JP2004079420A - Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell - Google Patents

Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell Download PDF

Info

Publication number
JP2004079420A
JP2004079420A JP2002240716A JP2002240716A JP2004079420A JP 2004079420 A JP2004079420 A JP 2004079420A JP 2002240716 A JP2002240716 A JP 2002240716A JP 2002240716 A JP2002240716 A JP 2002240716A JP 2004079420 A JP2004079420 A JP 2004079420A
Authority
JP
Japan
Prior art keywords
electrode
fuel
catalyst
conductive carbon
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002240716A
Other languages
Japanese (ja)
Inventor
Motokazu Kobayashi
小林 本和
Masayuki Yamada
山田 雅之
Soi Cho
張 祖依
Shinji Eritate
襟立 信二
Teigo Sakakibara
榊原 悌互
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002240716A priority Critical patent/JP2004079420A/en
Priority to TW092121501A priority patent/TWI226140B/en
Priority to EP03792667A priority patent/EP1540753A2/en
Priority to PCT/JP2003/010216 priority patent/WO2004019435A2/en
Priority to AU2003253438A priority patent/AU2003253438A1/en
Publication of JP2004079420A publication Critical patent/JP2004079420A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell using an electrode catalyst using conductive carbon capable of efficiently conducting hydrogen ions and electrons generated on the catalyst. <P>SOLUTION: This electrode catalyst has an organic group capable of dissociating hydrogen ions to the conductive carbon with at least platinum catalyst supported. This fuel cell has: an electrode catalyst layer on the side of a fuel electrode; an electrode catalyst layer on the side of an oxidizer electrode; and a polymer electrolyte film formed between the electrode catalyst layers. At least one of the electrode catalyst layer on the fuel electrode side and the electrode catalyst layer on the oxidizer electrode side contains the above electrode catalyst. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池に用いる導電性炭素、これを用いる電極触媒、燃料電池セルおよび固体高分子型燃料電池に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、燃料極(アノード)と酸化剤極(カソード)とが固体高分子型電解質膜を挟持する層構造を有する。一般的に、この燃料極と酸化剤極は、白金などの貴金属や有機金属錯体を担持した導電性炭素を含む触媒と、高分子電解質と、バインダーとの混合体によって構成される。燃料極に供給された燃料は、電極中の細孔を通過して触媒に達し、触媒により電子を放出して水素イオンとなる。水素イオンは両電極間にある高分子電解質膜を通過して酸化剤極に達し、これと酸化剤極に供給された酸素と外部回路より流れ込む電子とが反応して水が生成される。燃料より放出された電子は、電極中の触媒や触媒が担持されている導電性炭素を伝導して外部回路へ導き出され、外部回路より酸化剤極へ流れ込む。この結果、外部回路では燃料極から酸化剤極へ向かって電子が流れ、こうした仕組みによって燃料電池から電力が取り出される。
【0003】
例えば、燃料として水素を用いると燃料極では以下の反応が起こる。
【0004】
【化1】

Figure 2004079420
また酸化剤極では以下の反応が起こる。
【0005】
【化2】
Figure 2004079420
【0006】
白金等の触媒の担持体である導電性炭素は、上記反応により生成される電子を伝導させる伝導体として機能し、混合体に含まれる高分子電解質は水素イオンを伝導させる伝導体として機能する。故に電極と電極間の高分子電解質膜との界面では、混合体に含まれる導電性炭素と高分子電解質とがそれぞれネットワークを形成して、電子と水素イオンのそれぞれの伝導がスムーズに行われる必要がある。
【0007】
従来、電子あるいは水素イオンをスムーズに伝導させることによって燃料電池の特性を向上させるために、導電性炭素に担持する触媒の形態やその分散状態の改良が行われてきた。例えば特開昭63−319050号公報では貴金属粒子を高分散の状態で炭素微粉末に担持するために、担体である炭素微粉末三次元構造を破壊し、貴金属粒子の吸着サイトを増加させることが開示されている。
【0008】
また、特開昭63−97232号公報では2〜4nmの貴金属のコロイド粒子を調製し、そのコロイド粒子を市販の50〜300m /gの比表面積を持つ炭素粉末状に付着させることが開示されている。また、特開平6−19671号公報には触媒粒子を触媒担体により高分散に担持させるということで炭素微粉末の細孔直径と比表面積を条件付けている。
【0009】
【発明が解決しようとする課題】
混合体に含まれる高分子電解質と電極間の高分子電解質膜は、水素イオンの伝導体であるため、上記の反応式(1)に従って発生した水素イオンを燃料極側から酸化剤極側へ伝導させる。また同時に発生した電子は、触媒上や触媒が担持されている導電性炭素から隣接する導電性炭素へと伝導して集電体に集められ、外部回路へと流れていく。したがって、燃料電池から電力を取り出すためには、触媒に燃料が接することによって生じる水素イオンと電子とを取り出すことが必要であるため、触媒は、高分子電解質と導電性炭素の両方に接触している必要がある。接触していない触媒は上記の反応に寄与しないことになる。
【0010】
上述した公報に記載されている手法では、高分子電解質が存在できないような微細孔をもつ炭素粉末を触媒の担体としてに用いた場合には、触媒が電解質に接触することが困難となるため高価な貴金属触媒を有効に利用することができない。また、触媒の周囲に高分子電解質が厚く存在する場合には、燃料が触媒まで到達すること困難となるため、反応に寄与しない触媒が存在してしまうこととなる。
【0011】
本発明は、これらの課題を個々にあるいはまとめて解決するものであり、触媒上で発生する水素イオンと電子とを分離して効率よく伝導することができる導電性炭素、これを用いる電極触媒および高い放電特性を示す固体高分子型燃料電池を提供することを目的とする。
【0012】
【課題を解決するための手段】
即ち、本発明の第一の発明は、触媒としての白金を少なくとも担持しており、かつ水素イオン解離が可能な有機基を有する導電性炭素である。
本発明の第二の発明は、上記の導電性炭素を有する燃料電池用の電極触媒である。
【0013】
本発明の第三の発明は、燃料極側の電極触媒層と、酸化剤極側の電極触媒層と、これらの電極触媒層の間に設けられた高分子電解質膜とを有する燃料電池セルであって、前記燃料極側の電極触媒層および酸化剤極側の電極触媒層の少なくとも一方が上記の電極触媒を含有することを特徴とする燃料電池セルである。
【0014】
本発明の第四の発明は、上記の燃料電池セルと、前記燃料電池セルの燃料極側に燃料を供給する手段と、酸化剤極側に酸化剤を供給する手段とを備えることを特徴とする燃料電池である。
【0015】
【発明の実施の形態】
本発明は、上記の目的を達成するために、少なくとも白金触媒が担持された導電性炭素に水素イオン解離が可能な有機基を有している電極触媒にある。
また本発明は、白金触媒及びルテニウム触媒が担持された導電性炭素に水素イオン解離が可能な有機基を有している電極触媒にある。
また前記水素イオン解離が可能な有機基がスルホン酸基、スルフィン酸基、カルボン酸基、ホスホン酸基、ホスフィン酸基、リン酸基および水酸基のうち少なくとも1つである前記電極触媒にある。
【0016】
また固体高分子型電解質膜を挟んで両主面に配設した電極触媒層と、この電極触媒層の両外側に配設した多孔質の拡散層と、一方の拡散層に燃料を、他方の拡散層に酸化剤を供給するための手段を有する固体高分子型燃料電池において、少なくとも前記電極触媒層の燃料が供給される面は前記の電極触媒が含まれていることを特徴とする固体高分子型燃料電池にある。
【0017】
このように、触媒を担持する導電性炭素を直接修飾することによって、触媒上で発生した電子は導電性炭素をパスとして伝導し、水素イオンは水素イオンが解離可能な有機基をパスとして伝導することができる。
【0018】
したがって、水素イオンが伝導するためのパスと、電子が伝導するためのパスとを確保することができるため、触媒上で発生する水素イオンと電子とを効率よく分離することができる。その結果、固体高分子型燃料電池の放電特性を向上させることができる。
【0019】
以下図面を用いて本発明を詳細に説明する。
本発明の燃料電池の一例の部分概略図を図1に示す。
図1において、本発明の燃料電池には、高分子電解質膜1の両面に電極触媒層2a、2bが設けられ、その外側に拡散層3a、3bを設け、さらにその外側に集電体としての電極4a(燃料極)、4b(酸化剤極)が設けられる。
【0020】
高分子電解質膜1は、Du Pont社製のナフィオン膜に代表されるパーフルオロスルホン酸高分子膜、ヘキスト社製の炭化水素系膜などが好ましく用いられるが、これらに限定されるものではなく、水素イオン導電性を有する官能基例えばスルホン酸基、スルフィン酸基、カルボン酸基、ホスホン酸基、ホスフィン酸基、リン酸基および水酸基をもつ高分子膜を広く用いることができる。
【0021】
またゾルゲル法で作成した無機電解質と高分子膜のハイブリッド電解質膜なども用いることができる。
燃料のクロスオーバーを防止するために、電解質膜表面にコーティングを施しても良い。
【0022】
電極触媒層2a,2bの一方または両方には、導電性炭素を含む電極触媒が含有されている。電極触媒の概略模式図を図2に示す。ここで5は導電性炭素、6は導電性炭素表面に担持された触媒、7は導電性炭素に直接結合した水素イオン解離が可能な有機基である。
【0023】
例えば、燃料極側の電極触媒層2aは、少なくとも白金触媒6が担持された導電性炭素5であって水素イオン解離が可能な有機基7を有している導電性炭素5を含む電極触媒によって形成される。
【0024】
白金触媒は、導電性炭素の表面に担持されていることが好ましい。担持された触媒の粒子径は小さいことが好ましく、具体的には、平均粒子径が0.5nm〜20nm、さらには1nm〜10nmの範囲が好ましい。0.5nm未満の場合には、触媒粒子単体で活性が高すぎ、取り扱いが困難となる。また20nmを越えると、触媒の表面積が減少して反応部位が減少するために、活性が低下するおそれがある。
【0025】
白金触媒の代わりに、ロジウム、ルテニウム、イリジウム、パラジウム、およびオスミウムなどの白金族金属を用いたり、白金とそれら金属の合金を用いても構わない。特に燃料としてメタノールを用いる場合、燃料極側の電極触媒には、白金とルテニウムの合金を用いることが好ましい。
【0026】
また、導電性炭素としては、カーボンブラック、カーボンファイバー、グラファイト、カーボンナノチューブなどから選ぶことができる。
【0027】
また、導電性炭素の平均粒子径が5nm〜1000nmの範囲であることが好ましく、更には10nm〜100nmの範囲であることが好ましい。また前述した触媒を担持させるため、BET比表面積はある程度大きい方が良く、50m /g〜3000m /g、更には100m /g〜2000m /gが好ましい。
【0028】
導電性炭素表面への触媒の担持方法は、公知の方法を広く用いることができる。例えば白金および他の金属の溶液に導電性炭素を含浸した後、これら貴金属イオンを還元し、導電性炭素表面に担持させる方法などが知られており、特開平2−111440号公報、特開2000−003712号公報などに開示されている。また担持させたい貴金属をターゲットとし導電性炭素にスパッタなどの真空成膜方法により担持させても構わない。
【0029】
導電性炭素の表面に担持される触媒の量は、電極触媒全体に対して5〜80重量%、好ましくは10〜70重量%の範囲が望ましい。5重量%未満では触媒性能が十分発現しない恐れがあり、80重量%をこえると触媒の作製コストが高くなるばかりか、引火しやすくなるなど製造工程上の取扱が極めて難しくなるので好ましくない。
【0030】
本発明の導電性炭素には、水素イオン解離が可能な有機基が直接結合もしくは物理吸着している。水素イオン解離が可能な有機基としては、スルホン酸基、スルフィン酸基、カルボン酸基、ホスホン酸基、ホスフィン酸基、リン酸基、水酸基などがあるが、特にスルホン酸が特性上、製造上好ましい。例えば導電性炭素にスルホン酸を直接結合させるのであれば、発煙硫酸などで加熱処理をすることで容易に得ることができる。また硫酸で導電性炭素を処理することで、スルホン酸基を物理吸着させた導電性炭素を得ることができる。導電性炭素に有機基を直接結合させるか物理吸着させるかは、導電性炭素の種類、有機基の種類によって適宜選択して構わない。しかし直接結合させた方が、耐久性の面から好ましい。またこれらの水素イオン解離が可能な有機基の中から複数の有機基を用いても構わない。
【0031】
結合させる水素イオン解離が可能な有機基の量は、導電性炭素に対して0.0001mmol/g〜100mmol/g、さらには0.001mmol/g〜10mmol/gの範囲が好ましい。0.0001mmol/g未満では有機基のプロトン伝導性が発現されず、100mmol/gを越えると導電性が阻害されるため好ましくない。
【0032】
導電性炭素に水素イオン解離が可能な有機基を直接結合もしくは物理吸着させる工程および触媒を担持させる工程の順序は特に問わない。
【0033】
本発明の電極触媒は、導電性炭素に水素イオン解離が可能な有機基が直接結合もしくは物理吸着することにより、燃料極側において触媒上で発生した電子は導電性炭素をパスとして電極へ輸送され、また発生した水素イオンは、水素イオン解離が可能な有機基をパスとして電解質へそれぞれ効率よく輸送することが可能である。
【0034】
酸化剤極側でも本発明の電極触媒を用いてもよい。電極間の電解質膜より受け取った水素イオンと外部回路より入ってくる電子を効率よく輸送することが可能となり酸化剤である酸素との反応性も向上する。
【0035】
特に本発明では、導電性炭素に水素イオン解離が可能な有機基を直接結合もしくは物理吸着させることによって、燃料や酸素の通過に起因する有機基の局在化が発生せず、また表面近傍の反応場に導電性炭素、水素イオン解離が可能な有機基、触媒が直接接することで反応効率の向上が見込まれる。
【0036】
このようにして作製した電極触媒を、単独で高分子電解質膜に接して設ける。または電極触媒を、バインダー、高分子電解質、撥水剤、導電性炭素、溶剤などと混合して高分子電解質膜に接して設ける。燃料電池が拡散層を有する場合には、拡散層にも接して設ける。
【0037】
拡散層3a、3bは、燃料である水素、改質水素、メタノール、ジメチルエーテルおよび酸化剤である空気や酸素を効率よく均一に電極触媒層に導入し、かつ電極に接触して電子を受け渡しするものである。一般的には、導電性の多孔質膜が好ましく、カーボンペーパー、カーボンクロス、カーボンとポリテトラフルオロエチレンとの複合シートなどを用られる。
この拡散層の表面および内部をフッソ系塗料でコーティングし撥水化処理をして用いても構わない。
【0038】
電極4a、4bは各拡散層に燃料、酸化剤を効率よく供給できかつ拡散層と電子の授受が行えるものであれば従来から用いられているものを特に限定することなく用いることができる。
【0039】
本発明における燃料電池は、高分子電解質、電極触媒層、拡散層、電極を図1のように積層して作成するが、その形状は任意であり作製方法についても特に限定はなく一般的な方法を用いることができる。
【0040】
【実施例】
以下、実施例により本発明をさらに詳しく説明する。本発明は以下の実施例に限定されるものではない。
【0041】
(電極触媒の製造例)
実施例1〜3
導電性炭素として、バルカンXC72−R(キャボット社製)を用い、その表面に、塩化白金酸水溶液および塩化ルテニウム水溶液を原料として用いて、白金化合物およびルテニウム化合物を担持、還元させることにより白金(30重量%)−ルテニウム(15重量%)の合金を担持させた。
【0042】
この触媒を担持させた導電性炭素を乾燥後、発煙硫酸で加熱処理しさらにイオン交換水で洗浄し、触媒を担持した導電性炭素にスルホン酸を直接結合させた。その後、よく乾燥させて本実施例の電極触媒としての導電性炭素を得た。発煙硫酸で処理する際に、その処理時間を種々変更することによって、導電性炭素に結合させるスルホン酸の量を変えた。
元素分析によりスルホン酸基の量を定量し、以下の表1に示す3種類の電極触媒を得た。
【0043】
【表1】
Figure 2004079420
【0044】
実施例4
導電性炭素として、ケッチェンブラックEC(ライオン社製)を用い、クロロアルキルホスホン酸で処理し導電性炭素の表面にホスホン酸基を直接結合させた。さらにその表面に、実施例1〜3と同様にして実施例1〜3と同様にして、白金(30重量%)−ルテニウム(15重量%)の合金を担持させた。その後よく乾燥させて本実施例の電極触媒としての導電性炭素を得た。
【0045】
元素分析によりホスホン酸基の量を定量し、以下の表2に示す電極触媒を得た。
【0046】
【表2】
Figure 2004079420
【0047】
実施例5〜7
導電性炭素としてバルカンXC72−R(キャボット社製)を用い、その表面に、塩化白金酸水溶液を原料として用いて、白金化合物を担持、還元させることにより白金(50重量%)を担持させた。
この触媒を担持させた導電性カーボンを乾燥後、発煙硫酸で処理しさらにイオン交換水で洗浄し、触媒が担持した導電性炭素にスルホン酸を直接結合させた。その後よく乾燥させて本実施例の電極触媒としての導電性炭素を得た。発煙硫酸で処理する際に、その処理時間を種々変更して、結合させるスルホン酸の量を変えた。
【0048】
元素分析によりスルホン酸基の量を定量し、以下の表3に示す3種類の電極触媒を得た。
【0049】
【表3】
Figure 2004079420
【0050】
比較例1
実施例1で用いた白金(30重量%)−ルテニウム(15重量%)を担持させたバルカンXC72−Rにスルホン酸基を付けないでそのまま用いた。
【0051】
比較例2
実施例5で用いた白金(50重量%)を担持させたバルカンXC72−Rにスルホン酸基を付けないでそのまま用いた。
【0052】
評価
実施例1〜7、比較例1〜2で作製した触媒を担持し、有機基を有する導電性炭素を各々4gを、水10g、ナフィオン5%溶液(和光純薬社製)8gとともに混合しペースト状にした。
このペーストを、撥水処理した厚さ0.1mmのカーボンペーパー(TGP−H−30、東レ(株)製)に塗布し、室温で乾燥した後、50℃で乾燥させた。この際の白金または白金−ルテニウム合金の塗布量は各々約4mg/cm であった。
【0053】
燃料極側、酸化剤極側として以下の表4に示す組み合わせで用意し、電解質膜としてナフィオン112(デュポン社製)を挟持した。さらにホットプレスを用いて100℃、4.9MPa(50kgf/cm )でプレス処理し、MEA(Membrane Electrode Assembly)とした。
【0054】
【表4】
Figure 2004079420
【0055】
上記で作製したMEAを、燃料電池の単セルに組み込みそれぞれセルを作製した。セル面積は25cm である。
【0056】
それぞれのセルについて、燃料極側には、5wt%のメタノール水溶液を10ml/minで供給し、酸化剤極側には常圧の空気を200ml/minで供給し、セル全体を75℃にて保温しながら発電をおこなった。
【0057】
評価例1〜7のセルの電流と電圧の関係を図3に示す。評価例1〜6の本発明の燃料電池セルにおいては、0.5A/cm まで安定して出力が取り出せるが、評価例7においては0.2A/cm 以下しか電流がとり出せないことがわかる。これは、導電性炭素に結合されたスルホン酸基またはホスホン酸基が水素イオンの有効なパスになっているためであることがわかる。
なお、燃料として、水素、改質水素、メタノール、ジメチルエーテルなどを用いても同様の結果が得られる。
【0058】
【発明の効果】
以上説明した様に、本発明によれば、水素イオン解離が可能な有機基と、白金触媒を担持した導電性炭素を有することから、触媒上で生じる水素イオンおよび電子とを効率的に伝導させることができる。
このような導電性炭素を電極触媒として用いることにより、高い放電特性を示す固体高分子型燃料電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の燃料電池の部分概略図である。
【図2】本発明の電極触媒の構造を表す概略図である。
【図3】本発明の評価例1〜7における燃料電池の電流と電圧の関係を表すグラフである。
【符号の説明】
1 高分子電解質膜
2a、2b 電極触媒層
3a、3b 拡散層
4a、4b 電極
5 導電性炭素
6 触媒
7 水素イオン解離が可能な有機基[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to conductive carbon used for a fuel cell, an electrode catalyst using the same, a fuel cell, and a polymer electrolyte fuel cell.
[0002]
[Prior art]
The polymer electrolyte fuel cell has a layer structure in which a fuel electrode (anode) and an oxidant electrode (cathode) sandwich a polymer electrolyte membrane. In general, the fuel electrode and the oxidizer electrode are composed of a mixture of a catalyst containing conductive carbon supporting a noble metal such as platinum or an organometallic complex, a polymer electrolyte, and a binder. The fuel supplied to the fuel electrode passes through the pores in the electrode, reaches the catalyst, and emits electrons by the catalyst to become hydrogen ions. Hydrogen ions pass through the polymer electrolyte membrane between the two electrodes and reach the oxidant electrode, where oxygen supplied to the oxidant electrode reacts with electrons flowing from an external circuit to generate water. The electrons released from the fuel are conducted to the external circuit through the catalyst in the electrode and the conductive carbon carrying the catalyst, and flow out to the oxidant electrode from the external circuit. As a result, in the external circuit, electrons flow from the fuel electrode toward the oxidizer electrode, and power is extracted from the fuel cell by such a mechanism.
[0003]
For example, when hydrogen is used as a fuel, the following reaction occurs at the fuel electrode.
[0004]
Embedded image
Figure 2004079420
The following reaction occurs at the oxidant electrode.
[0005]
Embedded image
Figure 2004079420
[0006]
Conductive carbon, which is a support for a catalyst such as platinum, functions as a conductor that conducts electrons generated by the above reaction, and the polymer electrolyte contained in the mixture functions as a conductor that conducts hydrogen ions. Therefore, at the interface between the electrodes and the polymer electrolyte membrane between the electrodes, the conductive carbon and the polymer electrolyte contained in the mixture form a network, and electrons and hydrogen ions must conduct smoothly. There is.
[0007]
Conventionally, in order to improve the characteristics of a fuel cell by smoothly conducting electrons or hydrogen ions, the form of a catalyst supported on conductive carbon and the state of dispersion thereof have been improved. For example, in Japanese Patent Application Laid-Open No. 63-310050, in order to support noble metal particles in a highly dispersed state on carbon fine powder, it is necessary to destroy the three-dimensional structure of carbon fine powder as a carrier and increase the adsorption sites of the noble metal particles. It has been disclosed.
[0008]
JP-A-63-97232 discloses that colloidal particles of a noble metal of 2 to 4 nm are prepared, and the colloidal particles are attached to a commercially available carbon powder having a specific surface area of 50 to 300 m 2 / g. ing. In Japanese Patent Application Laid-Open No. 6-19671, the pore diameter and the specific surface area of the carbon fine powder are conditioned by supporting the catalyst particles in a highly dispersed manner on the catalyst carrier.
[0009]
[Problems to be solved by the invention]
Since the polymer electrolyte membrane between the polymer electrolyte and the electrode contained in the mixture is a conductor of hydrogen ions, the hydrogen ions generated according to the above reaction formula (1) are conducted from the fuel electrode side to the oxidant electrode side. Let it. The electrons generated at the same time are conducted from the conductive carbon on the catalyst or from the conductive carbon carrying the catalyst to the adjacent conductive carbon, collected by the current collector, and flow to the external circuit. Therefore, in order to extract electric power from the fuel cell, it is necessary to extract hydrogen ions and electrons generated by the contact of the fuel with the catalyst, so that the catalyst contacts both the polymer electrolyte and the conductive carbon. Need to be. Uncontacted catalyst will not contribute to the above reaction.
[0010]
According to the method described in the above-mentioned publication, when a carbon powder having fine pores such that a polymer electrolyte cannot be present is used as a catalyst carrier, it becomes difficult for the catalyst to come into contact with the electrolyte. No precious metal catalyst can be used effectively. In addition, when the polymer electrolyte is thick around the catalyst, it is difficult for the fuel to reach the catalyst, and there is a catalyst that does not contribute to the reaction.
[0011]
The present invention is to solve these problems individually or collectively, a conductive carbon that can efficiently conduct by separating hydrogen ions and electrons generated on the catalyst, an electrode catalyst using the same, and An object of the present invention is to provide a polymer electrolyte fuel cell exhibiting high discharge characteristics.
[0012]
[Means for Solving the Problems]
That is, the first invention of the present invention is a conductive carbon having at least platinum as a catalyst and having an organic group capable of dissociating hydrogen ions.
The second invention of the present invention is an electrode catalyst for a fuel cell having the above-mentioned conductive carbon.
[0013]
A third invention of the present invention is a fuel cell having an electrode catalyst layer on the fuel electrode side, an electrode catalyst layer on the oxidant electrode side, and a polymer electrolyte membrane provided between these electrode catalyst layers. A fuel cell, wherein at least one of the electrode catalyst layer on the fuel electrode side and the electrode catalyst layer on the oxidant electrode side contains the above electrode catalyst.
[0014]
According to a fourth aspect of the present invention, there is provided the fuel cell unit, a unit for supplying fuel to a fuel electrode side of the fuel cell unit, and a unit for supplying an oxidant to an oxidant electrode side. Fuel cell.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to achieve the above object, the present invention resides in an electrode catalyst having at least a conductive group carrying a platinum catalyst and having an organic group capable of dissociating hydrogen ions.
The present invention also resides in an electrode catalyst in which conductive carbon carrying a platinum catalyst and a ruthenium catalyst has an organic group capable of dissociating hydrogen ions.
In the above electrode catalyst, the organic group capable of dissociating hydrogen ions is at least one of a sulfonic acid group, a sulfinic acid group, a carboxylic acid group, a phosphonic acid group, a phosphinic acid group, a phosphoric acid group, and a hydroxyl group.
[0016]
Further, an electrode catalyst layer disposed on both main surfaces with the solid polymer electrolyte membrane interposed therebetween, a porous diffusion layer disposed on both outer sides of the electrode catalyst layer, a fuel in one diffusion layer, and a fuel in the other diffusion layer. In a polymer electrolyte fuel cell having means for supplying an oxidizing agent to a diffusion layer, at least the surface of the electrode catalyst layer to which fuel is supplied contains the electrode catalyst. In molecular fuel cells.
[0017]
As described above, by directly modifying the conductive carbon supporting the catalyst, electrons generated on the catalyst are conducted through the conductive carbon as a path, and hydrogen ions are conducted through an organic group capable of dissociating hydrogen ions as a path. be able to.
[0018]
Therefore, a path for conducting hydrogen ions and a path for conducting electrons can be secured, so that hydrogen ions and electrons generated on the catalyst can be efficiently separated. As a result, the discharge characteristics of the polymer electrolyte fuel cell can be improved.
[0019]
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a partial schematic view of an example of the fuel cell of the present invention.
In FIG. 1, in a fuel cell of the present invention, electrode catalyst layers 2a and 2b are provided on both surfaces of a polymer electrolyte membrane 1, diffusion layers 3a and 3b are provided outside thereof, and a current collector as a current collector is provided outside thereof. Electrodes 4a (fuel electrode) and 4b (oxidant electrode) are provided.
[0020]
As the polymer electrolyte membrane 1, a perfluorosulfonic acid polymer membrane typified by a Nafion membrane manufactured by Du Pont or a hydrocarbon-based membrane manufactured by Hoechst is preferably used, but is not limited thereto. A polymer membrane having a functional group having hydrogen ion conductivity such as a sulfonic acid group, a sulfinic acid group, a carboxylic acid group, a phosphonic acid group, a phosphinic acid group, a phosphoric acid group, and a hydroxyl group can be widely used.
[0021]
Also, a hybrid electrolyte membrane of an inorganic electrolyte and a polymer membrane formed by a sol-gel method can be used.
In order to prevent fuel crossover, a coating may be applied to the surface of the electrolyte membrane.
[0022]
One or both of the electrode catalyst layers 2a and 2b contain an electrode catalyst containing conductive carbon. FIG. 2 shows a schematic diagram of the electrode catalyst. Here, 5 is conductive carbon, 6 is a catalyst supported on the conductive carbon surface, and 7 is an organic group directly bonded to the conductive carbon and capable of dissociating hydrogen ions.
[0023]
For example, the electrode catalyst layer 2a on the fuel electrode side is formed of an electrocatalyst containing at least a conductive carbon 5 carrying a platinum catalyst 6 and having an organic group 7 capable of dissociating hydrogen ions. It is formed.
[0024]
The platinum catalyst is preferably supported on the surface of the conductive carbon. The supported catalyst preferably has a small particle diameter, and specifically has an average particle diameter of 0.5 nm to 20 nm, more preferably 1 nm to 10 nm. If it is less than 0.5 nm, the activity of the catalyst particles alone is too high, and handling becomes difficult. On the other hand, if it exceeds 20 nm, the activity may decrease because the surface area of the catalyst decreases and the number of reaction sites decreases.
[0025]
Instead of the platinum catalyst, a platinum group metal such as rhodium, ruthenium, iridium, palladium, and osmium may be used, or an alloy of platinum and those metals may be used. In particular, when methanol is used as the fuel, it is preferable to use an alloy of platinum and ruthenium for the electrode catalyst on the fuel electrode side.
[0026]
The conductive carbon can be selected from carbon black, carbon fiber, graphite, carbon nanotube, and the like.
[0027]
Further, the average particle size of the conductive carbon is preferably in the range of 5 nm to 1000 nm, and more preferably in the range of 10 nm to 100 nm. Further in order to carry the above-mentioned catalyst, BET specific surface area may large to some degree, 50m 2 / g~3000m 2 / g , more 100m 2 / g~2000m 2 / g are preferred.
[0028]
A known method can be widely used as a method for supporting the catalyst on the conductive carbon surface. For example, a method of impregnating a conductive carbon solution into a solution of platinum and other metals, reducing these noble metal ions, and supporting the noble metal ions on the conductive carbon surface is known. No. 003712 and the like. Also, the noble metal to be supported may be used as a target, and the conductive carbon may be supported by a vacuum film forming method such as sputtering.
[0029]
The amount of the catalyst supported on the surface of the conductive carbon is in the range of 5 to 80% by weight, preferably 10 to 70% by weight, based on the entire electrode catalyst. If the amount is less than 5% by weight, the catalyst performance may not be sufficiently exhibited. If the amount is more than 80% by weight, not only the production cost of the catalyst is increased, but also it becomes extremely difficult to handle in the production process such as easy ignition.
[0030]
Organic groups capable of dissociating hydrogen ions are directly bonded or physically adsorbed to the conductive carbon of the present invention. Examples of the organic group capable of dissociating hydrogen ions include a sulfonic acid group, a sulfinic acid group, a carboxylic acid group, a phosphonic acid group, a phosphinic acid group, a phosphoric acid group, and a hydroxyl group. preferable. For example, if sulfonic acid is directly bonded to conductive carbon, it can be easily obtained by heat treatment with fuming sulfuric acid or the like. In addition, by treating conductive carbon with sulfuric acid, conductive carbon having sulfonic acid groups physically adsorbed thereon can be obtained. Whether the organic group is directly bonded or physically adsorbed to the conductive carbon may be appropriately selected depending on the type of the conductive carbon and the type of the organic group. However, direct bonding is preferred from the viewpoint of durability. Further, a plurality of organic groups may be used from among these organic groups capable of dissociating hydrogen ions.
[0031]
The amount of the organic group capable of dissociating hydrogen ions to be bonded is preferably in the range of 0.0001 mmol / g to 100 mmol / g, more preferably 0.001 mmol / g to 10 mmol / g, based on the conductive carbon. If it is less than 0.0001 mmol / g, proton conductivity of the organic group is not exhibited, and if it exceeds 100 mmol / g, the conductivity is impaired, which is not preferable.
[0032]
The order of the step of directly bonding or physically adsorbing an organic group capable of dissociating hydrogen ions to the conductive carbon and the step of supporting the catalyst are not particularly limited.
[0033]
In the electrode catalyst of the present invention, the organic groups capable of dissociating hydrogen ions are directly bonded or physically adsorbed to the conductive carbon, so that the electrons generated on the catalyst on the fuel electrode side are transported to the electrode using the conductive carbon as a path. The generated hydrogen ions can be efficiently transported to the electrolyte using the organic groups capable of dissociating hydrogen ions as paths.
[0034]
The electrode catalyst of the present invention may also be used on the oxidant electrode side. Hydrogen ions received from the electrolyte membrane between the electrodes and electrons entering from an external circuit can be efficiently transported, and the reactivity with oxygen as an oxidizing agent is improved.
[0035]
In particular, in the present invention, by directly bonding or physically adsorbing an organic group capable of dissociating hydrogen ions to conductive carbon, localization of the organic group due to passage of fuel or oxygen does not occur, and near the surface Improving the reaction efficiency is expected by direct contact of conductive carbon, an organic group capable of dissociating hydrogen ions, and a catalyst with the reaction field.
[0036]
The thus prepared electrode catalyst is provided alone in contact with the polymer electrolyte membrane. Alternatively, the electrode catalyst is mixed with a binder, a polymer electrolyte, a water repellent, conductive carbon, a solvent, or the like, and provided in contact with the polymer electrolyte membrane. When the fuel cell has a diffusion layer, it is provided in contact with the diffusion layer.
[0037]
The diffusion layers 3a and 3b efficiently and uniformly introduce hydrogen as fuel, reformed hydrogen, methanol, dimethyl ether, and air and oxygen as oxidants into the electrode catalyst layer, and transfer electrons in contact with the electrodes. It is. Generally, a conductive porous film is preferable, and carbon paper, carbon cloth, a composite sheet of carbon and polytetrafluoroethylene, or the like can be used.
The surface and inside of the diffusion layer may be coated with a fluorine-based paint and subjected to a water-repellent treatment before use.
[0038]
As the electrodes 4a and 4b, those conventionally used can be used without particular limitation as long as they can efficiently supply fuel and oxidant to each diffusion layer and can exchange electrons with the diffusion layers.
[0039]
The fuel cell according to the present invention is prepared by laminating a polymer electrolyte, an electrode catalyst layer, a diffusion layer, and an electrode as shown in FIG. 1, but the shape is arbitrary and the method of preparation is not particularly limited and a general method. Can be used.
[0040]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
[0041]
(Production example of electrode catalyst)
Examples 1-3
Vulcan XC72-R (manufactured by Cabot Corporation) is used as the conductive carbon, and a platinum compound and a ruthenium compound are supported and reduced on the surface thereof by using a chloroplatinic acid aqueous solution and a ruthenium chloride aqueous solution as raw materials. Wt%)-ruthenium (15 wt%) alloy was supported.
[0042]
The conductive carbon carrying the catalyst was dried, heated with fuming sulfuric acid, washed with ion-exchanged water, and sulfonic acid was directly bonded to the conductive carbon carrying the catalyst. Thereafter, the resultant was sufficiently dried to obtain conductive carbon as an electrode catalyst of this example. When treating with fuming sulfuric acid, the amount of sulfonic acid bonded to the conductive carbon was changed by variously changing the treatment time.
The amount of sulfonic acid groups was quantified by elemental analysis to obtain three types of electrode catalysts shown in Table 1 below.
[0043]
[Table 1]
Figure 2004079420
[0044]
Example 4
Ketjen Black EC (manufactured by Lion) was used as the conductive carbon, and treated with chloroalkylphosphonic acid to directly bond a phosphonic acid group to the surface of the conductive carbon. Further, an alloy of platinum (30% by weight) -ruthenium (15% by weight) was supported on the surface thereof in the same manner as in Examples 1 to 3. Thereafter, the resultant was sufficiently dried to obtain conductive carbon as an electrode catalyst of this example.
[0045]
The amount of phosphonic acid groups was quantified by elemental analysis to obtain an electrode catalyst shown in Table 2 below.
[0046]
[Table 2]
Figure 2004079420
[0047]
Examples 5 to 7
Vulcan XC72-R (manufactured by Cabot Corporation) was used as conductive carbon, and platinum (50% by weight) was carried on the surface by carrying and reducing a platinum compound using an aqueous solution of chloroplatinic acid as a raw material.
The conductive carbon carrying the catalyst was dried, treated with fuming sulfuric acid, washed with ion-exchanged water, and sulfonic acid was directly bonded to the conductive carbon carrying the catalyst. Thereafter, the resultant was sufficiently dried to obtain conductive carbon as an electrode catalyst of this example. When treating with fuming sulfuric acid, the treatment time was variously changed to change the amount of sulfonic acid to be bound.
[0048]
The amount of sulfonic acid groups was quantified by elemental analysis to obtain three types of electrode catalysts shown in Table 3 below.
[0049]
[Table 3]
Figure 2004079420
[0050]
Comparative Example 1
Vulcan XC72-R supporting platinum (30% by weight) -ruthenium (15% by weight) used in Example 1 was used without attaching a sulfonic acid group.
[0051]
Comparative Example 2
Vulcan XC72-R carrying platinum (50% by weight) used in Example 5 was used without adding a sulfonic acid group.
[0052]
Each of the catalysts prepared in Evaluation Examples 1 to 7 and Comparative Examples 1 and 2 was mixed with 4 g of conductive carbon having an organic group, together with 10 g of water and 8 g of a 5% Nafion solution (manufactured by Wako Pure Chemical Industries, Ltd.). Paste.
The paste was applied to a water-repellent-treated carbon paper having a thickness of 0.1 mm (TGP-H-30, manufactured by Toray Industries, Inc.), dried at room temperature, and then dried at 50 ° C. The coating amount of platinum or platinum-ruthenium alloy at this time was about 4 mg / cm 2 .
[0053]
The fuel electrode side and the oxidant electrode side were prepared in combinations shown in Table 4 below, and Nafion 112 (manufactured by DuPont) was sandwiched as an electrolyte membrane. Furthermore, it pressed at 100 degreeC and 4.9 MPa (50 kgf / cm < 2 >) using the hot press, and was set as MEA (Membrane Electrode Assembly).
[0054]
[Table 4]
Figure 2004079420
[0055]
The MEA produced above was incorporated into a single cell of a fuel cell to produce each cell. The cell area is 25 cm 2 .
[0056]
For each cell, a 5 wt% methanol aqueous solution is supplied at 10 ml / min to the fuel electrode side, and normal pressure air is supplied at 200 ml / min to the oxidant electrode side, and the whole cell is kept at 75 ° C. While generating electricity.
[0057]
FIG. 3 shows the relationship between the current and voltage of the cells of Evaluation Examples 1 to 7. In the fuel cells of the present invention of Evaluation Examples 1 to 6, the output can be taken out stably up to 0.5 A / cm 2, but in Evaluation Example 7, current can be taken out only at 0.2 A / cm 2 or less. Understand. This is because the sulfonic acid group or phosphonic acid group bonded to the conductive carbon is an effective path for hydrogen ions.
Similar results can be obtained by using hydrogen, reformed hydrogen, methanol, dimethyl ether, or the like as a fuel.
[0058]
【The invention's effect】
As described above, according to the present invention, since an organic group capable of dissociating hydrogen ions and conductive carbon supporting a platinum catalyst are provided, hydrogen ions and electrons generated on the catalyst are efficiently conducted. be able to.
By using such conductive carbon as an electrode catalyst, a polymer electrolyte fuel cell exhibiting high discharge characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a partial schematic view of a fuel cell according to the present invention.
FIG. 2 is a schematic diagram showing the structure of the electrode catalyst of the present invention.
FIG. 3 is a graph showing a relationship between current and voltage of a fuel cell in Evaluation Examples 1 to 7 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Polymer electrolyte membrane 2a, 2b Electrode catalyst layer 3a, 3b Diffusion layer 4a, 4b Electrode 5 Conductive carbon 6 Catalyst 7 Organic group capable of dissociating hydrogen ions

Claims (8)

触媒としての白金を少なくとも担持しており、かつ水素イオン解離が可能な有機基を有する導電性炭素。Conductive carbon having at least platinum as a catalyst and having an organic group capable of dissociating hydrogen ions. さらに触媒としてのルテニウムを担持している請求項1に記載の導電性炭素。The conductive carbon according to claim 1, further comprising ruthenium as a catalyst. 前記有機基が、スルホン酸基、スルフィン酸基、カルボン酸基、ホスホン酸基、ホスフィン酸基、リン酸基および水酸基から選択される少なくとも1つである請求項1または2に記載の導電性炭素。The conductive carbon according to claim 1, wherein the organic group is at least one selected from a sulfonic acid group, a sulfinic acid group, a carboxylic acid group, a phosphonic acid group, a phosphinic acid group, a phosphoric acid group, and a hydroxyl group. . 請求項1乃至3のいずれかの項に記載の導電性炭素を有する燃料電池用の電極触媒。An electrode catalyst for a fuel cell, comprising the conductive carbon according to claim 1. 燃料極側の電極触媒層と、酸化剤極側の電極触媒層と、これらの電極触媒層の間に設けられた高分子電解質膜とを有する燃料電池セルであって、前記燃料極側の電極触媒層および酸化剤極側の電極触媒層の少なくとも一方が請求項4に記載の電極触媒を含有することを特徴とする燃料電池セル。A fuel cell having a fuel electrode side electrode catalyst layer, an oxidizer electrode side electrode catalyst layer, and a polymer electrolyte membrane provided between these electrode catalyst layers, wherein the fuel electrode side electrode A fuel cell, wherein at least one of the catalyst layer and the electrode catalyst layer on the oxidant electrode side contains the electrode catalyst according to claim 4. 前記燃料極側の電極触媒層および前記酸化剤極側の電極触媒層のそれぞれの外側に、電力を集めるための集電体を有する請求項5に記載の燃料電池セル。The fuel cell according to claim 5, further comprising a current collector for collecting electric power outside each of the electrode catalyst layer on the fuel electrode side and the electrode catalyst layer on the oxidant electrode side. 前記燃料極側の電極触媒層と集電体との間、前記酸化剤極側の電極触媒層と集電体との間のそれぞれに、多孔質の拡散層を有する請求項6に記載の燃料電池セル。The fuel according to claim 6, wherein a porous diffusion layer is provided between the electrode catalyst layer on the fuel electrode side and the current collector and between the electrode catalyst layer on the oxidant electrode side and the current collector, respectively. Battery cells. 請求項5乃至7のいずれかに記載の燃料電池セルと、前記燃料電池セルの燃料極側に燃料を供給する手段と、酸化剤極側に酸化剤を供給する手段とを備えることを特徴とする燃料電池。A fuel cell according to any one of claims 5 to 7, a fuel supply unit for supplying fuel to the fuel electrode side of the fuel cell, and a unit for supplying an oxidant to the oxidant electrode side. Fuel cell.
JP2002240716A 2002-08-21 2002-08-21 Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell Abandoned JP2004079420A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002240716A JP2004079420A (en) 2002-08-21 2002-08-21 Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell
TW092121501A TWI226140B (en) 2002-08-21 2003-08-06 Conductive carbon, electrode catalyst for fuel cell using the same, fuel cell and fuel cell apparatus
EP03792667A EP1540753A2 (en) 2002-08-21 2003-08-11 Conductive carbon, electrode catalyst for fuel cell using the same and fuel cell
PCT/JP2003/010216 WO2004019435A2 (en) 2002-08-21 2003-08-11 Conductive carbon, electrode catalyst for fuel cell using the same and fuel cell
AU2003253438A AU2003253438A1 (en) 2002-08-21 2003-08-11 Conductive carbon, electrode catalyst for fuel cell using the same and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240716A JP2004079420A (en) 2002-08-21 2002-08-21 Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell

Publications (1)

Publication Number Publication Date
JP2004079420A true JP2004079420A (en) 2004-03-11

Family

ID=31943942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240716A Abandoned JP2004079420A (en) 2002-08-21 2002-08-21 Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell

Country Status (5)

Country Link
EP (1) EP1540753A2 (en)
JP (1) JP2004079420A (en)
AU (1) AU2003253438A1 (en)
TW (1) TWI226140B (en)
WO (1) WO2004019435A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069839A (en) * 2004-09-02 2006-03-16 Tokai Carbon Co Ltd Glass-like carbon minute powder and its manufacturing method
WO2006059485A1 (en) * 2004-12-01 2006-06-08 Konica Minolta Holdings, Inc. Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell
JP2006179412A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Fuel cell electrode catalyst layer and fuel cell using the same
WO2006090603A1 (en) * 2005-02-25 2006-08-31 Konica Minolta Holdings, Inc. Electrode for fuel cell, process for producing the same, and fuel cell
JP2008066110A (en) * 2006-09-07 2008-03-21 Toyota Motor Corp Electrolyte for fuel cell, and fuel cell
JP2008511098A (en) * 2004-08-20 2008-04-10 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Platinum / ruthenium catalysts for direct methanol fuel cells
JP2009268961A (en) * 2008-05-06 2009-11-19 Toyota Industries Corp Catalyst precursor, catalyst material, and method of producing catalyst
JP2011003492A (en) * 2009-06-22 2011-01-06 Toyota Motor Corp Electrode catalyst for fuel cell, its manufacturing method, and solid polymer fuel cell using the same
JP2015069927A (en) * 2013-09-30 2015-04-13 日産自動車株式会社 Membrane-electrode assembly for fuel batteries, and fuel battery
JP2015160178A (en) * 2014-02-28 2015-09-07 東洋インキScホールディングス株式会社 Sulfonated carbon catalyst and production method of the same, and catalyst ink and fuel cell using the sulfonated carbon catalyst
US9343747B2 (en) 2004-12-17 2016-05-17 Lg Chem, Ltd. Membrane electrode assembly, fuel cell comprising the membrane electrode assembly, and method for preparing an electrode catalyst
JP2016146305A (en) * 2015-02-09 2016-08-12 株式会社キャタラー Electrode for fuel cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085993A2 (en) 2004-07-16 2006-08-17 The Trustees Of Boston College Device and method for achieving enhanced field emission utilizing nanostructures grown on a conductive substrate
EP2084105A4 (en) * 2006-10-18 2011-07-27 Agency Science Tech & Res Method of functionalizing a carbon material
EP3032623B1 (en) * 2013-08-08 2018-01-10 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cells and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804592A (en) * 1987-10-16 1989-02-14 The United States Of America As Represented By The United States Department Of Energy Composite electrode for use in electrochemical cells
US6399202B1 (en) * 1999-10-12 2002-06-04 Cabot Corporation Modified carbon products useful in gas diffusion electrodes
US7468219B2 (en) * 1999-12-10 2008-12-23 Nitto Denko Corporation Fuel cell
JP2002110194A (en) * 2000-10-02 2002-04-12 Sony Corp Fuel cell and method for manufacturing the same
US20030022055A1 (en) * 2001-04-11 2003-01-30 Jameel Menashi Fuel cells and other products containing modified carbon products

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511098A (en) * 2004-08-20 2008-04-10 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Platinum / ruthenium catalysts for direct methanol fuel cells
JP2006069839A (en) * 2004-09-02 2006-03-16 Tokai Carbon Co Ltd Glass-like carbon minute powder and its manufacturing method
JP4665227B2 (en) * 2004-09-02 2011-04-06 東海カーボン株式会社 Manufacturing method of glassy carbon fine powder
WO2006059485A1 (en) * 2004-12-01 2006-06-08 Konica Minolta Holdings, Inc. Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell
JPWO2006059485A1 (en) * 2004-12-01 2008-06-05 コニカミノルタホールディングス株式会社 Fuel cell electrode catalyst, fuel cell electrode and fuel cell
JP5066916B2 (en) * 2004-12-01 2012-11-07 コニカミノルタホールディングス株式会社 Fuel cell electrode catalyst, fuel cell electrode and fuel cell
US9343747B2 (en) 2004-12-17 2016-05-17 Lg Chem, Ltd. Membrane electrode assembly, fuel cell comprising the membrane electrode assembly, and method for preparing an electrode catalyst
JP2006179412A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Fuel cell electrode catalyst layer and fuel cell using the same
WO2006090603A1 (en) * 2005-02-25 2006-08-31 Konica Minolta Holdings, Inc. Electrode for fuel cell, process for producing the same, and fuel cell
JP2008066110A (en) * 2006-09-07 2008-03-21 Toyota Motor Corp Electrolyte for fuel cell, and fuel cell
JP2009268961A (en) * 2008-05-06 2009-11-19 Toyota Industries Corp Catalyst precursor, catalyst material, and method of producing catalyst
JP2011003492A (en) * 2009-06-22 2011-01-06 Toyota Motor Corp Electrode catalyst for fuel cell, its manufacturing method, and solid polymer fuel cell using the same
US10263260B2 (en) 2009-06-22 2019-04-16 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the same
JP2015069927A (en) * 2013-09-30 2015-04-13 日産自動車株式会社 Membrane-electrode assembly for fuel batteries, and fuel battery
JP2015160178A (en) * 2014-02-28 2015-09-07 東洋インキScホールディングス株式会社 Sulfonated carbon catalyst and production method of the same, and catalyst ink and fuel cell using the sulfonated carbon catalyst
JP2016146305A (en) * 2015-02-09 2016-08-12 株式会社キャタラー Electrode for fuel cell

Also Published As

Publication number Publication date
AU2003253438A1 (en) 2004-03-11
WO2004019435A2 (en) 2004-03-04
TWI226140B (en) 2005-01-01
TW200405608A (en) 2004-04-01
EP1540753A2 (en) 2005-06-15
WO2004019435A3 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
KR101640731B1 (en) Fuel cell system
CN101136480A (en) Membrane-electrode assembly for fuel cell, method of preparing same, and fuel cell system cpmrising same
JP4133654B2 (en) Polymer electrolyte fuel cell
JP2006216503A (en) Catalyst layer of solid polymer fuel cell
US8318373B2 (en) Fuel cell assembly
JP2004079420A (en) Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell
JP5385897B2 (en) Membrane electrode assembly, fuel cell and fuel cell system
JP4859124B2 (en) Membrane electrode unit, manufacturing method thereof, and direct methanol fuel cell
JP4190478B2 (en) Polymer electrolyte fuel cell
JP2006252967A (en) Solid polymer electrolyte membrane for fuel cell, and fuel cell using the same
JP2010146770A (en) Anode catalyst layer of solid polymer fuel cell
JP5669432B2 (en) Membrane electrode assembly, fuel cell, and fuel cell activation method
JP2003317735A (en) Solid high polymer electrolyte fuel cell, method for manufacturing solid high polymer electrolyte film for fuel cell and fuel cell
JP5219571B2 (en) Membrane electrode assembly and fuel cell
JP2005174835A (en) Electrode
JP5481297B2 (en) Membrane electrode assembly and fuel cell
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP5298303B2 (en) Membrane electrode assembly and fuel cell
JP2008243801A (en) Catalyst layer for fuel cell, and fuel cell using the same
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2006040633A (en) Electrode for fuel cell, its manufacturing method, and fuel cell using it
JP2010257669A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP2008270019A (en) Fuel cell and jointed body for fuel cell
KR20090039423A (en) Membrane electrode assembly for fuel cell and fuel cell system including same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060412

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20060530