JP4649094B2 - Manufacturing method of membrane electrode assembly for fuel cell - Google Patents

Manufacturing method of membrane electrode assembly for fuel cell Download PDF

Info

Publication number
JP4649094B2
JP4649094B2 JP2003061927A JP2003061927A JP4649094B2 JP 4649094 B2 JP4649094 B2 JP 4649094B2 JP 2003061927 A JP2003061927 A JP 2003061927A JP 2003061927 A JP2003061927 A JP 2003061927A JP 4649094 B2 JP4649094 B2 JP 4649094B2
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst layer
catalyst
proton
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003061927A
Other languages
Japanese (ja)
Other versions
JP2004273255A (en
Inventor
直人 三宅
雅信 脇添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2003061927A priority Critical patent/JP4649094B2/en
Publication of JP2004273255A publication Critical patent/JP2004273255A/en
Application granted granted Critical
Publication of JP4649094B2 publication Critical patent/JP4649094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子形燃料電池用の膜電極接合体に関するものである。
【0002】
【従来の技術】
燃料電池は、電池内で、水素やメタノール等を電気化学的に酸化することにより、燃料の化学エネルギーを、直接、電気エネルギーに変換して取り出すものであり、クリーンな電気エネルギー供給源として注目されている。特に、固体高分子形燃料電池は、他と比較して低温で作動することから、自動車代替動力源や家庭用コジェネレーションシステム、携帯用発電機として期待されている。
【0003】
かかる固体高分子形燃料電池には、少なくともプロトン交換膜を介してアノードとしての触媒層とカソードとしての触媒層が対向するように接合した膜電極接合体(MEA)が備えられている。場合によっては、さらに上記のMEAを一対のガス拡散層で挟み込んだ構造として固体高分子形燃料電池に用いる場合もある。なお、アノード及びカソードとしての触媒層とガス拡散層とが積層した部分を一般的にガス拡散電極と呼ぶ。
【0004】
アノード及びカソードとして用いる触媒層は、従来、触媒粒子を担持させたカーボンブラックの粉末とプロトン伝導性を有するポリマーからなる混合物をシート化して用いる場合が多く、得られた触媒層は例えばプロトン交換膜と交互に重ねた後に熱プレスにより接合される。
上記のMEAはアノード側に燃料(例えば水素)、カソード側に酸化剤(例えば酸素や空気)をそれぞれ供給し、外部回路で接続することにより燃料電池として作動する。
【0005】
具体的には、水素を燃料とした場合、アノード側の触媒上にて水素が酸化されてプロトンが生じ、このプロトンがアノード側の触媒層内のプロトン伝導性ポリマー部を通った後、プロトン交換膜内を移動し、カソード側の触媒層内のプロトン伝導性ポリマー部を通ってカソード側の触媒上に達する。一方、水素の酸化によりプロトンと同時に生じた電子は外部回路を通ってカソード側に到達し、カソード側の触媒上で上記プロトンと酸化剤として存在する酸素と反応して水が生成され、このとき発電が生じるために電気エネルギーを取り出すことができる。
【0006】
このような固体高分子形燃料電池の発電性能は、プロトン交換膜、アノード及びカソードのガス拡散電極が適度に水分を含んでいる事が望ましい。
プロトン交換膜が乾燥すると、そのプロトン伝導度が著しく低下し、電池の内部抵抗が増大して発電性能が低下するからである。また、ガス拡散電極が乾燥すると、ガス拡散電極内のプロトン伝導性ポリマーが乾燥することとなりガス拡散電極の内部抵抗が増大し、過電圧も上昇するため発電性能が低下する。
【0007】
特にアノード側では、プロトン交換膜中をアノード側からカソード側に向かってプロトンが移動する際に水分子を同伴するため、水分量の影響を受けやすく、適度な水分量が無い場合には、アノード側の水分が早く欠乏するためアノード側のプロトン伝導性ポリマーは乾燥し、プロトンの移動を低下させるとともに、プロトン交換膜内に水濃度勾配が生じ、同様にプロトン伝導度の低下を引き起こす。
【0008】
一般には燃料電池のシステムには上記した適度な水分量を確保する為に加湿装置を配置する場合が多い。しかしながら、燃料電池システムの簡略化という観点からは加湿装置を用いない、もしくはわずかな加湿でも発電性能を発揮する燃料電池が望ましい。即ち、MEAの保水性を高めて発電性能を発揮する燃料電池が望まれている。
MEAの保水性を高めるために、触媒層に吸収性材料を含有させる方法として、吸水性の微細粒子状及び/又は繊維状シリカをアノード触媒層及び/又はカソード触媒層に含有させる方法(例えば、特許文献1、特許文献2参照)、またMEAのプロトン交換膜の保水性を高める方法として吸水性の微細粒子状及び/又は繊維状シリカをプロトン交換膜に含有させる方法(例えば、特許文献3参照)が検討されている。
【0009】
しかしながら、上記のいずれの方法においても用いられる吸水性材料はその形状が粒子状又は繊維状であったため保水性を向上させると同時に、電気抵抗の増大とガス透過性の低下を招いていた。また、保水性を高めるために添加量を増やすと、触媒層及びプロトン交換膜が脆くなるとともに、プロトン交換膜に触媒層を添着できないといった問題があった。従って、水分管理はまだ実用上、十分に容易になったとはいえず、低加湿条件下で燃料電池を運転しても、その効果は小さかった。
そこで、非定形の吸水性材料を均一に分散させる方法として、ゾルゲル反応を利用して製造した膜(以下、ゾルゲル膜と称する)をプロトン交換膜に用いることが報告されている(例えば非特許文献1参照)。
【0010】
具体的には、ナフィオン(登録商標、デュポン社製)に代表されるパーフルオロスルホン酸膜をまずメタノール等のアルコール水溶液に含浸し膨潤させた後、金属アルコキシドであるテトラエトキシシランとアルコールの混合溶媒を添加して、パーフルオロスルホン酸膜中の酸性基であるスルホン酸基の触媒作用によりテトラエトキシシランを加水分解・重縮合反応させて、パーフルオロスルホン酸膜中に非定形のシリカを均一に生成させたゾルゲル膜をプロトン交換膜とするものである。
しかしながら、この方法で得られたゾルゲル膜はプロトン交換膜としてのみ用いられるものであり、燃料電池用の膜電極接合体として発電性能を評価した場合には発電性能の向上は不十分であった。すなわち、プロトン交換膜中に非定形の吸水性材料を含有させるだけでは、低湿度下での燃料電池運転においてその効果は小さかった。
【0011】
【特許文献1】
特開平6−111827号公報
【特許文献2】
特開2001−11219号公報
【特許文献3】
特開平6−111834号公報
【非特許文献1】
K. A. Mauritz, R. F. Storey and C. K. Jones, in Multiphase Polymer Materials: Blends and Ionomers, L. A. Utracki and R. A. Weiss, Editors, ACS Symposium Series No. 395, p. 401, American Chemical Society, Washington, DC (1989)
【0012】
【発明が解決しようとする課題】
即ち、本発明の目的は、高温低加湿条件下で燃料電池を運転する場合において、良好な発電性能を得られる電極触媒層の製造方法の提供にある。
【0013】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、非定形の金属酸化物を含有する膜電極接合体が、電気抵抗の増大とガス透過性の低下を招くことがなく、高温低加湿条件下での燃料電池の発電性能を向上させることができることを見出した。
ここで、非定形とは、粒子状、繊維状のものが目視されず、定まった形状を有しないことを言い、高温低加湿とは、81℃〜200℃、1RH%〜90RH%のことであり、特には90℃〜150℃、10RH%〜60RH%のことを言う。
【0014】
即ち、本発明は、
(1)導電性粒子上に触媒粒子が担持された複合粒子とプロトン伝導性ポリマーとを含有する触媒組成物を用いて、プロトン交換膜上に触媒層を形成してなる接合体の該触媒層に、金属酸化物前駆体を含浸させた後、引き続き該前駆体を加水分解・重縮合反応させて、接合体の該触媒層中のプロトン伝導性ポリマー中のプロトン交換基が会合したイオンクラスターの近傍に選択的に金属酸化物を形成することを特徴とする燃料電池用の膜電極接合体の製造方法、
(2)上記(1)に記載の製造方法から得られる膜電極接合体を備えることを特徴とする固体高分子形燃料電池、
によって初めて電気抵抗の増大とガス透過性の低下を招くことがなく、高温低加湿条件下での燃料電池の発電性能を向上させることができたのである。
【0015】
以下に、本発明の燃料電池用の膜電極接合体の製造方法を詳細に説明する。
本発明の燃料電池用の膜電極接合体の製造方法は、概略、プロトン交換膜をアノード触媒層及びカソード触媒層で挟み込んだ構造の接合体とする接合体形成工程(1)と、上記接合体に金属酸化物前駆体を含浸させて、引き続き金属酸化物前駆体を加水分解及び重縮合反応して非定形の金属酸化物とする金属酸化物添加工程(2)からなる。
【0016】
以下、各工程ごとに詳細に説明する。
(1)接合体形成工程について
本工程で用いる触媒層は、導電性粒子上に触媒粒子が担持された複合粒子とプロトン伝導性ポリマーを含有する触媒組成物から形成される。
導電性粒子としては、導電性を有するものであれば何でもよく、例えばファーネスブラック、チャンネルブラック、アセチレンブラック等のカーボンブラック、活性炭、黒鉛、各種金属が用いられる。これら導電性粒子の粒子径としては、好ましくは10オングストローム以上10μm以下、より好ましくは50オングストローム以上1μm以下、最も好ましくは100オングストローム以上5000オングストローム以下である。
【0017】
触媒粒子は、アノードでは燃料(例えば水素)を酸化して容易にプロトンを生ぜしめ、カソードではプロトン及び電子と酸化剤(例えば酸素や空気)を反応させて水を生成させる機能を有する。触媒の種類には制限がないが、白金が好ましく用いられる。CO等の不純物に対する白金の耐性を強化するために、白金にルテニウム等を添加又は合金化した触媒が好ましく用いられる。
触媒粒子の粒子径は限定されないが、10オングストローム以上1000オングストローム以下が好ましく、より好ましくは10オングストローム以上500オングストローム以下、最も好ましくは15オングストローム以上100オングストローム以下である。
【0018】
電極面積に対する触媒粒子の担持量は、電極触媒層を形成した状態で、好ましくは0.001mg/cm以上10mg/cm以下、より好ましくは0.01mg/cm以上5mg/cm以下、最も好ましくは0.1mg/cm以上1mg/cm以下である。
上記複合粒子は、上記導電性粒子上に上記触媒粒子が担持されたものであり、その担持率(複合粒子100g中に含まれる触媒粒子の重量)としては、好ましくは1質量%以上99質量%以下、より好ましくは10質量%以上80質量%以下、最も好ましくは30質量%以上60質量%以下である。
【0019】
本発明で用いることができる複合粒子は、Pt(NH3)4Cl2等の白金錯体を炭素粒子に含浸させ、ヒドラジン等により化学的に還元する方法等の公知の技術で製造可能である。したがって、上記条件を満足する限りにおいて市販のものでも構わず、具体的な例としては、デグッサ(株)社製F101RA/W、田中貴金属工業(株)社製TEC10E40E等が挙げられる。
次に、本発明で用いる触媒組成物に含有されるプロトン伝導性ポリマーについて説明する。
【0020】
本発明に用いるプロトン伝導性ポリマーは、プロトン伝導性のある官能基を有するポリマーである。プロトン伝導性のある官能基としては、例えばスルホン酸基、カルボン酸基、ホスホン酸基、リン酸基等が挙げられる。ポリマーの骨格としては、例えば、ポリオレフィン、ポリスチレンのような炭化水素系重合体、パーフルオロカーボン重合体等が挙げられる。中でも、耐酸化性や耐熱性に優れた下記式(1)で表されるパーフルオロカーボン重合体が好ましい。
-[CF2CX1X2]a-[CF2-CF(-O-(CF2-CF(CF2X3))b-Oc-(CFR1)d-(CFR2)e-(CF2)f-X4)]g- (1)
(式中X1,X2及びX3はそれぞれ独立にハロゲン元素又は炭素数1以上3以下のパーフルオロアルキル基、aは0以上20以下、bは0以上8以下の整数、cは0又は1、d,e及びfはそれぞれ独立に0以上6以下の整数(但し、d+e+fは0に等しくない)、gは1以上20以下、R1及びR2はそれぞれ独立にハロゲン元素、炭素数1以上10以下のパーフルオロアルキル基又はフルオロクロロアルキル基、X4はCOOH,SO3H,PO3H2又はPO3Hである)
【0021】
このようなパーフルオロカーボン重合体の中でも、特に下記式(2)で表されるポリマーが好ましい。
-[CF2CF2]a-[CF2-CF(-O-(CF2)2-SO3H)]g- (2)
(式中aは0以上20以下、gは1以上20以下である)
プロトン伝導性ポリマーの当量質量EW(プロトン交換基1当量あたりのプロトン伝導性ポリマーの乾燥質量グラム数)には限定はないが、500以上2000以下が好ましく、より好ましくは600以上1500以下、最も好ましくは700以上1200以下である。
【0022】
プロトン伝導性ポリマーは触媒粒子の担持量に対し、質量比で好ましくは0.001以上50以下、より好ましくは0.1以上10以下、最も好ましくは0.5以上5以下となるように仕込むことが好ましい。
本発明の触媒組成物は、上記の複合粒子がプロトン伝導性ポリマー中に分散した状態であるが、必要に応じて溶媒を用いても構わない。
用いる溶媒は限定されないが、具体的な溶媒を例示すると、水、エタノール等の低級アルコール、エチレングリコール、プロピレングリコール、グリセリン、ジメチルスルホキシド等の単独溶媒又は複合溶媒が挙げられる。この際、かかる分散液に結着剤、撥水剤、導電剤等が含有されていてもよい。
【0023】
導電剤としては、電子伝導性物質であれば制限がなく、例えばファーネスブラック、チャンネルブラック、アセチレンブラック等のカーボンブラック、活性炭、黒鉛、各種金属等が用いられる。
また、本発明で用いるプロトン交換膜の種類には限定はないが、前記プロトン伝導性ポリマーと同様にパーフルオロカーボン重合体が好ましい。膜厚には制限はないが、1μm以上500μm以下が好ましく、より好ましくは1μm以上100μm以下、最も好ましくは1μm以上50μm以下である。
【0024】
本発明で用いる接合体の製造方法としては、上記の分散溶媒の触媒組成物から予め形成した触媒層とプロトン交換膜とを加熱プレスして接合体とする方法と、プロトン交換膜に触媒組成物を直接塗布して触媒層を配置する方法とがある。
前者の方法としては、まず上記触媒組成物をガス拡散層、その他の基材(PTFE製シート等)に塗布、乾燥することにより、各種基材上に触媒層を形成する。
【0025】
ガス拡散層としては、カーボンペーパーやカーボンクロス等の電気伝導性多孔質織布や不織布が例として挙げられる。ガス拡散層上に触媒層を形成させた場合、100℃〜200℃の範囲で熱プレス等によりプロトン交換膜上に接合して接合体を得ることができる。
また、PTFE製フィルム等のその他の基材上に形成させた場合、熱プレス等により触媒層のみをプロトン交換膜上に転写することで接合体が得られる。
【0026】
また、ガス拡散層と触媒層が積層した米国E−TEK社製ELAT(登録商標)のようなガス拡散電極に、プロトン伝導性ポリマーを溶解したポリマー溶液を塗布もしくは浸積して乾燥した後、プロトン交換膜に接合することによっても接合体を得ることができる。
後者の方法としては、上記分散液(複合粒子がプロトン伝導性ポリマーに分散した触媒組成物)をスプレー法等の一般的に知られている各種方法によりプロトン交換膜に塗布することで接合体を形成させることができる。
【0027】
以上、本発明に用いる接合体の製造方法について説明した。
(2)金属酸化物添加工程について
次に、上記接合体を用いて本発明の膜電極接合体とする方法について説明する。
本発明の方法で製造される膜電極接合体は非定形の金属酸化物を均一に含有していることを特徴とし、その製造方法は、接合体に金属酸化物前駆体を含浸させた後、酸性下で加水分解及び重縮合反応させる、いわゆるゾルゲル反応を用いて金属酸化物とすることで得ることが可能である。このようなゾルゲル反応は、酸性触媒の作用により中性下よりも極めて早く進行するため、接合体中のプロトン伝導性ポリマー中のプロトン交換基、特に複数のプロトン交換基が会合したいわゆるイオンクラスターの近傍にて選択的に金属酸化物が形成される。
【0028】
本発明で用いる金属酸化物前駆体の種類は限定されないが、Al、B、P、Si、Ti、Zr又はYを含有するアルコキシドが好ましい。その中でも特に、Al、Si、Ti、Zrを含有するアルコキシドが好ましい。Alのアルコキシドの具体例としては、Al(OCH、Al(OC、Al(OC、Al(OC等、Bを含有するアルコキシドの具体例としては、B(OCH等、Pを含有するアルコキシドの具体例としては、PO(CH、P(OCH等、Siを含有するアルコキシドの具体例としては、Si(OCH、Si(OC、Si(OC、Si(OC等、Tiを含有するアルコキシドの具体例としては、Ti(OCH、Ti(OC、Ti(OC、Ti(OC等、Zrを含有するアルコキシドの具体例としては、Zr(OCH、Zr(OC、Zr(OC、Zr(OC等、Yを含有するアルコキシドの具体例としては、Y(OC等が挙げられる。これらは、単独で用いても、2種以上を混合して用いてもよい。また、La[Al(i−OC、Mg[Al(i−OC、Mg[Al(sec−OC、Ni[Al(i−OC、(CO)Zr[Al(OC、Ba[Zr(OCといった2種の金属アルコキシドを用いてもよい。 上記金属酸化物前駆体を接合体に含浸させる方法としては、接合体を金属酸化物前駆体を含有する反応液体に浸漬する方法、もしくは前記反応液体を塗布する方法が挙げられる。浸漬方法や塗布方法に関しては、公知のいずれの技術も使用することができる。
【0029】
金属酸化物前駆体の含浸量は限定されないが、接合体中のプロトン交換基1当量に対し、好ましくは0.01当量以上1000000当量以下、より好ましくは0.05当量以上500000当量以下、最も好ましくは0.1当量以上100000当量以下、更に好ましくは0.2当量以上20000当量以下である。
接合体に含浸された金属酸化物前駆体は以下のような方法で金属酸化物とする。
【0030】
金属酸化物前駆体が金属酸化物となるには水の存在下、加水分解反応、それに引き続く重縮合反応を行う必要がある。加水分解反応・重縮合反応を行うための水の量は限定されないが、金属酸化物前駆体1当量に対し、好ましくは0.1当量以上100当量以下、より好ましくは0.2当量以上50当量以下、最も好ましくは0.5当量以上30当量以下、更に好ましくは1当量以上10当量以下である。
【0031】
加水分解・重縮合反応に必要な水は、まず水を接合体に含浸させた後に金属酸化物前駆体を添加する方法、金属酸化物前駆体を接合体に含浸させた後に水を添加する方法、水と金属酸化物前駆体を両方含む液体を接合体に含浸させる方法等がある。これらの方法を行う際、金属酸化物前駆体及び水を、他の溶媒に希釈又は溶解して添加してもよい。
加水分解及び重縮合反応を行わせるための反応温度は限定されないが、好ましくは1℃以上100℃以下、より好ましくは10℃以上80℃以下、最も好ましくは20℃以上50℃以下である。反応時間は限定されないが、1秒以上24時間以下が好ましく、より好ましくは10秒以上8時間以下、最も好ましくは20秒以上1時間以下である。
【0032】
そして、所定の時間経過後、必要に応じて、接合体の表面に付着した液体を除去及び/又は洗浄した後、1〜80℃にて大気中に放置する。この後、必要に応じて、80〜150℃において乾燥条件下で熱処理及び/又は80〜150℃で熱水処理することにより、本発明の膜電極接合体を得ることができる。
以上、本発明で製造される膜電極接合体について説明したが、上記膜電極接合体は燃料電池として作動させた時に効果を発揮するので、以下に燃料電池に用いた場合の評価方法について説明する。
【0033】
固体高分子形燃料電池は、本発明のMEA、必要に応じてガス拡散層、バイポーラプレート、バッキングプレート等より構成される。このうちバイポーラプレートは、その表面に燃料や酸化剤等のガスを流すための溝を形成させたグラファイト又は樹脂との複合材料、金属製のプレート等のことであり、電子を外部負荷回路へ伝達する他に燃料や酸化剤を電極触媒近傍に供給する流路としての機能を持っている。こうしたバイポーラプレートの間にMEAを挿入して複数積み重ねることにより、燃料電池が作製される。燃料電池の運転は、最終的に一方の電極に水素を、他方の電極に酸素又は空気を供給することによって行われる。
本発明の電極触媒層、電極、及びMEAは、クロルアルカリ、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサー等に用いることも可能である。
【0034】
【発明の実施の形態】
本発明を実施例に基づいて具体的に説明するが、本発明は実施例に制限されるものではない。燃料電池の評価法は以下の通りである。
【0035】
【実施例1】
複合粒子としてPt担持カーボン(田中貴金属(株)社製TEC10E40E、Pt:36.4質量%)1.00gに対し、2.85gの13質量%パーフルオロスルホン酸重合体溶液(スルホン酸ポリマー化学式:-[CF2CF2]1.00-[CF2-CF(-O-(CF2)2-SO3H)]2.19-、スルホン酸ポリマーEW710、溶媒組成(質量比)はエタノール/水=50/50)を添加してホモジナイザーでよく混合し、触媒組成物とした。この触媒組成物をスクリーン印刷法にてテフロン(登録商標)シート上に塗布し、室温下で1時間、空気中160℃にて1時間、乾燥を行うことにより、3.5cm角で厚み10μm程度の触媒層を得た。アノード側の触媒層のPt担持量及びポリマー担持量は共に0.286mg/cm2、カソード側の触媒層のPt担持量及びポリマー担持量は共に0.126mg/cm2とした。
【0036】
このように共にテフロン(登録商標)シート上に製膜したアノード側の触媒層とカソード側の触媒層を厚みが50μmのパーフルオロスルホン酸膜(スルホン酸ポリマー化学式:-[CF2CF2]1.00-[CF2-CF(-O-(CF2)2-SO3H)]2.19-、スルホン酸ポリマーEW710)を介して向かい合わせ、180℃、圧力50kg/cmで熱プレスしてアノード側とカソード側の触媒層をテフロン(登録商標)シートからパーフルオロスルホン酸膜へ転写することにより接合体を作製した。
【0037】
この接合体をテトラエトキシシラン/メタノール/水=49ml/31ml/5mlの混合液に5秒間浸漬した後、水に一瞬浸して洗浄し、室温にて風乾した。その後、空気中80℃にて1時間の熱処理を行ってテトラエトキシシランを加水分解・重縮合して非定形のシリカとして本発明の膜電極接合体を作製した。尚接合体と上記処理後の膜電極接合体の質量変化から、シリカ担持量は2.2質量%であった。
【0038】
上記のようにして得られた膜電極接合体を一対のカーボンクロス(ガス拡散層)で挟み込んで単セルとし、通常の燃料電池評価装置にセットした。そして、燃料として水素ガス、酸化剤として空気ガスを用い、2気圧でガスを単セルに供給した。セル温度100℃とし、ガス加湿には水バブリング方式を用いて水素ガス及び空気ガス共に加湿温度を50℃とした(湿度12RH%に相当)。発電特性試験を行ったところ、高温低加湿条件にもかかわらず、電流密度0.5A/cm時に0.610Vと高い電圧が得られるとともに、安定に運転することができた。
【0039】
【発明の効果】
本発明の膜電極接合体を用いることにより、高温低加湿条件下でも燃料電池を安定に運転することができ、かつ高い電圧を得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a membrane electrode assembly for a polymer electrolyte fuel cell.
[0002]
[Prior art]
A fuel cell is one that converts the chemical energy of a fuel directly into electrical energy by electrochemically oxidizing hydrogen, methanol, etc. within the cell, and is attracting attention as a clean electrical energy supply source. ing. In particular, solid polymer fuel cells are expected to be used as alternative power sources for automobiles, household cogeneration systems, and portable generators because they operate at a lower temperature than others.
[0003]
Such a polymer electrolyte fuel cell is provided with a membrane electrode assembly (MEA) in which a catalyst layer as an anode and a catalyst layer as a cathode are bonded to each other through at least a proton exchange membrane. In some cases, the polymer electrolyte fuel cell may be used as a structure in which the MEA is further sandwiched between a pair of gas diffusion layers. A portion where the catalyst layer as the anode and the cathode and the gas diffusion layer are laminated is generally called a gas diffusion electrode.
[0004]
Conventionally, a catalyst layer used as an anode and a cathode is often used by forming a sheet of a mixture of carbon black powder carrying catalyst particles and a polymer having proton conductivity, and the obtained catalyst layer is, for example, a proton exchange membrane. After being alternately stacked, they are joined by hot pressing.
The MEA operates as a fuel cell by supplying fuel (for example, hydrogen) to the anode side and oxidant (for example, oxygen or air) to the cathode side and connecting them with an external circuit.
[0005]
Specifically, when hydrogen is used as fuel, hydrogen is oxidized on the catalyst on the anode side to generate protons, and after the protons pass through the proton conductive polymer part in the catalyst layer on the anode side, proton exchange is performed. It moves through the membrane and reaches the catalyst on the cathode side through the proton conducting polymer portion in the catalyst layer on the cathode side. On the other hand, electrons generated simultaneously with protons by oxidation of hydrogen reach the cathode side through an external circuit, and react with the protons and oxygen present as an oxidant on the cathode side catalyst to produce water. Since power generation occurs, electric energy can be extracted.
[0006]
As for the power generation performance of such a polymer electrolyte fuel cell, it is desirable that the gas diffusion electrodes of the proton exchange membrane, the anode and the cathode contain water appropriately.
This is because when the proton exchange membrane is dried, its proton conductivity is remarkably lowered, the internal resistance of the battery is increased, and the power generation performance is lowered. Further, when the gas diffusion electrode is dried, the proton conductive polymer in the gas diffusion electrode is dried, the internal resistance of the gas diffusion electrode is increased, and the overvoltage is increased, so that the power generation performance is lowered.
[0007]
In particular, on the anode side, water molecules are entrained when protons move through the proton exchange membrane from the anode side to the cathode side. As the moisture on the side depletes quickly, the proton-conducting polymer on the anode side dries, lowering proton transfer and creating a water concentration gradient in the proton exchange membrane, similarly causing a decrease in proton conductivity.
[0008]
In general, a fuel cell system is often provided with a humidifier in order to ensure the above-described appropriate amount of water. However, from the viewpoint of simplification of the fuel cell system, a fuel cell that does not use a humidifier or exhibits power generation performance even with slight humidification is desirable. That is, a fuel cell that enhances the water retention of MEA and exhibits power generation performance is desired.
In order to increase the water retention of the MEA, as a method of incorporating an absorbent material into the catalyst layer, a method of incorporating water-absorbing fine particulate and / or fibrous silica into the anode catalyst layer and / or the cathode catalyst layer (for example, Patent Document 1 and Patent Document 2), and a method of incorporating water-absorbing fine particulate and / or fibrous silica into the proton exchange membrane as a method for enhancing the water retention of the proton exchange membrane of MEA (see, for example, Patent Document 3) ) Is being considered.
[0009]
However, since the water-absorbing material used in any of the above methods is in the form of particles or fibers, the water retention is improved, and at the same time, the electrical resistance is increased and the gas permeability is decreased. Further, when the addition amount is increased in order to increase water retention, there are problems that the catalyst layer and the proton exchange membrane become brittle and the catalyst layer cannot be attached to the proton exchange membrane. Therefore, it has not been said that water management has become sufficiently easy in practice, and even if the fuel cell is operated under low humidification conditions, the effect is small.
Therefore, as a method for uniformly dispersing the amorphous water-absorbing material, it has been reported that a membrane produced by utilizing a sol-gel reaction (hereinafter referred to as a sol-gel membrane) is used for a proton exchange membrane (for example, non-patent literature). 1).
[0010]
Specifically, a perfluorosulfonic acid membrane represented by Nafion (registered trademark, manufactured by DuPont) is first impregnated with an aqueous alcohol solution such as methanol and swollen, and then a mixed solvent of tetraethoxysilane and alcohol, which is a metal alkoxide. Is added to hydrolyze and polycondensate tetraethoxysilane by the catalytic action of sulfonic acid groups, which are acidic groups in the perfluorosulfonic acid film, to uniformly form amorphous silica in the perfluorosulfonic acid film. The produced sol-gel membrane is used as a proton exchange membrane.
However, the sol-gel membrane obtained by this method is used only as a proton exchange membrane, and when the power generation performance is evaluated as a membrane electrode assembly for a fuel cell, the improvement in the power generation performance is insufficient. That is, if the proton exchange membrane only contains an amorphous water-absorbing material, the effect is small in the fuel cell operation under low humidity.
[0011]
[Patent Document 1]
JP-A-6-1111827 [Patent Document 2]
JP 2001-11219 A [Patent Document 3]
JP-A-6-1111834 [Non-Patent Document 1]
KA Mauritz, RF Storey and CK Jones, in Multiphase Polymer Materials: Blends and Ionomers, LA Utracki and RA Weiss, Editors, ACS Symposium Series No. 395, p. 401, American Chemical Society, Washington, DC (1989)
[0012]
[Problems to be solved by the invention]
That is, an object of the present invention is to provide a method for producing an electrode catalyst layer that can obtain good power generation performance when a fuel cell is operated under high temperature and low humidity conditions.
[0013]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, the present inventors have found that a membrane / electrode assembly containing an amorphous metal oxide does not cause an increase in electrical resistance and a decrease in gas permeability. It has been found that the power generation performance of a fuel cell under low humidification conditions can be improved.
Here, an atypical form means that a particulate form and a fibrous form are not visually observed and does not have a fixed shape, and high temperature and low humidification means 81 ° C. to 200 ° C., 1 RH% to 90 RH%. In particular, it refers to 90 ° C to 150 ° C, 10RH% to 60RH%.
[0014]
That is, the present invention
(1) using conductive particles on the catalyst composition the catalyst particles contain the supported composite particle and a proton conductive polymer, the catalyst layer of the bonded body obtained by forming a catalyst layer on a proton exchange membrane Then, after impregnating the metal oxide precursor, the precursor is subsequently hydrolyzed and polycondensed to form an ion cluster in which proton exchange groups in the proton conductive polymer in the catalyst layer of the joined body are associated. A method for producing a membrane electrode assembly for a fuel cell, wherein a metal oxide is selectively formed in the vicinity,
(2) A polymer electrolyte fuel cell comprising a membrane electrode assembly obtained from the production method according to (1) above,
As a result, for the first time, the power generation performance of the fuel cell under high temperature and low humidification conditions could be improved without causing an increase in electrical resistance and a decrease in gas permeability.
[0015]
Below, the manufacturing method of the membrane electrode assembly for fuel cells of this invention is demonstrated in detail.
The method for producing a membrane electrode assembly for a fuel cell according to the present invention generally includes a joined body forming step (1) in which a proton exchange membrane is sandwiched between an anode catalyst layer and a cathode catalyst layer, and the above joined body. The metal oxide precursor is impregnated into the metal oxide precursor, and then the metal oxide precursor is hydrolyzed and polycondensed to form an amorphous metal oxide (2).
[0016]
Hereinafter, each process will be described in detail.
(1) Conjugate formation step The catalyst layer used in this step is formed from a catalyst composition containing composite particles in which catalyst particles are supported on conductive particles and a proton conductive polymer.
Any conductive particles may be used as long as they have conductivity. For example, carbon black such as furnace black, channel black, and acetylene black, activated carbon, graphite, and various metals are used. The particle diameter of these conductive particles is preferably 10 angstroms or more and 10 μm or less, more preferably 50 angstroms or more and 1 μm or less, and most preferably 100 angstroms or more and 5000 angstroms or less.
[0017]
The catalyst particles have a function of oxidizing water (for example, hydrogen) at the anode and easily generating protons, and at the cathode, reacting protons and electrons with an oxidizing agent (for example, oxygen or air) to generate water. Although there is no restriction | limiting in the kind of catalyst, Platinum is used preferably. In order to enhance the resistance of platinum to impurities such as CO, a catalyst obtained by adding or alloying ruthenium or the like to platinum is preferably used.
The particle diameter of the catalyst particles is not limited, but is preferably 10 angstroms or more and 1000 angstroms or less, more preferably 10 angstroms or more and 500 angstroms or less, and most preferably 15 angstroms or more and 100 angstroms or less.
[0018]
The amount of catalyst particles supported with respect to the electrode area is preferably 0.001 mg / cm 2 or more and 10 mg / cm 2 or less, more preferably 0.01 mg / cm 2 or more and 5 mg / cm 2 or less, in a state where an electrode catalyst layer is formed. Most preferably, it is 0.1 mg / cm 2 or more and 1 mg / cm 2 or less.
The composite particles are those in which the catalyst particles are supported on the conductive particles, and the loading ratio (weight of catalyst particles contained in 100 g of the composite particles) is preferably 1% by mass or more and 99% by mass. Hereinafter, it is more preferably 10% by mass to 80% by mass, and most preferably 30% by mass to 60% by mass.
[0019]
The composite particles that can be used in the present invention can be produced by a known technique such as a method of impregnating carbon particles with a platinum complex such as Pt (NH 3 ) 4 Cl 2 and chemically reducing with hydrazine or the like. Accordingly, commercially available products may be used as long as the above conditions are satisfied. Specific examples include F101RA / W manufactured by Degussa Co., Ltd., TEC10E40E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., and the like.
Next, the proton conductive polymer contained in the catalyst composition used in the present invention will be described.
[0020]
The proton conductive polymer used in the present invention is a polymer having a functional group having proton conductivity. Examples of the proton conductive functional group include a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a phosphoric acid group. Examples of the polymer skeleton include hydrocarbon polymers such as polyolefin and polystyrene, and perfluorocarbon polymers. Especially, the perfluorocarbon polymer represented by following formula (1) excellent in oxidation resistance and heat resistance is preferable.
-[CF 2 CX 1 X 2 ] a- [CF 2 -CF (-O- (CF 2 -CF (CF 2 X 3 )) b -O c- (CFR 1 ) d- (CFR 2 ) e- ( CF 2 ) f -X 4 )] g- (1)
(Wherein X 1 , X 2 and X 3 are each independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, a is 0 or more and 20 or less, b is an integer of 0 or more and 8 or less, and c is 0 or 1, d, e and f are each independently an integer of 0 or more and 6 or less (where d + e + f is not equal to 0), g is 1 or more and 20 or less, R 1 and R 2 are each independently a halogen element A perfluoroalkyl group or a fluorochloroalkyl group having 1 to 10 carbon atoms, X 4 is COOH, SO 3 H, PO 3 H 2 or PO 3 H)
[0021]
Among such perfluorocarbon polymers, a polymer represented by the following formula (2) is particularly preferable.
-[CF 2 CF 2 ] a- [CF 2 -CF (-O- (CF 2 ) 2 -SO 3 H)] g- (2)
(Wherein, a is 0 or more and 20 or less, and g is 1 or more and 20 or less)
There is no limitation on the equivalent mass EW of proton-conductive polymer (the dry mass in grams of proton-conductive polymer per equivalent of proton exchange groups), but it is preferably 500 or more and 2000 or less, more preferably 600 or more and 1500 or less, most preferably. Is 700 or more and 1200 or less.
[0022]
The proton conductive polymer is charged so that the mass ratio is preferably 0.001 to 50, more preferably 0.1 to 10 and most preferably 0.5 to 5 with respect to the amount of the catalyst particles supported. Is preferred.
The catalyst composition of the present invention is in a state where the composite particles are dispersed in a proton conductive polymer, but a solvent may be used as necessary.
The solvent to be used is not limited, but specific solvents include water, lower alcohols such as ethanol, single solvents or composite solvents such as ethylene glycol, propylene glycol, glycerin, and dimethyl sulfoxide. At this time, the dispersion may contain a binder, a water repellent, a conductive agent, and the like.
[0023]
The conductive agent is not particularly limited as long as it is an electron conductive substance. For example, carbon black such as furnace black, channel black, and acetylene black, activated carbon, graphite, and various metals are used.
Further, the type of proton exchange membrane used in the present invention is not limited, but a perfluorocarbon polymer is preferable as in the case of the proton conductive polymer. Although there is no restriction | limiting in film thickness, 1 micrometer or more and 500 micrometers or less are preferable, More preferably, they are 1 micrometer or more and 100 micrometers or less, Most preferably, they are 1 micrometer or more and 50 micrometers or less.
[0024]
The method for producing a joined body used in the present invention includes a method in which a catalyst layer and a proton exchange membrane formed in advance from the catalyst composition of the above dispersion solvent are heated and pressed to obtain a joined body, and a catalyst composition on the proton exchange membrane. There is a method in which a catalyst layer is disposed by directly coating the catalyst.
As the former method, first, the catalyst composition is applied to a gas diffusion layer and other base material (PTFE sheet or the like) and dried to form catalyst layers on various base materials.
[0025]
Examples of the gas diffusion layer include electrically conductive porous woven fabrics and nonwoven fabrics such as carbon paper and carbon cloth. When the catalyst layer is formed on the gas diffusion layer, it can be joined on the proton exchange membrane by hot pressing or the like in the range of 100 ° C. to 200 ° C. to obtain a joined body.
Moreover, when it forms on other base materials, such as a film made from PTFE, a joined body is obtained by transferring only a catalyst layer on a proton exchange membrane by hot press or the like.
[0026]
In addition, after applying or immersing a polymer solution in which a proton conductive polymer is dissolved in a gas diffusion electrode such as ELAT (registered trademark) manufactured by E-TEK in the United States where a gas diffusion layer and a catalyst layer are laminated, A joined body can also be obtained by joining to a proton exchange membrane.
As the latter method, the above-mentioned dispersion liquid (catalyst composition in which composite particles are dispersed in a proton conductive polymer) is applied to a proton exchange membrane by various generally known methods such as a spray method. Can be formed.
[0027]
In the above, the manufacturing method of the conjugate | zygote used for this invention was demonstrated.
(2) Metal Oxide Addition Step Next, a method for forming a membrane / electrode assembly of the present invention using the above-described assembly will be described.
The membrane electrode assembly produced by the method of the present invention is characterized in that it contains an amorphous metal oxide uniformly, and the production method comprises impregnating a metal oxide precursor in the assembly, It can be obtained by forming a metal oxide using a so-called sol-gel reaction in which hydrolysis and polycondensation reaction are performed under acidic conditions. Since such a sol-gel reaction proceeds much faster than under neutrality due to the action of an acidic catalyst, proton exchange groups in the proton conducting polymer in the conjugate, particularly so-called ion clusters in which a plurality of proton exchange groups are associated. A metal oxide is selectively formed in the vicinity.
[0028]
Although the kind of metal oxide precursor used by this invention is not limited, The alkoxide containing Al, B, P, Si, Ti, Zr, or Y is preferable. Of these, alkoxides containing Al, Si, Ti, and Zr are particularly preferable. Specific examples of Al alkoxides include Al (OCH 3 ) 3 , Al (OC 2 H 5 ) 3 , Al (OC 3 H 7 ) 3 , Al (OC 4 H 9 ) 3, etc. Specific examples of alkoxides containing P, such as B (OCH 3 ) 3 , include specific examples of alkoxides containing Si, such as PO (CH 3 ) 3 , P (OCH 3 ) 3, etc. Specific examples of alkoxides containing Ti, such as Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H 7 ) 4 , Si (OC 4 H 9 ) 4 , include Ti (OCH 3). ) 4 , Ti (OC 2 H 5 ) 4 , Ti (OC 3 H 7 ) 4 , Ti (OC 4 H 9 ) 4, etc., as specific examples of alkoxides containing Zr, Zr (OCH 3 ) 4 , Zr (OC 2 H 5 ) Specific examples of alkoxides containing Y such as 4 , Zr (OC 3 H 7 ) 4 , Zr (OC 4 H 9 ) 4 and the like include Y (OC 4 H 9 ) 3 . These may be used alone or in admixture of two or more. Moreover, La [Al (i-OC 3 H 7) 4] 3, Mg [Al (i-OC 3 H 7) 4] 2, Mg [Al (sec-OC 4 H 9) 4] 2, Ni [Al (I-OC 3 H 7 ) 4 ] 2 , (C 3 H 7 O) 2 Zr [Al (OC 3 H 7 ) 4 ] 2 , Ba [Zr 2 (OC 2 H 5 ) 9 ] 2 Metal alkoxides may be used. Examples of the method of impregnating the joined body with the metal oxide precursor include a method of immersing the joined body in a reaction liquid containing the metal oxide precursor, or a method of applying the reaction liquid. As for the dipping method and the coating method, any known technique can be used.
[0029]
Although the impregnation amount of the metal oxide precursor is not limited, it is preferably 0.01 equivalents or more and 1000000 equivalents or less, more preferably 0.05 equivalents or more and 500,000 equivalents or less, most preferably with respect to 1 equivalent of proton exchange groups in the joined body. Is from 0.1 equivalents to 100,000 equivalents, more preferably from 0.2 equivalents to 20000 equivalents.
The metal oxide precursor impregnated in the joined body is converted into a metal oxide by the following method.
[0030]
In order for the metal oxide precursor to become a metal oxide, it is necessary to perform a hydrolysis reaction and subsequent polycondensation reaction in the presence of water. The amount of water for performing the hydrolysis reaction / polycondensation reaction is not limited, but is preferably from 0.1 equivalents to 100 equivalents, more preferably from 0.2 equivalents to 50 equivalents, per 1 equivalent of the metal oxide precursor. Hereinafter, it is most preferably 0.5 equivalents or more and 30 equivalents or less, and more preferably 1 equivalents or more and 10 equivalents or less.
[0031]
The water required for the hydrolysis / polycondensation reaction is a method of first impregnating the joined body with water and then adding the metal oxide precursor, and a method of adding water after impregnating the joined body with the metal oxide precursor. And a method of impregnating a joined body with a liquid containing both water and a metal oxide precursor. In carrying out these methods, the metal oxide precursor and water may be added after being diluted or dissolved in another solvent.
The reaction temperature for carrying out the hydrolysis and polycondensation reaction is not limited, but is preferably 1 ° C. or higher and 100 ° C. or lower, more preferably 10 ° C. or higher and 80 ° C. or lower, and most preferably 20 ° C. or higher and 50 ° C. or lower. Although the reaction time is not limited, it is preferably 1 second or longer and 24 hours or shorter, more preferably 10 seconds or longer and 8 hours or shorter, and most preferably 20 seconds or longer and 1 hour or shorter.
[0032]
And after predetermined time progress, after removing and / or wash | cleaning the liquid adhering to the surface of a conjugate | zygote as needed, it is left to stand in air | atmosphere at 1-80 degreeC. Then, the membrane electrode assembly of this invention can be obtained by heat-processing and / or a hot-water process at 80-150 degreeC on dry conditions at 80-150 degreeC as needed.
The membrane electrode assembly produced by the present invention has been described above. However, since the membrane electrode assembly is effective when operated as a fuel cell, an evaluation method when used in a fuel cell will be described below. .
[0033]
The polymer electrolyte fuel cell is composed of the MEA of the present invention, and if necessary, a gas diffusion layer, a bipolar plate, a backing plate, and the like. Of these, the bipolar plate is a graphite or resin composite material with a groove for flowing gas such as fuel or oxidant on its surface, a metal plate, etc., and transmits electrons to an external load circuit. In addition, it has a function as a flow path for supplying fuel and oxidant to the vicinity of the electrode catalyst. A fuel cell is manufactured by inserting and stacking a plurality of MEAs between such bipolar plates. The fuel cell is finally operated by supplying hydrogen to one electrode and oxygen or air to the other electrode.
The electrode catalyst layer, electrode, and MEA of the present invention can also be used for chloralkali, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor and the like.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described based on examples, but the present invention is not limited to the examples. The fuel cell evaluation method is as follows.
[0035]
[Example 1]
2.85 g of 13 mass% perfluorosulfonic acid polymer solution (sulfonic acid polymer chemical formula: 1.00 g of Pt-supported carbon (TEC10E40E manufactured by Tanaka Kikinzoku Co., Ltd., Pt: 36.4 mass%) as composite particles - [CF 2 CF 2] 1.00 - [CF 2 -CF (-O- (CF 2) 2 -SO 3 H)] 2.19 -, sulfonic acid polymers EW710, solvent composition (mass ratio) of ethanol / water = 50 / 50) was added and mixed well with a homogenizer to obtain a catalyst composition. This catalyst composition is applied on a Teflon (registered trademark) sheet by a screen printing method and dried at room temperature for 1 hour and in air at 160 ° C. for 1 hour to obtain a 3.5 cm square and a thickness of about 10 μm. The catalyst layer was obtained. The Pt loading and polymer loading on the anode side catalyst layer were both 0.286 mg / cm 2 , and the Pt loading and polymer loading on the cathode side catalyst layer were both 0.126 mg / cm 2 .
[0036]
A catalyst layer on the anode side and a catalyst layer on the cathode side both formed on a Teflon (registered trademark) sheet in this manner were used to form a perfluorosulfonic acid membrane having a thickness of 50 μm (sulfonic acid polymer chemical formula:-[CF 2 CF 2 ] 1.00 -[CF 2 -CF (-O- (CF 2 ) 2 -SO 3 H)] 2.19- facing each other through the sulfonic acid polymer EW710) and hot pressing at 180 ° C. and a pressure of 50 kg / cm 2 to the anode side Then, the catalyst layer on the cathode side was transferred from the Teflon (registered trademark) sheet to the perfluorosulfonic acid membrane to prepare a joined body.
[0037]
The joined body was immersed in a mixed solution of tetraethoxysilane / methanol / water = 49 ml / 31 ml / 5 ml for 5 seconds, then immersed in water for cleaning, and air-dried at room temperature. Thereafter, heat treatment was performed in air at 80 ° C. for 1 hour to hydrolyze and polycondensate tetraethoxysilane to produce a membrane electrode assembly of the present invention as amorphous silica. From the mass change of the joined body and the membrane electrode assembly after the above treatment, the supported amount of silica was 2.2% by mass.
[0038]
The membrane / electrode assembly obtained as described above was sandwiched between a pair of carbon cloths (gas diffusion layers) to form a single cell, which was set in a normal fuel cell evaluation apparatus. Then, hydrogen gas was used as the fuel and air gas was used as the oxidant, and the gas was supplied to the single cell at 2 atm. The cell temperature was 100 ° C., and water humidification was used for gas humidification using a water bubbling method, and the humidification temperature was 50 ° C. (corresponding to a humidity of 12 RH%). When a power generation characteristic test was performed, a high voltage of 0.610 V was obtained at a current density of 0.5 A / cm 2 despite a high temperature and low humidification condition, and a stable operation was possible.
[0039]
【The invention's effect】
By using the membrane electrode assembly of the present invention, the fuel cell can be stably operated even under high temperature and low humidification conditions, and a high voltage can be obtained.

Claims (2)

導電性粒子上に触媒粒子が担持された複合粒子とプロトン伝導性ポリマーとを含有する触媒組成物を用いて、プロトン交換膜上に触媒層を形成してなる接合体の該触媒層に、金属酸化物前駆体を含浸させた後、引き続き該前駆体を加水分解・重縮合反応させて、接合体の該触媒層中のプロトン伝導性ポリマー中のプロトン交換基が会合したイオンクラスターの近傍に選択的に金属酸化物を形成することを特徴とする燃料電池用の膜電極接合体の製造方法。Using a catalyst composition in which the catalyst particles on the conductive particles contain the composite particles supported and a proton conductive polymer, on the catalyst layer of the bonded body obtained by forming a catalyst layer on a proton exchange membrane, metal After impregnating the oxide precursor, the precursor is subsequently hydrolyzed and polycondensed to select it in the vicinity of the ion cluster in which the proton exchange groups in the proton conducting polymer in the catalyst layer of the assembly are associated. A method for producing a membrane electrode assembly for a fuel cell, characterized by forming a metal oxide . 請求項1に記載の製造方法から得られる膜電極接合体を備えることを特徴とする固体高分子形燃料電池。A polymer electrolyte fuel cell comprising a membrane electrode assembly obtained from the production method according to claim 1.
JP2003061927A 2003-03-07 2003-03-07 Manufacturing method of membrane electrode assembly for fuel cell Expired - Fee Related JP4649094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061927A JP4649094B2 (en) 2003-03-07 2003-03-07 Manufacturing method of membrane electrode assembly for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061927A JP4649094B2 (en) 2003-03-07 2003-03-07 Manufacturing method of membrane electrode assembly for fuel cell

Publications (2)

Publication Number Publication Date
JP2004273255A JP2004273255A (en) 2004-09-30
JP4649094B2 true JP4649094B2 (en) 2011-03-09

Family

ID=33124004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061927A Expired - Fee Related JP4649094B2 (en) 2003-03-07 2003-03-07 Manufacturing method of membrane electrode assembly for fuel cell

Country Status (1)

Country Link
JP (1) JP4649094B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061993A1 (en) * 2004-12-07 2006-06-15 Toray Industries, Inc. Film electrode composite element and production method therefor, and fuel cell
JP2009272217A (en) * 2008-05-09 2009-11-19 Three M Innovative Properties Co Activation method for membrane electrode assembly, and membrane electrode assembly as well as solid polymer fuel cell using same
US20140342268A1 (en) 2011-12-28 2014-11-20 Asahikaseie-Materials Corporation Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
EP3091599B1 (en) 2011-12-28 2019-05-08 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
ES2637430T3 (en) * 2011-12-28 2017-10-13 Asahi Kasei Kabushiki Kaisha Secondary redox flow battery and electrolyte membrane for secondary redox flow battery
KR101684036B1 (en) 2011-12-28 2016-12-07 아사히 가세이 가부시키가이샤 Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
CN104377371A (en) * 2013-08-13 2015-02-25 旭化成电子材料株式会社 Electrolyte membrane for redox flow secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632935A (en) * 1992-07-20 1994-02-08 Japan Gore Tex Inc Composite of porous polymer with metal oxide and its production
JPH1140172A (en) * 1997-07-14 1999-02-12 Asahi Chem Ind Co Ltd Method for producing film-electrode joined body for fuel cell
JPH1145733A (en) * 1997-07-28 1999-02-16 Toshiba Corp Solid polimer fuel cell
JP2000106202A (en) * 1998-09-30 2000-04-11 Toshiba Corp Fuel cell
JP2002203576A (en) * 2000-12-28 2002-07-19 Toyota Central Res & Dev Lab Inc Electrolyte film and fuel cell using this
JP2002203569A (en) * 2000-12-28 2002-07-19 Toyota Central Res & Dev Lab Inc Solid high polymer type fuel cell
JP2002231270A (en) * 2001-02-07 2002-08-16 Asahi Kasei Corp Manufacturing method of ion exchange resin membrane
JP2002313371A (en) * 2000-12-07 2002-10-25 Sanyo Electric Co Ltd Cell unit of fuel cell
JP2002352818A (en) * 2001-05-28 2002-12-06 Toyota Central Res & Dev Lab Inc Inorganic material composite polymer film and manufacturing method therefor
JP2003178774A (en) * 2001-12-11 2003-06-27 Sanyo Electric Co Ltd Fuel-cell unit and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632935A (en) * 1992-07-20 1994-02-08 Japan Gore Tex Inc Composite of porous polymer with metal oxide and its production
JPH1140172A (en) * 1997-07-14 1999-02-12 Asahi Chem Ind Co Ltd Method for producing film-electrode joined body for fuel cell
JPH1145733A (en) * 1997-07-28 1999-02-16 Toshiba Corp Solid polimer fuel cell
JP2000106202A (en) * 1998-09-30 2000-04-11 Toshiba Corp Fuel cell
JP2002313371A (en) * 2000-12-07 2002-10-25 Sanyo Electric Co Ltd Cell unit of fuel cell
JP2002203576A (en) * 2000-12-28 2002-07-19 Toyota Central Res & Dev Lab Inc Electrolyte film and fuel cell using this
JP2002203569A (en) * 2000-12-28 2002-07-19 Toyota Central Res & Dev Lab Inc Solid high polymer type fuel cell
JP2002231270A (en) * 2001-02-07 2002-08-16 Asahi Kasei Corp Manufacturing method of ion exchange resin membrane
JP2002352818A (en) * 2001-05-28 2002-12-06 Toyota Central Res & Dev Lab Inc Inorganic material composite polymer film and manufacturing method therefor
JP2003178774A (en) * 2001-12-11 2003-06-27 Sanyo Electric Co Ltd Fuel-cell unit and its manufacturing method

Also Published As

Publication number Publication date
JP2004273255A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4390558B2 (en) Electrocatalyst layer for fuel cells
EP1944819B1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
JP5078262B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, AND FUEL CELL SYSTEM INCLUDING THE SAME
KR101201816B1 (en) Membrane-electrode assembly, method for preparing the same, and fuel cell system comprising the same
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JPH11288727A (en) Solid high polymer fuel cell film/electrode junction body
JP2004185863A (en) Electrode for fuel cell, and fuel cell using it
JP2010505222A (en) Structure for gas diffusion electrode
JP2006252967A (en) Solid polymer electrolyte membrane for fuel cell, and fuel cell using the same
JP4090108B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JPH1140172A (en) Method for producing film-electrode joined body for fuel cell
JP2009117248A (en) Fuel cell
JP2004079420A (en) Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell
JP4798306B2 (en) Electrocatalyst layer production method, electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP4780902B2 (en) Electrocatalyst layer for fuel cells
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP5396730B2 (en) Membrane electrode assembly
JP2003317737A (en) Fuel cell, catalyst electrode using it and solid electrolyte film
KR101117630B1 (en) Membrane-electrode assembly for fuel cell and method for preparating the same
JP2001160398A (en) Gas diffusion electrode for fuel cell and fuel cell using the same
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP6862792B2 (en) Method of manufacturing electrode catalyst
JP2006286478A (en) Membrane electrode assembly
JP5454050B2 (en) POLYMER ELECTROLYTE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY CONTAINING THE POLYMER ELECTROLYTE, AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4649094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees