を用い
ることができる。
In the second step, the catalyst is dispersed in a dispersion medium, and a solution in which the electrolyte B is dissolved is added thereto and mixed well to prepare a catalyst dispersion. As the dispersion medium, water or an alcohol having 4 or less carbon atoms, such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, or a mixture thereof can be used.

【0033】電解質Bを溶解した溶液は、パーフロロス
ルホン酸樹脂を水とアルコールの混合溶媒に溶解したも
のである。その混合溶媒のアルコールとしては炭素数が
4以下のメタノール、エタノール、1−プロパノール、
2−プロパノール、1−ブタノール、2−ブタノールあ
るいは混合物を用いることができる。
The solution in which the electrolyte B is dissolved is obtained by dissolving a perfluorosulfonic acid resin in a mixed solvent of water and alcohol. As the alcohol of the mixed solvent, methanol, ethanol, 1-propanol having 4 or less carbon atoms,
2-propanol, 1-butanol, 2-butanol or a mixture can be used.

【0034】電解質Bとして使用するパーフロロスルホ
ン酸樹脂のイオン交換容量は、第一工程で作製した三次
元連通性の孔を有する多孔質電解質Aのイオン交換容量
をより小さい。
The ion exchange capacity of the perfluorosulfonic acid resin used as the electrolyte B is smaller than the ion exchange capacity of the porous electrolyte A having three-dimensionally communicating pores prepared in the first step.

【0035】第三工程において、第二工程で調製した触
媒分散物を、第一工程で作製した三次元連通性の孔を有
する多孔質電解質Aの表面に塗布する。この工程は、例
えばスプレー、ドクターブレード法、スクリーン印刷法
などの塗布する方法、沈殿法や含浸法など従来公知の方
法などを用いることができる。
In the third step, the catalyst dispersion prepared in the second step is applied to the surface of the porous electrolyte A having three-dimensionally communicating pores prepared in the first step. In this step, for example, a coating method such as spraying, a doctor blade method, a screen printing method, or a conventionally known method such as a precipitation method or an impregnation method can be used.

【0036】第四工程において、触媒分散物が付与され
た三次元連通性の孔を有する多孔質電解質Aに圧迫を加
えるなどの方法により、三次元連通性の孔を有する多孔
質電解質Aの孔中に触媒分散物を充填し、その孔中に触
媒と電解質Bを含む微多孔性集合体を備えた触媒層を形
成する。圧迫は、例えば平間プレスあるいはロールプレ
スなど方法により、加えることができる。このとき、多
孔質電解質Aの孔中は、触媒と電解質Bを含む微多孔性
集合体で完全に充填されることなく、適度な空隙が形成
されてもよい。
In the fourth step, the pores of the porous electrolyte A having the three-dimensionally communicating pores are pressed by, for example, applying pressure to the porous electrolyte A having the three-dimensionally communicating pores provided with the catalyst dispersion. A catalyst dispersion is filled therein, and a catalyst layer having a microporous aggregate containing a catalyst and an electrolyte B in its pores is formed. The compression can be applied by a method such as a flat press or a roll press. At this time, moderate pores may be formed in the pores of the porous electrolyte A without being completely filled with the microporous aggregate containing the catalyst and the electrolyte B.

【0037】第五工程において、ガス拡散層を接合して
本発明のガス拡散電極を作製する。ガス拡散層として
は、例えば撥水性を付与したカーボンペーパーやカーボ
ン粉末を撥水性を有するPTFEなどのフッ素系樹脂を
結着剤としてシート状に形成したものを用いることがで
きる。
In the fifth step, the gas diffusion layer is joined to produce the gas diffusion electrode of the present invention. As the gas diffusion layer, for example, a sheet formed by using a water-repellent carbon paper or carbon powder as a binder with a water-repellent fluorine-based resin such as PTFE can be used.

【0038】本発明の一例として、燃料電池の電解質膜
Cの片面に本発明になるガス拡散電極を備えたガス拡散
電極電解質膜接合体の断面の模式図を図1に示す。図1
において、1は第1の触媒層、2は三次元連通性の孔を
有する多孔質電解質A、3は触媒と電解質Bを含む微多
孔性集合体である。触媒と電解質Bを含む微多孔性集合
体3は、三次元連通性の孔を有する多孔質電解質Aの孔
中に含まれている。2の三次元連通性の孔を有する多孔
質電解質Aを構成するイオン交換樹脂のイオン交換容量
は、3の触媒と電解質Bを含む多孔性集合体の電解質B
を構成するイオン交換樹脂のイオン交換容量よりも大き
い。4は第1のガス拡散層、5は第1のガス拡散電極で
ある。第1のガス拡散層4としては、たとえば撥水性を
有するカーボンペーパーを用いることができる。第1の
ガス拡散電極5は、第1の触媒層1に第1のガス拡散層
4が接合されたものである。
As an example of the present invention, a schematic diagram of a cross section of a gas diffusion electrode / electrolyte membrane assembly having a gas diffusion electrode according to the present invention provided on one surface of an electrolyte membrane C of a fuel cell is shown in FIG. FIG.
, 1 is a first catalyst layer, 2 is a porous electrolyte A having three-dimensionally communicating pores, and 3 is a microporous aggregate containing a catalyst and an electrolyte B. The microporous aggregate 3 containing the catalyst and the electrolyte B is contained in the pores of the porous electrolyte A having three-dimensionally communicating pores. The ion-exchange capacity of the ion-exchange resin constituting the porous electrolyte A having the two-dimensionally communicating pores is the electrolyte B of the porous assembly containing the catalyst 3 and the electrolyte B.
Is larger than the ion exchange capacity of the ion exchange resin constituting the above. Reference numeral 4 denotes a first gas diffusion layer, and reference numeral 5 denotes a first gas diffusion electrode. As the first gas diffusion layer 4, for example, carbon paper having water repellency can be used. The first gas diffusion electrode 5 is obtained by joining the first gas diffusion layer 4 to the first catalyst layer 1.

【0039】6は燃料電池の電解質膜Cであり、片面に
本発明の第1のガス拡散電極5、他面に第2のガス拡散
電極9を備える。第2のガス拡散電極9は、第2の触媒
層7に第2のガス拡散層8を接合したものである。第2
の触媒層7は、例えば触媒と電解質からなる触媒分散物
から構成され、第2のガス拡散層8は、例えば第1のガ
ス拡散層4と同じ材質で構成される。
Reference numeral 6 denotes an electrolyte membrane C of the fuel cell, which is provided with a first gas diffusion electrode 5 of the present invention on one side and a second gas diffusion electrode 9 on the other side. The second gas diffusion electrode 9 is formed by joining the second gas diffusion layer 8 to the second catalyst layer 7. Second
The catalyst layer 7 is composed of, for example, a catalyst dispersion composed of a catalyst and an electrolyte, and the second gas diffusion layer 8 is composed of, for example, the same material as the first gas diffusion layer 4.

【0040】燃料電池の電解質膜C(6)の両面に第1
のガス拡散電極5あるいは第2のガス拡散電極9を備え
たもの、または電解質膜C(6)の片面に第1のガス拡
散電極5を、他面に第2のガス拡散電極9を備えたもの
が、ガス拡散電極電解質膜接10である。
The first surfaces of both sides of the electrolyte membrane C (6) of the fuel cell
Provided with the gas diffusion electrode 5 or the second gas diffusion electrode 9, or provided with the first gas diffusion electrode 5 on one side of the electrolyte membrane C (6) and the second gas diffusion electrode 9 on the other side. This is the gas diffusion electrode electrolyte membrane contact 10.

【0041】図3は、三次元連通性の孔を有する多孔質
電解質Aの孔中に含まれた触媒と電解質Bからなる微多
孔性集合体を拡大した模式図である。図3において、1
1はカーボン担体、12は触媒、13は電解質Bであ
る。カーボン担体11としては、例えばカーボンブラッ
クなどが用いられ、触媒12としては、例えば白金など
の白金族金属もしくはそれらの合金の微細粉末、白金黒
粉末などを用いることもできる。カーボン担体11に白
金が触媒として担持されたものは、いわゆる白金担持カ
ーボン触媒である。電解電解質B(13)は触媒を被覆
しており、触媒の表面およびその近傍に被膜状に形成さ
れて、結着剤のはたらきを有し、電気化学反応が進行す
るいわいる三相界面を形成する。電解質B(13)とし
ては、三次元連通性の孔を有する多孔質電解質Aよりも
イオン交換容量が小さく、ガス透過性が高いイオン交換
樹脂が用いられる。
FIG. 3 is an enlarged schematic view of a microporous assembly comprising a catalyst and an electrolyte B contained in the pores of a porous electrolyte A having three-dimensionally communicating pores. In FIG. 3, 1
1 is a carbon carrier, 12 is a catalyst, and 13 is an electrolyte B. As the carbon carrier 11, for example, carbon black or the like is used. As the catalyst 12, for example, fine powder of a platinum group metal such as platinum or an alloy thereof, platinum black powder or the like can be used. The platinum supported on the carbon carrier 11 as a catalyst is a so-called platinum-supported carbon catalyst. The electrolytic electrolyte B (13) covers the catalyst, and is formed in a film form on and near the surface of the catalyst, has a function of a binder, and forms a so-called three-phase interface in which an electrochemical reaction proceeds. I do. As the electrolyte B (13), an ion exchange resin having a smaller ion exchange capacity and a higher gas permeability than the porous electrolyte A having three-dimensionally communicating pores is used.

【0042】[実施例1]本発明になるガス拡散電極の
製造方法の実施例に基いて説明する。
Example 1 A method for manufacturing a gas diffusion electrode according to the present invention will be described based on an example.

【0043】第一工程:燃料電池の電解質膜Cの片面
に、三次元連通性の孔を有する多孔質電解質Aの層を形
成する工程。
First step: a step of forming a layer of a porous electrolyte A having three-dimensionally connected pores on one side of an electrolyte membrane C of a fuel cell.

【0044】イオン交換容量が1.11(m・eq/g
・dry resin)のパーフロロスルホン酸樹脂2
0gとエタノールと水の混合溶媒(エタノール:水=
9:1、重量比)100gを混合し、金属製の密閉容器
に入れ、240℃に加熱し、パーフロロスルホン酸樹脂
を混合溶媒に溶解して、溶液Eを調製した。
The ion exchange capacity is 1.11 (m · eq / g)
・ Dry resin) perfluorosulfonic acid resin 2
0 g, a mixed solvent of ethanol and water (ethanol: water =
(9: 1, weight ratio), 100 g was mixed, placed in a metal closed container, heated to 240 ° C., and perfluorosulfonic acid resin was dissolved in the mixed solvent to prepare a solution E.

【0045】次に、燃料電池の電解質膜Cとしてのナフ
ィオン115膜を精製水で3回洗浄した後、3%過酸化
水素水で1時間煮沸して脱脂処理し、精製水で数回洗浄
し、さらに0.5Mの硫酸で1時間煮沸してプロトン化
処理し、精製水で数回洗浄し、精製水中に保管した。そ
の後、ナフィオン115膜をエタノール中に10分間浸
漬してエタノール処理を施し、十分に膨潤させた。ナフ
ィオン115膜をエタノールから取り出し、ろ紙を用い
て膨潤状態のナフィオン115膜の表面に存在する余剰
のエタノールを拭き取った。
Next, the Nafion 115 membrane as the electrolyte membrane C of the fuel cell was washed three times with purified water, then boiled with 3% hydrogen peroxide for 1 hour, degreased, and washed several times with purified water. The mixture was further boiled with 0.5 M sulfuric acid for 1 hour, protonated, washed several times with purified water, and stored in purified water. Thereafter, the Nafion 115 film was immersed in ethanol for 10 minutes to perform an ethanol treatment to sufficiently swell. The Nafion 115 membrane was removed from ethanol, and excess ethanol present on the surface of the swollen Nafion 115 membrane was wiped off using a filter paper.

【0046】次に、ナフィオン115膜の片面に溶液E
をスプレーして、溶液Eの塗布層を形成した。このナフ
ィオン115膜を酢酸ブチルに10分間浸漬した後取り
出して室温で乾燥して、片面に三次元連通性の孔を有す
る多孔質電解質Aの層を形成したナフィオン115膜を
得、これを精製水中に保管した。三次元連通性の孔を有
する多孔質電解質A層の部分は直径3.5cmで厚みは
約6μmであった。
Next, the solution E was applied to one side of the Nafion 115 membrane.
Was sprayed to form a coating layer of the solution E. The Nafion 115 membrane was immersed in butyl acetate for 10 minutes, taken out and dried at room temperature to obtain a Nafion 115 membrane having a layer of porous electrolyte A having three-dimensionally connected pores on one side, and this was purified water. Was stored. The portion of the porous electrolyte A layer having three-dimensionally connected pores was 3.5 cm in diameter and about 6 μm in thickness.

【0047】第二工程:触媒分散物Mの調製工程。Second step: Step of preparing catalyst dispersion M.

【0048】イオン交換容量が0.91(m・eq/g
・dry resin)のパーフロロスルホン酸樹脂5
gとエタノールと水の混合溶媒(エタノール:水=9:
1、重量比)95g混合し、金属製の密閉容器に入れ、
240℃に加熱し、パーフロロスルホン酸樹脂を混合溶
媒に溶解して、溶液Fを調製した。
The ion exchange capacity is 0.91 (m · eq / g)
・ Dry resin) perfluorosulfonic acid resin 5
g, ethanol and water mixed solvent (ethanol: water = 9:
1, weight ratio) 95g mixed, put in a metal closed container,
The solution was heated to 240 ° C., and the perfluorosulfonic acid resin was dissolved in the mixed solvent to prepare a solution F.

【0049】つぎに、白金を30wt%担持した白金担
持カーボン触媒1.5gに、13mlの溶液Fを攪拌し
ながら徐々に加え、30分間攪拌した。さらに攪拌しな
がら60℃に加熱し、分散媒(エタノールと水の混合溶
媒)に対してパーフロロスルホン酸樹脂の固形分の重量
が15wt%になるまで濃縮して、エタノールと水の混
合溶媒中にパーフロロスルホン酸樹脂と白金担持カーボ
ン触媒が分散した、触媒分散物Mを調製した。
Next, 13 ml of the solution F was gradually added to 1.5 g of a platinum-supported carbon catalyst supporting 30 wt% of platinum while stirring, followed by stirring for 30 minutes. The mixture is further heated to 60 ° C. with stirring, and concentrated until the weight of the solid content of the perfluorosulfonic acid resin with respect to the dispersion medium (a mixed solvent of ethanol and water) becomes 15 wt%. A catalyst dispersion M was prepared in which a perfluorosulfonic acid resin and a platinum-supported carbon catalyst were dispersed.

【0050】第三工程:三次元連通性の孔を有する多孔
質電解質Aの孔中に触媒分散物Mを塗布する工程。
Third step: a step of applying the catalyst dispersion M to the pores of the porous electrolyte A having three-dimensionally communicating pores.

【0051】第一工程で作製した、片面に三次元連通性
の孔を有する多孔質電解質Aの層を形成したナフィオン
115膜を、多孔質電解質Aの層を形成した面が上面に
なるようにガラス平板上に配置した。隙間を15μmに
調整したドクターブレードを用いて、第二工程で作製し
た触媒分散物Mを多孔質電解質Aの層に塗布した。次
に、多孔質電解質Aの層に塗布した触媒分散物Mの塗布
部分を直径3cmの円形状に残し、不要の触媒分散物M
を除去して、電解質膜触媒分散物塗布体を形成した。
The Nafion 115 membrane formed with the porous electrolyte A layer having three-dimensionally connected pores on one side was prepared in the first step, so that the surface on which the porous electrolyte A layer was formed was the upper surface. It was placed on a glass plate. The catalyst dispersion M prepared in the second step was applied to the layer of the porous electrolyte A using a doctor blade having a gap adjusted to 15 μm. Next, the portion of the catalyst dispersion M applied to the layer of the porous electrolyte A is left in a circular shape with a diameter of 3 cm, and the unnecessary catalyst dispersion M is removed.
Was removed to form an electrolyte membrane catalyst dispersion applied body.

【0052】一方、離型紙に触媒層を形成した離型紙触
媒分散物塗布体を作製した。イオン交換容量が1.11
(m・eq/g・dry resin)のパーフロロス
ルホン酸樹脂5gとエタノールと水の混合溶媒(エタノ
ール:水=9:1、重量比)95gを混合し、金属製の
密閉容器に入れて、240℃に加熱して、パーフロロス
ルホン酸樹脂を混合溶媒に溶解して、溶液Gを調製し
た。次に、白金を30wt%担持した白金担持カーボン
触媒1.5gに、13mlの溶液Gを攪拌しながら徐々
に加えて30分間攪拌した。さらに攪拌しながら60℃
に加熱し、分散媒(エタノールと水の混合溶媒)に対し
てパーフロロスルホン酸樹脂の固形分の重量が18wt
%になるまで濃縮して、エタノールと水の混合溶媒中に
パーフロロスルホン酸樹脂と白金担持カーボン触媒が分
散した触媒分散物Nを調製した。スクリーン塗布によ
り、離型紙としてのテトラフロロエチレン−ヘキサフロ
ロプロピレン共重合体シートに触媒分散物Nを塗布し、
離型紙触媒分散物塗布体を作製し、直径3cmの円形状
に裁断した。
On the other hand, a release-paper-catalyst-dispersed-coated body having a catalyst layer formed on release paper was prepared. 1.11 ion exchange capacity
5 g of (m · eq / g · dry resin) perfluorosulfonic acid resin and 95 g of a mixed solvent of ethanol and water (ethanol: water = 9: 1, weight ratio) were mixed, and the mixture was placed in a metal closed container. The solution was heated to 240 ° C., and the perfluorosulfonic acid resin was dissolved in the mixed solvent to prepare a solution G. Next, 13 ml of solution G was gradually added to 1.5 g of a platinum-supported carbon catalyst supporting 30 wt% of platinum while stirring, and the mixture was stirred for 30 minutes. 60 ° C with further stirring
And the weight of the solid content of the perfluorosulfonic acid resin with respect to the dispersion medium (a mixed solvent of ethanol and water) is 18 wt.
%, To prepare a catalyst dispersion N in which a perfluorosulfonic acid resin and a platinum-supported carbon catalyst were dispersed in a mixed solvent of ethanol and water. By screen coating, a catalyst dispersion N is applied to a tetrafluoroethylene-hexafluoropropylene copolymer sheet as a release paper,
A release paper catalyst dispersion applied body was prepared and cut into a circular shape having a diameter of 3 cm.

【0053】第四工程:三次元連通性の孔を有する多孔
質電解質Aの孔中に触媒分散物Mを充填する工程。
Fourth step: a step of filling the catalyst dispersion M into the pores of the porous electrolyte A having three-dimensionally communicating pores.

【0054】第三工程で作製した電解質膜触媒分散物塗
布体と離型紙触媒分散物塗布体を、電解質膜触媒分散物
塗布体の触媒分散物Mを塗布しないナフィオン115の
面と離型紙触媒分散物塗布体の触媒分散物Nを塗布した
面が向かい合うように積層した。この状態で、250k
g/cm2、135℃、5分間、加熱圧接して圧迫を加
えた。すると離型紙触媒層分散物塗布体の触媒層が離型
紙からナフィオン115膜に転写された。また、電解質
膜触媒分散物塗布体の触媒分散物Mを塗布した面では、
加熱圧迫により三次元連通性の孔を有する多孔質電解質
Aの孔中に触媒分散物Mが充填されて、その孔中に触媒
と電解質Bとを含む微多孔性集合体を備えた触媒層が形
成された。このようにして、ナフィオン115膜の片面
に本発明の三次元連通性の孔を有する多孔質電解質Aと
その孔中に触媒と電解質Bとを含む微多孔性集合体を備
えた触媒層、他面に触媒分散物Nからなる触媒層を備え
た触媒層電解質膜接合体を作製した。
The coated electrolyte membrane catalyst dispersion and the release paper catalyst dispersion prepared in the third step were mixed with the surface of Nafion 115 to which the catalyst dispersion M of the electrolyte membrane catalyst dispersion was not coated and the release paper catalyst dispersion. The layers were laminated so that the surfaces of the coated bodies to which the catalyst dispersion N was applied faced each other. In this state, 250k
g / cm 2 at 135 ° C. for 5 minutes while applying pressure. Then, the catalyst layer of the release paper catalyst layer dispersion applied body was transferred from the release paper to the Nafion 115 film. Further, on the surface of the electrolyte membrane catalyst dispersion coated body coated with the catalyst dispersion M,
The catalyst dispersion M is filled in the pores of the porous electrolyte A having three-dimensionally communicating pores by heating and pressing, and the catalyst layer provided with the microporous aggregate containing the catalyst and the electrolyte B in the pores is formed. Been formed. In this way, the catalyst layer including the porous electrolyte A having the three-dimensionally connected pores of the present invention on one surface of the Nafion 115 membrane and the microporous aggregate containing the catalyst and the electrolyte B in the pores, and the like. A catalyst layer / electrolyte membrane assembly having a catalyst layer made of the catalyst dispersion N on the surface was prepared.

【0055】この触媒層電解質膜接合体において、三次
元連通性の孔を有する多孔質電解質Aのイオン交換容量
は1.11(m・eq/g・dry resin)であ
り、三次元連通性の孔を有する多孔質電解質Aの孔中に
含まれた微多孔性集合体中の電解質Bのイオン交換容量
は0.91(m・eq/g・dry resin)とし
た。すなわち、三次元連通性の孔を有する多孔質電解質
Aのイオン交換容量の方が、その孔中に備えられた微多
孔性集合体中の電解質Bのイオン交換容量より大きかっ
た。この触媒層電解質膜接合体を、本発明の触媒層電解
質膜接合体Sとした。
In this catalyst layer electrolyte membrane assembly, the ion exchange capacity of the porous electrolyte A having three-dimensionally communicating pores is 1.11 (m · eq / g · dry resin), The ion exchange capacity of the electrolyte B in the microporous aggregate contained in the pores of the porous electrolyte A having pores was 0.91 (m · eq / g · dry resin). That is, the ion exchange capacity of the porous electrolyte A having three-dimensionally communicating pores was larger than the ion exchange capacity of the electrolyte B in the microporous aggregate provided in the pores. This catalyst layer electrolyte membrane assembly was designated as catalyst layer electrolyte membrane assembly S of the present invention.

