JP2006040633A - Electrode for fuel cell, its manufacturing method, and fuel cell using it - Google Patents

Electrode for fuel cell, its manufacturing method, and fuel cell using it Download PDF

Info

Publication number
JP2006040633A
JP2006040633A JP2004216051A JP2004216051A JP2006040633A JP 2006040633 A JP2006040633 A JP 2006040633A JP 2004216051 A JP2004216051 A JP 2004216051A JP 2004216051 A JP2004216051 A JP 2004216051A JP 2006040633 A JP2006040633 A JP 2006040633A
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst layer
polymer electrolyte
solid polymer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004216051A
Other languages
Japanese (ja)
Inventor
Shoichi Sasaki
晶市 佐々木
Koichi Uejima
浩一 上島
Hiroyuki Sonobe
宏幸 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004216051A priority Critical patent/JP2006040633A/en
Publication of JP2006040633A publication Critical patent/JP2006040633A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a fuel cell with a high utilization rate of catalyst, its manufacturing method, and a fuel cell using it. <P>SOLUTION: The electrode for the fuel cell is provided with a catalyst layer, and a gas diffusion layer fitted in that order on either face of a solid polymer electrolyte film, the catalyst layer contains carbon fiber with a content of the carbon fiber getting higher from the side near the solid polymer electrolyte film toward the gas diffusion layer side. The manufacturing method and the fuel cell using the same are also provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用電極、その製造方法及びそれを用いた燃料電池に関する。   The present invention relates to an electrode for a fuel cell, a method for producing the electrode, and a fuel cell using the same.

燃料電池は、電解質の種類により、固体高分子電解質型(PEFC)、りん酸型(PAFC)、溶融炭酸塩型(MCFC)、固体酸化物型(SOFC)、アルカリ型(AFC)等に分類できる。また、燃料の種類により、メタノール燃料電池、ヒドラジン燃料電池等に分類できる。
燃料電池は天然ガス、メタノール、ナフサ、石炭等の燃料を改質して得られる水素と、空気中の酸素から電気エネルギーを得る装置であり、クリーンで高い発電効率を得ることができる。近年、移動通信用、建築、土木工事用等の数100W程度の小型電源が注目され、ポータブル化の気運が高まっている。
Fuel cells can be classified into solid polymer electrolyte type (PEFC), phosphoric acid type (PAFC), molten carbonate type (MCFC), solid oxide type (SOFC), alkaline type (AFC), etc., depending on the type of electrolyte. . Moreover, it can classify | categorize into a methanol fuel cell, a hydrazine fuel cell, etc. according to the kind of fuel.
A fuel cell is a device that obtains electric energy from hydrogen obtained by reforming a fuel such as natural gas, methanol, naphtha, and coal, and oxygen in the air, and can obtain clean and high power generation efficiency. In recent years, attention has been paid to small power supplies of about several hundred watts for mobile communication, construction, civil engineering, and the like, and there is an increasing tendency to make them portable.

固体高分子電解質型燃料電池は、パーフルオロスルホン酸膜等のイオン交換膜を電解質とし、このイオン交換膜の両面にアノードとカソードの各電極を接合して構成され、アノードに水素、カソードに酸素を供給して電気化学反応により発電する装置である。各電極で生じる電気化学反応を下記に示す。
アノード: H2→2H++2e-
カソード: 1/2O2+2H++2e-→H2
全反応: H2+1/2O2→H2
この反応式から明らかなように、各電極での反応は、活物質であるガス(水素または酸素)、プロトン(H+)および電子(e-)の授受を同時に行うことのできる三相界面でのみ進行する。
A solid polymer electrolyte fuel cell has an ion exchange membrane such as a perfluorosulfonic acid membrane as an electrolyte, and anode and cathode electrodes are joined to both sides of the ion exchange membrane. The anode is hydrogen and the cathode is oxygen. Is a device that generates electricity through an electrochemical reaction. The electrochemical reaction occurring at each electrode is shown below.
Anode: H 2 → 2H + + 2e
Cathode: 1 / 2O 2 + 2H + + 2e → H 2 O
Total reaction: H 2 + 1 / 2O 2 → H 2 O
As is apparent from this reaction formula, the reaction at each electrode is carried out at a three-phase interface that can simultaneously exchange gas (hydrogen or oxygen), proton (H + ), and electron (e ) as active materials. Only progress.

このような機能を有する電極としては、固体高分子電解質とカーボン粒子及び触媒物質とを含んでなる固体高分子電解質−触媒複合電極がある。例えばこの電極は、触媒物質の担持されたカーボン粒子と固体高分子電解質とが混ざり合ってこれらが三次元に分布するとともに、内部に複数の細孔が形成された多孔性の電極であって、触媒の担体であるカーボンが電子伝導チャンネルを形成し、固体電解質がプロトン伝導チャンネルを形成し、細孔が、酸素または水素および生成物である水の供給排出チャンネルを形成するものである。そして電極内にこれら3つのチャンネルが三次元的に広がり、ガス、プロトン(H+)および電子(e-)の授受を同時に行うことのできる三相界面が無数に形成されて、電極反応の場が提供されている。 As an electrode having such a function, there is a solid polymer electrolyte-catalyst composite electrode comprising a solid polymer electrolyte, carbon particles, and a catalyst substance. For example, this electrode is a porous electrode in which carbon particles carrying a catalyst material and a solid polymer electrolyte are mixed and distributed three-dimensionally, and a plurality of pores are formed therein. The catalyst carrier carbon forms an electron conduction channel, the solid electrolyte forms a proton conduction channel, and the pores form a supply and discharge channel of oxygen or hydrogen and the product water. These three channels spread three-dimensionally in the electrode, and an infinite number of three-phase interfaces capable of simultaneously transferring gas, proton (H + ) and electron (e ) are formed. Is provided.

従来、このような構造を有する電極は、カーボン粒子担体に白金などの貴金属粒子を高分散に担持させた触媒担持カーボン粒子とPTFE(ポリテトラフルオロエチレン)粒子分散液よりなるペーストを高分子フィルムや導電性多孔質体のカーボン電極基材上に塗布あるいは噴霧により製膜(一般に乾燥膜厚3〜30μm)して加熱乾燥した後、固体高分子電解質溶液をこの上から塗布、含浸させる方法、触媒担持カーボン粒子とPTFE粒子と固体高分子電解質溶液よりなるペーストを高分子フィルムや導電性多孔質体のカーボン電極基材上に塗布あるいは噴霧により製膜(一般に乾燥膜厚3〜30μm)した後、加熱乾燥する方法、触媒担持カーボン粒子とPTFE粒子と固体高分子電解質溶液よりなるペーストを直接固体高分子電解質膜上に塗布あるいは噴霧により製膜(一般に乾燥膜厚3〜30μm)した後、加熱乾燥する方法等により作製されていた。なお、固体高分子電解質溶液としては、先に述べたイオン交換膜と同じ組成からなるものをアルコールに溶解し、液状にしたものが、PTFE粒子分散液としては、粒子径約0.23μmのPTFE粒子の分散液が用いられている。   Conventionally, an electrode having such a structure is obtained by using a polymer film or a paste made of a catalyst-supported carbon particle in which noble metal particles such as platinum are supported on a carbon particle carrier in a highly dispersed state and a PTFE (polytetrafluoroethylene) particle dispersion. A method of forming a film by applying or spraying on a carbon electrode substrate of a conductive porous body (generally a dry film thickness of 3 to 30 μm) and drying by heating, and then applying and impregnating a solid polymer electrolyte solution thereon, catalyst After a paste composed of supported carbon particles, PTFE particles and a solid polymer electrolyte solution is applied or sprayed onto a carbon electrode substrate of a polymer film or a conductive porous body (generally a dry film thickness of 3 to 30 μm), A method of heating and drying, a solid polymer electrolyte membrane directly made of catalyst-supported carbon particles, PTFE particles and a solid polymer electrolyte solution paste It was produced by a method such as heating and drying after forming a film by coating or spraying (generally a dry film thickness of 3 to 30 μm). As the solid polymer electrolyte solution, a solution having the same composition as the above-described ion exchange membrane dissolved in alcohol and liquefied is used as the PTFE particle dispersion, and PTFE having a particle diameter of about 0.23 μm. A dispersion of particles is used.

しかしながら、製膜する際に固体高分子電解質膜と触媒層をより強固に密着させるために熱プレス等により加熱圧縮するため、電極内の細孔が潰され、反応ガスの拡散速度が低下し、また、プロトン伝導チャンネルが電気的に孤立して電気化学反応に利用されず、その結果、触媒利用率が低下するという問題があった。
また、電解質膜の両面に触媒層及びガス拡散層を設けた燃料電池の接合体であって、該触媒層に繊維状炭素を含有させ、発電特性を向上させることが提案されている(例えば、特許文献1)。
However, in order to make the solid polymer electrolyte membrane and the catalyst layer more firmly adhere to each other when forming a film, heat compression is performed by a hot press or the like, so that the pores in the electrode are crushed, and the diffusion rate of the reaction gas is reduced. In addition, the proton conducting channel is electrically isolated and cannot be used for the electrochemical reaction, and as a result, the catalyst utilization rate is reduced.
Further, it is a fuel cell assembly in which a catalyst layer and a gas diffusion layer are provided on both surfaces of an electrolyte membrane, and it is proposed that the catalyst layer contains fibrous carbon to improve power generation characteristics (for example, Patent Document 1).

特開2003−115302JP 2003-115302 A

本発明の目的は、ミクロ的三次元構造を改善することにより、触媒の利用率の高い燃料電池用電極、その製造方法及びそれを用いた燃料電池を提供することにある。   An object of the present invention is to provide a fuel cell electrode having a high utilization rate of a catalyst, a method for producing the same, and a fuel cell using the same by improving a micro three-dimensional structure.

本発明は、以下の燃料電池用電極、その製造方法及びそれを用いた燃料電池を提供するものである。
1.固体高分子電解質膜の両面に触媒層及びガス拡散層をこの順に設けた燃料電池用電極において、該触媒層が炭素繊維を含むこと、及び該触媒層中の炭素繊維の含有量が、固体高分子電解質膜に近い側からガス拡散層側に向かって高くなっていることを特徴とする燃料電池用電極。
2.触媒層が、固体高分子電解質を含むことを特徴とする上記1記載の燃料電池用電極。
3.触媒層中の触媒物質が、白金族金属又はその合金であることを特徴とする上記1又は2記載の燃料電池用電極。
4.ガス拡散層形成材料が、撥水処理が施されたカーボン繊維織布またはカーボンペーパーであることを特徴とする上記1〜3のいずれか1項記載の燃料電池用電極。
5.固体高分子電解質膜の両面に触媒層及びガス拡散層をこの順に設けて燃料電池用電極を製造する方法において、該触媒層形成用組成物に炭素繊維を含有させ、該触媒層中の炭素繊維の含有量を、固体高分子電解質膜に近い側からガス拡散層側に向かって高くなるようにすることを特徴とする燃料電池用電極の製造方法。
6.触媒層形成用組成物として炭素繊維含有量の異なる少なくとも2種の組成物を準備し、固体高分子電解質膜の両面に、炭素繊維を含まない又は含有量の低い組成物を塗布し、ついで炭素繊維含有量の高い組成物を塗布することを特徴とする上記5記載の方法。
7.上記1〜4のいずれか1項記載の燃料電池用電極を用いた燃料電池。
8.上記5又は6記載の方法により製造された燃料電池用電極を用いた燃料電池。
The present invention provides the following electrode for a fuel cell, a method for producing the same, and a fuel cell using the same.
1. In a fuel cell electrode in which a catalyst layer and a gas diffusion layer are provided in this order on both sides of a solid polymer electrolyte membrane, the catalyst layer contains carbon fibers, and the content of carbon fibers in the catalyst layer is An electrode for a fuel cell, characterized in that the height increases from the side close to the molecular electrolyte membrane toward the gas diffusion layer side.
2. 2. The fuel cell electrode according to 1 above, wherein the catalyst layer contains a solid polymer electrolyte.
3. 3. The fuel cell electrode according to 1 or 2 above, wherein the catalyst substance in the catalyst layer is a platinum group metal or an alloy thereof.
4). 4. The fuel cell electrode according to any one of 1 to 3 above, wherein the gas diffusion layer forming material is a carbon fiber woven fabric or carbon paper subjected to a water repellent treatment.
5. In a method for producing a fuel cell electrode by providing a catalyst layer and a gas diffusion layer in this order on both sides of a solid polymer electrolyte membrane, the catalyst layer forming composition contains carbon fiber, and the carbon fiber in the catalyst layer The content of is increased from the side close to the solid polymer electrolyte membrane toward the gas diffusion layer side.
6). As the catalyst layer forming composition, at least two kinds of compositions having different carbon fiber contents are prepared, and a carbon fiber-free or low-content composition is applied to both surfaces of the solid polymer electrolyte membrane, and then carbon is added. 6. The method according to 5 above, wherein a composition having a high fiber content is applied.
7). 5. A fuel cell using the fuel cell electrode according to any one of 1 to 4 above.
8). 7. A fuel cell using the fuel cell electrode produced by the method according to 5 or 6 above.

本発明の燃料電池用電極は、その触媒層中に炭素繊維が偏在しているため、電極内の細孔が潰されず、ミクロ的三次元構造が維持され、触媒利用率の低下が少ない。従ってこれを用いた燃料電池は、これを含まない電極を用いた電池に比べ、出力電圧が高い。
本発明の燃料電池は移動通信用、建築、土木工事用等の数100W程度の小型電源のポータブル化に対応できる。
In the fuel cell electrode of the present invention, since carbon fibers are unevenly distributed in the catalyst layer, pores in the electrode are not crushed, a microscopic three-dimensional structure is maintained, and a decrease in catalyst utilization rate is small. Therefore, a fuel cell using this has a higher output voltage than a cell using an electrode that does not contain it.
The fuel cell of the present invention can be adapted to make a small power source of about several hundred watts for mobile communication, construction, civil engineering, etc. portable.

本発明における燃料電池用電極は、固体高分子電解質型(PEFC)、りん酸型(PAFC)、溶融炭酸塩型(MCFC)、固体酸化物型(SOFC)、アルカリ型(AFC)等のいずれの燃料電池にも使用できるが、特に固体高分子電解質型燃料電池に適している。   The fuel cell electrode in the present invention may be any of a solid polymer electrolyte type (PEFC), a phosphoric acid type (PAFC), a molten carbonate type (MCFC), a solid oxide type (SOFC), an alkaline type (AFC), and the like. Although it can be used for a fuel cell, it is particularly suitable for a solid polymer electrolyte fuel cell.

本発明に用いる固体高分子電解質膜としては、イオン交換樹脂膜からなるものが好ましく、特に、パーフルオロスルホン酸、スチレン−ジビニルベンゼン、熱硬化性樹脂または熱可塑性樹脂にスルホン酸またはリン酸型基を導入した高分子電解質膜が好ましい。
本発明の燃料電池用電極の触媒層は、固体高分子電解質と炭素繊維および触媒物質とを含んでなる固体高分子電解質−触媒複合物であって、固体高分子電解質と触媒粒子を担持したカーボン粒子及び炭素繊維とが混ざり合ってこれらが三次元に分布してなる、内部に複数の細孔が形成された多孔性の触媒層であって、触媒の担体であるカーボン粒子及び炭素繊維が電子伝導チャンネル、固体高分子電解質がプロトン伝導チャンネル、細孔が酸素または水素および生成物である水の供給排出チャンネルを形成するものである。
The solid polymer electrolyte membrane used in the present invention is preferably composed of an ion exchange resin membrane, and in particular, perfluorosulfonic acid, styrene-divinylbenzene, a thermosetting resin or a thermoplastic resin with a sulfonic acid or phosphoric acid group. A polymer electrolyte membrane into which is introduced is preferred.
The catalyst layer of the fuel cell electrode of the present invention is a solid polymer electrolyte-catalyst composite comprising a solid polymer electrolyte, carbon fiber, and a catalyst substance, and is a carbon carrying the solid polymer electrolyte and catalyst particles. A porous catalyst layer in which particles and carbon fibers are mixed and distributed three-dimensionally, and a plurality of pores are formed therein, and the carbon particles and carbon fibers that are the catalyst support are electrons A conduction channel, a solid polymer electrolyte forms a proton conduction channel, and pores form a supply and discharge channel of oxygen or hydrogen and a product water.

本発明に用いる電極触媒物質としては、白金、ロジウム、ルテニウム、イリジウム、パラジウム、オスミウムなどの白金族金属及びその合金が適している。これら触媒物質及び触媒物質の塩類を単独または混合して用いてもよい。特にこれらの中でも化合物の形態として、金属塩や錯体、特に[Pt(NH3)4]X2または[Pt(NH3)6]X4(Xは1価の陰イオン)で表されるアンミン錯体が好ましい。また、金属化合物を用いる場合、いくつかの化合物の混合物を用いても良いし、複塩でもよい。例えば、 白金化合物とルテニウム化合物を混ぜて用いることで、還元工程により、白金−ルテニウム合金の形成が期待できる。
触媒物質には活性の大きくなる適当な大きさがあり、この観点から上記接触面に担持される触媒物質の平均の大きさは2〜4nmにあるのが好ましい。
なお、K. Kinoshita等の研究(J. Electrochem. Soc., 137, 845(1990))では、酸素の還元に対して活性の高い白金の粒径は3nm程度であることが報告されている。また、カーボン粒子を混ぜ合わせることも可能であり、カーボン粒子としては触媒が高い活性を示すものが好ましく、例えば、白金族金属の化合物を用いる場合には、Denka Black(電気化学工業株式会社製)、Vulcan XC-72(Cabot Corporation製)、Black Pearl 2000(Cabot Corporation製)等のアセチレンブラック等を混ぜることもできる。
触媒層全体に対する触媒物質の含有量は、通常0.01〜10質量%、好ましくは0.3〜5質量%である。
As the electrode catalyst material used in the present invention, platinum group metals such as platinum, rhodium, ruthenium, iridium, palladium, osmium, and alloys thereof are suitable. These catalytic materials and salts of the catalytic materials may be used alone or in combination. In particular, among these compounds, the form of the compound is an ammine represented by a metal salt or complex, particularly [Pt (NH 3 ) 4 ] X 2 or [Pt (NH 3 ) 6 ] X 4 (X is a monovalent anion). Complexes are preferred. Moreover, when using a metal compound, the mixture of several compounds may be used and double salt may be sufficient. For example, by using a mixture of a platinum compound and a ruthenium compound, formation of a platinum-ruthenium alloy can be expected by a reduction process.
The catalyst material has an appropriate size for increasing the activity. From this viewpoint, the average size of the catalyst material supported on the contact surface is preferably 2 to 4 nm.
In addition, in a study by K. Kinoshita et al. (J. Electrochem. Soc., 137, 845 (1990)), it is reported that the particle size of platinum having a high activity with respect to oxygen reduction is about 3 nm. It is also possible to mix carbon particles, and the carbon particles preferably have high catalytic activity. For example, when a platinum group metal compound is used, Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd.) Acetylene black such as Vulcan XC-72 (Cabot Corporation), Black Pearl 2000 (Cabot Corporation), etc. can be mixed.
Content of the catalyst substance with respect to the whole catalyst layer is 0.01-10 mass% normally, Preferably it is 0.3-5 mass%.

本発明に用いる炭素繊維としては、特に強度、弾性率等、限定されないが、繊維長が触媒層の乾燥膜厚以下であることが好ましく、より好ましくは触媒層の乾燥膜厚の半分以下、さらに具体的には1〜30μmであることが好ましい。また、本発明に用いる炭素繊維の太さは、特に限定されないが、好ましくは0.001〜20μm、さらに好ましくは0.01〜10μmである。
触媒層全体に対する炭素繊維の含有量は、好ましくは0.01〜30質量%、さらに好ましくは0.01〜10質量%である。
本発明の電極において、炭素繊維は、触媒層中、固体高分子電解質膜に近い側からガス拡散層側に向かって高くなるように偏在している。炭素繊維の偏在の程度は、例えば、触媒層を厚み方向に2層に分けたときに、上半分の層中に炭素繊維が好ましくは0.1〜30質量%、さらに好ましくは0.5〜10質量%存在することが望ましい。
The carbon fiber used in the present invention is not particularly limited in terms of strength, elastic modulus, etc., but the fiber length is preferably less than or equal to the dry film thickness of the catalyst layer, more preferably less than or equal to half the dry film thickness of the catalyst layer, Specifically, it is preferably 1 to 30 μm. Moreover, the thickness of the carbon fiber used for this invention is although it does not specifically limit, Preferably it is 0.001-20 micrometers, More preferably, it is 0.01-10 micrometers.
The carbon fiber content with respect to the entire catalyst layer is preferably 0.01 to 30% by mass, more preferably 0.01 to 10% by mass.
In the electrode of the present invention, the carbon fibers are unevenly distributed in the catalyst layer so as to increase from the side close to the solid polymer electrolyte membrane toward the gas diffusion layer. For example, when the catalyst layer is divided into two layers in the thickness direction, the carbon fiber is preferably 0.1 to 30% by mass in the upper half layer, and more preferably 0.5 to 0.5%. It is desirable that it is 10% by mass.

本発明に用いる固体高分子電解質は、固体高分子電解質膜と同一の材料で構成してもよく、固体高分子電解質膜と同様にイオン交換樹脂からなるものが好ましく、パーフルオロスルホン酸、スチレン−ジビニルベンゼン、熱硬化性樹脂または熱可塑性樹脂にスルホン酸またはリン酸型基を導入した高分子電解質が好ましい。   The solid polymer electrolyte used in the present invention may be composed of the same material as the solid polymer electrolyte membrane, and is preferably made of an ion exchange resin as in the case of the solid polymer electrolyte membrane. Perfluorosulfonic acid, styrene- A polymer electrolyte obtained by introducing a sulfonic acid or phosphoric acid type group into divinylbenzene, a thermosetting resin, or a thermoplastic resin is preferable.

本発明に用いるガス拡散層を形成する多孔性基体としては、カーボン繊維織布、カーボンペーパー等をPTFEやテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体等のフッ素樹脂等の水分散液中に浸漬し、乾燥、焼成して撥水処理を施したものが挙げられる。   As the porous substrate for forming the gas diffusion layer used in the present invention, carbon fiber woven fabric, carbon paper, etc. are immersed in an aqueous dispersion such as PTFE or a fluororesin such as tetrafluoroethylene-hexafluoropropylene copolymer. And water-repellent treatment after drying and firing.

本発明の電極の製造方法としては、例えば、触媒層の第1層として触媒担持カーボン粒子とPTFE粒子と固体高分子電解質と水等の溶媒を含むペーストAを直接固体高分子電解質膜上に塗布あるいは噴霧により製膜した後、加熱乾燥し、その後、第2層として触媒担持カーボン粒子とPTFE粒子と固体高分子電解質と炭素繊維と水等の溶媒を含むペーストBを第1層の触媒層の上に直接、塗布あるいは噴霧により製膜した後、加熱乾燥し、炭素繊維が固体高分子電解質膜から外側に向けて、その存在量が多くなるように積層するような方法等により作製される。このときの触媒層全体の乾燥膜厚は3〜30μmになるように積層することが好ましい。炭素繊維の存在量の変化は、連続的でも段階的でもいずれでも良い。   As an electrode manufacturing method of the present invention, for example, paste A containing catalyst-carrying carbon particles, PTFE particles, a solid polymer electrolyte, and a solvent such as water is applied directly on the solid polymer electrolyte membrane as the first layer of the catalyst layer. Or after forming into a film by spraying and drying by heating, a paste B containing catalyst-carrying carbon particles, PTFE particles, solid polymer electrolyte, carbon fiber and water as a second layer is then formed on the catalyst layer of the first layer. The film is directly formed on the film by coating or spraying, and then dried by heating, and the carbon fiber is laminated so that the abundance thereof increases from the solid polymer electrolyte film to the outside. It is preferable to laminate | stack so that the dry film thickness of the whole catalyst layer at this time may be set to 3-30 micrometers. The change in the amount of carbon fiber may be continuous or stepwise.

本発明における固体高分子電解質燃料電池用電極は、固体高分子電解質に一体に形成した触媒層面に、撥水処理が施されたガス拡散層材料を熱プレス等により、加熱圧着し、接合したものである。   The electrode for a solid polymer electrolyte fuel cell according to the present invention is obtained by bonding a gas diffusion layer material subjected to water repellent treatment to a catalyst layer surface integrally formed with the solid polymer electrolyte by hot pressing or the like and joining them. It is.

本発明の電極を用いた燃料電池としては、例えば、直接メタノール供給型燃料電池(DMFC)が挙げられる。本発明の電極の両面にアノード極、カソード極を夫々設けたセルと、前記各極背面にメタノール燃料室、カソードガス室を設けることにより、本発明の燃料電池を得ることができる。   Examples of the fuel cell using the electrode of the present invention include a direct methanol supply type fuel cell (DMFC). The fuel cell of the present invention can be obtained by providing a cell having an anode electrode and a cathode electrode on both surfaces of the electrode of the present invention and a methanol fuel chamber and a cathode gas chamber on the back of each electrode.

以下、本発明を実施例により説明する。
[実施例1]
触媒担持カーボン粒子(田中貴金属株式会社製、TEC10V30E:Vulcan XC-72(Cabot Corporation製)に白金を30質量%担持)1g、固体高分子電解質(アルドリッチ社製、ナフィオン(登録商標)の5質量%溶液)10g、水2gからなる触媒ペーストA−1を、ホットプレート上に配置した固体高分子電解質膜(デュポン社製、ナフィオン(登録商標)112)(長さ100mm幅100mm厚さ50μm)にアプリケータを用いて直接、積層した。次いで、触媒ペーストA−1(13g)に繊維長15μmの炭素繊維0.5gを配合した触媒ペーストA−2を同様の方法で触媒(A−1)層上に積層した。得られた触媒層Aの乾燥膜厚は25μmで、触媒層A中の白金の担持量は1.3mg/cm2であった。
さらに、触媒層Aが形成された固体高分子電解質膜の触媒層A側の反対面に、触媒担持カーボン粒子(田中貴金属株式会社製、TEC61V33:Vulcan XC-72(Cabot Corporation製)に白金/ルテニウム合金を30質量%担持)1g、固体高分子電解質(アルドリッチ社製、ナフィオン(登録商標)5質量%溶液)10g、水2gからなる触媒ペーストB−1を、同様の方法で積層し、次いで、触媒ペーストB−1に繊維長15μmの炭素繊維0.5gを配合した触媒ペーストB−2を同様の方法で触媒(B−1)層上に積層した。得られた触媒層Bの乾燥膜厚は30μmで、触媒層B中の白金の担持量は1.4mg/cm2であった。
Hereinafter, the present invention will be described with reference to examples.
[Example 1]
1 g of catalyst-supported carbon particles (Tanaka Kikinzoku Co., Ltd., TEC10V30E: Vulcan XC-72 (Cabot Corporation) carries 30% by mass of platinum), solid polymer electrolyte (Aldrich, 5% by mass of Nafion (registered trademark)) Solution) A catalyst paste A-1 consisting of 10 g and 2 g of water was applied to a solid polymer electrolyte membrane (manufactured by DuPont, Nafion (registered trademark) 112) (length 100 mm, width 100 mm, thickness 50 μm) placed on a hot plate. The film was directly laminated using a mask. Next, catalyst paste A-2 in which 0.5 g of carbon fiber having a fiber length of 15 μm was blended with catalyst paste A-1 (13 g) was laminated on the catalyst (A-1) layer in the same manner. The resulting catalyst layer A had a dry film thickness of 25 μm, and the amount of platinum supported in the catalyst layer A was 1.3 mg / cm 2 .
Further, on the opposite surface of the solid polymer electrolyte membrane with the catalyst layer A formed on the catalyst layer A side, catalyst-supporting carbon particles (manufactured by Tanaka Kikinzoku Co., Ltd., TEC61V33: Vulcan XC-72 (manufactured by Cabot Corporation) with platinum / ruthenium A catalyst paste B-1 comprising 1 g of an alloy (supporting 30% by mass), 10 g of a solid polymer electrolyte (manufactured by Aldrich, Nafion (registered trademark) 5% by mass) and 2 g of water was laminated in the same manner, Catalyst paste B-2 in which 0.5 g of carbon fiber having a fiber length of 15 μm was blended with catalyst paste B-1 was laminated on the catalyst (B-1) layer in the same manner. The resulting catalyst layer B had a dry film thickness of 30 μm, and the amount of platinum supported in the catalyst layer B was 1.4 mg / cm 2 .

[実施例2]
実施例1で作製した触媒層A及びBが積層された固体高分子電解質膜を100℃で5分熱プレスにより、加熱圧着し、さらにPTFEで撥水処理が施されたカーボンペーパーを両面から挟み込み、再度、100℃で5分熱プレスすることで、固体高分子電解質燃料電池用電極を得た。
[Example 2]
The solid polymer electrolyte membrane on which the catalyst layers A and B prepared in Example 1 were laminated was heat-pressed by hot pressing at 100 ° C. for 5 minutes, and carbon paper subjected to water repellent treatment with PTFE was sandwiched from both sides. Then, the electrode for a solid polymer electrolyte fuel cell was obtained by performing heat press again at 100 ° C. for 5 minutes.

[実施例3]
実施例2で得た固体高分子電解質燃料電池用電極の両面にアノード極、カソード極を夫々設けてセルを作製し、前記各極背面にメタノール燃料室、カソードガス室を設けた燃料電池を作製し、その電気化学的評価を行った。結果を図1に示す。
[Example 3]
A cell was prepared by providing an anode electrode and a cathode electrode on both sides of the solid polymer electrolyte fuel cell electrode obtained in Example 2, and a fuel cell was prepared by providing a methanol fuel chamber and a cathode gas chamber on the back of each electrode. Then, the electrochemical evaluation was performed. The results are shown in FIG.

[比較例1]
実施例1において、炭素繊維を含まない触媒ペーストA−1及びB−1のみを用いて触媒層A(乾燥膜厚25μm)及び触媒層B(乾燥膜厚30μm)を作製し、さらに実施例2と同様の方法で固体高分子電解質燃料電池用電極とした後、実施例3と同様に燃料電池を作製し、その電気化学的評価を行った。結果を図1に示す。
[Comparative Example 1]
In Example 1, a catalyst layer A (dry film thickness 25 μm) and a catalyst layer B (dry film thickness 30 μm) were prepared using only catalyst pastes A-1 and B-1 not containing carbon fiber, and Example 2 was further performed. Then, a solid polymer electrolyte fuel cell electrode was prepared in the same manner as described above, and then a fuel cell was produced in the same manner as in Example 3 and its electrochemical evaluation was performed. The results are shown in FIG.

[比較例2]
実施例1において、炭素繊維を含まない触媒ペーストA−1のみを用いて触媒層A(乾燥膜厚25μm)を作製し、炭素繊維を含むペーストB−2のみを用いて触媒層B(乾燥膜厚30μm)を作製し、さらに実施例2と同様の方法で固体高分子電解質燃料電池用電極とした後、実施例3と同様に燃料電池を作製し、その電気化学的評価を行った。結果を図1に示す。
[Comparative Example 2]
In Example 1, the catalyst layer A (dry film thickness 25 μm) was prepared using only the catalyst paste A-1 containing no carbon fiber, and the catalyst layer B (dry film) using only the paste B-2 containing carbon fiber. 30 μm) was prepared, and the electrode for a solid polymer electrolyte fuel cell was formed in the same manner as in Example 2. Then, a fuel cell was prepared in the same manner as in Example 3, and the electrochemical evaluation was performed. The results are shown in FIG.

図1より、本発明の燃料電池は、触媒層に炭素繊維を含まない電極を用いた電池(比較例1)及び触媒層の炭素繊維が偏在していない電極を用いた電池(比較例2)と比較して、出力電圧が高いことがわかる。これは、本発明の触媒層に炭素繊維が偏在しているため、触媒層内の細孔が潰されず、ミクロ的三次元構造が維持されるために、触媒利用率の低下が少なく、高性能な燃料電池が得られることを示している。   As shown in FIG. 1, the fuel cell of the present invention includes a battery using an electrode not containing carbon fibers in a catalyst layer (Comparative Example 1) and a battery using an electrode in which carbon fibers in the catalyst layer are not unevenly distributed (Comparative Example 2). It can be seen that the output voltage is higher than This is because the carbon fiber is unevenly distributed in the catalyst layer of the present invention, the pores in the catalyst layer are not crushed, and the microscopic three-dimensional structure is maintained, so that the catalyst utilization rate is reduced and high performance is achieved. This shows that a simple fuel cell can be obtained.

実施例3及び比較例1及び2の電流−電圧特性を示す。The current-voltage characteristics of Example 3 and Comparative Examples 1 and 2 are shown.

Claims (8)

固体高分子電解質膜の両面に触媒層及びガス拡散層をこの順に設けた燃料電池用電極において、該触媒層が炭素繊維を含むこと、及び該触媒層中の炭素繊維の含有量が、固体高分子電解質膜に近い側からガス拡散層側に向かって高くなっていることを特徴とする燃料電池用電極。   In a fuel cell electrode in which a catalyst layer and a gas diffusion layer are provided in this order on both sides of a solid polymer electrolyte membrane, the catalyst layer contains carbon fibers, and the content of carbon fibers in the catalyst layer is An electrode for a fuel cell, characterized in that the height increases from the side close to the molecular electrolyte membrane toward the gas diffusion layer side. 触媒層が、固体高分子電解質を含むことを特徴とする請求項1記載の燃料電池用電極。   The fuel cell electrode according to claim 1, wherein the catalyst layer contains a solid polymer electrolyte. 触媒層中の触媒物質が、白金族金属又はその合金であることを特徴とする請求項1又は2記載の燃料電池用電極。   3. The fuel cell electrode according to claim 1, wherein the catalyst substance in the catalyst layer is a platinum group metal or an alloy thereof. ガス拡散層形成材料が、撥水処理が施されたカーボン繊維織布またはカーボンペーパーであることを特徴とする請求項1〜3のいずれか1項記載の燃料電池用電極。   The fuel cell electrode according to any one of claims 1 to 3, wherein the gas diffusion layer forming material is a carbon fiber woven fabric or carbon paper subjected to a water repellent treatment. 固体高分子電解質膜の両面に触媒層及びガス拡散層をこの順に設けて燃料電池用電極を製造する方法において、該触媒層形成用組成物に炭素繊維を含有させ、該触媒層中の炭素繊維の含有量を、固体高分子電解質膜に近い側からガス拡散層側に向かって高くなるようにすることを特徴とする燃料電池用電極の製造方法。   In a method for producing a fuel cell electrode by providing a catalyst layer and a gas diffusion layer in this order on both sides of a solid polymer electrolyte membrane, the catalyst layer forming composition contains carbon fiber, and the carbon fiber in the catalyst layer The content of is increased from the side close to the solid polymer electrolyte membrane toward the gas diffusion layer side. 触媒層形成用組成物として炭素繊維含有量の異なる少なくとも2種の組成物を準備し、固体高分子電解質膜の両面に、炭素繊維を含まない又は含有量の低い組成物を塗布し、ついで炭素繊維含有量の高い組成物を塗布することを特徴とする請求項5記載の方法。   As the catalyst layer forming composition, at least two kinds of compositions having different carbon fiber contents are prepared, and a carbon fiber-free or low-content composition is applied to both surfaces of the solid polymer electrolyte membrane, and then carbon is added. 6. The method according to claim 5, wherein a composition having a high fiber content is applied. 請求項1〜4のいずれか1項記載の燃料電池用電極を用いた燃料電池。   A fuel cell using the fuel cell electrode according to any one of claims 1 to 4. 請求項5又は6記載の方法により製造された燃料電池用電極を用いた燃料電池。   A fuel cell using a fuel cell electrode produced by the method according to claim 5.
JP2004216051A 2004-07-23 2004-07-23 Electrode for fuel cell, its manufacturing method, and fuel cell using it Pending JP2006040633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216051A JP2006040633A (en) 2004-07-23 2004-07-23 Electrode for fuel cell, its manufacturing method, and fuel cell using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216051A JP2006040633A (en) 2004-07-23 2004-07-23 Electrode for fuel cell, its manufacturing method, and fuel cell using it

Publications (1)

Publication Number Publication Date
JP2006040633A true JP2006040633A (en) 2006-02-09

Family

ID=35905407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216051A Pending JP2006040633A (en) 2004-07-23 2004-07-23 Electrode for fuel cell, its manufacturing method, and fuel cell using it

Country Status (1)

Country Link
JP (1) JP2006040633A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258057A (en) * 2007-04-06 2008-10-23 Asahi Glass Co Ltd Membrane electrode assembly for solid polymer fuel cell
WO2019088027A1 (en) * 2017-10-31 2019-05-09 凸版印刷株式会社 Electrode catalyst layer, membrane-electrode assembly and method for producing electrode catalyst layer
WO2020022191A1 (en) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 Cathode catalyst layer of fuel cell, and fuel cell
JPWO2020202492A1 (en) * 2019-04-03 2021-10-14 三菱電機株式会社 Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258057A (en) * 2007-04-06 2008-10-23 Asahi Glass Co Ltd Membrane electrode assembly for solid polymer fuel cell
WO2019088027A1 (en) * 2017-10-31 2019-05-09 凸版印刷株式会社 Electrode catalyst layer, membrane-electrode assembly and method for producing electrode catalyst layer
CN111226335A (en) * 2017-10-31 2020-06-02 凸版印刷株式会社 Electrode catalyst layer, membrane-electrode assembly, and method for producing electrode catalyst layer
WO2020022191A1 (en) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 Cathode catalyst layer of fuel cell, and fuel cell
US11799092B2 (en) 2018-07-25 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Cathode catalyst layer of fuel cells, and fuel cell
JPWO2020202492A1 (en) * 2019-04-03 2021-10-14 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
US7226689B2 (en) Method of making a membrane electrode assembly for electrochemical fuel cells
US8338059B2 (en) Hybrid membrane-electrode assembly with minimal interfacial resistance and preparation method thereof
JP2006054165A (en) Polymer fuel electrolyte cell and manufacturing method of polymer electrolyte fuel cell
JP2004006369A (en) Method for manufacturing membrane electrode assembly using membrane coated with catalyst
JP3778506B2 (en) Electrode for polymer electrolyte fuel cell
JP5766401B2 (en) Fuel cell assembly
JP5082239B2 (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
JP2009117248A (en) Fuel cell
JP5669432B2 (en) Membrane electrode assembly, fuel cell, and fuel cell activation method
JP2004079420A (en) Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell
US20110024294A1 (en) Method for making membrane fuel cell electrodes by low-voltage electrophoretic deposition of carbon nanomaterial-supported catalysts
JP4180556B2 (en) Polymer electrolyte fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP5481297B2 (en) Membrane electrode assembly and fuel cell
KR20100068028A (en) Catalyst layer for fuel cell and method for preparing the same
JP5298303B2 (en) Membrane electrode assembly and fuel cell
JP2006040633A (en) Electrode for fuel cell, its manufacturing method, and fuel cell using it
JP2004273255A (en) Method for manufacturing membrane electrode assembly for fuel cell
JP5535773B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP2006079917A (en) Mea for fuel cell, and fuel cell using this
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
JP3619826B2 (en) Fuel cell electrode and fuel cell
JP2001185162A (en) Fuel cell and its manufacturing method
JP2010073419A (en) Electrolyte membrane-electrode assembly for fuel cell