JP2007213988A - Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell - Google Patents

Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2007213988A
JP2007213988A JP2006032897A JP2006032897A JP2007213988A JP 2007213988 A JP2007213988 A JP 2007213988A JP 2006032897 A JP2006032897 A JP 2006032897A JP 2006032897 A JP2006032897 A JP 2006032897A JP 2007213988 A JP2007213988 A JP 2007213988A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
catalyst
fuel cell
precursor
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006032897A
Other languages
Japanese (ja)
Inventor
Satoshi Yamahi
智 山火
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006032897A priority Critical patent/JP2007213988A/en
Publication of JP2007213988A publication Critical patent/JP2007213988A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst layer for polymer electrolyte fuel cell improved in utilization efficiency of expensive noble metal catalyst and capable of greatly reducing manufacturing cost, and its manufacturing method. <P>SOLUTION: The electrode catalyst layer 29 comprises a porous catalyst film 21 having pores 23 in a catalyst structure 28 in which catalyst bodies 22 are arranged continuously, and a polymer electrolyte 25. The polymer electrolyte 25 is arranged by covering the surface of catalyst bodies 22 arranged continuously of the catalyst structure. The manufacturing method comprises a process in which a precursor 24 of polymer electrolyte is impregnated in the porous catalyst film 21 having pores in the catalyst structures in which the catalyst bodies are arranged continuously, a process in which the surface of the catalyst bodies arranged continuously is covered by the polymer electrolyte 25 by polymerizing the precursor of the polymer electrolyte, and a process in which the non-reacted precursor 26 of the polymer electrolyte is removed. The catalyst bodies are catalyst particulates or carbon particulates carrying the catalyst particulates. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高分子電解質型燃料電池用電極触媒層、その製造方法および高分子電解質型燃料電池に関する。   The present invention relates to an electrode catalyst layer for a polymer electrolyte fuel cell, a production method thereof, and a polymer electrolyte fuel cell.

燃料電池はエネルギーおよび環境問題の解決を担う次世代エネルギーデバイスとして注目されている。燃料電池は下記のような水の電気分解の逆反応を利用して発電している。   Fuel cells are attracting attention as next-generation energy devices for solving energy and environmental problems. Fuel cells generate electricity using the reverse reaction of water electrolysis as described below.

Figure 2007213988
Figure 2007213988

燃料電池は、電解質の種類によりリン酸型燃料電池(PAFC)、高分子電解質型燃料電池(PEFC)、固体酸化物型燃料電池(SOFC)、及び溶融炭酸塩型燃料電池(MCFC)等に分類される。中でも、低動作温度、小型、軽量、高出力である高分子電解質型燃料電池は、高効率な家庭用発電システム、クリーン排気且つ高燃費の自動車用動力源、および長作動時間のモバイル機器用電源として、実用化に向けた開発が急速に進められている。   Fuel cells are classified into phosphoric acid fuel cells (PAFC), polymer electrolyte fuel cells (PEFC), solid oxide fuel cells (SOFC), molten carbonate fuel cells (MCFC), etc., depending on the type of electrolyte. Is done. Above all, polymer electrolyte fuel cells with low operating temperature, small size, light weight, and high output are highly efficient home power generation systems, clean exhaust and high fuel consumption automotive power sources, and long operating time power supplies for mobile devices. As a result, development for practical use is rapidly progressing.

このような高分子電解質型燃料電池用の電極触媒層は、少なくとも高分子電解質と触媒体を含む三次元的な多孔質構造を形成している。高分子電解質としては、デュポン(DuPont)社製のナフィオン(登録商標、Nafion)に代表されるようなフッ素系陽イオン交換樹脂、触媒体としては、白金微粒子、白金系合金微粒子、またはそれらを担持させたカーボン粒子が広く用いられている。この三次元的な多孔質構造を有する電極触媒層の内部においては、触媒、高分子電解質、細孔により形成される三相界面が電気化学的な反応の場となり、その量は電池性能に大きく左右する。また、触媒体は電子伝導経路、高分子電解質はプロトン伝導経路となるため、各々が電極触媒層全体に渡り連続的であることが望ましい。   Such an electrode catalyst layer for a polymer electrolyte fuel cell has a three-dimensional porous structure including at least a polymer electrolyte and a catalyst body. As a polymer electrolyte, a fluorine-based cation exchange resin represented by Nafion (registered trademark, Nafion) manufactured by DuPont, and as a catalyst body, platinum fine particles, platinum-based alloy fine particles, or carrying them Carbon particles are widely used. Inside the electrocatalyst layer having this three-dimensional porous structure, the three-phase interface formed by the catalyst, polymer electrolyte, and pores serves as an electrochemical reaction field, and the amount thereof greatly affects the battery performance. It depends on you. In addition, since the catalyst body serves as an electron conduction path and the polymer electrolyte serves as a proton conduction path, each of them is preferably continuous over the entire electrode catalyst layer.

例えば、以下のような方法も特許文献1に開示されている。3次元の編目構造を有するカーボンペーパー繊維から成る支持体内に、固体高分子電解質被膜とポリテトラフルオロエチレン層とを形成する。該固体高分子電解質被膜上に電極触媒被膜層を化学メッキによって形成して、電極における三相界面構造を得る。さらに、このカーボンペーパー繊維の片面上に固体高分子電解質溶液を塗布した後、固体高分子電解質膜をホットプレスにより密着一体化する。   For example, Patent Document 1 discloses the following method. A solid polymer electrolyte coating and a polytetrafluoroethylene layer are formed in a support made of carbon paper fibers having a three-dimensional stitch structure. An electrode catalyst coating layer is formed on the solid polymer electrolyte coating by chemical plating to obtain a three-phase interface structure in the electrode. Furthermore, after applying a solid polymer electrolyte solution on one side of the carbon paper fiber, the solid polymer electrolyte membrane is closely integrated by hot pressing.

一般的には、上記の電極触媒層は、触媒体と高分子電解質を有機溶媒に分散させた溶液を混合して調製されたペーストを高分子電解質膜、多孔質カーボン電極、または支持体に塗布する方法または、触媒体と任意の有機溶媒を混合して調製されたペーストを高分子電解質膜、多孔質カーボン電極、または支持体に塗布した後に、高分子電解質を有機溶媒に分散させた溶液を含浸させる方法により作製する。さらに、このようにして得られた一対の電極触媒層で高分子電解質膜を挟み込み、ホットプレス等で熱圧着することにより膜/電極接合体(MEA;Membrane Electrode Assembly)を作製する(特許文献1)。
特開平8−106915号公報
In general, the electrode catalyst layer described above is applied to a polymer electrolyte membrane, a porous carbon electrode, or a support by applying a paste prepared by mixing a solution in which a catalyst body and a polymer electrolyte are dispersed in an organic solvent. Or a solution prepared by mixing a catalyst body and an arbitrary organic solvent on a polymer electrolyte membrane, a porous carbon electrode, or a support, and then dispersing a polymer electrolyte in the organic solvent. It is produced by a method of impregnation. Further, a polymer electrolyte membrane is sandwiched between the pair of electrode catalyst layers thus obtained, and a membrane / electrode assembly (MEA) is produced by thermocompression bonding with a hot press or the like (Patent Document 1). ).
JP-A-8-106915

しかしながら、上記製造方法では、ナノメートルオーダーの触媒体と高粘性の高分子電解質の分散溶液を用いて、電極触媒層に要求される条件を満たした微細構造を形成することは困難である。すなわち、図4に示すように、触媒体11の電子伝導径路が分断された部分13および高分子電解質12のプロトン伝導径路が分断された部分14が形成されるため、電池効率が低下する。   However, in the above production method, it is difficult to form a microstructure satisfying the conditions required for the electrode catalyst layer using a nanometer-order catalyst body and a dispersion solution of a highly viscous polymer electrolyte. That is, as shown in FIG. 4, since the portion 13 where the electron conduction path of the catalyst body 11 is divided and the portion 14 where the proton conduction path of the polymer electrolyte 12 is divided are formed, the battery efficiency is lowered.

また、上記製造方法では、高粘性の高分子電解質分散溶液は触媒体の間隙に形成された微細な細孔中に浸透することが不可能であるため、高分子電解質と接触しない触媒体が存在する。以上の理由から、触媒として実質的に有効に作用する貴金属粒子は10%程度であるとも報告されている(E.A.Ticianelli、C.R.Derouin、and S.Srinivasan、 J.Electroanal.Chem.、1998、251、275)。その結果、高価な貴金属を大量に使用する必要が生じ、製造コストが増加するという問題が生じる。   Further, in the above production method, a highly viscous polymer electrolyte dispersion solution cannot penetrate into fine pores formed in the gaps of the catalyst body, so there is a catalyst body that does not come into contact with the polymer electrolyte. To do. For the above reasons, it has been reported that the precious metal particles that act substantially effectively as a catalyst are about 10% (EA Ticianelli, CR Derouin, and S. Srinivasan, J. Electronal. Chem. 1998, 251, 275). As a result, it is necessary to use a large amount of expensive noble metal, and there arises a problem that the manufacturing cost increases.

本発明は、この様な背景技術に鑑みてなされたものであり、高性能且つ低コストの高分子電解質型燃料電池用電極触媒層およびその製造方法を提供するものである。   The present invention has been made in view of such background art, and provides a high performance and low cost electrode catalyst layer for a polymer electrolyte fuel cell and a method for producing the same.

また、本発明は、上記の電極触媒層を用いた高分子電解質型燃料電池を提供するものである。   The present invention also provides a polymer electrolyte fuel cell using the above electrode catalyst layer.

上記課題を解決するための高分子電解質型燃料電池用電極触媒層は、少なくとも、触媒体が連続して配置され、その間隙に細孔を有する多孔質触媒膜と、高分子電解質とを有する高分子電解質型燃料電池用電極触媒層であって、前記高分子電解質が多孔質触媒膜の連続して配置された触媒体の表面を被覆して配置されていることを特徴とする。   An electrode catalyst layer for a polymer electrolyte fuel cell for solving the above-described problem is a high-performance catalyst having at least a porous catalyst membrane in which catalyst bodies are continuously arranged and pores in the gaps, and a polymer electrolyte. An electrode catalyst layer for a molecular electrolyte fuel cell, wherein the polymer electrolyte is disposed so as to cover a surface of a catalyst body in which a porous catalyst membrane is continuously disposed.

前記触媒体は、触媒微粒子または触媒微粒子を担持したカーボン微粒子であることが好ましい。
前記高分子電解質は、高分子電解質の前駆体を重合して得られた重合体からなることが好ましい。
The catalyst body is preferably catalyst fine particles or carbon fine particles carrying catalyst fine particles.
The polymer electrolyte is preferably composed of a polymer obtained by polymerizing a precursor of the polymer electrolyte.

上記課題を解決するための高分子電解質型燃料電池用電極触媒層の製造方法は、触媒体が連続して配置され、その間隙に細孔を有する多孔質触媒膜に高分子電解質の前駆体を含浸する工程と、該高分子電解質の前駆体を重合して、多孔質触媒膜の連続して配置された触媒体の表面を高分子電解質で被覆する工程と、未反応の高分子電解質の前駆体を除去する工程を含むことを特徴とする。   A method for producing an electrode catalyst layer for a polymer electrolyte fuel cell for solving the above-described problem is that a catalyst body is continuously arranged, and a precursor of a polymer electrolyte is provided on a porous catalyst film having pores in the gaps. A step of impregnating, a step of polymerizing the precursor of the polymer electrolyte so as to coat the surface of the continuously disposed catalyst body of the porous catalyst membrane with the polymer electrolyte, and a precursor of the unreacted polymer electrolyte. It includes a step of removing the body.

前記高分子電解質の前駆体は、分子内にプロトン解離性官能基を有するモノマー、オリゴマーまたはモノマーとオリゴマーの混合物であることが好ましい。
前記高分子電解質の前駆体の重合は、触媒体表面を加熱することにより行うことが好ましい。
The precursor of the polymer electrolyte is preferably a monomer having a proton dissociable functional group in the molecule, an oligomer, or a mixture of a monomer and an oligomer.
The polymerization of the polymer electrolyte precursor is preferably performed by heating the surface of the catalyst body.

上記課題を解決するための高分子電解質型燃料電池は、一対の電極触媒層と、該電極触媒層の間に配置された高分子電解質膜を有する高分子電解質型燃料電池であって、前記電極触媒層が上記の電極触媒層からなることを特徴とする。   A polymer electrolyte fuel cell for solving the above problems is a polymer electrolyte fuel cell having a pair of electrode catalyst layers and a polymer electrolyte membrane disposed between the electrode catalyst layers, the electrode A catalyst layer consists of said electrode catalyst layer, It is characterized by the above-mentioned.

本発明は、高価な貴金属触媒の利用効率を向上し、大幅な製造コストの低減が可能な高分子電解質型燃料電池用電極触媒層およびその製造方法を提供できる。
また、本発明は、上記の電極触媒層を用いた高分子電解質型燃料電池を提供できる。
INDUSTRIAL APPLICABILITY The present invention can provide an electrode catalyst layer for a polymer electrolyte fuel cell that can improve the utilization efficiency of an expensive noble metal catalyst and can greatly reduce the production cost, and a method for producing the same.
Further, the present invention can provide a polymer electrolyte fuel cell using the above electrode catalyst layer.

高分子電解質型燃料電池用電極触媒層およびその製造方法の最良の実施形態について詳細に説明する。
<電極触媒層の微細構造>
高分子電解質型燃料電池用電極触媒層(以降、電極触媒層と略記する)は、少なくとも触媒体と高分子電解質を含有する。図1は電極触媒層の一実施態様を示す概略図であり、図1(a)は多孔質触媒膜の概略図、図1(b)は電極触媒層の概略図を示す。図1(a)において、多孔質触媒膜21は、三次元的に連続して配置された触媒体22の間隙に多数の細孔23を有する構造を有する。図1(b)において、電極触媒層29は、多孔質触媒膜21と、高分子電解質25とを有し、高分子電解質25が多孔質触媒膜の連続して配置された触媒体22の表面を均一に被覆していることを特徴とする。触媒体には、触媒微粒子または触媒微粒子を担持したカーボン微粒子が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The best embodiment of a polymer electrolyte fuel cell electrode catalyst layer and a production method thereof will be described in detail.
<Micro structure of electrode catalyst layer>
The electrode catalyst layer for a polymer electrolyte fuel cell (hereinafter abbreviated as an electrode catalyst layer) contains at least a catalyst body and a polymer electrolyte. FIG. 1 is a schematic view showing one embodiment of an electrode catalyst layer, FIG. 1 (a) is a schematic view of a porous catalyst membrane, and FIG. 1 (b) is a schematic view of an electrode catalyst layer. In FIG. 1A, a porous catalyst membrane 21 has a structure having a large number of pores 23 in a gap between catalyst bodies 22 arranged three-dimensionally continuously. In FIG. 1B, the electrode catalyst layer 29 has a porous catalyst membrane 21 and a polymer electrolyte 25, and the surface of the catalyst body 22 in which the polymer electrolyte 25 is continuously arranged in the porous catalyst membrane. Is uniformly coated. As the catalyst body, catalyst fine particles or carbon fine particles carrying catalyst fine particles are used.

触媒体は三次元的に連続し、電極触媒層全体において連続的な電子伝導径路が確保されている。また、高分子電解質は三次元的に連続な触媒体表面を均一に被覆しているため、電極触媒層全体において連続的なプロトン伝導径路が形成されている。さらに、高分子電解質は触媒体間隙に形成されたナノメートルサイズの細孔深部の触媒とも接触し、三相界面を形成している。   The catalyst body is three-dimensionally continuous, and a continuous electron conduction path is ensured in the entire electrode catalyst layer. In addition, since the polymer electrolyte uniformly covers the surface of the three-dimensional continuous catalyst body, a continuous proton conduction path is formed in the entire electrode catalyst layer. Furthermore, the polymer electrolyte is also in contact with a nanometer-size deep pore catalyst formed in the catalyst body gap to form a three-phase interface.

<電極触媒層の製造方法>
本発明に係る電極触媒層の製造方法は、触媒体が連続して配置され、その間隙に細孔を有する多孔質触媒膜に高分子電解質の前駆体を含浸する第1の工程と、該高分子電解質の前駆体を重合して得られた重合体からなる高分子電解質で多孔質触媒膜の連続して配置された触媒体の表面を被覆する第2の工程と、未反応の高分子電解質の前駆体を除去する第3の工程を含むことを特徴とする。
<Method for producing electrode catalyst layer>
The method for producing an electrode catalyst layer according to the present invention comprises a first step of impregnating a porous catalyst membrane having catalyst bodies arranged continuously and having pores in the gaps with a precursor of a polymer electrolyte; A second step of coating the surface of the continuously disposed catalyst body of the porous catalyst membrane with a polymer electrolyte comprising a polymer obtained by polymerizing a precursor of molecular electrolyte; and an unreacted polymer electrolyte And a third step of removing the precursor.

以下、前記第1の工程から第3の工程について図2を用いて詳細に説明する。図2は電極触媒層の製造方法の一例を示す工程図である。
(触媒体の多孔質触媒膜に高分子電解質の前駆体を含浸させる第1の工程)
図2(a)、(b)において、触媒体22の多孔質触媒膜21に高分子電解質の前駆体24を含浸させる。
Hereinafter, the first to third steps will be described in detail with reference to FIG. FIG. 2 is a process diagram showing an example of a method for producing an electrode catalyst layer.
(First step of impregnating porous catalyst membrane of catalyst body with precursor of polymer electrolyte)
2A and 2B, the porous catalyst membrane 21 of the catalyst body 22 is impregnated with a precursor 24 of a polymer electrolyte.

前記多孔質触媒膜を形成する触媒体22としては、触媒微粒子または触媒微粒子を担持したカーボン微粒子を用いることができる。前記触媒体の多孔質触媒膜は、高分子電解質膜または多孔質カーボン電極上に直接作製されることが好ましいが、テフロン(登録商標)シートのような支持体上に作製してもよい。前記触媒微粒子としては、直径2nm以上5nm以下の白金微粒子または白金と1種類以上の貴金属元素の合金微粒子が好適に用いられる。白金と合金化する貴金属元素としてはAu、Ag、Ru、Rh、Pd、Os、Irより成る群より少なくとも1種類以上が選択されることが好ましが、合金化により高活性を得ることができれば、組成は特に制限されない。また、担体としては、BET比表面積100m/g以上1000m/g以下の高い導電性を有するカーボン微粒子を用いることが好ましい。 As the catalyst body 22 forming the porous catalyst film, catalyst fine particles or carbon fine particles supporting catalyst fine particles can be used. The porous catalyst membrane of the catalyst body is preferably produced directly on the polymer electrolyte membrane or the porous carbon electrode, but may be produced on a support such as a Teflon (registered trademark) sheet. As the catalyst fine particles, platinum fine particles having a diameter of 2 nm or more and 5 nm or less, or alloy fine particles of platinum and one or more kinds of noble metal elements are preferably used. As the noble metal element to be alloyed with platinum, it is preferable to select at least one kind from the group consisting of Au, Ag, Ru, Rh, Pd, Os, and Ir. However, if high activity can be obtained by alloying The composition is not particularly limited. Further, as the carrier, it is preferable to use carbon fine particles having a high conductivity with a BET specific surface area of 100 m 2 / g or more and 1000 m 2 / g or less.

前記高分子電解質の前駆体24としては、モノマー、オリゴマー、モノマーとオリゴマーの混合物であることが好ましく、該高分子電解質の前駆体を有機溶媒へ分散させた溶液を触媒体の多孔質触媒膜に含浸する。多孔質触媒膜中のナノメートルサイズの細孔深部に存在する触媒体と高分子電解質を接触させるため、低粘性の高分子電解質の前駆体溶液を用いることが望ましい。該高分子電解質の前駆体溶液の調製には、モノマーまたは低重合度のオリゴマーが好適に用いられる。高分子電解質の前駆体溶液の濃度は、多孔質触媒膜中のナノメートルサイズの細孔深部に浸透する程度の粘性のものであれば良く、濃度、オリゴマーの重合度共に制限されない。   The polymer electrolyte precursor 24 is preferably a monomer, an oligomer, or a mixture of a monomer and an oligomer. A solution in which the polymer electrolyte precursor is dispersed in an organic solvent is used as a porous catalyst membrane of the catalyst body. Impregnate. In order to bring the polymer electrolyte into contact with the catalyst body existing in the deep pores of the nanometer size in the porous catalyst membrane, it is desirable to use a precursor solution of a low-viscosity polymer electrolyte. For the preparation of the precursor solution of the polymer electrolyte, a monomer or an oligomer having a low polymerization degree is preferably used. The concentration of the precursor solution of the polymer electrolyte is not particularly limited as long as it is viscous enough to penetrate into the nanometer-sized pores in the porous catalyst membrane.

また、前記高分子電解質の前駆体は、分子内にプロトン解離性官能基を有することが好ましい。プロトン解離性官能基としては、−OH、−OSOH、−SOH、−COOH、−OPO(OH)より成る群より少なくとも1種類以上が選択されることが好ましいが、重合後に高いプロトン伝導性を示すものであれば特に制限されない。 The precursor of the polymer electrolyte preferably has a proton dissociable functional group in the molecule. The proton dissociative functional group is preferably at least one selected from the group consisting of —OH, —OSO 3 H, —SO 3 H, —COOH, —OPO (OH) 2, but is high after polymerization. There is no particular limitation as long as it exhibits proton conductivity.

(高分子電解質の前駆体を熱重合する第2の工程)
次に、図2(c)において、高分子電解質の前駆体24を重合して、多孔質触媒膜の連続して配置された触媒体22の表面を高分子電解質25で被覆する。
(Second step of thermally polymerizing the precursor of the polymer electrolyte)
Next, in FIG. 2 (c), the polymer electrolyte precursor 24 is polymerized, and the surface of the catalyst body 22 in which the porous catalyst membrane is continuously arranged is covered with the polymer electrolyte 25.

高分子電解質の前駆体24を触媒体22の表面のみで熱重合し、多孔質触媒膜21を構成する触媒体の表面を、高分子電解質の前駆体を重合して得られた重合体からなる高分子電解質25で被覆する。高分子電解質の前駆体を触媒体の表面のみで熱重合する方法としては、触媒体表面より発熱させる方法が好ましい。例えば、触媒体の多孔質触媒膜へ電流を通じることにより触媒体表面より発熱させることができるが、触媒体表面より発熱させ、高分子電解質の前駆体を熱重合することができる方法であればこれに制限されない。   The polymer electrolyte precursor 24 is thermally polymerized only on the surface of the catalyst body 22, and the surface of the catalyst body constituting the porous catalyst film 21 is made of a polymer obtained by polymerizing the precursor of the polymer electrolyte. Cover with polymer electrolyte 25. As a method for thermally polymerizing the precursor of the polymer electrolyte only on the surface of the catalyst body, a method of generating heat from the surface of the catalyst body is preferable. For example, the current can be generated from the surface of the catalyst body by passing an electric current through the porous catalyst membrane of the catalyst body, but any method can be used that can generate heat from the surface of the catalyst body and thermally polymerize the precursor of the polymer electrolyte. This is not a limitation.

(未反応の高分子電解質の前駆体を除去する第3の工程)
次に、図2(d)において、未反応の高分子電解質の前駆体26を除去し、触媒体22と高分子電解質25より成る多孔質の電極触媒層29を作製する。
(Third step of removing unreacted polymer electrolyte precursor)
Next, in FIG. 2D, the unreacted polymer electrolyte precursor 26 is removed, and a porous electrode catalyst layer 29 composed of the catalyst body 22 and the polymer electrolyte 25 is produced.

熱重合後の触媒体と、重合により生成した高分子電解質と、未反応の高分子電解質の前駆体との混合物膜より、未反応の高分子電解質の前駆体を除去すると、触媒体と高分子電解質より構成される細孔23を有する多孔質の電極触媒層29が形成される。未反応の高分子電解質の前駆体を除去する方法としては、高分子電解質の貧溶媒であり、該高分子電解質の前駆体の良溶媒である溶媒に該混合膜を浸漬する方法が好ましいが、未反応の高分子電解質の前駆体のみを除去できる方法であればこれに限るものではない。   When the unreacted polymer electrolyte precursor is removed from the mixture film of the catalyst body after thermal polymerization, the polymer electrolyte produced by polymerization, and the precursor of the unreacted polymer electrolyte, the catalyst body and the polymer are removed. A porous electrode catalyst layer 29 having pores 23 made of an electrolyte is formed. As a method for removing the unreacted polymer electrolyte precursor, a method of immersing the mixed film in a solvent that is a poor solvent for the polymer electrolyte and a good solvent for the polymer electrolyte precursor, The method is not limited to this as long as it can remove only the unreacted polymer electrolyte precursor.

<高分子電解質型燃料電池>
図3は本発明に係る高分子電解質型燃料電池の一実施態様を示した模式図である。
高分子電解質型燃料電池は、一対の前記電極触媒層をアノード側電極触媒層33、カソード側電極触媒層34として高分子電解質膜32を挟むように配置した膜/電極接合体(Membrane Electrode Assembly;MEA)31と、アノード側ガス拡散層35、カソード側ガス拡散層36、アノード側セパレータ37、カソード側セパレータ38より構成されるセルを基本単位とする。
<Polymer electrolyte fuel cell>
FIG. 3 is a schematic view showing one embodiment of a polymer electrolyte fuel cell according to the present invention.
The polymer electrolyte fuel cell has a membrane / electrode assembly (Membrane Electrode Assembly) in which a pair of the electrode catalyst layers are arranged as an anode-side electrode catalyst layer 33 and a cathode-side electrode catalyst layer 34 with a polymer electrolyte membrane 32 interposed therebetween. The basic unit is a cell composed of (MEA) 31, anode side gas diffusion layer 35, cathode side gas diffusion layer 36, anode side separator 37, and cathode side separator 38.

高分子電解質膜としては、Nafion(DuPont製)、Flemion(旭硝子製)、Aciplex(旭化成製)のような市販品を用いることが可能であるが、低気体透過性、高プロトン伝導性など燃料電池用の高分子電解質に必要な特性を備えているものであれば特に制限されない。燃料拡散層は、燃料気体を電極触媒層へ効率良く供給すると共に各電極の集電のために設置され、カーボンクロス、カーボンペーパー、発泡金属等の導電性、撥水性、多孔性を有するものが好ましい。セパレータは、燃料気体の流路、隣接するセル間の燃料気体の隔離するための仕切板、および電気的なコネクタとしての役割を担い、導電性、強度、耐食性を兼ね備えたカーボン製または金属製のセパレータが好適に用いられる。   As the polymer electrolyte membrane, commercially available products such as Nafion (manufactured by DuPont), Flemion (manufactured by Asahi Glass), and Aciplex (manufactured by Asahi Kasei) can be used. However, fuel cells such as low gas permeability and high proton conductivity can be used. The polymer electrolyte is not particularly limited as long as it has the necessary characteristics. The fuel diffusion layer is installed to efficiently supply the fuel gas to the electrode catalyst layer and collect current of each electrode, and has conductivity, water repellency, porosity such as carbon cloth, carbon paper, foam metal, etc. preferable. The separator serves as a fuel gas flow path, a partition plate for separating the fuel gas between adjacent cells, and an electrical connector, and is made of carbon or metal having electrical conductivity, strength, and corrosion resistance. A separator is preferably used.

以下、実施例により、本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
実施例1
本実施例は、多孔質触媒膜を形成する触媒体として白金微粒子、高分子電解質としてポリスチレンスルホン酸を用いて、高分子電解質型燃料電池用電極触媒層を作製する例である。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
Example 1
In this example, an electrode catalyst layer for a polymer electrolyte fuel cell is prepared using platinum fine particles as a catalyst body for forming a porous catalyst membrane and polystyrene sulfonic acid as a polymer electrolyte.

溶媒として水、モノマーとしてスチレンスルホン酸ナトリウム、架橋剤としてジビニルベンゼン、重合開始剤として過硫酸アンモニウムを用い、高分子電解質の前駆体溶液を調整する。前記前駆体溶液の組成は、水45ml、スチレンスルホン酸ナトリウム10g、ジビニルベンゼン0.1g、過硫酸アンモニウム0.1gとする。白金微粒子より構成されている多孔質触媒膜に、前記前駆体溶液を充分に含浸させた後、乾燥する。このように作製された多孔質触媒膜の両端に電極を接続し、白金微粒子の表面温度が100℃となるように電流を通じる。前記温度で所定時間保持した後、1M硫酸中に浸漬することで、未反応の前駆体の除去およびナトリウムイオンの溶離を行って電極触媒層を得る。   A polymer electrolyte precursor solution is prepared using water as a solvent, sodium styrenesulfonate as a monomer, divinylbenzene as a crosslinking agent, and ammonium persulfate as a polymerization initiator. The composition of the precursor solution is 45 ml of water, 10 g of sodium styrenesulfonate, 0.1 g of divinylbenzene, and 0.1 g of ammonium persulfate. A porous catalyst film made of platinum fine particles is sufficiently impregnated with the precursor solution, and then dried. Electrodes are connected to both ends of the thus produced porous catalyst membrane, and a current is passed so that the surface temperature of the platinum fine particles becomes 100 ° C. After maintaining at the temperature for a predetermined time, the electrode catalyst layer is obtained by immersing in 1M sulfuric acid to remove unreacted precursor and elution of sodium ions.

実施例2
本実施例は、多孔質触媒膜を形成する触媒体として白金/パラジウム合金微粒子を担持したカーボン粒子、高分子電解質としてポリアクリル酸を用いて高分子電解質型燃料電池用電極触媒層を作製する例である。
Example 2
In this example, an electrode catalyst layer for a polymer electrolyte fuel cell is produced using carbon particles carrying platinum / palladium alloy fine particles as a catalyst body for forming a porous catalyst membrane and polyacrylic acid as a polymer electrolyte. It is.

溶媒として水、モノマーとしてアクリル酸ナトリウム、架橋剤としてポリエチレングリコールジアクリレート、重合開始剤として過硫酸アンモニウムを用い、高分子電解質の前駆体溶液を調整する。前記前駆体溶液の組成は、水45ml、アクリル酸ナトリウム5g、ポリエチレングリコールジアクリレート0.05g、過硫酸アンモニウム0.1gとする。架橋剤としてのポリエチレングリコールジアクリレートは数平均分子量258のものを用いた。白金/パラジウム合金微粒子を担持したカーボン粒子より構成されている多孔質触媒膜に、前記前駆体溶液を充分に含浸させた後、乾燥する。このように作製された多孔質触媒膜の両端に電極を接続し、白金/パラジウム微粒子の表面温度が80℃となるように電流を通じる。前記温度で所定時間保持した後、1M硫酸中に浸漬することで、未反応の前駆体の除去およびナトリウムイオンの溶離を行って電極触媒層を得る。   A polymer electrolyte precursor solution is prepared using water as a solvent, sodium acrylate as a monomer, polyethylene glycol diacrylate as a crosslinking agent, and ammonium persulfate as a polymerization initiator. The composition of the precursor solution is 45 ml of water, 5 g of sodium acrylate, 0.05 g of polyethylene glycol diacrylate, and 0.1 g of ammonium persulfate. A polyethylene glycol diacrylate having a number average molecular weight of 258 was used as a crosslinking agent. A porous catalyst film composed of carbon particles carrying platinum / palladium alloy fine particles is sufficiently impregnated with the precursor solution and then dried. Electrodes are connected to both ends of the thus produced porous catalyst membrane, and an electric current is passed so that the surface temperature of the platinum / palladium fine particles becomes 80 ° C. After maintaining at the temperature for a predetermined time, the electrode catalyst layer is obtained by immersing in 1M sulfuric acid to remove unreacted precursor and elution of sodium ions.

本発明に係る電極触媒層は、携帯電話のようなモバイル機器用の小型の高分子電解質型燃料電池へ利用可能である。   The electrode catalyst layer according to the present invention can be used for small polymer electrolyte fuel cells for mobile devices such as mobile phones.

電極触媒層の一実施態様を示す概略図である。It is the schematic which shows one embodiment of an electrode catalyst layer. 電極触媒層の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of an electrode catalyst layer. 高分子電解質型燃料電池の一実施態様を示した模式図である。1 is a schematic view showing one embodiment of a polymer electrolyte fuel cell. 従来の高分子電解質型燃料電池の電極触媒層を示す断面図である。It is sectional drawing which shows the electrode catalyst layer of the conventional polymer electrolyte fuel cell.

符号の説明Explanation of symbols

11 触媒体
12 高分子電解質
13 プロトン伝導径路の分断部分
14 電子伝導径路の分断部分
21 多孔質触媒膜
22 触媒体
23 細孔
24 高分子電解質の前駆体
25 高分子電解質
26 未反応の高分子電解質の前駆体
29 電極触媒層
31 膜/電極複合体
32 高分子電解質
33 アノード側電極触媒層
34 カソード側電極触媒層
35 アノード側ガス拡散層
36 カソード側ガス拡散層
37 アノード側セパレータ
38 カソード側セパレータ
DESCRIPTION OF SYMBOLS 11 Catalyst body 12 Polymer electrolyte 13 Split part of proton conduction path 14 Split part of electron conduction path 21 Porous catalyst membrane 22 Catalyst body 23 Pore 24 Precursor of polymer electrolyte 25 Polymer electrolyte 26 Unreacted polymer electrolyte 29 Electrode catalyst layer 31 Membrane / electrode composite 32 Polymer electrolyte 33 Anode side electrode catalyst layer 34 Cathode side electrode catalyst layer 35 Anode side gas diffusion layer 36 Cathode side gas diffusion layer 37 Anode side separator 38 Cathode side separator

Claims (7)

少なくとも、触媒体が連続して配置され、その間隙に細孔を有する多孔質触媒膜と、高分子電解質とを有する高分子電解質型燃料電池用電極触媒層であって、前記高分子電解質が多孔質触媒膜の連続して配置された触媒体の表面を被覆して配置されていることを特徴とする高分子電解質型燃料電池用電極触媒層。   An electrode catalyst layer for a polymer electrolyte fuel cell having at least a catalyst body arranged continuously and having a porous catalyst membrane having pores in the gap and a polymer electrolyte, wherein the polymer electrolyte is porous An electrode catalyst layer for a polymer electrolyte fuel cell, characterized in that it is disposed so as to cover the surface of a catalyst body in which a porous catalyst membrane is continuously arranged. 前記触媒体は、触媒微粒子または触媒微粒子を担持したカーボン微粒子であることを特徴とする請求項1記載の高分子電解質型燃料電池用電極触媒層。   2. The electrode catalyst layer for a polymer electrolyte fuel cell according to claim 1, wherein the catalyst body is catalyst fine particles or carbon fine particles supporting catalyst fine particles. 前記高分子電解質は、高分子電解質の前駆体を重合して得られた重合体からなることを特徴とする請求項1または2記載の高分子電解質型燃料電池用電極触媒層。   3. The electrode catalyst layer for a polymer electrolyte fuel cell according to claim 1, wherein the polymer electrolyte is made of a polymer obtained by polymerizing a precursor of a polymer electrolyte. 高分子電解質型燃料電池用電極触媒層の製造方法において、触媒体が連続して配置され、その間隙に細孔を有する多孔質触媒膜に高分子電解質の前駆体を含浸する工程と、該高分子電解質の前駆体を重合して、多孔質触媒膜の連続して配置された触媒体の表面を高分子電解質で被覆する工程と、未反応の高分子電解質の前駆体を除去する工程を含むことを特徴とする高分子電解質型燃料電池用電極触媒層の製造方法。   In the method for producing an electrode catalyst layer for a polymer electrolyte fuel cell, a step of impregnating a polymer catalyst precursor into a porous catalyst membrane in which catalyst bodies are continuously arranged and pores are provided in the gaps; A step of polymerizing a precursor of the molecular electrolyte to coat the surface of the continuously arranged catalyst body of the porous catalyst membrane with the polymer electrolyte, and a step of removing the precursor of the unreacted polymer electrolyte A method for producing an electrode catalyst layer for a polymer electrolyte fuel cell. 前記高分子電解質の前駆体は、分子内にプロトン解離性官能基を有するモノマー、オリゴマーまたはモノマーとオリゴマーの混合物であることを特徴とする請求項4記載の高分子電解質型燃料電池用電極触媒層の製造方法。   5. The electrode catalyst layer for a polymer electrolyte fuel cell according to claim 4, wherein the precursor of the polymer electrolyte is a monomer, an oligomer or a mixture of a monomer and an oligomer having a proton dissociable functional group in the molecule. Manufacturing method. 前記高分子電解質の前駆体の重合は、触媒体表面を加熱することにより行うことを特徴とする請求項4または5記載の高分子電解質型燃料電池用電極触媒層の製造方法。   6. The method for producing an electrode catalyst layer for a polymer electrolyte fuel cell according to claim 4, wherein the polymerization of the precursor of the polymer electrolyte is performed by heating the surface of the catalyst body. 一対の電極触媒層と、該電極触媒層の間に配置された高分子電解質膜を有する高分子電解質型燃料電池であって、前記電極触媒層が請求項1乃至3のいずれかに記載の電極触媒層からなることを特徴とする高分子電解質型燃料電池。   4. A polymer electrolyte fuel cell comprising a pair of electrode catalyst layers and a polymer electrolyte membrane disposed between the electrode catalyst layers, wherein the electrode catalyst layer is an electrode according to any one of claims 1 to 3. A polymer electrolyte fuel cell comprising a catalyst layer.
JP2006032897A 2006-02-09 2006-02-09 Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell Pending JP2007213988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032897A JP2007213988A (en) 2006-02-09 2006-02-09 Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032897A JP2007213988A (en) 2006-02-09 2006-02-09 Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2007213988A true JP2007213988A (en) 2007-08-23

Family

ID=38492223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032897A Pending JP2007213988A (en) 2006-02-09 2006-02-09 Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2007213988A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110631A1 (en) * 2008-03-04 2009-09-11 国立大学法人山梨大学 Proton transport material and raw materials to manufacture the same; ion exchanger, membrane electrode assembly and fuel cell that use the proton transport material
WO2009125795A1 (en) * 2008-04-09 2009-10-15 旭硝子株式会社 Catalyst layer material for a solid polymer fuel cell
WO2010084753A1 (en) * 2009-01-23 2010-07-29 株式会社 東芝 Fuel cell
JP4531121B1 (en) * 2009-04-28 2010-08-25 パナソニック株式会社 ELECTRODE FOR FUEL CELL, MANUFACTURING METHOD THEREOF, AND FUEL CELL USING THE SAME
WO2010119492A1 (en) * 2009-04-14 2010-10-21 パナソニック株式会社 Method for producing electrode for fuel cells
WO2010125618A1 (en) * 2009-04-28 2010-11-04 パナソニック株式会社 Electrode for fuel cell, method for manufacturing the electrode, and fuel cell using the electrode

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110631A1 (en) * 2008-03-04 2009-09-11 国立大学法人山梨大学 Proton transport material and raw materials to manufacture the same; ion exchanger, membrane electrode assembly and fuel cell that use the proton transport material
JP2009211942A (en) * 2008-03-04 2009-09-17 Univ Of Yamanashi Proton transport material, its manufacturing material, ion exchanger using it, membrane-electrode assembly, and fuel cell
KR20100128289A (en) * 2008-03-04 2010-12-07 고쿠리츠다이가쿠호징 야마나시다이가쿠 Proton transport material and raw materials to manufacture the same; ion exchanger, membrane electrode assembly and fuel cell that use the proton transport material
US8338054B2 (en) 2008-03-04 2012-12-25 University Of Yamanashi Proton transporting material, starting material thereof, ion exchange membrane, membrane electrolyte assembly, and fuel cell using the same
KR101709794B1 (en) 2008-03-04 2017-02-23 고쿠리츠다이가쿠호징 야마나시다이가쿠 Proton transport material and raw materials to manufacture the same ion exchanger membrane electrode assembly and fuel cell that use the proton transport material
WO2009125795A1 (en) * 2008-04-09 2009-10-15 旭硝子株式会社 Catalyst layer material for a solid polymer fuel cell
JP5549585B2 (en) * 2008-04-09 2014-07-16 旭硝子株式会社 Catalyst layer material for polymer electrolyte fuel cells
WO2010084753A1 (en) * 2009-01-23 2010-07-29 株式会社 東芝 Fuel cell
WO2010119492A1 (en) * 2009-04-14 2010-10-21 パナソニック株式会社 Method for producing electrode for fuel cells
JP4531121B1 (en) * 2009-04-28 2010-08-25 パナソニック株式会社 ELECTRODE FOR FUEL CELL, MANUFACTURING METHOD THEREOF, AND FUEL CELL USING THE SAME
WO2010125618A1 (en) * 2009-04-28 2010-11-04 パナソニック株式会社 Electrode for fuel cell, method for manufacturing the electrode, and fuel cell using the electrode
US8057960B2 (en) 2009-04-28 2011-11-15 Panasonic Corporation Electrode for fuel cells and method for manufacturing the same, and fuel cell using the same

Similar Documents

Publication Publication Date Title
JP4550798B2 (en) Solid polymer electrolyte fuel cell and method for producing the same
JPWO2004075322A1 (en) ELECTRODE FOR FUEL CELL, FUEL CELL, AND METHOD FOR PRODUCING THEM
JP6328114B2 (en) Method for preparing a catalyst material
KR20220057565A (en) membrane electrode assembly
TW201222960A (en) Assembly for reversible fuel cell
JP4266624B2 (en) Fuel cell electrode and fuel cell
CN1853296A (en) Membrane-electrode unit for direct methanol fuel cells and method for the production thereof
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP5126812B2 (en) Direct oxidation fuel cell
JP2004079420A (en) Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell
JPH07326363A (en) Ion conductivity imparting electrode and jointing material for electrode and electrolyte and cell using the ion conductivity imparting electrode
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP4428774B2 (en) Manufacturing method of fuel cell electrode
KR20080105255A (en) Method for manufacturing 5-layer mea
JP4165154B2 (en) Method and apparatus for manufacturing fuel cell electrode
JP2005135787A (en) Electrode for fuel cell
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
Scott Membrane electrode assemblies for polymer electrolyte membrane fuel cells
JP2003178770A (en) Film-electrode junction, its manufacturing method, and polymer electrolyte type or direct methanol type fuel cell using the same
US12009525B2 (en) Coaxial nanowire electrode
JP2007234473A (en) Catalyst electrode layer for fuel cell and its process of manufacture
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2006079917A (en) Mea for fuel cell, and fuel cell using this
JP4062133B2 (en) Method for producing gas diffusion layer of membrane-electrode assembly, membrane-electrode assembly, and fuel cell
JP2006286478A (en) Membrane electrode assembly