【0056】第五工程:ガス拡散層の接合。Fifth step: joining of gas diffusion layers.

【0057】ガス拡散層としての、ポリテトラフロロエ
チレンの分散液を含浸して乾燥したのち、400℃で焼
成して撥水性を付与した、厚さ0.2mm、直径3cm
に裁断したカーボンペーパーを、触媒層電解質膜接合体
Sの両側に配置して、加熱圧接(120kg/cm2
135℃、5分間)により一体に接合して、ガス拡散電
極電解質膜接合体Tを作製した。
After impregnated with a dispersion liquid of polytetrafluoroethylene as a gas diffusion layer and dried, calcined at 400 ° C. to give water repellency, thickness 0.2 mm, diameter 3 cm
Are placed on both sides of the catalyst layer-electrolyte membrane assembly S, and heated and pressed (120 kg / cm 2 ,
(135 ° C., 5 minutes) to form a gas diffusion electrode / electrolyte membrane assembly T.

【0058】このガス拡散電極電解質膜接合体Tを、ガ
ス供給路が形成された金属製のセパレータで挟持し、カ
ソード側に本発明の触媒層を配して固体高分子電解質型
燃料電池Xを構成した。
The gas diffusion electrode / electrolyte membrane assembly T is sandwiched by a metal separator having a gas supply passage formed thereon, and the catalyst layer of the present invention is disposed on the cathode side to obtain a solid polymer electrolyte fuel cell X. Configured.

【0059】[比較例]比較例として、触媒層が三次元
連通性の孔を有する多孔質電解質Aと、その孔中に触媒
と電解質Bを含む微多孔性集合体を備えた構造とし、多
孔質電解質Aのイオン交換容量と微多孔性集合体中の電
解質Bのイオン交換容量とが同じである、触媒層とガス
拡散層とを備えたガス拡散電極を、次にような五工程に
よって作製した。
[Comparative Example] As a comparative example, the catalyst layer had a structure in which a porous electrolyte A having three-dimensionally communicating pores and a microporous aggregate including a catalyst and an electrolyte B in the pores were used. A gas diffusion electrode having a catalyst layer and a gas diffusion layer in which the ion exchange capacity of the porous electrolyte A is the same as the ion exchange capacity of the electrolyte B in the microporous aggregate is produced by the following five steps. did.

【0060】第一工程では、実施例1の第一工程で使用
したパーフロロスルホン酸樹脂の溶液Eを用いて、実施
例1の第一工程と同様の脱脂処理・プロトン化処理・エ
タノール処理を施したナフィオン115膜の片面に、三
次元連通性の孔を有する多孔質電解質Aの層を形成し
た。多孔質電解質A層の部分は直径3.5cm、厚みは
約6μmであった。
In the first step, using the solution E of the perfluorosulfonic acid resin used in the first step of Example 1, the same degreasing treatment, protonation treatment, and ethanol treatment as in the first step of Example 1 were performed. On one surface of the applied Nafion 115 membrane, a layer of porous electrolyte A having three-dimensionally connected pores was formed. The portion of the porous electrolyte A layer had a diameter of 3.5 cm and a thickness of about 6 μm.

【0061】第二工程では、実施例1の第三工程と同様
にして、エタノールと水の混合溶媒中にパーフロロスル
ホン酸樹脂と白金担持カーボン触媒が分散した、触媒分
散物Nを調製した。
In the second step, in the same manner as in the third step of Example 1, a catalyst dispersion N in which a perfluorosulfonic acid resin and a platinum-supported carbon catalyst were dispersed in a mixed solvent of ethanol and water was prepared.

【0062】第三工程では、実施例1の第三工程と同様
にして、第一工程で作製した片面に三次元連通性の孔を
有する多孔質電解質Aの層を形成したナフィオン115
膜の多孔質電解質Aの層に、第二工程で作製した触媒分
散物を塗布した。次に、多孔質電解質Aの層に塗布した
触媒分散物Nの塗布部分を直径3cmの円形状に残し、
不要の触媒分散物Nを除去して、電解質膜触媒分散物塗
布体を形成した。
In the third step, similarly to the third step of the first embodiment, Nafion 115 formed with a layer of porous electrolyte A having three-dimensionally communicating pores on one side formed in the first step.
The catalyst dispersion prepared in the second step was applied to the porous electrolyte A layer of the membrane. Next, leaving a coated portion of the catalyst dispersion N applied to the layer of the porous electrolyte A in a circular shape having a diameter of 3 cm,
Unnecessary catalyst dispersion N was removed to form an electrolyte membrane catalyst dispersion coated body.

【0063】一方、実施例1の第三工程と同様にして、
離型紙としてのテトラフロロエチレン−ヘキサフロロプ
ロピレン共重合体シートに触媒分散物Nを塗布して、離
型紙触媒分散物塗布体を作製し、直径3cmの円形状に
裁断した。
On the other hand, in the same manner as in the third step of Example 1,
The catalyst dispersion N was applied to a tetrafluoroethylene-hexafluoropropylene copolymer sheet as release paper to prepare a release paper catalyst dispersion applied product, which was cut into a circular shape having a diameter of 3 cm.

【0064】第四工程では、第三工程で作製した電解質
膜触媒分散物塗布体と離型紙触媒分散物塗布体を、電解
質膜触媒分散物塗布体の触媒分散物Nを塗布しないナフ
ィオン115の面および離型紙触媒分散物塗布体の触媒
分散物Nを塗布した面が向かい合うように積層した。こ
の状態で、250kg/cm2、135℃、5分間、加
熱圧接して圧迫を加えた。すると離型紙触媒層分散物塗
布体を積層した面では、触媒層が離型紙から電解質膜に
転写された。また、電解質膜触媒分散物塗布体の触媒分
散物Nを塗布した面では、加熱圧迫により三次元連通性
の孔を有する多孔質電解質Aの孔中に触媒分散物Mが充
填されて、その孔中に触媒と電解質Bとを含む微多孔性
集合体を備えた触媒層が形成された。このようにして、
ナフィオン115膜の片面に三次元連通性の孔を有する
多孔質電解質Aとその孔中に触媒と電解質Bとを含む微
多孔性集合体を備えた触媒層、他面に触媒分散物Nから
なる触媒層を備えた、触媒層電解質膜接合体Vを作製し
た。触媒層電解質膜接合体Vにおいては、多孔質電解質
Aと電解質Bのイオン交換容量が同じとした。
In the fourth step, the coated electrolyte membrane catalyst dispersion and the release paper catalyst dispersion prepared in the third step are combined with the surface of Nafion 115 on which the catalyst dispersion N of the coated electrolyte membrane catalyst is not coated. The release paper catalyst dispersion coated body was laminated so that the surfaces on which the catalyst dispersion N was applied faced each other. In this state, pressure was applied by heating and pressing at 250 kg / cm 2 at 135 ° C. for 5 minutes. Then, the catalyst layer was transferred from the release paper to the electrolyte membrane on the surface where the release paper catalyst layer dispersion applied body was laminated. Further, on the surface of the electrolyte membrane catalyst dispersion applied body on which the catalyst dispersion N is applied, the catalyst dispersion M is filled in the pores of the porous electrolyte A having three-dimensionally communicating pores by heating and pressing, and the pores are filled. A catalyst layer provided with a microporous aggregate containing the catalyst and the electrolyte B therein was formed. In this way,
A catalyst layer including a porous electrolyte A having three-dimensionally communicating pores on one surface of a Nafion 115 membrane and a microporous aggregate containing a catalyst and an electrolyte B in the pores, and a catalyst dispersion N on the other surface. A catalyst layer electrolyte membrane assembly V having a catalyst layer was produced. In the catalyst layer electrolyte membrane assembly V, the ion exchange capacities of the porous electrolyte A and the electrolyte B were the same.

【0065】第五工程では、撥水性を有するカーボンペ
ーパーを直径3cmに裁断し、触媒層電解質膜接合体V
の両側に、加熱圧接(120kg/cm2、135℃、
5分間)により一体に接合して、ガス拡散電極電解質膜
接合体Wを作製した。
In the fifth step, the carbon paper having water repellency is cut into a diameter of 3 cm, and the catalyst layer electrolyte membrane assembly V
On both sides by heating pressure welding (120 kg / cm 2 , 135 ° C,
(5 minutes) to form a gas diffusion electrode / electrolyte membrane assembly W.

【0066】このガス拡散電極電解質膜接合体Wを、ガ
ス供給路が形成された金属製のセパレータで挟持し、カ
ソード側に多孔質電解質を備える触媒層を配して比較用
の固体高分子電解質型燃料電池Yを構成した。
The gas diffusion electrode / electrolyte membrane assembly W is sandwiched between metal separators having gas supply passages, and a catalyst layer having a porous electrolyte is disposed on the cathode side to provide a solid polymer electrolyte for comparison. A fuel cell Y was constructed.

【0067】アノードに純水素をカソードに空気をそれ
ぞれ2kg/cm2Gに加圧し、空気と水素は60℃に
設定したバブラー式の加湿器を用いて加湿して供給し、
電池の温度が65℃での固体高分子電解質型燃料電池X
および固体高分子電解質型燃料電池Yの電流−電圧特性
を測定した。その結果を図4に示す。
Pure hydrogen is supplied to the anode and air is supplied to the cathode at a pressure of 2 kg / cm 2 G, and air and hydrogen are supplied by humidification using a bubbler humidifier set at 60 ° C.
Solid polymer electrolyte fuel cell X with a battery temperature of 65 ° C.
The current-voltage characteristics of the solid polymer electrolyte fuel cell Y were measured. FIG. 4 shows the results.

【0068】図4から、本発明になるガス拡散電極をカ
ソードに配した固体高分子電解質型燃料電池Xは、比較
用の固体高分子電解質型燃料電池Yよりも高い電流密度
おける電池電圧の低下が小さく高出力であった。
FIG. 4 shows that the solid polymer electrolyte fuel cell X in which the gas diffusion electrode according to the present invention is disposed at the cathode has a lower cell voltage at a higher current density than the comparative solid polymer electrolyte fuel cell Y. Was small and had a high output.

【0069】このことから、触媒層とガス拡散層とを備
えたガス拡散電極において、三次元連通性の孔を有する
多孔質電解質Aとその孔中に触媒と電解質Bとを含む微
多孔性集合体を備えた触媒層では、多孔質電解質Aのイ
オン交換容量が微多孔性集合体中の電解質Bのイオン交
換容量より大きいことは、固体高分子電解質型燃料電池
の高出力化に有効であることを示された。
Thus, in the gas diffusion electrode provided with the catalyst layer and the gas diffusion layer, the microporous assembly containing the porous electrolyte A having the three-dimensionally communicating pores and the catalyst and the electrolyte B in the pores. In the catalyst layer provided with the body, the fact that the ion exchange capacity of the porous electrolyte A is larger than the ion exchange capacity of the electrolyte B in the microporous assembly is effective for increasing the output of the solid polymer electrolyte fuel cell. Was shown.

【0070】すなわち、図2と図3から、ガス拡散電極
電解質膜接合体Tとガス拡散電極電解質膜接合体Wは、
その触媒層に三次元連通性の孔を有する多孔質電解質A
(2)が形成されているために、そのプロトン伝導性は
向上する。さらに、ガス拡散電極電解質膜接合体Tは、
触媒層の触媒を被覆する電解質B(13)にイオン交換
容量の小さいパーフロロスルホン酸樹脂を用いて反応物
質の溶解度を増大することにより、三相界面への反応ガ
スの供給性が向上して、高い電流密度でも濃度過電圧に
起因する電池電圧の低下が少なくなるものである。
That is, from FIGS. 2 and 3, the gas diffusion electrode electrolyte membrane assembly T and the gas diffusion electrode electrolyte membrane assembly W
Porous electrolyte A having three-dimensionally communicating pores in its catalyst layer
Due to the formation of (2), the proton conductivity is improved. Further, the gas diffusion electrode electrolyte membrane assembly T
By increasing the solubility of the reactants by using perfluorosulfonic acid resin having a small ion exchange capacity for the electrolyte B (13) covering the catalyst of the catalyst layer, the supply of the reactant gas to the three-phase interface is improved. In addition, even when the current density is high, the decrease in the battery voltage due to the concentration overvoltage is reduced.

【0071】[0071]

【発明の効果】本発明になるガス拡散電極は、イオン交
換容量が大きくプロトン伝導性の高い樹脂を用いてプロ
トン伝導経路として三次元連通性の孔を有する多孔質電
解質を形成し、三次元連通性の孔を有する多孔質電解質
よりもイオン交換容量が小さく反応物質の溶解度が大き
い樹脂を用いて、多孔質電解質の孔中の触媒を被覆して
三相界面を形成することにより、触媒層におけるプロト
ン伝導性の向上、三相界面の増大および反応物質の供給
性の向上がはかれる。このために、電極の活性化過電
圧、抵抗過電圧および濃度過電圧を低減することがで
き、出力密度が高い固体高分子電解質型燃料電池を提供
することができる。
According to the gas diffusion electrode of the present invention, a porous electrolyte having three-dimensionally communicating pores as a proton conduction path is formed using a resin having a large ion exchange capacity and a high proton conductivity. By using a resin having a small ion exchange capacity and a high solubility of the reactant than a porous electrolyte having porous pores, and covering the catalyst in the pores of the porous electrolyte to form a three-phase interface, An improvement in proton conductivity, an increase in the three-phase interface, and an improvement in the supply of reactants are achieved. For this reason, the activation overvoltage, the resistance overvoltage, and the concentration overvoltage of the electrode can be reduced, and a solid polymer electrolyte fuel cell having a high output density can be provided.

【0072】[0072]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になるガス拡散電極電解質膜接合体の断
面の模式図。
FIG. 1 is a schematic view of a cross section of a gas diffusion electrode / electrolyte membrane assembly according to the present invention.

【図2】本発明になるガス拡散の製造工程を示すフロー
ト図。
FIG. 2 is a float view showing a manufacturing process of gas diffusion according to the present invention.

【図3】三次元連通性の孔を有する多孔質電解質Aの孔
中に備えられた触媒と電解質Bとを含む微多孔性集合体
の拡大模式図。
FIG. 3 is an enlarged schematic view of a microporous aggregate including a catalyst and an electrolyte B provided in pores of a porous electrolyte A having three-dimensionally communicating pores.

【図4】本発明になるガス拡散電極をカソードに配した
固体高分子電解質型燃料電池Xおよび比較用の固体高分
子電解質型燃料電池Yの電流−電圧特性を示す図。
FIG. 4 is a diagram showing current-voltage characteristics of a solid polymer electrolyte fuel cell X in which a gas diffusion electrode according to the present invention is disposed on a cathode and a solid polymer electrolyte fuel cell Y for comparison.

【符号の説明】[Explanation of symbols]

1 第1の触媒層。 2 三次元連通性の孔を有する多孔質電解質A。 3 触媒と電解質Bを含む微多孔性集合体 4 第1のガス拡散層 5 第1のガス拡散電極 6 燃料電池の電解質膜C 7 第2の触媒層 8 第2のガス拡散層 9 第2のガス拡散電極 10 ガス拡散電極電解質膜接合体 11 カーボン担体 12 触媒 13 電解質B 1 First catalyst layer. 2 Porous electrolyte A having three-dimensionally communicating pores. 3 Microporous assembly containing catalyst and electrolyte B 4 First gas diffusion layer 5 First gas diffusion electrode 6 Electrolyte membrane C for fuel cell 7 Second catalyst layer 8 Second gas diffusion layer 9 Second Gas diffusion electrode 10 Gas diffusion electrode electrolyte membrane assembly 11 Carbon carrier 12 Catalyst 13 Electrolyte B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】触媒層とガス拡散層とを備えたガス拡散電
極において、上記触媒層が三次元連通性の孔を有する多
孔質電解質Aとその孔中に触媒と電解質Bを含む微多孔
性集合体を備えた構造であり、上記多孔質電解質Aのイ
オン交換容量がその孔中の電解質Bのイオン交換容量よ
り大きいことを特徴とするガス拡散電極。
1. A gas diffusion electrode comprising a catalyst layer and a gas diffusion layer, wherein the catalyst layer has a porous electrolyte A having three-dimensionally communicating pores and a microporous electrolyte containing a catalyst and an electrolyte B in the pores. A gas diffusion electrode having a structure including an aggregate, wherein the ion exchange capacity of the porous electrolyte A is larger than the ion exchange capacity of the electrolyte B in the pores.
【請求項2】多孔質電解質Aとその孔中の電解質Bと
が、共にパーフロロスルホン酸樹脂であることを特徴と
する請求項1に記載のガス拡散電極。
2. The gas diffusion electrode according to claim 1, wherein both the porous electrolyte A and the electrolyte B in the pores thereof are perfluorosulfonic acid resins.
【請求項3】請求項1または請求項2に記載のガス拡散
電極を備えることを特徴とする固体高分子電解質型燃料
電池。
3. A solid polymer electrolyte fuel cell comprising the gas diffusion electrode according to claim 1 or 2.
JP03639599A 1999-01-13 1999-02-15 Gas diffusion electrode and fuel cell having the same Expired - Fee Related JP4117430B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP03639599A JP4117430B2 (en) 1999-02-15 1999-02-15 Gas diffusion electrode and fuel cell having the same
US09/482,107 US6391487B1 (en) 1999-01-13 2000-01-13 Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
DE10001170A DE10001170A1 (en) 1999-01-13 2000-01-13 Gas diffusion electrode comprises a gas diffusion layer and a catalyst layer a porous electrolyte and microporous catalyst-electrolyte aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03639599A JP4117430B2 (en) 1999-02-15 1999-02-15 Gas diffusion electrode and fuel cell having the same

Publications (3)

Publication Number Publication Date
JP2000235859A true JP2000235859A (en) 2000-08-29
JP2000235859A5 JP2000235859A5 (en) 2006-03-02
JP4117430B2 JP4117430B2 (en) 2008-07-16

Family

ID=12468678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03639599A Expired - Fee Related JP4117430B2 (en) 1999-01-13 1999-02-15 Gas diffusion electrode and fuel cell having the same

Country Status (1)

Country Link
JP (1) JP4117430B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015743A (en) * 2000-06-30 2002-01-18 Asahi Glass Co Ltd Solid polymer fuel cell
WO2003088386A1 (en) * 2002-04-17 2003-10-23 Nec Corporation Fuel cell, electrode for fuel cell, and method for manufacturing them
JP2006236757A (en) * 2005-02-24 2006-09-07 Toyobo Co Ltd Polyelectrolyte film for membrane electrode junction and its manufacturing method, membrane electrode junction as well as fuel cell
WO2008023632A1 (en) * 2006-08-22 2008-02-28 Kabushiki Kaisha Toshiba Membrane electrode assembly, method for producing the same, and fuel cell
JP2008258175A (en) * 2008-06-18 2008-10-23 Dainippon Printing Co Ltd Paste composition for catalyst layer formation and transfer sheet for manufacturing catalyst layer/electrolyte film laminate
JP2014086322A (en) * 2012-10-24 2014-05-12 Toyota Motor Corp Catalyst layer for fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015743A (en) * 2000-06-30 2002-01-18 Asahi Glass Co Ltd Solid polymer fuel cell
WO2003088386A1 (en) * 2002-04-17 2003-10-23 Nec Corporation Fuel cell, electrode for fuel cell, and method for manufacturing them
JP2006236757A (en) * 2005-02-24 2006-09-07 Toyobo Co Ltd Polyelectrolyte film for membrane electrode junction and its manufacturing method, membrane electrode junction as well as fuel cell
WO2008023632A1 (en) * 2006-08-22 2008-02-28 Kabushiki Kaisha Toshiba Membrane electrode assembly, method for producing the same, and fuel cell
JP2008258175A (en) * 2008-06-18 2008-10-23 Dainippon Printing Co Ltd Paste composition for catalyst layer formation and transfer sheet for manufacturing catalyst layer/electrolyte film laminate
JP2014086322A (en) * 2012-10-24 2014-05-12 Toyota Motor Corp Catalyst layer for fuel cell

Also Published As

Publication number Publication date
JP4117430B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US6391487B1 (en) Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
JP4228911B2 (en) Fuel cell and manufacturing method thereof
US20020019308A1 (en) Composite catalyst for solid polymer electrolyte type fuel cell and processes for producing the same
KR100779820B1 (en) Direct oxidation fuel cell and manufacturing method therefor
US20060199070A1 (en) Membrane-electrode assembly, method for preparing the same, and fuel cell system comprising the same
RU2414772C2 (en) Structures for gas diffusion electrodes
JPH09265992A (en) Electrode structure for fuel cell
JP2009117248A (en) Fuel cell
US7931935B2 (en) Process for producing membrane electrode assembly, and fuel cell using the membrane electrode assembly produced by the process
JP2000299119A (en) Manufacture of catalyst layer
JP2007501496A (en) Hybrid membrane / electrode assembly with reduced interfacial resistance and method for producing the same
JP2006253042A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell
JP4117430B2 (en) Gas diffusion electrode and fuel cell having the same
JP3978757B2 (en) Gas diffusion electrode-electrolyte membrane assembly for fuel cell and method for producing the same
JP3965666B2 (en) Gas diffusion electrode and manufacturing method thereof
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JP4403634B2 (en) Composite catalyst for solid polymer electrolyte fuel cell.
US20190267636A1 (en) Enhancing catalyst activity of a pem fuel cell electrode with an ionic liquid additive
JP2001300324A (en) Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same
JP2001160398A (en) Gas diffusion electrode for fuel cell and fuel cell using the same
JPH1116586A (en) Manufacture of high polymer electrolyte film-gas diffusion electrode body
JP5605048B2 (en) Method for producing composite catalyst and method for producing electrode for fuel cell using the composite catalyst
JPH05182671A (en) Manufacture of electrode for ton-exchange membrane fuel cell
JP5609475B2 (en) Electrode catalyst layer, method for producing electrode catalyst layer, and polymer electrolyte fuel cell using the electrode catalyst layer
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees