JP2003059507A - Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell - Google Patents

Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell

Info

Publication number
JP2003059507A
JP2003059507A JP2001248271A JP2001248271A JP2003059507A JP 2003059507 A JP2003059507 A JP 2003059507A JP 2001248271 A JP2001248271 A JP 2001248271A JP 2001248271 A JP2001248271 A JP 2001248271A JP 2003059507 A JP2003059507 A JP 2003059507A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
carbon particles
fuel cell
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001248271A
Other languages
Japanese (ja)
Inventor
Shinya Kosako
慎也 古佐小
Masato Hosaka
正人 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001248271A priority Critical patent/JP2003059507A/en
Publication of JP2003059507A publication Critical patent/JP2003059507A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte film and electrode junction for a fuel cell with excellent proton conductivity, a polymer electrolyte fuel cell of high efficiency using the same, and a method of manufacturing the above electrolyte film and electrode junction with ease and in stable quality. SOLUTION: A polymer electrolyte film including carbon particles supporting metal contained on both sides of a surface layer, an electrolyte film and electrode junction equipped with a pair of gas-diffusion layers arranged on its both sides, and a fuel call using the same are provided. The electrolyte film is formed by applying dispersion liquid of polymer electrolyte with at least two kinds of metal-supporting carbon particles of hydrophilicity or with different specific weights dispersed on a support, having the particles in the dispersion liquid applied above precipitated and floated according to their hydrophilicity or specific weights, and then, by volatilizing solvent in the dispersion liquid in that state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質型燃
料電池に使用する高分子電解質膜と電極との接合体、お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte membrane-electrode assembly for use in a polymer electrolyte fuel cell, and a method for producing the same.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池は、水素などの
燃料ガスと空気など酸素を含有する酸化剤ガスとを電極
において電気化学的に反応させることで、化学エネルギ
ーを電気エネルギーと熱に変換させるものである。高分
子電解質型燃料電池の電解質膜−電極接合体の一例を図
5を用いて説明する。プロトンを選択的に輸送する高分
子電解質膜31の両側面のそれぞれに、アノード側触媒
層32およびカソード側触媒層33が密着して配置され
ている。これらの触媒層32および33は、白金系の金
属触媒を担持した炭素粒子を主成分とし、プロトン伝導
性の高分子電解質を混合した層である。これら触媒層3
2および33の外側に、ガス透過性と電子導電性を有す
るアノード側ガス拡散層34およびカソード側ガス拡散
層35をそれぞれ密着させて配置することで電解質膜−
電極接合体36が構成されている。通常、ガス拡散層に
は、カーボンペーパやカーボンクロスなどを撥水処理し
た通気性を有する導電性材料が使用されている。
2. Description of the Related Art A polymer electrolyte fuel cell converts chemical energy into electric energy and heat by electrochemically reacting a fuel gas such as hydrogen and an oxidant gas containing oxygen such as air at electrodes. It is what makes me. An example of the electrolyte membrane-electrode assembly of the polymer electrolyte fuel cell will be described with reference to FIG. An anode side catalyst layer 32 and a cathode side catalyst layer 33 are arranged in close contact with each of both side surfaces of the polymer electrolyte membrane 31 that selectively transports protons. The catalyst layers 32 and 33 are layers in which carbon particles carrying a platinum-based metal catalyst as a main component are mixed with a proton conductive polymer electrolyte. These catalyst layers 3
2 and 33, an anode-side gas diffusion layer 34 and a cathode-side gas diffusion layer 35, which have gas permeability and electronic conductivity, are arranged in close contact with each other, whereby an electrolyte membrane is formed.
The electrode assembly 36 is configured. Usually, for the gas diffusion layer, a conductive material having air permeability, which is water repellent treated such as carbon paper or carbon cloth, is used.

【0003】この電解質膜−電極接合体36を用いた電
池では、燃料ガスあるいは酸化剤ガスがガス拡散層34
あるいは35の外側に配したセパレータ板に設けられた
ガス通路から供給され、ガス拡散層34あるいは35を
透過して触媒層32あるいは33に到達する。これらの
燃料ガスや酸化剤ガスが外にリークしたり、互いに混合
したりしないように、ガス拡散層34および35の周囲
には、高分子電解質膜を挟んでガスシール材やガスケッ
トが配置されている。
In the battery using the electrolyte membrane-electrode assembly 36, the fuel gas or the oxidant gas is used as the gas diffusion layer 34.
Alternatively, the gas is supplied from a gas passage provided in a separator plate disposed outside 35, passes through the gas diffusion layer 34 or 35, and reaches the catalyst layer 32 or 33. In order to prevent these fuel gas and oxidant gas from leaking out and mixing with each other, a gas sealing material and a gasket are arranged around the gas diffusion layers 34 and 35 with the polymer electrolyte membrane interposed therebetween. There is.

【0004】高分子電解質型燃料電池から電力を取り出
すためには、高分子電解質膜中をプロトンが移動しなけ
ればならない。高分子電解質膜中を移動するプロトン
は、アノード側触媒層の中で次式(1)の反応によって
生じる。
In order to extract electric power from the polymer electrolyte fuel cell, protons must move in the polymer electrolyte membrane. Protons moving in the polymer electrolyte membrane are generated by the reaction of the following formula (1) in the anode side catalyst layer.

【0005】 H2→2H++2e- (1)H 2 → 2H + + 2e (1)

【0006】カソード側触媒層では、アノードから移動
してきたプロトンと酸素との次式(2)の反応により水
が生成する。
In the cathode-side catalyst layer, water is produced by the reaction of the protons transferred from the anode and oxygen with the following equation (2).

【0007】 1/2O2+2H++2e-→H2O (2)1 / 2O 2 + 2H + + 2e → H 2 O (2)

【0008】高分子電解質としては、−CF2−を主鎖
とし、これにスルホン酸基(−SO3H)を末端官能基
とする側鎖を導入したパーフルオロカーボンスルホン
酸、例えば、Nafion(デュポン社製)、Flem
ion(旭硝子(株)製)、Aciplex(旭化成
(株)製)などが一般的に使用されている。これらの高
分子電解質では、スルホン酸基が凝集してできた三次元
ネットワーク状に広がる導通路がプロトン伝導性チャネ
ルとして機能する。
As the polymer electrolyte, a perfluorocarbon sulfonic acid having a main chain of --CF 2- , and a side chain having a sulfonic acid group (--SO 3 H) as a terminal functional group introduced thereinto, for example, Nafion (Dupont) is used. Company), Flem
Ion (manufactured by Asahi Glass Co., Ltd.) and Aciplex (manufactured by Asahi Kasei Co., Ltd.) are generally used. In these polymer electrolytes, the conductive paths formed by aggregating sulfonic acid groups and spreading in a three-dimensional network function as proton conductive channels.

【0009】従来の電解質膜−電極接合体の主な製造方
法には二通りの方法がある。第1の製造方法は、まず触
媒層を高分子電解質膜の表面に形成し、これにガス拡散
層を結合させる方法である。この方法の例を図6の工程
図により説明する。まず、金属触媒が担持された炭素粒
子と高分子電解質を含む触媒ペーストをポリプロピレ
ン、ポリエチレンテレフタレートあるいはポリテトラフ
ルオロエチレンなどのフィルムからなる支持体45上に
塗布し、乾燥して触媒層42あるいは43を形成する。
このようにして支持体45上に形成された触媒層42お
よび43のそれぞれを、予め形成された高分子電解質膜
41の両側にホットプレスまたは熱ロールによって、図
6(a)のように転写する。
There are two main methods for producing the conventional electrolyte membrane-electrode assembly. The first manufacturing method is a method in which a catalyst layer is first formed on the surface of a polymer electrolyte membrane and a gas diffusion layer is bonded to the catalyst layer. An example of this method will be described with reference to the process chart of FIG. First, a catalyst paste containing carbon particles carrying a metal catalyst and a polymer electrolyte is applied on a support 45 made of a film such as polypropylene, polyethylene terephthalate or polytetrafluoroethylene, and dried to form a catalyst layer 42 or 43. Form.
Each of the catalyst layers 42 and 43 thus formed on the support body 45 is transferred to both sides of the polymer electrolyte membrane 41 formed in advance by hot pressing or heat roll as shown in FIG. 6A. .

【0010】次いで、支持体45を触媒層42および4
3から剥離して、図6(b)のような触媒層付き電解質
膜を形成する。上記の転写法以外に、高分子電解質膜4
1の表側および裏側に印刷やスプレーなどで触媒ペース
トを塗布し、乾燥して触媒層42および43を形成する
こともできる。これらの触媒層42および43上にカー
ボンペーパからなるガス拡散層47および48をそれぞ
れ取り付けて、図6(c)のように電解質膜−電極接合
体を作製する。
Then, the support 45 is attached to the catalyst layers 42 and 4.
After peeling from 3, the electrolyte membrane with a catalyst layer as shown in FIG. 6B is formed. In addition to the above transfer method, the polymer electrolyte membrane 4
The catalyst layers 42 and 43 can be formed by applying a catalyst paste to the front and back sides of 1 by printing, spraying, etc. and drying. Gas diffusion layers 47 and 48 made of carbon paper are attached on the catalyst layers 42 and 43, respectively, to prepare an electrolyte membrane-electrode assembly as shown in FIG. 6C.

【0011】従来の第2の製造方法は、予めガス拡散層
47および48上に形成した触媒層42および43のそ
れぞれを、予め形成された高分子電解質膜41の表裏両
側に重ね合わせ、ホットプレスまたは熱ロールによって
熱圧接することにより、図6(c)と同じ構造の電解質
膜−電極接合体を作製する方法である。上記の触媒層4
2あるいは43は、触媒ペーストを印刷法やスプレー法
などでガス拡散層47あるいは48上に塗布し乾燥する
方法などで形成される。
In the second conventional manufacturing method, the catalyst layers 42 and 43 previously formed on the gas diffusion layers 47 and 48 are superposed on both sides of the preformed polymer electrolyte membrane 41, and hot pressed. Alternatively, it is a method for producing an electrolyte membrane-electrode assembly having the same structure as in FIG. 6C by hot pressing with a hot roll. Above catalyst layer 4
2 or 43 is formed by a method in which a catalyst paste is applied onto the gas diffusion layer 47 or 48 by a printing method, a spray method or the like and then dried.

【0012】しかし、予め形成された高分子電解質膜上
に触媒層を結合させる上記の従来の電解質膜−電極接合
体の製造方法では、高分子電解質膜自身にプロトン伝導
性チャネルの不連続な部分が発生する上に、高分子電解
質膜中のプロトン伝導性チャネルと触媒層中のプロトン
伝導性チャネルとの界面に不連続面ができ、電解質膜−
電極接合体のプロトン伝導性が低下するという問題があ
る。
However, in the above-mentioned conventional method for manufacturing an electrolyte membrane-electrode assembly in which a catalyst layer is bonded onto a preformed polymer electrolyte membrane, the polymer electrolyte membrane itself has a discontinuous portion of a proton conductive channel. In addition to the above, a discontinuous surface is formed at the interface between the proton conductive channel in the polymer electrolyte membrane and the proton conductive channel in the catalyst layer.
There is a problem that the proton conductivity of the electrode assembly is lowered.

【0013】図7は、従来の製造方法による電解質膜−
電極接合体の高分子電解質膜とアノード側触媒層の接合
部付近を拡大した模式図である。高分子電解質膜67
は、ポリテトラフルオロエチレン樹脂部分61の中にプ
ロトン伝導性チャネル62がネットワーク状に張り巡ら
された構造を有することが知られている。高分子電解質
膜67がプロトン伝導性の固体電解質として良好に動作
するためには、高分子電解質膜67のアノード側の表面
からカソード側の表面の間が連続したプロトン伝導性チ
ャネル62で繋がっている必要がある。
FIG. 7 shows an electrolyte membrane according to a conventional manufacturing method.
FIG. 3 is an enlarged schematic view of the vicinity of the joint between the polymer electrolyte membrane of the electrode assembly and the anode-side catalyst layer. Polymer electrolyte membrane 67
Is known to have a structure in which a proton conductive channel 62 is stretched in a network shape in a polytetrafluoroethylene resin portion 61. In order for the polymer electrolyte membrane 67 to operate properly as a proton-conducting solid electrolyte, the surface of the polymer electrolyte membrane 67 on the anode side is connected to the surface of the cathode side by a continuous proton-conducting channel 62. There is a need.

【0014】従来の製造方法、例えばキャスト法で高分
子電解質膜67を製膜する場合には、支持体上に塗布さ
れた高分子電解質分散液中の溶媒が揮発するにつれ、溶
解度パラメータ、表面エネルギーともに低いポリテトラ
フルオロエチレン樹脂部分61と、溶解度パラメータ、
表面エネルギーともに高いスルホン酸基部分とが相分離
し、プロトン伝導性チャネル62のネットワークが形成
される。しかし、高分子電解質分散液の塗膜表面が表面
エネルギーの低い空気に触れると、スルホン酸基部分よ
りも、ポリテトラフルオロエチレン樹脂部分61を空気
に露出させるほうが自由エネルギーが小さいので、ポリ
テトラフルオロエチレン樹脂部分61が優先して表面を
覆う。その結果、高分子電解質膜67の表面層でプロト
ン伝導性チャネル62が閉塞し、高分子電解質膜67の
アノード側表面とカソード側表面の間を貫通すべきプロ
トン伝導性チャネル62が不連続になり易くなる。
When the polymer electrolyte membrane 67 is formed by a conventional manufacturing method, for example, a casting method, as the solvent in the polymer electrolyte dispersion liquid coated on the support is volatilized, the solubility parameter and the surface energy are increased. Both low polytetrafluoroethylene resin portion 61 and solubility parameter,
A sulfonic acid group portion having high surface energy is phase-separated, and a network of the proton conductive channel 62 is formed. However, when the surface of the coating film of the polymer electrolyte dispersion is in contact with air having a low surface energy, the free energy of exposing the polytetrafluoroethylene resin portion 61 to the air is lower than that of the sulfonic acid group portion. The ethylene resin portion 61 preferentially covers the surface. As a result, the proton conductive channel 62 is blocked by the surface layer of the polymer electrolyte membrane 67, and the proton conductive channel 62 that should penetrate between the anode side surface and the cathode side surface of the polymer electrolyte membrane 67 becomes discontinuous. It will be easier.

【0015】触媒層68は、ポリテトラフルオロエチレ
ン樹脂部分63の中にプロトン伝導性チャネル64が形
成された高分子電解質と、金属65が担持された炭素粒
子66から形成されている。このような触媒層68と前
記の高分子電解質膜67を従来の方法で接合させる場合
に、双方のプロトン伝導性チャネル62および64が連
通するような位置関係で接合させることは非常に困難で
ある。そのため、高分子電解質膜67と触媒層68との
界面でプロトン伝導性チャネルが不連続になり易く、触
媒層68で生成したプロトンが、高分子電解質膜67の
プロトン伝導性チャネル62に円滑に流れ込むことがで
きない。
The catalyst layer 68 is composed of a polymer electrolyte having a proton conductive channel 64 formed in a polytetrafluoroethylene resin portion 63 and carbon particles 66 carrying a metal 65. When the catalyst layer 68 and the polymer electrolyte membrane 67 are bonded by a conventional method, it is very difficult to bond them in such a positional relationship that both proton conductive channels 62 and 64 are in communication with each other. . Therefore, the proton conductive channel is likely to be discontinuous at the interface between the polymer electrolyte membrane 67 and the catalyst layer 68, and the protons generated in the catalyst layer 68 smoothly flow into the proton conductive channel 62 of the polymer electrolyte membrane 67. I can't.

【0016】従来の製造方法による電解質膜−電極接合
体では、上記のプロトン伝導性が低下するという問題に
加えて、製造工程が多く、製造に長時間を必要とする問
題がある。
The electrolyte membrane-electrode assembly manufactured by the conventional manufacturing method has many problems in that the number of manufacturing steps is long and the manufacturing time is long, in addition to the problem that the proton conductivity is lowered.

【0017】[0017]

【発明が解決しようとする課題】本発明は、上記の従来
の問題を解決し、プロトン伝導性が高い燃料電池用電解
質膜−電極接合体とこれを用いた高性能の高分子電解質
型燃料電池を提供することを目的とする。本発明は、そ
のような電解質膜−電極接合体を容易に製造できる方法
を提供することをも目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional problems, and has a high proton conductivity electrolyte membrane-electrode assembly for a fuel cell and a high-performance polymer electrolyte fuel cell using the same. The purpose is to provide. Another object of the present invention is to provide a method capable of easily producing such an electrolyte membrane-electrode assembly.

【0018】[0018]

【課題を解決するための手段】本発明の燃料電池用電解
質膜−電極接合体は、金属を担持した炭素粒子を両側の
表面層に含有させた高分子電解質膜と、前記高分子電解
質膜の両側の面に配置した一対のガス拡散層とを備えた
ものである。
The electrolyte membrane-electrode assembly for a fuel cell of the present invention comprises a polymer electrolyte membrane having carbon particles supporting a metal contained in both surface layers, and a polymer electrolyte membrane comprising: It is provided with a pair of gas diffusion layers arranged on both sides.

【0019】本発明の燃料電池用電解質膜−電極接合体
の第1の製造方法は、金属を担持した親水性が異なる少
なくとも2種類の炭素粒子を分散させた高分子電解質水
性分散液を支持体上に塗布する工程、塗布された前記支
持体を放置して、塗布された分散液中の親水性が強い方
の炭素粒子を前記分散液の下層部に沈降させ、親水性が
弱い方の炭素粒子を前記分散液の上層部に浮上させ、こ
うして親水性が強い方の炭素粒子を分散液の下層部に、
親水性が弱い方の炭素粒子を前記分散液の上層部にそれ
ぞれ偏在させる工程、および、前記分散液に含まれる溶
媒を揮発させて、炭素粒子を包含する高分子電解質膜を
形成する工程を有することを特徴とする。
The first method for producing an electrolyte membrane-electrode assembly for a fuel cell according to the present invention is a polymer electrolyte aqueous dispersion in which at least two kinds of carbon particles carrying a metal and having different hydrophilicities are dispersed. The step of coating on, the coated support is left to stand, the carbon particles of the hydrophilicity in the applied dispersion are allowed to settle in the lower layer portion of the dispersion, and the carbon of the hydrophilicity is weakened. The particles are floated on the upper layer of the dispersion, and thus the carbon particles having stronger hydrophilicity are placed on the lower layer of the dispersion.
The method comprises the steps of unevenly distributing the less hydrophilic carbon particles in the upper layer of the dispersion, and volatilizing the solvent contained in the dispersion to form a polymer electrolyte membrane containing carbon particles. It is characterized by

【0020】本発明の燃料電池用電解質膜−電極接合体
の第2の製造方法は、金属を担持した比重が異なる少な
くとも2種類の炭素粒子を分散させた高分子電解質分散
液を支持体上に塗布する工程、塗布された前記支持体を
放置して、比重が大きい方の炭素粒子を塗布された分散
液の下層部に沈降させ、比重が小さい方の炭素粒子を前
記分散液の上層部に浮上させる工程、および、前記分散
液に含まれる溶媒を揮発させ、炭素粒子を包含する高分
子電解質膜を形成する工程を有することを特徴とする。
A second method for producing an electrolyte membrane-electrode assembly for a fuel cell according to the present invention is a polymer electrolyte dispersion liquid in which at least two kinds of carbon particles carrying a metal and having different specific gravities are dispersed on a support. The step of applying, the coated support is left to stand, the carbon particles having a higher specific gravity are allowed to settle in the lower layer of the applied dispersion, and the carbon particles having a lower specific gravity are applied to the upper layer of the dispersion. The method is characterized by including a step of floating and a step of volatilizing a solvent contained in the dispersion to form a polymer electrolyte membrane containing carbon particles.

【0021】本発明の燃料電池用電解質膜−電極接合体
の第3の製造方法は、金属を担持した炭素粒子を分散さ
せた高分子電解質分散液を支持体上に塗布する工程、塗
布された前記支持体を放置して、塗布された分散液中の
炭素粒子を、その上層部に浮上または下層部に沈降させ
る工程、前記分散液に含まれる溶媒を揮発させ、前記支
持体上に炭素粒子を上層部または下層部に偏在させて包
含する高分子電解質膜を形成する工程、および、前記支
持体上に形成された高分子電解質膜の二枚を、前記炭素
粒子が偏在する側の面を外側にして接合する工程を有す
ることを特徴とする。
The third method for producing an electrolyte membrane-electrode assembly for a fuel cell of the present invention is a step of applying a polymer electrolyte dispersion liquid in which carbon particles supporting a metal are dispersed on a support, The step of allowing the support to stand and allowing the carbon particles in the applied dispersion to float on the upper layer or settle to the lower layer, volatilize the solvent contained in the dispersion, and carbon particles on the support. A step of forming a polymer electrolyte membrane that includes unevenly distributed in the upper layer portion or the lower layer portion, and two sheets of the polymer electrolyte membrane formed on the support, the surface on the side where the carbon particles are unevenly distributed. It is characterized in that it has a step of joining to the outside.

【0022】[0022]

【発明の実施の形態】本発明の電解質膜−電極接合体に
おける高分子電解質膜は、金属を担持した炭素粒子(触
媒担持粒子)を両側の表面層に偏在させ、この偏在層を
触媒層として機能させるものである。この高分子電解質
膜は、高分子電解質層自身のプロトン伝導性チャネルの
不連続な部分がなく、しかも高分子電解質層中のプロト
ン伝導性チャネルと触媒層中の高分子電解質のプロトン
伝導性チャネルとの界面に不連続面が存在しない。従っ
て、このような高分子電解質膜を用いることにより、プ
ロトン伝導性が優れた電解質膜−電極接合体を提供する
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION In a polymer electrolyte membrane in an electrolyte membrane-electrode assembly of the present invention, carbon particles (catalyst-supporting particles) carrying a metal are unevenly distributed on both surface layers, and the uneven distribution layer is used as a catalyst layer. It works. This polymer electrolyte membrane does not have discontinuities in the proton conductive channel of the polymer electrolyte layer itself, and also has a proton conductive channel in the polymer electrolyte layer and a proton conductive channel of the polymer electrolyte in the catalyst layer. There is no discontinuous surface at the interface. Therefore, by using such a polymer electrolyte membrane, it is possible to provide an electrolyte membrane-electrode assembly having excellent proton conductivity.

【0023】さらに、本発明の電解質膜−電極接合体の
製造方法では、触媒担持粒子を分散させた高分子電解質
分散液を支持体上に塗布し、これを放置して分散液中の
触媒担持粒子を、その親水性の強さあるいは比重の大き
さに応じて、分散液の上層部に浮上および/または下層
部に沈降させた後、分散液中の溶媒を揮発させて除去す
ることにより、電解質層と触媒層を備えた本発明の高分
子電解質膜を形成する。これにより、高分子電解質膜の
形成と同時に、電解質層と結合された触媒層を形成する
ことができるので、プロトン伝導性の高い電解質膜−電
極接合体を容易に製造することができる。
Further, in the method for producing an electrolyte membrane-electrode assembly of the present invention, a polymer electrolyte dispersion liquid in which catalyst-supporting particles are dispersed is applied onto a support, and this is left to stand to carry the catalyst in the dispersion liquid. According to the strength of hydrophilicity or the magnitude of specific gravity of the particles, the particles are floated on the upper layer of the dispersion and / or settled in the lower layer, and then the solvent in the dispersion is volatilized and removed. A polymer electrolyte membrane of the present invention having an electrolyte layer and a catalyst layer is formed. With this, since the catalyst layer combined with the electrolyte layer can be formed at the same time as the formation of the polymer electrolyte membrane, an electrolyte membrane-electrode assembly having high proton conductivity can be easily manufactured.

【0024】本発明の第1および第2の製造方法では、
アノード側触媒層およびカソード側触媒層を電解質層を
介して連続した層として同時に形成することができる。
また、本発明の第3の製造方法では、電解質層および一
方の触媒層を連続した層として形成させた高分子電解質
膜の二枚を結合させて、電解質層の両側にアノード側触
媒層およびカソード側触媒層を形成することができる。
In the first and second manufacturing methods of the present invention,
The anode side catalyst layer and the cathode side catalyst layer can be simultaneously formed as a continuous layer via the electrolyte layer.
Further, in the third production method of the present invention, two sheets of the polymer electrolyte membrane in which the electrolyte layer and one of the catalyst layers are formed as a continuous layer are bonded to each other, and the anode side catalyst layer and the cathode are provided on both sides of the electrolyte layer. A side catalyst layer can be formed.

【0025】本発明において、触媒担持用粒子に担持さ
せる金属としては、白金、金、パラジウム、ルビジウ
ム、イリジウムおよびルテニウムなどを使用することが
できる。それらの中でも、白金、金およびルテニウムよ
りなる群から選ばれた少なくとも一種を含む金属が好ま
しく、少なくとも白金を含む金属がより好ましい。また
金属は、平均粒径が小さいほど反応に有効な単位重量あ
たりの表面積が大きくなるので使用量を低減できる。そ
のため、金属は、10nm以下、特に5nm以下の平均
粒径を有するものが好ましい。
In the present invention, platinum, gold, palladium, rubidium, iridium, ruthenium and the like can be used as the metal supported on the catalyst supporting particles. Among them, a metal containing at least one selected from the group consisting of platinum, gold and ruthenium is preferable, and a metal containing at least platinum is more preferable. Further, the smaller the average particle size of the metal, the larger the surface area per unit weight effective for the reaction, and therefore the amount of the metal used can be reduced. Therefore, the metal preferably has an average particle diameter of 10 nm or less, particularly 5 nm or less.

【0026】図3に本発明の電解質膜−電極接合体にお
ける高分子電解質膜の電解質層とアノード側触媒層との
接合部付近を拡大した断面を模式的に示した。触媒層7
8には、ポリテトラフルオロエチレン樹脂部分73の中
にプロトン伝導性チャネル74が形成された高分子電解
質中に、金属75を担持させた炭素粒子76が密集して
分散している。電解質層77のポリテトラフルオロエチ
レン樹脂部分71の中にプロトン伝導性チャネル72が
形成されている。これら触媒層78と電解質層77とが
境界面がない状態で面結合している。(図3では便宜
上、前記境界面を破線で示す。)
FIG. 3 schematically shows an enlarged cross section of the vicinity of the joint between the electrolyte layer of the polymer electrolyte membrane and the anode side catalyst layer in the electrolyte membrane-electrode assembly of the present invention. Catalyst layer 7
In FIG. 8, carbon particles 76 supporting a metal 75 are densely dispersed in a polymer electrolyte in which a proton conductive channel 74 is formed in a polytetrafluoroethylene resin portion 73. A proton conducting channel 72 is formed in the polytetrafluoroethylene resin portion 71 of the electrolyte layer 77. The catalyst layer 78 and the electrolyte layer 77 are surface-bonded without a boundary surface. (In FIG. 3, for convenience, the boundary surface is indicated by a broken line.)

【0027】この高分子電解質膜の製膜過程では電解質
層77は空気に触れないため、電解質層77中のプロト
ン伝導性チャネル72が閉塞されることはない。さら
に、電解質層77中のプロトン伝導性チャネル72は触
媒層78中のプロトン伝導性チャネル74と連続的に形
成されており、電解質層77と触媒層78の境界面にプ
ロトン伝導性チャネルの不連続面が存在することもな
い。従って、この高分子電解質膜を用いた電解質膜−電
極接合体では、アノード側の触媒層で生成したプロトン
がカソード側触媒層に円滑に移動することができる。
Since the electrolyte layer 77 does not come into contact with air in the process of forming the polymer electrolyte membrane, the proton conductive channel 72 in the electrolyte layer 77 is not blocked. Further, the proton-conducting channel 72 in the electrolyte layer 77 is continuously formed with the proton-conducting channel 74 in the catalyst layer 78, and the discontinuity of the proton-conducting channel is formed at the boundary surface between the electrolyte layer 77 and the catalyst layer 78. There are no faces. Therefore, in the electrolyte membrane-electrode assembly using this polymer electrolyte membrane, the protons generated in the anode side catalyst layer can smoothly move to the cathode side catalyst layer.

【0028】本発明の第1の製造方法では、親水性が異
なる少なくとも2種類の触媒担持粒子を分散させた高分
子電解質の水性分散液を支持体上に塗布した後、この塗
布された分散液を放置して、分散液中の親水性が強い方
の触媒担持粒子を沈降させ、親水性が弱い方の触媒担持
粒子を浮上させる。次いで、この分散液中の溶媒を揮発
させて除去することにより、中間層に電解質層が形成さ
れ、その両側に第1の触媒層および第2の触媒層が連続
した層として形成された高分子電解質膜を作製する。
In the first production method of the present invention, an aqueous dispersion of a polymer electrolyte in which at least two kinds of catalyst-supporting particles having different hydrophilicities are dispersed is applied on a support, and then the applied dispersion is applied. The catalyst-supporting particles having a stronger hydrophilicity in the dispersion are allowed to settle, and the catalyst-supporting particles having a weaker hydrophilicity are floated. Then, the solvent in this dispersion is volatilized and removed to form an electrolyte layer in the intermediate layer, and a polymer in which a first catalyst layer and a second catalyst layer are formed as continuous layers on both sides of the electrolyte layer. An electrolyte membrane is prepared.

【0029】本発明の第1の製造方法において、親水性
が異なる触媒担持粒子を得るためには、疎水性の炭素粒
子と親水性の炭素粒子を原料として使い分けることが好
ましい。また、触媒担持粒子の親水性を強くする親水化
方法としては、炭素粒子表面の水素基やアルキル基を酸
化し、親水基のカルボキシル基や水酸基に変化させる処
理を施すことが好ましい。処理方法には、例えば触媒担
持粒子を硝酸中で100℃で2時間程度加熱する方法、
水蒸気中で300℃で数時間加熱する方法などがある。
一方、触媒担持粒子の親水性を弱くする疎水化方法とし
ては、例えば不活性ガスや水素ガス中で600℃で2時
間加熱する方法などを採ればよい。
In the first production method of the present invention, in order to obtain catalyst-supporting particles having different hydrophilicities, it is preferable to selectively use hydrophobic carbon particles and hydrophilic carbon particles as raw materials. In addition, as a method of making the catalyst-supporting particles hydrophilic, it is preferable to oxidize hydrogen groups or alkyl groups on the surface of the carbon particles to convert the hydrophilic groups into carboxyl groups or hydroxyl groups. Examples of the treatment method include a method of heating the catalyst-supported particles in nitric acid at 100 ° C. for about 2 hours,
There is a method of heating in steam at 300 ° C. for several hours.
On the other hand, as a hydrophobic method for weakening the hydrophilicity of the catalyst-supporting particles, for example, a method of heating in an inert gas or hydrogen gas at 600 ° C. for 2 hours may be adopted.

【0030】また、高分子電解質を溶解もしくは分散さ
せた水性分散液に使用する溶媒は、水または水が大部分
を占める混合溶媒が好ましい。エタノールなどの表面エ
ネルギーが水より小さい溶媒を多量に含む溶媒は、親水
性が弱い触媒担持粒子までも沈降させ易くするので好ま
しくない。
Further, the solvent used in the aqueous dispersion in which the polymer electrolyte is dissolved or dispersed is preferably water or a mixed solvent in which water occupies the majority. A solvent containing a large amount of a solvent having a surface energy smaller than that of water, such as ethanol, is not preferable because it easily precipitates even the catalyst-supporting particles having weak hydrophilicity.

【0031】本発明の第1の製造方法による製造プロセ
スの一例を図1に示す。まず、親水性が異なる2種類の
触媒担持粒子と高分子電解質を溶媒に入れ、混合・攪拌
して調製した高分子電解質の水性分散液11を、図1
(a)のように支持体15上に塗布する。これを放置し
て、図1(b)のように親水性が弱い触媒担持粒子13
を塗布した分散液11の上層部に浮上させ、親水性が強
い触媒担持粒子12を下層部に沈降させる。この状態の
支持体を室温で放置して塗布された分散液11中の溶媒
を揮発させ、さらに乾燥することで高分子電解質膜16
を形成する。この高分子電解質膜16から支持体15を
剥離して図1(c)のような高分子電解質膜16を作製
する。この高分子電解質膜16の一方の表面層には、親
水性が弱い触媒担持粒子13が密集して偏在する触媒層
が形成され、他方の表面層には、親水性が強い触媒担持
粒子12が密集して偏在する触媒層が形成されている。
FIG. 1 shows an example of a manufacturing process according to the first manufacturing method of the present invention. First, an aqueous dispersion 11 of a polymer electrolyte prepared by putting two types of catalyst-supporting particles having different hydrophilicities and a polymer electrolyte in a solvent and mixing and stirring the mixture is shown in FIG.
As shown in (a), it is applied on the support 15. This is left to stand, and the catalyst-supporting particles 13 having weak hydrophilicity as shown in FIG.
The catalyst-supporting particles 12 having strong hydrophilicity are allowed to settle in the lower layer portion of the dispersion liquid 11 coated with. The support in this state is left at room temperature to volatilize the solvent in the applied dispersion liquid 11 and further dry the polymer electrolyte membrane 16
To form. The support 15 is peeled off from the polymer electrolyte membrane 16 to produce the polymer electrolyte membrane 16 as shown in FIG. On one surface layer of the polymer electrolyte membrane 16 is formed a catalyst layer in which the weakly hydrophilic catalyst-supporting particles 13 are concentrated and unevenly distributed, and on the other surface layer, the highly hydrophilic catalyst-supporting particles 12 are formed. A catalyst layer that is densely and unevenly distributed is formed.

【0032】この場合、分散液11中の触媒担持粒子1
2あるいは13の沈降あるいは浮上が不十分なために高
分子電解質膜16の中間層の電解質層中に触媒担持粒子
12あるいは13が少量存在しても支障はない。これ
は、電解質層中に存在する金属14には、アノード側お
よびカソード側よりクロスリークしてきた燃料ガスと酸
化剤ガスの反応により水を生成させる作用があり、高分
子電解質膜16を自己加湿させる効果があるので、低湿
運転時のプロトン伝導性の低下を防止できるからであ
る。上記の高分子電解質膜16の各触媒層のそれぞれの
外側に、カーボンペーパなどからなるガス拡散層17お
よび18を配し、さらにそれらの周縁部にガスケット1
9を配したものをホットプレスで圧着して一体化し、図
1(d)のようなガスケット付きの電解質膜−電極接合
体を作製する。
In this case, the catalyst-supporting particles 1 in the dispersion 11
Since the sedimentation or floating of 2 or 13 is insufficient, there is no problem even if a small amount of catalyst-supporting particles 12 or 13 is present in the electrolyte layer of the intermediate layer of the polymer electrolyte membrane 16. This is because the metal 14 present in the electrolyte layer has an action of generating water by the reaction of the fuel gas and the oxidant gas that have cross-leaked from the anode side and the cathode side, and causes the polymer electrolyte membrane 16 to be self-humidified. This is because it is effective, and it is possible to prevent a decrease in proton conductivity during low-humidity operation. Gas diffusion layers 17 and 18 made of carbon paper or the like are arranged on the outer sides of the respective catalyst layers of the polymer electrolyte membrane 16, and the gasket 1 is provided on the peripheral portions thereof.
9 is arranged by pressure bonding with a hot press to integrate them, and an electrolyte membrane-electrode assembly with a gasket as shown in FIG. 1D is produced.

【0033】本発明の第2の製造方法では、比重が異な
る少なくとも2種類の触媒担持粒子を分散させた高分子
電解質分散液を支持体上に塗布した後、塗布された支持
体を放置して、塗布された分散液中の比重が大きい方の
触媒担持粒子を沈降させ、比重が小さい方の触媒担持粒
子を浮上させる。次いで、この分散液中の溶媒を揮発さ
せて除去することにより、中間層に電解質層が形成さ
れ、その両側に第1の触媒層および第2の触媒層が連続
した層として形成された高分子電解質膜を作製する。こ
の場合、前記第1の製造方法の場合と同様の理由で、電
解質層中に触媒担持粒子が少量存在していても差し支え
ない。この高分子電解質膜を用いて前記第1の製造方法
と同様にして、ガスケット付きの電解質膜−電極接合体
を作製することができる。
In the second production method of the present invention, a polymer electrolyte dispersion liquid in which at least two kinds of catalyst-supporting particles having different specific gravities are dispersed is coated on a support, and then the coated support is left standing. The catalyst-supporting particles having a higher specific gravity in the applied dispersion are allowed to settle, and the catalyst-supporting particles having a lower specific gravity are floated. Then, the solvent in this dispersion is volatilized and removed to form an electrolyte layer in the intermediate layer, and a polymer in which a first catalyst layer and a second catalyst layer are formed as continuous layers on both sides of the electrolyte layer. An electrolyte membrane is prepared. In this case, a small amount of catalyst-supporting particles may be present in the electrolyte layer for the same reason as in the case of the first manufacturing method. By using this polymer electrolyte membrane, an electrolyte membrane-electrode assembly with a gasket can be produced in the same manner as in the first production method.

【0034】本発明の第2の製造方法における比重が異
なる触媒担持粒子は、金属の担持量(重量%)を変える
方法や比重が異なる原料炭素粒子を用いる方法などによ
り調製することができる。また、高分子電解質分散液の
溶媒は、比重が異なる触媒担持粒子の各々の比重の中間
的な比重を有する高分子電解質の分散液を調整できるも
のを適宜選択すれば良い。
The catalyst-supporting particles having different specific gravities in the second production method of the present invention can be prepared by a method of changing the amount of metal supported (% by weight), a method of using raw material carbon particles having different specific gravities, or the like. Further, the solvent of the polymer electrolyte dispersion liquid may be appropriately selected as long as it can prepare a dispersion liquid of the polymer electrolyte having a specific gravity intermediate between the specific gravities of the catalyst-supporting particles having different specific gravities.

【0035】本発明の第3の製造方法では、触媒担持粒
子を分散させた高分子電解質分散液を支持体上に塗布し
た後、塗布された支持体を放置し、塗布された分散液中
の触媒担持粒子を上層部に浮上あるいは下層部に沈降さ
せる。ついで、この分散液中の溶媒を揮発させることに
より、一方の表面側に触媒層が形成された高分子電解質
膜を作製する。次いで、作製した二枚の前記高分子電解
質膜の電解質層同士を結合させて、両側に触媒層を備え
た一体化された高分子電解質膜を作製する。
In the third production method of the present invention, the polymer electrolyte dispersion liquid in which the catalyst-supporting particles are dispersed is applied onto the support, and then the applied support is allowed to stand, and the polymer is dispersed in the applied dispersion liquid. The catalyst-supported particles are floated on the upper layer or settled on the lower layer. Then, the solvent in this dispersion is volatilized to prepare a polymer electrolyte membrane having a catalyst layer formed on one surface side. Then, the electrolyte layers of the two produced polymer electrolyte membranes are bonded to each other to produce an integrated polymer electrolyte membrane having catalyst layers on both sides.

【0036】本発明の第3の製造方法による製造プロセ
スの一例を図2に示す。まず、触媒担持粒子と高分子電
解質を溶媒に入れ、混合・攪拌して調製した高分子電解
質分散液21を、図2(a)のように支持体25上に塗
布する。この塗布された支持体をしばらく静置して、図
2(b)のように触媒担持粒子22を沈降させる。この
場合の触媒担持粒子22には高分子電解質の分散液21
より比重が大きいものを用いればよい。また、高分子電
解質の分散液として水性分散液を用いた場合には、親水
性が強い触媒担持粒子を使用してもよい。触媒担持粒子
を浮上させようとする場合には、高分子電解質の分散液
より比重が小さい触媒担持粒子を使用するか、あるいは
親水性が弱い触媒担持粒子を分散させた水性分散液を使
用すればよい。
An example of a manufacturing process according to the third manufacturing method of the present invention is shown in FIG. First, the catalyst-supported particles and the polymer electrolyte are put in a solvent, and the polymer electrolyte dispersion liquid 21 prepared by mixing and stirring is applied onto the support 25 as shown in FIG. The coated support is allowed to stand for a while to allow the catalyst-supporting particles 22 to settle as shown in FIG. 2 (b). In this case, the catalyst-supporting particles 22 include the polymer electrolyte dispersion 21.
What has a larger specific gravity may be used. When an aqueous dispersion is used as the polymer electrolyte dispersion, catalyst-supporting particles having strong hydrophilicity may be used. When attempting to float the catalyst-supporting particles, use catalyst-supporting particles having a smaller specific gravity than the polymer electrolyte dispersion, or use an aqueous dispersion in which the catalyst-supporting particles having weak hydrophilicity are dispersed. Good.

【0037】次いで、触媒担持粒子22を沈降させた分
散液21を乾燥して溶媒を揮発させ、図2(c)のよう
に触媒担持粒子22が密集した層(触媒層)を有する高
分子電解質膜26を支持体25上に形成する。さらに、
高分子電解質膜26が形成された二枚の支持体25を、
それぞれの支持体側を外に向けて重ね合わせ熱ローラー
などで圧着して一体化させた後、それぞれの支持体25
を剥離する。これにより、図2(d)のような電解質層
と連続して形成された触媒層を両側の備えた複合高分子
電解質膜27が形成される。この複合高分子電解質膜2
7の一方の触媒層がアノード側触媒層となり、他方の触
媒層がカソード側触媒層となる。これにガス拡散層2
8、29およびガスケット30を取り付けて、図2
(e)のようなガスケット付きの電解質膜−電極接合体
を作製する。
Next, the dispersion liquid 21 in which the catalyst-supporting particles 22 are settled is dried to volatilize the solvent, and a polymer electrolyte having a layer (catalyst layer) in which the catalyst-supporting particles 22 are dense as shown in FIG. 2C. The film 26 is formed on the support 25. further,
The two support bodies 25 on which the polymer electrolyte membrane 26 is formed are
After each support side is faced outward, they are superposed by pressure bonding with a heat roller or the like to be integrated, and then each support 25
Peel off. As a result, the composite polymer electrolyte membrane 27 having the catalyst layer formed continuously with the electrolyte layer as shown in FIG. 2D is provided on both sides. This composite polymer electrolyte membrane 2
One of the catalyst layers 7 serves as an anode catalyst layer, and the other catalyst layer serves as a cathode catalyst layer. Gas diffusion layer 2
2, 8, and gasket 30 attached,
An electrolyte membrane-electrode assembly with a gasket as in (e) is prepared.

【0038】[0038]

【実施例】次に、実施例により本発明の燃料電池用電解
質膜−電極接合体の製造方法を詳細に説明する。
EXAMPLES Next, the method for producing the electrolyte membrane-electrode assembly for a fuel cell of the present invention will be described in detail with reference to examples.

【0039】《実施例1》図1に示した製造プロセスに
より電解質膜−電極接合体を作製した。まず、親水性が
強い触媒担持粒子12は、担持用金属14としての平均
径2nmの白金粉を50重量%担持した平均径30nm
の炭素粒子(ケッチェンインターナショナル製のケッチ
ェンブラックEC)2.0gに発煙硝酸(関東化学
(株)製)を20ml加え、スターラーで攪拌しながら
100℃で2時間加熱した後、蒸留水で充分に洗浄し、
乾燥して調製した。また、親水性が弱い触媒担持粒子1
3は、上記と同様に白金粉を50重量%担持した平均径
30nmの炭素粒子2.0gを水素ガス中で600℃で
2時間加熱して調製した。
Example 1 An electrolyte membrane-electrode assembly was produced by the manufacturing process shown in FIG. First, the catalyst-supporting particles 12 having strong hydrophilicity have an average diameter of 30 nm in which 50 wt% of platinum powder having an average diameter of 2 nm as the supporting metal 14 is supported.
20 g of fuming nitric acid (manufactured by Kanto Chemical Co., Inc.) was added to 2.0 g of carbon particles (Ketjen Black EC manufactured by Ketjen International), heated with stirring at 100 ° C. for 2 hours with a stirrer, and then distilled water was sufficient. Washed to
Prepared by drying. Further, the catalyst-supporting particles 1 having weak hydrophilicity
3 was prepared by heating 2.0 g of carbon particles carrying 50% by weight of platinum powder and having an average diameter of 30 nm in hydrogen gas at 600 ° C. for 2 hours as in the above.

【0040】高分子電解質分散液は、水:エタノール=
80:20の混合液に高分子電解質(旭硝子(株)製の
Flemion)を濃度7重量%で分散させた液20m
lに、親水性が異なる上記の2種類の触媒担持粒子12
および13を各々0.15g入れ、超音波攪拌機で30
分間攪拌して調製した。この高分子電解質の水性分散液
を支持体15となる直径15cmのシャーレに入れてそ
の底面に塗布分散液11の層を形成し、これを一昼夜室
温で静置した後、130℃で30分間乾燥した。このよ
うにして、触媒層を電解質層の両側にそれぞれ備えた膜
厚25μmの高分子電解質膜16を作製した。
The polymer electrolyte dispersion is water: ethanol =
20 m of liquid in which a polymer electrolyte (Flemion manufactured by Asahi Glass Co., Ltd.) was dispersed in a mixture liquid of 80:20 at a concentration of 7% by weight.
The above-mentioned two types of catalyst-supporting particles 12 having different hydrophilicities
Add 0.15g each of 13 and 13, and add 30 with an ultrasonic stirrer.
It was prepared by stirring for 1 minute. The aqueous dispersion of this polymer electrolyte was placed in a petri dish having a diameter of 15 cm to serve as the support 15 to form a layer of the coating dispersion 11 on the bottom surface thereof, and the mixture was allowed to stand overnight at room temperature and then dried at 130 ° C. for 30 minutes. did. In this way, the polymer electrolyte membrane 16 having a film thickness of 25 μm, in which the catalyst layers were provided on both sides of the electrolyte layer, was produced.

【0041】次いで、高分子電解質膜16にアノード側
ガス拡散層17、カソード側ガス拡散層18およびガス
ケット19を135℃のホットプレスで取り付けて、図
1(d)のようなガスケット付きの電解質膜−電極接合
体を作製した。ガス拡散層17および18には、カーボ
ンペーパ((株)東レ製)をフッ素樹脂の水性分散液
(ダイキン工業(株)製:ND−1)に浸した後、30
0℃で焼成したものを用いた。
Then, the gas diffusion layer 17 on the anode side, the gas diffusion layer 18 on the cathode side and the gasket 19 are attached to the polymer electrolyte membrane 16 by hot pressing at 135 ° C., and an electrolyte membrane with a gasket as shown in FIG. 1D is attached. -The electrode assembly was prepared. In the gas diffusion layers 17 and 18, after immersing carbon paper (manufactured by Toray Co., Ltd.) in an aqueous fluororesin dispersion liquid (ND-1 manufactured by Daikin Industries, Ltd.), 30
What was baked at 0 ° C. was used.

【0042】《比較例1》高分子電解質のエタノール分
散液(旭硝子(株)製のFlemion、濃度7重量
%)20mlをシャーレに入れ、一昼夜室温で静置した
後、130℃で30分乾燥させて厚さ20μmの高分子
電解質膜を形成した。シャーレから剥離した高分子電解
質膜の両面を、予め触媒層を形成した二枚の支持体で挟
み、これを熱ローラーにより加圧することで高分子電解
質膜の表裏両側のそれぞれに触媒層を転写した。この支
持体を触媒層から剥離して作製した触媒層付き電解質膜
を用いて、実施例1と同じ方法でガスケット付きの電解
質膜−電極接合体を作製した。
Comparative Example 1 20 ml of a polymer electrolyte ethanol dispersion (Flemion manufactured by Asahi Glass Co., Ltd., concentration 7% by weight) was placed in a Petri dish, allowed to stand overnight at room temperature, and then dried at 130 ° C. for 30 minutes. To form a polymer electrolyte membrane having a thickness of 20 μm. Both sides of the polymer electrolyte membrane peeled from the petri dish were sandwiched between two supports on which a catalyst layer had been previously formed, and the catalyst layers were transferred to both sides of the polymer electrolyte membrane by applying pressure with a heat roller. . An electrolyte membrane-electrode assembly with a gasket was produced in the same manner as in Example 1 by using the electrolyte membrane with a catalyst layer produced by peeling this support from the catalyst layer.

【0043】上記の予め触媒層を形成した支持体は、触
媒ペーストを膜厚50μmのポリプロピレンフィルム製
支持体上にバーコーターにより塗布し、室温で乾燥して
触媒層を形成したものである。上記触媒ペーストは、平
均径2nmの白金を50重量%担持した平均径30nm
の炭素粒子(ケッチェンインターナショナル製のケッチ
ェンブラックEC)5.0gに蒸留水を15cc加え、
これに高分子電解質のエタノール分散液(旭硝子(株)
製のFlemion、濃度9重量%)25.0gを加え
たものを、超音波振動を加えながらスターラーにより1
時間攪拌して調製した。
The support on which the catalyst layer has been previously formed is a catalyst layer formed by coating the catalyst paste on a polypropylene film support having a thickness of 50 μm with a bar coater and drying at room temperature. The catalyst paste has an average diameter of 30 nm carrying 50% by weight of platinum having an average diameter of 2 nm.
15 cc of distilled water was added to 5.0 g of carbon particles (Ketjen Black EC manufactured by Ketjen International),
In addition to this, a polyelectrolyte ethanol dispersion (Asahi Glass Co., Ltd.)
25.0 g of Flemion (concentration 9% by weight) made by a stirrer while applying ultrasonic vibration.
It was prepared by stirring for an hour.

【0044】次に、実施例1および比較例1で作製した
ガスケット付きの電解質膜−電極接合体を用いて高分子
電解質型燃料電池の単電池を作製し、それらの作動特性
を評価した。図8に、実施例1で作製した図1のガスケ
ット付き電解質膜−電極接合体を用いた単電池の構成を
示す。図8において、ガスケット付き電解質膜−電極接
合体の両側のガス拡散層17および18のそれぞれの外
側に、アノード側ガス流路80およびカソード側ガス流
路81を有するセパレータ板84および85が配置され
ている。セパレータ板84および85の外側には、それ
ぞれ冷却水流路82および83が設けられている。比較
例1のガスケット付き電解質膜−電極接合体を用いた単
電池も上記に準じて構成した。これら単電池の電池温度
を75℃に保持し、アノード側に70℃の露点となるよ
うに加温・加湿した水素ガスを、カソード側に30℃の
露点となるように加温・加湿した空気をそれぞれ供給し
た。
Then, using the electrolyte membrane-electrode assembly with a gasket prepared in Example 1 and Comparative Example 1, unit cells of a polymer electrolyte fuel cell were prepared and their operating characteristics were evaluated. FIG. 8 shows the configuration of a unit cell using the electrolyte membrane-electrode assembly with a gasket of FIG. 1 produced in Example 1. In FIG. 8, separator plates 84 and 85 having an anode side gas flow channel 80 and a cathode side gas flow channel 81 are arranged outside the gas diffusion layers 17 and 18 on both sides of the electrolyte membrane-electrode assembly with a gasket. ing. Cooling water flow paths 82 and 83 are provided outside the separator plates 84 and 85, respectively. A unit cell using the electrolyte membrane-electrode assembly with a gasket of Comparative Example 1 was also constructed according to the above. Maintaining the battery temperature of these cells at 75 ° C, hydrogen gas heated and humidified to have a dew point of 70 ° C on the anode side, and air heated and humidified to have a dew point of 30 ° C on the cathode side. Were supplied respectively.

【0045】これらの単電池を、水素利用率70%、空
気利用率40%の条件で作動させ、それぞれの放電電流
と作動電圧の関係を調べた。図4にその結果を示す。縦
軸は単電池の電池電圧(V)、横軸は電解質膜−電極接
合体の単位面積あたりの放電電流(mA/cm2)を示
す。図4のように、電解質層と触媒層を同時に形成した
実施例1の単電池では、予め形成された高分子電解質膜
に触媒層を結合させた比較例1の単電池と比較して、高
い出力が得られた。
These unit cells were operated under the conditions of hydrogen utilization rate of 70% and air utilization rate of 40%, and the relationship between discharge current and operating voltage was examined. The results are shown in FIG. The vertical axis represents the battery voltage (V) of the unit cell, and the horizontal axis represents the discharge current (mA / cm 2 ) per unit area of the electrolyte membrane-electrode assembly. As shown in FIG. 4, the unit cell of Example 1 in which the electrolyte layer and the catalyst layer were simultaneously formed was higher than the unit cell of Comparative Example 1 in which the catalyst layer was bonded to the preformed polymer electrolyte membrane. Output was obtained.

【0046】また、上記の実施例1および比較例1の単
電池を用いて、それぞれ100セルを積層した電池スタ
ックを作製した。このとき、ステンレス鋼製の集電板、
絶縁板、および単板で電池スタックの両端部を挟み、締
め付けロッドで固定した。締め付け圧力はセパレータ板
の面積当たり15kgf/cm2とした。このようにし
て作製した各電池スタックについて、単電池の場合と同
様の方法で作動特性を評価した。その結果、単電池の場
合と同様に、実施例1の電池スタックでは比較例1の電
池スタックに比較して高い出力が得られた。
Using the unit cells of Example 1 and Comparative Example 1 described above, a battery stack in which 100 cells were laminated was prepared. At this time, a stainless steel collector plate,
Both ends of the battery stack were sandwiched between an insulating plate and a single plate, and fixed with a tightening rod. The tightening pressure was 15 kgf / cm 2 per area of the separator plate. The operating characteristics of each of the battery stacks thus manufactured were evaluated in the same manner as in the case of the unit cell. As a result, similar to the case of the unit cell, the battery stack of Example 1 obtained higher output than the battery stack of Comparative Example 1.

【0047】[0047]

【発明の効果】本発明により、プロトン伝導性が高い燃
料電池用電解質膜−電極接合体と、これを備えた高性能
の高分子電解質型燃料電池を提供できる。さらに前記電
解質膜−電極接合体を短時間で製造でき、低コスト化が
可能となる。
According to the present invention, it is possible to provide an electrolyte membrane-electrode assembly for a fuel cell having high proton conductivity, and a high-performance polymer electrolyte fuel cell including the same. Further, the electrolyte membrane-electrode assembly can be manufactured in a short time, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電解質膜−電極接合体の製造方法の実
施の形態を示す工程図である。
FIG. 1 is a process drawing showing an embodiment of a method for producing an electrolyte membrane-electrode assembly according to the present invention.

【図2】本発明の電解質膜−電極接合体の製造方法の他
の実施の形態を示す工程図である。
FIG. 2 is a process drawing showing another embodiment of the method for producing an electrolyte membrane-electrode assembly of the present invention.

【図3】本発明の電解質膜−電極接合体における触媒層
と電解質層の接合部付近の断面模式図である。
FIG. 3 is a schematic cross-sectional view in the vicinity of a joint between a catalyst layer and an electrolyte layer in the electrolyte membrane-electrode assembly of the present invention.

【図4】実施例および比較例の単電池の作動特性を示す
図である。
FIG. 4 is a diagram showing operating characteristics of unit cells of Examples and Comparative Examples.

【図5】従来の電解質膜−電極接合体の縦断面図であ
る。
FIG. 5 is a vertical cross-sectional view of a conventional electrolyte membrane-electrode assembly.

【図6】従来の電解質膜−電極接合体の製造方法を示す
工程図である。
FIG. 6 is a process drawing showing a conventional method for manufacturing an electrolyte membrane-electrode assembly.

【図7】従来の電解質膜−電極接合体における触媒層と
電解質膜の接合部近傍の断面模式図である。
FIG. 7 is a schematic cross-sectional view in the vicinity of a joint between a catalyst layer and an electrolyte membrane in a conventional electrolyte membrane-electrode assembly.

【図8】本発明の実施例における単電池の縦断面図であ
る。
FIG. 8 is a vertical cross-sectional view of a unit cell according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 高分子電解質の水性分散液 12 親水性が強い触媒担持粒子 13 親水性が弱い触媒担持粒子 14、24、65、75 金属 15、25、45 支持体 16、26、31、41、67 高分子電解質膜 17、18、28、29、34、35、47、48 ガ
ス拡散層 19、30 ガスケット 21 高分子電解質の分散液 22、66、76 触媒担持粒子 27 複合高分子電解質膜 32、33、42、43、68、78 触媒層 36 電解質膜−電極接合体 61、63、71、73 ポリテトラフルオロエチレン
樹脂部分 62、64、72、74 プロトン伝導性チャネル 77 電解質層 80,81 ガス流路 82,83 冷却水流路 84,85 セパレータ板
11 Polymer Electrolyte Aqueous Dispersion 12 Catalyst Support Particles 13 with High Hydrophilicity Catalyst Support Particles with Low Hydrophilicity 14, 24, 65, 75 Metals 15, 25, 45 Support 16, 26, 31, 41, 67 Polymer Electrolyte membranes 17, 18, 28, 29, 34, 35, 47, 48 Gas diffusion layers 19, 30 Gasket 21 Polymer electrolyte dispersions 22, 66, 76 Catalyst-supporting particles 27 Composite polymer electrolyte membranes 32, 33, 42 , 43, 68, 78 Catalyst layer 36 Electrolyte membrane-electrode assembly 61, 63, 71, 73 Polytetrafluoroethylene resin portion 62, 64, 72, 74 Proton conductive channel 77 Electrolyte layer 80, 81 Gas flow path 82, 83 Cooling water flow paths 84, 85 Separator plate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS02 AS03 BB03 BB06 BB08 BB12 CC06 DD08 DD10 EE03 EE05 EE18 HH00 HH05 5H026 AA06 BB02 BB03 BB04 BB08 CC03 CX05 EE02 EE05 EE19 HH00 HH05    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H018 AA06 AS02 AS03 BB03 BB06                       BB08 BB12 CC06 DD08 DD10                       EE03 EE05 EE18 HH00 HH05                 5H026 AA06 BB02 BB03 BB04 BB08                       CC03 CX05 EE02 EE05 EE19                       HH00 HH05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属を担持した炭素粒子を両側の表面層
に含有させた高分子電解質膜と、前記高分子電解質膜の
両側の面に配置した一対のガス拡散層とを備えたことを
特徴とする燃料電池用電解質膜−電極接合体。
1. A polymer electrolyte membrane having carbon particles supporting a metal contained in surface layers on both sides, and a pair of gas diffusion layers arranged on both sides of the polymer electrolyte membrane. And an electrolyte membrane-electrode assembly for a fuel cell.
【請求項2】 金属を担持した親水性が異なる少なくと
も2種類の炭素粒子を分散させた高分子電解質の水性分
散液を支持体上に塗布する工程、塗布された前記支持体
を放置して、親水性が強い方の炭素粒子を前記塗布され
た分散液の下層部に、親水性の弱い方の炭素粒子を前記
分散液の上層部にそれぞれ偏在させる工程、および、前
記分散液に含まれる溶媒を揮発させて、前記炭素粒子を
包含する高分子電解質膜を形成する工程を有することを
特徴とする燃料電池用電解質膜−電極接合体の製造方
法。
2. A step of applying an aqueous dispersion of a polymer electrolyte in which at least two kinds of carbon particles carrying a metal and having different hydrophilicities are dispersed on a support, and leaving the applied support standing, Hydrophilic carbon particles in the lower layer portion of the applied dispersion, a step of unevenly distributing the weaker hydrophilic carbon particles in the upper layer portion of the dispersion, respectively, and a solvent contained in the dispersion liquid The method for producing an electrolyte membrane-electrode assembly for a fuel cell, comprising the step of: volatilizing the polymer particles to form a polymer electrolyte membrane containing the carbon particles.
【請求項3】 金属を担持した比重が異なる少なくとも
2種類の炭素粒子を分散させた高分子電解質の分散液を
支持体上に塗布する工程、塗布された前記支持体を放置
して、比重が大きい方の炭素粒子を前記塗布された分散
液の下層部に、比重が小さい方の炭素粒子を前記分散液
の上層部にそれぞれ偏在させる工程、および、前記分散
液に含まれる溶媒を揮発させて、前記炭素粒子を包含す
る高分子電解質膜を形成する工程を有することを特徴と
する燃料電池用電解質膜−電極接合体の製造方法。
3. A step of applying a dispersion liquid of a polymer electrolyte in which at least two kinds of carbon particles carrying different metals and different in specific gravity are applied onto a support, and the applied support is allowed to stand to have a specific gravity of Larger carbon particles in the lower layer part of the applied dispersion, a step of unevenly distributing the carbon particles of smaller specific gravity in the upper layer part of the dispersion, and volatilizing the solvent contained in the dispersion liquid. A method for producing an electrolyte membrane-electrode assembly for a fuel cell, comprising the step of forming a polymer electrolyte membrane containing the carbon particles.
【請求項4】 金属を担持した炭素粒子を分散させた高
分子電解質の分散液を支持体上に塗布する工程、塗布さ
れた前記支持体を放置して、前記炭素粒子を、前記塗布
された分散液の上層部または下層部に偏在させる工程、
前記分散液に含まれる溶媒を揮発させて、前記支持体上
に前記炭素粒子を包含する高分子電解質膜を形成する工
程、および、前記支持体上に形成された高分子電解質膜
の二枚を、前記炭素粒子が偏在する側の面を外側にして
接合させる工程を有することを特徴とする燃料電池用電
解質膜−電極接合体の製造方法。
4. A step of applying a dispersion liquid of a polymer electrolyte in which carbon particles supporting a metal are dispersed on a support, the support which has been applied is allowed to stand, and the carbon particles are applied on the support. A step of unevenly distributing in the upper layer part or the lower layer part of the dispersion liquid,
Volatilizing the solvent contained in the dispersion to form a polymer electrolyte membrane containing the carbon particles on the support, and two polymer electrolyte membranes formed on the support. A method for producing an electrolyte membrane-electrode assembly for a fuel cell, comprising a step of joining with the surface on the side where the carbon particles are unevenly distributed facing outward.
【請求項5】 請求項1に記載の燃料電池用電解質膜−
電極接合体を備えた高分子電解質型燃料電池。
5. The electrolyte membrane for a fuel cell according to claim 1.
A polymer electrolyte fuel cell having an electrode assembly.
JP2001248271A 2001-08-17 2001-08-17 Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell Pending JP2003059507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001248271A JP2003059507A (en) 2001-08-17 2001-08-17 Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001248271A JP2003059507A (en) 2001-08-17 2001-08-17 Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2003059507A true JP2003059507A (en) 2003-02-28

Family

ID=19077464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001248271A Pending JP2003059507A (en) 2001-08-17 2001-08-17 Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2003059507A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088749A1 (en) * 2004-03-12 2005-09-22 Nagaoka University Of Technology Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell
JP2006339034A (en) * 2005-06-02 2006-12-14 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell, and method of manufacturing same
KR100709201B1 (en) * 2006-05-15 2007-04-18 삼성에스디아이 주식회사 Polymer membrane, membrane-electrode assembly for fuel cell, and fuel cell system comprising same
JP2007331864A (en) * 2006-06-13 2007-12-27 Toyota Motor Corp Transfer device for article to be conveyed
JP2008505457A (en) * 2004-06-30 2008-02-21 ジョージア テク リサーチ コーポレイション Micro structure and manufacturing method thereof
JP2009004183A (en) * 2007-06-20 2009-01-08 Gunze Ltd Solid polymer electrolyte membrane of multilayer structure, manufacturing method thereof, as well as membrane-electrode assembly and manufacturing method thereof
JP2010086699A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Catalyst layer transfer film and catalyst layer-electrolyte film laminate as well as membrane-electrode assembly obtained by using the same
JP2012243656A (en) * 2011-05-23 2012-12-10 Toyota Motor Corp Method for producing membrane electrode assembly, and membrane electrode assembly
US8652705B2 (en) 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088749A1 (en) * 2004-03-12 2005-09-22 Nagaoka University Of Technology Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell
US7972743B2 (en) 2004-03-12 2011-07-05 Nagaoka University Of Technology Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell
JP2008505457A (en) * 2004-06-30 2008-02-21 ジョージア テク リサーチ コーポレイション Micro structure and manufacturing method thereof
JP2006339034A (en) * 2005-06-02 2006-12-14 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell, and method of manufacturing same
US8652705B2 (en) 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
US9847533B2 (en) 2005-09-26 2017-12-19 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
KR100709201B1 (en) * 2006-05-15 2007-04-18 삼성에스디아이 주식회사 Polymer membrane, membrane-electrode assembly for fuel cell, and fuel cell system comprising same
US8039164B2 (en) 2006-05-15 2011-10-18 Samsung Sdi Co., Ltd. Polymer membrane, membrane-electrode assembly for fuel cell, and fuel cell system including same
JP2007331864A (en) * 2006-06-13 2007-12-27 Toyota Motor Corp Transfer device for article to be conveyed
JP2009004183A (en) * 2007-06-20 2009-01-08 Gunze Ltd Solid polymer electrolyte membrane of multilayer structure, manufacturing method thereof, as well as membrane-electrode assembly and manufacturing method thereof
JP2010086699A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Catalyst layer transfer film and catalyst layer-electrolyte film laminate as well as membrane-electrode assembly obtained by using the same
JP2012243656A (en) * 2011-05-23 2012-12-10 Toyota Motor Corp Method for producing membrane electrode assembly, and membrane electrode assembly

Similar Documents

Publication Publication Date Title
JP4550798B2 (en) Solid polymer electrolyte fuel cell and method for producing the same
US6391487B1 (en) Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
WO2002003489A1 (en) Polyelectrolyte fuel cell
WO2005088749A1 (en) Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell
JP4293831B2 (en) Fuel cell
JPH09265992A (en) Electrode structure for fuel cell
JP4859124B2 (en) Membrane electrode unit, manufacturing method thereof, and direct methanol fuel cell
JP2010505222A (en) Structure for gas diffusion electrode
JP4493954B2 (en) Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JPH10334923A (en) Solid high polymer fuel cell film/electrode connecting body
JPH10284087A (en) Electrode and membrane-electrode joining body for solid polymer fuel cell
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JP2000299119A (en) Manufacture of catalyst layer
JP2009037902A (en) Catalyst carrying carrier for forming electrode for fuel cell, method for manufacturing the same, and solid polymer fuel cell
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP4165154B2 (en) Method and apparatus for manufacturing fuel cell electrode
CN101978536B (en) Membrane electrode assembly and fuel cell
US20050147868A1 (en) Fuel cell
JP2003059511A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
US7056615B2 (en) Electrode for polymer electrolyte fuel cells and manufacturing method therefor
JPH09265996A (en) Electrode structure for fuel cell and its manufacture
JP4400212B2 (en) Manufacturing method of membrane / electrode assembly for fuel cell
JP2008269847A (en) Ink for fuel cell catalyst layer, its manufacturing method, and membrane electrode assembly for fuel cell
JP3965666B2 (en) Gas diffusion electrode and manufacturing method thereof
JP6952543B2 (en) Membrane electrode assembly, electrochemical cell, stack, fuel cell and vehicle