JP2006069839A - Glass-like carbon minute powder and its manufacturing method - Google Patents

Glass-like carbon minute powder and its manufacturing method Download PDF

Info

Publication number
JP2006069839A
JP2006069839A JP2004255054A JP2004255054A JP2006069839A JP 2006069839 A JP2006069839 A JP 2006069839A JP 2004255054 A JP2004255054 A JP 2004255054A JP 2004255054 A JP2004255054 A JP 2004255054A JP 2006069839 A JP2006069839 A JP 2006069839A
Authority
JP
Japan
Prior art keywords
glassy carbon
thermosetting resin
base material
resin
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004255054A
Other languages
Japanese (ja)
Other versions
JP4665227B2 (en
Inventor
Ryusuke Harada
竜介 原田
Hiroaki Arai
啓哲 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2004255054A priority Critical patent/JP4665227B2/en
Publication of JP2006069839A publication Critical patent/JP2006069839A/en
Application granted granted Critical
Publication of JP4665227B2 publication Critical patent/JP4665227B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass-like carbon minute powder useful as a catalyst electrode for a fuel cell, a catalyst carrier, various fillers, etc., and its manufacturing method. <P>SOLUTION: This glass-like carbon minute powder has an average particle diameter of not greater than 1 μm and a specific surface area of not smaller than 1,000 m<SP>2</SP>/g. This is manufactured using as a base material a laminated milled paper having an average pore diameter of 50-150 μm and a porosity of 50-80%, wherein the base material is impregnated with a thermosetting resin solution of a thermosetting resin having a residual carbon of not less than 40% dissolved in an organic solvent at a resin concentration of 20-70 wt%, and is cured by heating, then undergoes a sintering carbonizing treatment and an activation treatment in turn or the sintering carbonizing treatment and the activation treatment simultaneously, and the obtained porous glass-like carbon material is pulverized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気二重層キャパシタ用の電極材料、燃料電池の触媒電極や触媒担体をはじめ、更に各種フィラーなどとしても有用なガラス状カーボンの微粉およびその製造方法に関する。   The present invention relates to an electrode material for an electric double layer capacitor, a catalyst electrode and a catalyst carrier of a fuel cell, and also to a glassy carbon fine powder useful as various fillers and a method for producing the same.

ガラス状カーボンは、一般にフェノール樹脂やフラン樹脂などの熱硬化性樹脂を所定の形状に成形硬化したのち非酸化性雰囲気下で600〜2000℃に加熱して焼成炭化することにより得られ、均質なガラス質の組織構造を備えた特異な炭素材料である。そして、その耐食性、導電性、気密性などの特性に着目して電気化学分野をはじめ広い用途分野で実用化が進められている。   Glassy carbon is generally obtained by molding and curing a thermosetting resin such as phenol resin or furan resin into a predetermined shape and then heating and calcining at 600 to 2000 ° C. in a non-oxidizing atmosphere. It is a unique carbon material with a glassy structure. Then, paying attention to the characteristics such as corrosion resistance, conductivity, and airtightness, practical application has been promoted in a wide range of applications including the electrochemical field.

このガラス状カーボンを粉状化したものは、ガラス状カーボン成形体を粉砕することにより得られるが、ガラス状カーボンが極めて硬質なため均一に粉砕したり、微粉砕することは非常に困難である。   This glassy carbon powder is obtained by pulverizing a glassy carbon molded body, but since glassy carbon is extremely hard, it is very difficult to pulverize uniformly or finely. .

そこで、特許文献1には平均粒径が1μm以上であって、比表面積が200m2 /g以上のガラス状カーボン粉末、および、熱硬化性樹脂の硬化発泡体を非酸化性雰囲気で焼成し粉砕するか、または該発泡体を粉砕した後焼成することを特徴とする比表面積が200m2 /g以上のガラス状カーボン粉末の製造方法が提案されている。しかし、特許文献1では平均粒子径が1μmを下回るガラス状カーボン粉末を得ることはできない。 Therefore, in Patent Document 1, glassy carbon powder having an average particle size of 1 μm or more and a specific surface area of 200 m 2 / g or more and a cured foam of a thermosetting resin are fired in a non-oxidizing atmosphere and pulverized. Or a method for producing a glassy carbon powder having a specific surface area of 200 m 2 / g or more, characterized in that the foam is pulverized and then fired. However, Patent Document 1 cannot obtain a glassy carbon powder having an average particle size of less than 1 μm.

また、本出願人は、真比重が1.0以上で、平均粒径0.1〜100μmおよび真球度1.2以下の性状を備える球体ガラス状カーボン粉末、と残炭率45%以上の熱硬化性樹脂初期縮合物を平均粒径0.2〜120μm、真球度1.2以下の微小球粉末に調整し、10〜50℃の酸性液に30分間以上浸漬する第1硬化処理および大気中150〜300℃に30分間以上保持する第2硬化処理を施したのち、非酸化性雰囲気中で焼成炭化処理するその製造方法(特許文献2)を開発提案した。   Moreover, the present applicant has a spherical glassy carbon powder having a true specific gravity of 1.0 or more, an average particle size of 0.1 to 100 μm, and a sphericity of 1.2 or less, and a residual carbon ratio of 45% or more. A first curing treatment in which a thermosetting resin initial condensate is adjusted to a microsphere powder having an average particle size of 0.2 to 120 μm and a sphericity of 1.2 or less, and immersed in an acidic liquid at 10 to 50 ° C. for 30 minutes or more; The manufacturing method (patent document 2) which carries out the 2nd hardening process which hold | maintains at 150-300 degreeC in air | atmosphere for 30 minutes or more, and carries out a calcination carbonization process in a non-oxidizing atmosphere was developed and proposed.

しかし、特許文献2では転流動性に優れ、ハンドリング性の高い球体ガラス状カーボン粉末を対象としているので相対的に比表面積が小さく、燃料電池の触媒電極や触媒担体などの用途には適しておらず、また、真球状に近いので粉砕し難く、微粉化はより困難になる。   However, since Patent Document 2 is intended for spherical glassy carbon powders that have excellent fluidity and high handling properties, they have a relatively small specific surface area and are not suitable for applications such as catalyst electrodes and catalyst carriers of fuel cells. In addition, since it is almost spherical, it is difficult to pulverize and pulverization becomes more difficult.

更に、特許文献3には熱硬化性樹脂に、150〜400℃の温度領域でガスを発生する加熱揮散物質および発泡剤を加え、発泡させ、得られた発泡体を非酸化性雰囲気で焼成し粉砕するか、または該発泡体を粉砕後非酸化性雰囲気で焼成するカーボン粉末の製造法が提案されている。そして、この製造法により平均粒径が2〜20μm、比表面積が200〜800m2 /gのカーボン粉末が製造されることが示されている。 Furthermore, in Patent Document 3, a heat volatile material and a foaming agent that generate gas in a temperature range of 150 to 400 ° C. are added to a thermosetting resin, foamed, and the obtained foam is fired in a non-oxidizing atmosphere. There has been proposed a method for producing a carbon powder which is pulverized or pulverized and then fired in a non-oxidizing atmosphere. And it is shown by this manufacturing method that the carbon particle whose average particle diameter is 2-20 micrometers and a specific surface area is 200-800 m < 2 > / g is manufactured.

特許文献3の方法は、発泡体が焼成炭化する過程で発泡体内部でポリエチレンなどの加熱揮散物質から発生するガスにより細孔形成および比表面積の増大を図るものであるが、均一な細孔を形成することが難しく微粉砕化も困難であり、また比表面積も800m2 /g以上のものを得ることができず、粒子径、比表面積とも燃料電池の触媒電極や触媒担体などとして用いるには十分でない。
特開平03−164416号公報 特開平05−163007号公報 特開2000−103610号公報
The method of Patent Document 3 is intended to form pores and increase the specific surface area by a gas generated from a heat volatile material such as polyethylene inside the foam during the firing and carbonization of the foam. It is difficult to form and difficult to pulverize, and a specific surface area of 800 m 2 / g or more cannot be obtained, and both particle diameter and specific surface area are used as a catalyst electrode or a catalyst carrier of a fuel cell. not enough.
Japanese Patent Laid-Open No. 03-164416 Japanese Patent Laid-Open No. 05-163007 JP 2000-103610 A

比表面積の増大を図るためにはガラス状カーボン粉末を賦活化処理することも考えられるが、一般的にガラス状カーボン粉末のような粉末を、賦活化ガス中で均一に、効率よく賦活化処理することは困難である。   In order to increase the specific surface area, it is conceivable to activate the glassy carbon powder, but generally, a powder like the glassy carbon powder is activated uniformly and efficiently in the activation gas. It is difficult to do.

そこで、発明者らはこれらの問題点の解消を図るために鋭意研究を重ねた結果、特定の多孔性状を有する抄造紙を所望形状に積層し、この積層体に熱硬化性樹脂を含浸して加熱硬化したのち焼成炭化して得た多孔質のガラス状カーボン成形体は強度が小さく、微粉砕が可能であり、更に賦活化処理して粉砕すると、効率よく高比表面積で粒子径の小さいガラス状カーボンの微粉末が得られることを見出した。   Therefore, as a result of intensive studies to solve these problems, the inventors laminated papermaking paper having a specific porous shape in a desired shape, and impregnated this laminate with a thermosetting resin. A porous glassy carbon molded body obtained by heat-curing and then calcined by carbonization has low strength and can be finely pulverized. Further, when activated and pulverized, it is a glass having a high specific surface area and a small particle diameter. It has been found that fine powder of carbon can be obtained.

すなわち、本発明はこの知見に基づいて完成したもので、その目的は電気二重層キャパシタ用の電極材料、燃料電池の触媒電極や触媒担体をはじめとして、更に各種フィラーなどとしても有用なガラス状カーボンの微粉およびその製造方法を提供することにある。   That is, the present invention has been completed based on this finding, and its purpose is glassy carbon useful as an electrode material for electric double layer capacitors, catalyst electrodes and catalyst carriers of fuel cells, and further as various fillers. It is in providing the fine powder and its manufacturing method.

この目的を達成するための本発明によるガラス状カーボン微粉は、平均粒子径が1μm以下、比表面積が1000m2 /g以上であることを特徴とする。 The glassy carbon fine powder according to the present invention for achieving this object is characterized in that the average particle diameter is 1 μm or less and the specific surface area is 1000 m 2 / g or more.

上記の特性を備えるガラス状カーボン微粉の本発明による第1の製造方法は、平均気孔径が50〜150μm、気孔率が50〜80%の多孔性状を有する抄造紙を積層して基材とし、該基材に残炭率40%以上の熱硬化性樹脂を有機溶媒に溶解した樹脂濃度20〜70wt%の熱硬化性樹脂液を含浸して加熱硬化した後、非酸化性雰囲気下で加熱して焼成炭化処理し、次いで賦活化ガス雰囲気下600〜1500℃の温度に加熱して賦活化処理し、得られた多孔質ガラス状カーボン材を微粉砕することを特徴とする。   The first production method according to the present invention for vitreous carbon fine powder having the above-mentioned characteristics is a base material obtained by laminating papermaking paper having a porous shape with an average pore diameter of 50 to 150 μm and a porosity of 50 to 80%, The base material is impregnated with a thermosetting resin solution having a resin concentration of 20 to 70 wt% obtained by dissolving a thermosetting resin having a residual carbon ratio of 40% or more in an organic solvent, and then heated and cured in a non-oxidizing atmosphere. It is characterized in that it is calcined and calcined, and then heated to a temperature of 600 to 1500 ° C. in an activation gas atmosphere for activation treatment, and the resulting porous glassy carbon material is pulverized.

また、第2の製造方法は、平均気孔径が50〜150μm、気孔率が50〜80%の多孔性状を有する抄造紙を積層して基材とし、該基材に残炭率40%以上の熱硬化性樹脂を有機溶媒に溶解した樹脂濃度20〜70wt%の熱硬化性樹脂液を含浸して加熱硬化した後、賦活化ガス雰囲気下600〜1500℃の温度に加熱して焼成炭化処理と賦活化処理を同時に行い、得られた多孔質ガラス状カーボン材を微粉砕することを特徴とする。   Further, the second production method is a method in which a papermaking paper having a porous shape with an average pore diameter of 50 to 150 μm and a porosity of 50 to 80% is laminated as a base material, and the residual carbon ratio is 40% or more on the base material. After impregnating a thermosetting resin solution having a resin concentration of 20 to 70 wt% in which a thermosetting resin is dissolved in an organic solvent and heating and curing, heating to a temperature of 600 to 1500 ° C. in an activation gas atmosphere to perform a calcination carbonization treatment The activation treatment is performed simultaneously, and the obtained porous glassy carbon material is pulverized.

本発明により提供される、平均粒子径が小さく、比表面積の大きいガラス状カーボン微粉は、例えば電気二重層キャパシタ用の電極材料、燃料電池の触媒電極や触媒担体をはじめ、種々の用途に用いられる各種フィラーなどとして極めて有用である。そして、このガラス状カーボン微粉は、特定の多孔性状を有する抄造紙の積層体を基材として熱硬化性樹脂液を含浸し、加熱硬化した後、焼成炭化処理、賦活化処理を順次に施し、あるいは、焼成炭化処理と賦活化処理とを同時に施し、微粉砕することにより製造することが可能である。   The glassy carbon fine powder having a small average particle diameter and a large specific surface area provided by the present invention is used for various applications including, for example, electrode materials for electric double layer capacitors, catalyst electrodes and catalyst carriers of fuel cells. It is extremely useful as various fillers. And this glassy carbon fine powder is impregnated with a thermosetting resin liquid based on a laminate of papermaking paper having a specific porous shape, heat-cured, and then sequentially subjected to calcination carbonization treatment and activation treatment, Alternatively, it is possible to manufacture by subjecting to calcination carbonization and activation treatment at the same time and pulverizing.

電気二重層キャパシタ用の電極材料、燃料電池の触媒電極や触媒担体には、その機能から多孔質性状が要求され、例えば、燃料電池の触媒電極には反応ガスの通路となる微細な気孔を有する多孔質性状が必要である。また、触媒を担持した電極表面において反応ガスが効率よく反応するためには反応面積が大きいことが必要となる。   The electrode material for the electric double layer capacitor, the catalyst electrode of the fuel cell, and the catalyst carrier are required to have a porous property because of their functions. For example, the catalyst electrode of the fuel cell has fine pores serving as a reaction gas passage. A porous property is required. Also, a large reaction area is required for the reaction gas to react efficiently on the electrode surface carrying the catalyst.

すなわち、反応ガスが触媒電極や触媒担体を円滑かつ均等に流通し、更に電極表面において速やかに反応して、電池反応を円滑に継続するためには触媒電極や触媒担体の微細気孔径および比表面積が大きく関与する。   That is, in order for the reaction gas to flow smoothly and evenly through the catalyst electrode and the catalyst carrier, and further react quickly at the electrode surface and continue the cell reaction smoothly, the fine pore diameter and specific surface area of the catalyst electrode and catalyst carrier Is greatly involved.

そこで、本発明のガラス状カーボン微粉は、例えば燃料電池の触媒電極製造用の原料として好適に用いることのできる粒子性状として、その平均粒子径を1μm以下に、また比表面積を1000m2 /g以上に設定するものである。なお、平均粒子径はレーザー回折法により、比表面積はBET法による測定値である。 Therefore, the glassy carbon fine powder of the present invention has a mean particle size of 1 μm or less and a specific surface area of 1000 m 2 / g or more as a particle property that can be suitably used as a raw material for producing a catalyst electrode of a fuel cell, for example. Is set to The average particle diameter is a value measured by a laser diffraction method, and the specific surface area is a value measured by a BET method.

このガラス状カーボン微粉を製造するための本発明による第1の製造方法は、平均気孔径が50〜150μm、気孔率が50〜80%の多孔性状を有する抄造紙を積層して基材とし、該基材に残炭率40%以上の熱硬化性樹脂を有機溶媒に溶解した樹脂濃度20〜70wt%の熱硬化性樹脂液を含浸して加熱硬化した後、非酸化性雰囲気下で加熱して焼成炭化処理し、次いで賦活化ガス雰囲気下600〜1500℃の温度に加熱して賦活化処理し、得られた多孔質ガラス状カーボン材を微粉砕することを特徴とする。   In the first production method according to the present invention for producing this glassy carbon fine powder, a papermaking paper having an average pore diameter of 50 to 150 μm and a porosity of 50 to 80% is laminated as a base material, The base material is impregnated with a thermosetting resin solution having a resin concentration of 20 to 70 wt% obtained by dissolving a thermosetting resin having a residual carbon ratio of 40% or more in an organic solvent, and then heated and cured in a non-oxidizing atmosphere. It is characterized in that it is calcined and calcined, and then heated to a temperature of 600 to 1500 ° C. in an activation gas atmosphere for activation treatment, and the resulting porous glassy carbon material is pulverized.

基材となる抄造紙にはパルプ、レーヨン、ビニロンなどの原料を抄紙したものが使用され、好ましくはレーヨン級パルプやレーヨンが用いられる。具体的には太さ3.3〜11デシテックス、長さ5〜30mm程度の単一性状を有するレーヨンパルプ60〜90重量部と針葉樹パルプ40〜10重量部を混合抄紙した抄造紙、α−セルロースを主成分とする有機質物60〜90重量部、水溶性抄紙バインダー10〜40重量部および水不溶性でかつ熱揮散性のバインダー1〜10重量部を水に分散した分散水を連続抄紙した抄造紙などが好適に使用される。   For the papermaking paper used as the base material, paper made from raw materials such as pulp, rayon and vinylon is used, preferably rayon grade pulp or rayon. Specifically, papermaking paper obtained by mixing 60 to 90 parts by weight of rayon pulp and 40 to 10 parts by weight of softwood pulp having a single characteristic of 3.3 to 11 decitex in thickness and about 5 to 30 mm in length, α-cellulose Paper made by continuous paper making of dispersed water in which 60 to 90 parts by weight of an organic substance containing as a main component, 10 to 40 parts by weight of a water-soluble papermaking binder, and 1 to 10 parts by weight of a water-insoluble and heat-volatile binder are dispersed in water. Etc. are preferably used.

このようにして作製した抄造紙は、その多孔性状が平均気孔径50〜150μm、気孔率50〜80%のものを選択的に使用する。平均気孔径が50μm、気孔率が50%を下回る場合には熱硬化性樹脂液の含浸時に気孔の閉塞を起こし易く、賦活化ガスの均一な拡散を阻害するため均一な賦活反応が進行し難くなるためである。また平均気孔径が150μmを越え、気孔率が80%を上回る場合には熱硬化性樹脂を効率よく含浸させることが困難になるためである。このような多孔性状を有する抄造紙を所望の厚さに積層し、必要により圧縮処理を施して基材とする。なお、抄造紙は積層前に予め50〜110℃程度の温度に加熱して含有する水分の除去と表面改質を行っておくと、樹脂液の含浸時に樹脂液との濡れ性を改善することができる。   The papermaking paper thus produced is selectively used with a porosity of 50 to 150 μm in average pore diameter and 50 to 80% porosity. When the average pore diameter is 50 μm and the porosity is less than 50%, the pores are easily blocked when impregnated with the thermosetting resin liquid, and the uniform activation reaction is difficult to proceed because the uniform diffusion of the activation gas is inhibited. It is to become. Further, when the average pore diameter exceeds 150 μm and the porosity exceeds 80%, it is difficult to efficiently impregnate the thermosetting resin. Papermaking paper having such a porous state is laminated to a desired thickness, and if necessary, a compression treatment is performed to obtain a base material. In addition, if papermaking paper is preheated to a temperature of about 50 to 110 ° C. to remove the contained water and modify the surface, it improves the wettability with the resin liquid when impregnated with the resin liquid. Can do.

抄造紙を積層した基材には熱硬化性樹脂液を含浸するが、熱硬化性樹脂としては残炭率が40%以上のものが使用される。残炭率とは、樹脂を非酸化性雰囲気中で1000℃の温度で熱処理した時に残留する炭素分の重量割合を指し、これが40%未満の場合には生産性が低くなり、実用的でなくなる。このような熱硬化性樹脂としては、例えばフェノール樹脂、フラン樹脂、ポリイミド樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが例示される。   The base material on which the papermaking paper is laminated is impregnated with a thermosetting resin liquid. As the thermosetting resin, one having a residual carbon ratio of 40% or more is used. The residual carbon ratio refers to the weight ratio of carbon remaining when the resin is heat-treated at a temperature of 1000 ° C. in a non-oxidizing atmosphere, and if this is less than 40%, the productivity is low and impractical. . Examples of such thermosetting resins include phenol resins, furan resins, polyimide resins, urea resins, melamine resins, and unsaturated polyester resins.

これらの熱硬化性樹脂はアルコール、アセトンのような常用される有機溶媒に溶解して熱硬化性樹脂液が調製される。熱硬化性樹脂液の樹脂濃度は20〜70wt%に設定することが必要である。樹脂濃度が20wt%未満では熱硬化性樹脂の含浸量が少なくなり、ガラス状カーボンの収量が低下し、一方、70wt%を越えると基材の気孔中への含浸を円滑に行うことができず、気孔の閉塞が起こり易くなり、賦活化ガスの均一な拡散を阻害するため均一な賦活反応が進行し難いためである。なお、基材への熱硬化性樹脂液の含浸は浸漬、塗布など適宜な方法で行われる。   These thermosetting resins are dissolved in a commonly used organic solvent such as alcohol and acetone to prepare a thermosetting resin liquid. It is necessary to set the resin concentration of the thermosetting resin liquid to 20 to 70 wt%. If the resin concentration is less than 20 wt%, the amount of impregnation of the thermosetting resin decreases, and the yield of glassy carbon decreases. On the other hand, if the resin concentration exceeds 70 wt%, impregnation into the pores of the substrate cannot be performed smoothly. This is because pore clogging is likely to occur, and the uniform activation reaction is difficult to proceed because the uniform diffusion of the activation gas is inhibited. In addition, the impregnation of the thermosetting resin liquid into the substrate is performed by an appropriate method such as dipping or coating.

基材に含浸した熱硬化性樹脂液は、加熱して有機溶媒を除去するとともに樹脂分を硬化させる。加熱硬化処理はゆっくりと昇温して、例えば6時間で140℃程度の温度に加熱昇温することで行うことが好ましい。このようにして基材の気孔中には硬化樹脂が充填された成形体が得られる。   The thermosetting resin liquid impregnated in the substrate is heated to remove the organic solvent and harden the resin component. The heat curing treatment is preferably performed by slowly raising the temperature, for example, by heating to a temperature of about 140 ° C. in 6 hours. In this way, a molded body filled with the cured resin is obtained in the pores of the substrate.

この成形体を焼成炉に移し、常法により窒素、アルゴンなどの非酸化性雰囲気下で加熱処理して焼成炭化する。この焼成炭化処理時に樹脂成分はガラス状カーボンに転化するとともに、基材の紙成分の一部は揮散し、一部は繊維状炭化物として残留し、全体としてある程度の多孔性状を示す成形体が得られる。すなわち、この成形体において、抄造紙の一部から転化残留した繊維状炭化物は成形体の骨格として機能するので、多孔性状でありながら十分な強度の成形体とすることができる。   This molded body is transferred to a firing furnace and subjected to heat treatment in a non-oxidizing atmosphere such as nitrogen and argon by a conventional method to perform firing carbonization. During this calcination carbonization, the resin component is converted to glassy carbon, and part of the paper component of the base material is volatilized and part of it remains as a fibrous carbide, giving a molded body that exhibits a certain degree of porosity as a whole. It is done. That is, in this molded body, the fibrous carbides converted and remained from a part of the papermaking paper function as a skeleton of the molded body, so that a molded body having sufficient strength can be obtained while being porous.

次いで、焼成炭化処理した成形体は、水蒸気、炭酸ガスなどの賦活化ガス雰囲気中で熱処理して賦活化する。熱処理は600〜1500℃の温度域で賦活化処理することにより多孔質組織が形成される。   Next, the fired and carbonized molded body is activated by heat treatment in an activation gas atmosphere such as water vapor or carbon dioxide. The heat treatment is activated in a temperature range of 600 to 1500 ° C. to form a porous structure.

このようにして得られた多孔質組織のガラス状カーボン材は強度が弱化するので粉砕し易く、例えばボールミルなどの適宜な粉砕機により微粉砕することができる。そして、平均粒子径が1μm以下であり、比表面積が1000m2 /g以上であるガラス状カーボン微粉を製造することが可能となる。 Since the glassy carbon material having a porous structure thus obtained is weakened in strength, it can be easily pulverized, and can be finely pulverized by an appropriate pulverizer such as a ball mill. And it becomes possible to manufacture the glassy carbon fine powder whose average particle diameter is 1 micrometer or less and whose specific surface area is 1000 m < 2 > / g or more.

また、このガラス状カーボン微粉を製造するための本発明による第2の製造方法は、平均気孔径が50〜150μm、気孔率が50〜80%の多孔性状を有する抄造紙を積層して基材とし、該基材に残炭率40%以上の熱硬化性樹脂を有機溶媒に溶解した樹脂濃度20〜70wt%の熱硬化性樹脂液を含浸して加熱硬化した後、賦活化ガス雰囲気下600〜1500℃の温度に加熱して焼成炭化処理と賦活化処理を同時に行い、得られた多孔質ガラス状カーボン材を微粉砕することを特徴とする。   In addition, the second production method according to the present invention for producing the glassy carbon fine powder includes a base material obtained by laminating papermaking paper having a porous shape with an average pore diameter of 50 to 150 μm and a porosity of 50 to 80%. The base material is impregnated with a thermosetting resin solution having a resin concentration of 20 to 70 wt% in which a thermosetting resin having a residual carbon ratio of 40% or more is dissolved in an organic solvent and heat-cured, and then 600 in an activated gas atmosphere. It is characterized in that it is heated to a temperature of ˜1500 ° C. and simultaneously subjected to calcination carbonization treatment and activation treatment, and the resulting porous glassy carbon material is finely pulverized.

すなわち、第2の製造方法は、上記説明した第1の製造方法において、焼成炭化処理と賦活化処理とを同時に行うものであり、製造工程の簡素化を図ることができる。   That is, the second manufacturing method performs the firing carbonization treatment and the activation treatment at the same time in the above-described first manufacturing method, and simplifies the manufacturing process.

以下、本発明の実施例を比較例と対比して具体的に説明するが、本発明はこの実施例に制限されるものではない。   Hereinafter, although the Example of this invention is described concretely compared with a comparative example, this invention is not restrict | limited to this Example.

実施例1
α−セルロース分90%以上、太さ5.5デシテックス、長さ5mmのレーヨン級パルプ(大和紡績社製)80重量部と晒し針葉樹パルプ(NBKP)20重量部を混合し、水に分散させたのち長網式抄紙機を用いて抄紙した。得られた、平均気孔径110μm、気孔率50%の抄造紙を一辺900mmの正方形に切断し、その縦方向と横方向を交互に直交させて積層し、基材を作製した。
Example 1
80 parts by weight of rayon grade pulp (manufactured by Daiwabo Co., Ltd.) having an α-cellulose content of 90% or more, a thickness of 5.5 dtex, and a length of 5 mm was mixed with 20 parts by weight of bleached softwood pulp (NBKP) and dispersed in water. After that, paper was made using a long net paper machine. The obtained paper-making paper having an average pore diameter of 110 μm and a porosity of 50% was cut into a square having a side of 900 mm, and laminated with the vertical and horizontal directions alternately perpendicular to each other to prepare a substrate.

この基材を、残炭率45%のフェノール樹脂(住友デュレズ社製,スミライトレジンPR940)をエタノールに溶解した樹脂濃度50wt%のフェノール樹脂液に浸漬して、フェノール樹脂液を含浸したのち乾燥機に入れて60℃の温度で2時間保持してエタノールを揮散除去した後、0.5kg/cm2 の圧力で加圧しながら加熱し、80℃から20℃/hrの昇温速度で140℃に加熱して、フェノール樹脂を硬化した。 This base material is immersed in a phenol resin solution having a resin concentration of 50 wt% in which a phenol resin (Sumitrite Dures Co., Sumitrite Resin PR940) having a residual carbon ratio of 45% is dissolved in ethanol, impregnated with the phenol resin solution, and then dried. After being put in a machine and kept at a temperature of 60 ° C. for 2 hours to evaporate and remove ethanol, it is heated while being pressurized at a pressure of 0.5 kg / cm 2 , and 140 ° C. at a temperature rising rate of 80 ° C. to 20 ° C./hr. To cure the phenolic resin.

硬化後の成形体を窒素ガス雰囲気に保持された焼成炉に入れて1000℃の温度で焼成炭化処理し、次いで賦活炉に移し、炭酸ガス雰囲気下で950℃の温度で賦活化処理を施して多孔質ガラス状カーボン成形体を作製した。得られた多孔質ガラス状カーボン成形体をボールミルで12時間微粉砕して、ガラス状カーボン微粉を製造した。   The molded body after curing is placed in a firing furnace maintained in a nitrogen gas atmosphere, subjected to firing carbonization treatment at a temperature of 1000 ° C., then transferred to an activation furnace, and subjected to activation treatment at a temperature of 950 ° C. in a carbon dioxide atmosphere. A porous glassy carbon molded body was produced. The obtained porous glassy carbon molded body was finely pulverized for 12 hours with a ball mill to produce glassy carbon fine powder.

実施例2
α−セルロース分90%以上、太さ5.5デシテックス、長さ25mmのレーヨン級パルプ(大和紡績社製)80重量部と晒し針葉樹パルプ(NBKP)20重量部および水不溶性で熱揮散性のバインダーとしてビニロンバインダー(クラレ社製、VPB105)1重量部を水中で攪拌混合して均質に分散させたのち、連続抄紙装置を用いて連続シートに成形して乾燥した。
Example 2
80 parts by weight of rayon grade pulp (manufactured by Daiwa Boseki Co., Ltd.) having an α-cellulose content of 90% or more, a thickness of 5.5 dtex, and a length of 25 mm, and 20 parts by weight of bleached softwood pulp (NBKP) and a water-insoluble and heat-volatile binder As follows, 1 part by weight of vinylon binder (manufactured by Kuraray Co., Ltd., VPB105) was stirred and mixed in water to be uniformly dispersed, then formed into a continuous sheet using a continuous paper machine and dried.

得られた平均気孔径110μm、気孔率60%の連続シートを連続樹脂浸漬装置にセットし、案内ロールを介して残炭率45%のフェノール樹脂(住友デュレズ社製,スミライトレジンPR940)の20wt%アセトン溶液を満たした槽に連続的に通過させて、フェノール樹脂液を含浸し、引き続き0.2mmの間隙に調整した2本ロール間を通してロール絞り処理した。   The obtained continuous sheet having an average pore diameter of 110 μm and a porosity of 60% is set in a continuous resin dipping device, and 20 wt% of phenol resin (Sumitomo Dures Co., Sumitrite Resin PR940) having a residual carbon ratio of 45% through a guide roll. The solution was continuously passed through a tank filled with a% acetone solution, impregnated with a phenol resin solution, and subsequently subjected to a roll squeezing treatment between two rolls adjusted to a gap of 0.2 mm.

次いで、連続シートを100℃に保持された乾燥機を通過させて樹脂を半硬化したのち一辺900mmの正方形に切断して積層し、120℃の調整された均熱平面盤上で圧縮率65%になるまで圧縮成形して樹脂を完全に硬化した。   Next, the continuous sheet was passed through a dryer maintained at 100 ° C., and the resin was semi-cured, then cut into a square of 900 mm on each side and laminated, and the compression rate was 65% on a 120 ° C. adjusted soaking platen. The resin was completely cured by compression until

硬化後の成形体を賦活炉に入れ、炭酸ガス雰囲気下950℃の温度に加熱して、焼成炭化処理と賦活化処理を同時に施して多孔質ガラス状カーボン成形体を作製した。得られた多孔質ガラス状カーボン成形体をボールミルで12時間微粉砕して、ガラス状カーボン微粉を製造した。   The cured molded body was put in an activation furnace, heated to a temperature of 950 ° C. in a carbon dioxide atmosphere, and subjected to firing carbonization treatment and activation treatment at the same time to produce a porous glassy carbon molded body. The obtained porous glassy carbon molded body was finely pulverized for 12 hours with a ball mill to produce glassy carbon fine powder.

比較例1
フェノール樹脂(住友デュレズ社製,スミライトレジンPR940)を、ポリビニルアルコールを1%添加した1N塩酸水溶液中で3時間攪拌しながら懸濁重合を行い、樹脂粉末を調製した。得られた樹脂粉末を12N塩酸水溶液に浸漬して第1硬化処理を施し、引き続き大気中で加熱して第2硬化処理を行った。次いで、硬化処理後の樹脂粉末を窒素ガス雰囲気に保持された焼成炉に入れ、1000℃の温度で焼成炭化処理を行い、ガラス状カーボン粉末を製造した。
Comparative Example 1
A phenol resin (Sumitomo Durez, Sumilite Resin PR940) was subjected to suspension polymerization for 3 hours in a 1N aqueous hydrochloric acid solution to which 1% polyvinyl alcohol was added to prepare a resin powder. The obtained resin powder was immersed in a 12N aqueous hydrochloric acid solution to perform a first curing treatment, and subsequently heated in the atmosphere to perform a second curing treatment. Subsequently, the resin powder after the curing treatment was placed in a firing furnace maintained in a nitrogen gas atmosphere, and subjected to firing carbonization treatment at a temperature of 1000 ° C. to produce a glassy carbon powder.

比較例2
フェノール樹脂(住友デュレズ社製,スミライトレジンPR940)を型に流し込んで硬化して成形し、得られた成形体を窒素ガス雰囲気に保持された焼成炉に入れ、1000℃の温度で焼成炭化処理を行い、プレート状のガラス状カーボン成形体を得た。
Comparative Example 2
Phenol resin (Sumilite Resin PR940, manufactured by Sumitomo Durez Co., Ltd.) is poured into a mold, cured and molded, and the resulting molded product is placed in a firing furnace maintained in a nitrogen gas atmosphere and calcined at a temperature of 1000 ° C. To obtain a plate-like glassy carbon molded body.

このガラス状カーボン成形体を一辺10mmの立方体に切断し、奈良式粉砕機で粗粉砕した。粗粉砕したガラス状カーボンを、更にボールミルで12時間粉砕してガラス状カーボン粉末を製造した。   This glassy carbon molded body was cut into a cube having a side of 10 mm and roughly pulverized by a Nara type pulverizer. The coarsely pulverized glassy carbon was further pulverized with a ball mill for 12 hours to produce a glassy carbon powder.

比較例3
比較例1で得られたガラス状カーボン粉末を、炭酸ガス雰囲気下で950℃の温度で賦活化処理を施した。
Comparative Example 3
The glassy carbon powder obtained in Comparative Example 1 was subjected to an activation treatment at a temperature of 950 ° C. in a carbon dioxide atmosphere.

比較例4
実施例2において、レーヨン級パルプの長さを20mmに変えて平均気孔径40μm、気孔率60%の連続シートを作製し、フェノール樹脂をアセトンに溶解した樹脂濃度50wt%のフェノール樹脂液を用いた他は、実施例2と同じ方法によりガラス状カーボン微粉を製造した。
Comparative Example 4
In Example 2, a continuous sheet having an average pore diameter of 40 μm and a porosity of 60% was prepared by changing the length of rayon grade pulp to 20 mm, and a phenol resin solution having a resin concentration of 50 wt% in which phenol resin was dissolved in acetone was used. Others produced glassy carbon fine powder by the same method as Example 2.

比較例5
含浸したフェノール樹脂の樹脂濃度を80wt%に変えた他は、実施例2と同じ方法によりガラス状カーボン微粉を製造した。
Comparative Example 5
Glassy carbon fine powder was produced by the same method as in Example 2 except that the resin concentration of the impregnated phenol resin was changed to 80 wt%.

これらのガラス状カーボン粉末の平均粒子径および比表面積を測定して、その結果を製造条件と対比して表1に示した。   The average particle diameter and specific surface area of these glassy carbon powders were measured, and the results are shown in Table 1 in comparison with the production conditions.

Figure 2006069839
Figure 2006069839

Claims (3)

平均粒子径が1μm以下、比表面積が1000m2 /g以上であるガラス状カーボン微粉。 Glassy carbon fine powder having an average particle diameter of 1 μm or less and a specific surface area of 1000 m 2 / g or more. 平均気孔径が50〜150μm、気孔率が50〜80%の多孔性状を有する抄造紙を積層して基材とし、該基材に残炭率40%以上の熱硬化性樹脂を有機溶媒に溶解した樹脂濃度20〜70wt%の熱硬化性樹脂液を含浸して加熱硬化した後、非酸化性雰囲気下で加熱して焼成炭化処理し、次いで賦活化ガス雰囲気下600〜1500℃の温度に加熱して賦活化処理し、得られた多孔質ガラス状カーボン材を微粉砕するガラス状カーボン微粉の製造方法。 Laminated paper-making paper having an average pore diameter of 50 to 150 μm and porosity of 50 to 80% is used as a base material, and a thermosetting resin having a residual carbon ratio of 40% or more is dissolved in the base material in an organic solvent. After impregnating the thermosetting resin liquid having a resin concentration of 20 to 70 wt% and heat-curing, it is heated and calcined in a non-oxidizing atmosphere, and then heated to a temperature of 600 to 1500 ° C. in an activated gas atmosphere. The glassy carbon fine powder is produced by pulverizing the resulting porous glassy carbon material. 平均気孔径が50〜150μm、気孔率が50〜80%の多孔性状を有する抄造紙を積層して基材とし、該基材に残炭率40%以上の熱硬化性樹脂を有機溶媒に溶解した樹脂濃度20〜70wt%の熱硬化性樹脂液を含浸して加熱硬化した後、賦活化ガス雰囲気下600〜1500℃の温度に加熱して焼成炭化処理と賦活化処理を同時に行い、得られた多孔質ガラス状カーボン材を微粉砕するガラス状カーボン微粉の製造方法。 Laminated paper-making paper having an average pore diameter of 50 to 150 μm and porosity of 50 to 80% is used as a base material, and a thermosetting resin having a residual carbon ratio of 40% or more is dissolved in the base material in an organic solvent. Obtained by impregnating a thermosetting resin liquid having a resin concentration of 20 to 70 wt% and heat-curing, heating to a temperature of 600 to 1500 ° C. in an activation gas atmosphere, and simultaneously performing a calcination carbonization treatment and an activation treatment. A method for producing glassy carbon fine powder, wherein the porous glassy carbon material is finely pulverized.
JP2004255054A 2004-09-02 2004-09-02 Manufacturing method of glassy carbon fine powder Expired - Fee Related JP4665227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004255054A JP4665227B2 (en) 2004-09-02 2004-09-02 Manufacturing method of glassy carbon fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004255054A JP4665227B2 (en) 2004-09-02 2004-09-02 Manufacturing method of glassy carbon fine powder

Publications (2)

Publication Number Publication Date
JP2006069839A true JP2006069839A (en) 2006-03-16
JP4665227B2 JP4665227B2 (en) 2011-04-06

Family

ID=36150836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004255054A Expired - Fee Related JP4665227B2 (en) 2004-09-02 2004-09-02 Manufacturing method of glassy carbon fine powder

Country Status (1)

Country Link
JP (1) JP4665227B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283627A (en) * 1998-01-30 1999-10-15 Canon Inc Lithium secondary battery and manufacture thereof
JP2004014519A (en) * 2003-07-22 2004-01-15 Denso Corp Positive active material for secondary battery using nonaqueous solution as electrolyte, method of manufacturing positive electrode, and secondaey battery
JP2004079420A (en) * 2002-08-21 2004-03-11 Canon Inc Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell
JP2004171901A (en) * 2002-11-19 2004-06-17 Hitachi Maxell Ltd Nonaqueous secondary battery, negative electrode therefor, manufacturing method thereof, and electronic device using nonaqueous secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283627A (en) * 1998-01-30 1999-10-15 Canon Inc Lithium secondary battery and manufacture thereof
JP2004079420A (en) * 2002-08-21 2004-03-11 Canon Inc Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell
JP2004171901A (en) * 2002-11-19 2004-06-17 Hitachi Maxell Ltd Nonaqueous secondary battery, negative electrode therefor, manufacturing method thereof, and electronic device using nonaqueous secondary battery
JP2004014519A (en) * 2003-07-22 2004-01-15 Denso Corp Positive active material for secondary battery using nonaqueous solution as electrolyte, method of manufacturing positive electrode, and secondaey battery

Also Published As

Publication number Publication date
JP4665227B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
Dou et al. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation
TWI646049B (en) Porous carbon material, method for producing porous carbon material, electrode material, and adsorbent
US4894215A (en) Process for producing porous materials of carbon
KR101783446B1 (en) Method for preparation of hollow carbon capsule
Choma et al. Development of microporosity in mesoporous carbons
JP2006522733A (en) Molded porous material
KR20120137111A (en) Preparation method of core-shell silica particle with mesoporous shell
KR20170091739A (en) Porous carbon molded article
JP4665227B2 (en) Manufacturing method of glassy carbon fine powder
KR100813178B1 (en) Hollow graphitic nanocarbon using polymers incorporated with metal catalysts and Preparation method of it
JP2007091567A (en) Porous carbon material and its production method
JP4947352B2 (en) Method for producing porous carbon material
KR101477023B1 (en) Method for manufacturing carbon aerogel-polymer composite sheet and carbon aerogel-polymer composite sheet manufactured thereby
JP2008044816A (en) Porous carbon material production method
KR100392418B1 (en) Mesoporous Carbon/Metal Oxide Composite Materials And Preparing Method Thereof And Electrochemical Capacitors Using Them
JP2016056053A (en) Porous carbon material and production method of porous carbon material
JPH06206780A (en) Production of active porous carbonaceous structure
JP2006131452A (en) Method for producing glass-like carbon powder
JP2016145264A (en) Porous molded article, method for manufacturing the same, porous carbonized material, and porous active carbon
KR102382237B1 (en) Manufacturing method of carbon form shaped by mold
JPH05105414A (en) Production of high strength molded activated carbon
JP2002293631A (en) Glassy carbon porous body having high porosity and its manufacturing method
KR101884519B1 (en) Porous carbon material and manufacturing method thereof
JPH11139871A (en) Porous carbon material and its production
JPS6059171B2 (en) Method for manufacturing carbon products with dense and dense structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4665227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees