JP2002231270A - Manufacturing method of ion exchange resin membrane - Google Patents

Manufacturing method of ion exchange resin membrane

Info

Publication number
JP2002231270A
JP2002231270A JP2001030970A JP2001030970A JP2002231270A JP 2002231270 A JP2002231270 A JP 2002231270A JP 2001030970 A JP2001030970 A JP 2001030970A JP 2001030970 A JP2001030970 A JP 2001030970A JP 2002231270 A JP2002231270 A JP 2002231270A
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
membrane
ion
resin membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001030970A
Other languages
Japanese (ja)
Other versions
JP4911822B2 (en
Inventor
Naoto Miyake
直人 三宅
Takuya Hasegawa
卓也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001030970A priority Critical patent/JP4911822B2/en
Publication of JP2002231270A publication Critical patent/JP2002231270A/en
Application granted granted Critical
Publication of JP4911822B2 publication Critical patent/JP4911822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an ion exchange resin membrane insoluble in water and usable for a fuel cell while having little dimensional change caused by water absorption and dehydration. SOLUTION: A metal oxide precursor is added to a solution containing an ion exchange resin, and a liquid is obtained by applying hydrolysis and polycondensation reaction to the metal oxide precursor. This ion exchange resin membrane is manufactured by forming the liquid into a membrane by casting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に用いら
れるイオン交換樹脂膜に関するものである。
TECHNICAL FIELD The present invention relates to an ion exchange resin membrane used for a fuel cell.

【0002】[0002]

【従来の技術】イオン交換樹脂は、高分子鎖中にスルホ
ン酸基やカルボン酸基等の強酸基を有する高分子材料で
あって特定のイオンを選択的に透過する性質を有してい
るため、固体高分子型燃料電池をはじめ、クロルアルカ
リ、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃
縮器、湿度センサー、ガスセンサー等の様々な用途に用
いられている。中でも燃料電池は、水素やメタノール等
を電気化学的に酸化する事により、燃料の化学エネルギ
ーを電気エネルギーに変換するものであり、クリーンな
電気エネルギー供給源として注目されている。
2. Description of the Related Art An ion exchange resin is a polymer material having a strong acid group such as a sulfonic acid group or a carboxylic acid group in a polymer chain, and has a property of selectively transmitting specific ions. It is used in various applications such as polymer electrolyte fuel cells, chloralkali, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors and the like. Among them, fuel cells convert chemical energy of fuel into electric energy by electrochemically oxidizing hydrogen, methanol, and the like, and are attracting attention as a clean electric energy supply source.

【0003】ところで、このような燃料電池に用いるイ
オン交換樹脂膜には高いイオン伝導度を示す事が求めら
れる。イオン交換樹脂膜のイオン伝導度は膜の含水率に
大きく依存することが特開平4−366137号公報、
特開平6−342665号公報に報告されており、高含
水率を有するイオン交換樹脂膜ほど高いイオン伝導度を
示す事がわかっている。そのため、燃料電池に用いる場
合、高含水率となるイオン交換樹脂膜を使用して、高イ
オン伝導度を達成する事で、発電時の電気抵抗を低くす
る工夫がなされている。
Incidentally, an ion exchange resin membrane used in such a fuel cell is required to exhibit high ionic conductivity. JP-A-4-366137 discloses that the ion conductivity of an ion-exchange resin membrane largely depends on the water content of the membrane.
It is reported in JP-A-6-342665, and it is known that an ion exchange resin membrane having a higher water content has a higher ionic conductivity. Therefore, when used for a fuel cell, a device has been devised to reduce the electrical resistance during power generation by achieving high ionic conductivity by using an ion exchange resin membrane having a high water content.

【0004】しかしながら、このような高含水率を有す
るイオン交換樹脂膜は、吸水及び脱水に伴う膜の寸法変
化が大きく、取り扱いが極めて煩雑であると同時に、燃
料電池運転時において、存在する水の増減により、イオ
ン交換樹脂膜が膨張収縮を繰り返す事により劣化し、長
期耐久性の面でも問題があった。一方、イオン交換樹脂
膜のイオン伝導度は、イオン交換基の数にも大きく依存
しており、通常イオン交換基1当量当たりの乾燥重量
(EW)が小さい方が、即ち、イオン交換基の数が多い
イオン交換樹脂膜ほど、より大きなイオン伝導度を示す
ことがわかっている。しかしながら、EWが小さい場合
においても、吸水及び脱水に伴う膜の寸法変化が大きく
なってしまううえに、水や温水に溶解しやすくなるとい
う問題も生じる。そのため、燃料電池用としては、通常
EWが950〜1200程度のものに限定されている。
However, the ion exchange resin membrane having such a high water content has a large dimensional change due to water absorption and dehydration, and is extremely complicated to handle. Due to the increase and decrease, the ion exchange resin membrane deteriorates due to repeated expansion and contraction, and there is also a problem in terms of long-term durability. On the other hand, the ion conductivity of the ion exchange resin membrane is also greatly dependent on the number of ion exchange groups, and the smaller the dry weight (EW) per equivalent of ion exchange groups, the smaller the number of ion exchange groups. It has been found that an ion-exchange resin membrane having a larger content exhibits a higher ion conductivity. However, even when the EW is small, the dimensional change of the film due to water absorption and dehydration becomes large, and there is a problem that the film is easily dissolved in water or hot water. Therefore, for fuel cells, the EW is usually limited to those having a EW of about 950 to 1200.

【0005】また、パーフルオロスルホン酸系イオン交
換樹脂膜をまずメタノール等のアルコール水溶液に含浸
後、金属アルコキシドであるテトラエトキシシランとア
ルコールの混合溶媒を添加して、スルホン酸基の触媒作
用によりテトラエトキシシランを加水分解及び重縮合反
応させ、パーフルオロスルホン酸系イオン樹脂交換膜中
にシリカを含有させたイオン交換樹脂膜も報告されてい
る( K. A. Mauritz,R. F. Storey and C. K. Jones, i
n Multiphase Polymer Materials: Blends and Ionomer
s, L. A. Utracki and R. A. Weiss, Editors, ACS Sym
posium SeriesNo. 395, p. 401, American Chemical So
ciety, Washington, DC (1989))。このイオン交換樹脂
膜を本発明者が評価したところ、吸水及び脱水に伴う膜
の寸法変化が小さくなる事がわかった。しかしながら、
このようなシリカを含有させたイオン交換樹脂膜の製造
においては、アルコール水溶液によるイオン交換樹脂膜
の膨潤過程を伴うため、大量生産が極めて困難であっ
た。
Further, a perfluorosulfonic acid-based ion exchange resin membrane is first impregnated with an aqueous alcohol solution such as methanol, and then a mixed solvent of tetraethoxysilane, which is a metal alkoxide, and an alcohol is added. An ion-exchange resin membrane in which ethoxysilane is hydrolyzed and polycondensed and silica is contained in a perfluorosulfonic acid-based ion-resin exchange membrane has also been reported (KA Mauritz, RF Storey and CK Jones, i).
n Multiphase Polymer Materials: Blends and Ionomer
s, LA Utracki and RA Weiss, Editors, ACS Sym
posium Series No. 395, p. 401, American Chemical So
ciety, Washington, DC (1989)). The present inventor evaluated this ion exchange resin membrane, and found that the dimensional change of the membrane due to water absorption and dehydration was reduced. However,
In the production of such an ion-exchange resin membrane containing silica, mass production was extremely difficult because of the swelling process of the ion-exchange resin membrane with an aqueous alcohol solution.

【0006】一方、特開平6−111827号公報に微
細粒子のシリカ及び又はシリカファイバーを含有するイ
オン交換樹脂膜が、及び特開平9−251857号公報
に吸湿性無機多孔質粒子が分散混合されているイオン交
換樹脂膜が開示されている。これらのイオン交換樹脂膜
についても本発明者が検討したところ、吸水及び脱水に
伴う膜の寸法変化、及び低EW時の水への溶解に関し
て、顕著な効果は見出せなかった。
On the other hand, Japanese Patent Application Laid-Open No. Hei 6-11827 discloses a method in which an ion-exchange resin membrane containing fine particles of silica and / or silica fibers is dispersed, and Japanese Patent Application Laid-Open No. 9-251857 discloses a method in which hygroscopic inorganic porous particles are dispersed and mixed. An ion exchange resin membrane is disclosed. The present inventor also examined these ion exchange resin membranes, and found no remarkable effect on dimensional change of the membrane due to water absorption and dehydration and dissolution in water at low EW.

【0007】[0007]

【発明が解決しようとする課題】本発明は、燃料電池に
用いる事のできる、吸水及び脱水に伴う膜の寸法変化が
小さく、かつEWが小さくても水に溶解しにくいイオン
交換樹脂膜の製造方法を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION The present invention relates to a method for producing an ion-exchange resin membrane which can be used in a fuel cell and which has a small dimensional change due to water absorption and dehydration and is hardly dissolved in water even with a small EW. It is intended to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明者が鋭意検討した
結果、イオン交換樹脂を含有する溶液に金属酸化物前駆
体を添加し、該金属酸化物前駆体を加水分解及び重縮合
反応させて得た液体を、キャスト製膜して製造されたイ
オン交換樹脂膜が、吸水及び脱水に伴う膜の寸法変化が
小さく、かつEWが小さくても水に溶解しにくい事を見
出し本発明に到った。
Means for Solving the Problems As a result of intensive studies by the present inventors, a metal oxide precursor was added to a solution containing an ion exchange resin, and the metal oxide precursor was subjected to hydrolysis and polycondensation reaction. The present invention was found that an ion-exchange resin membrane produced by casting the obtained liquid into a cast membrane has a small dimensional change of the membrane due to water absorption and dehydration, and is difficult to dissolve in water even with a small EW. Was.

【0009】即ち、本発明は、 1,イオン交換樹脂を含有する溶液に金属酸化物前駆体
を添加し、該金属酸化物前駆体を加水分解及び重縮合反
応させて得た液体を、キャスト製膜する事を特徴とす
る、イオン交換樹脂膜の製造方法、 2,上記方法により製造される事を特徴とする、イオン
交換樹脂膜、 3,該イオン交換樹脂膜を備える事を特徴とする、膜電
極接合体、 4,該イオン交換樹脂膜を備える事を特徴とする、固体
高分子型燃料電池に関する。
That is, the present invention relates to: 1, a liquid obtained by adding a metal oxide precursor to a solution containing an ion exchange resin, and subjecting the metal oxide precursor to hydrolysis and polycondensation reaction; A method for producing an ion-exchange resin membrane, characterized by being formed into a membrane; 2, an ion-exchange resin membrane, characterized by being produced by the above-described method; The present invention relates to a polymer electrolyte fuel cell comprising the membrane electrode assembly, and the ion exchange resin membrane.

【0010】以下に、本発明のイオン交換樹脂膜の製造
方法を詳細に説明する。本発明の製造方法は、イオン交
換樹脂を含有する溶液に金属酸化物前駆体を添加し、該
金属酸化物前駆体を加水分解及び重縮合反応させて得た
液体を、キャスト製膜する、イオン交換樹脂膜の製造方
法に関する。本発明で用いるイオン交換樹脂は、フッ化
オレフィンと、イオン交換基前駆体(スルホン酸基前駆
体又はカルボン酸基前駆体)を有するフッ化ビニル化合
物とを共重合したフルオロカーボン重合体(以下、イオ
ン交換樹脂前駆体と称する)を製造し、引き続き、イオ
ン交換基前駆体を加水分解して、スルホン酸基又はカル
ボン酸基を有するフルオロカーボン重合体にすることに
よって製造される。イオン交換樹脂前駆体は、CF2
CX12(X1及びX2は独立にハロゲン元素ないしは炭
素数1〜10のパーフルオロアルキル基又はフルオロク
ロロアルキル基)で表されるフッ化オレフィンと、CF
2=CF(−O−(CF2−CF(CF 23))b−OC
(CFR1d−(CFR2e−(CF2f−X5)で表
されるフッ化ビニル化合物(cは0又は1、d及びe及
びfは独立に0〜6の整数(但しd+e+fは0に等し
くない)、R1及びR2は独立にハロゲン元素ないしは炭
素数1〜10のパーフルオロアルキル基又はフルオロク
ロロアルキル基、X5はCO23、COR4、又はSO2
4(R3は炭素数1〜3の炭化水素系アルキル基、R4
はハロゲン元素))とのフルオロカーボン共重合体が好
ましい。
Hereinafter, the production of the ion exchange resin membrane of the present invention will be described.
The method will be described in detail. The production method of the present invention
A metal oxide precursor to a solution containing an exchange resin,
Obtained by hydrolysis and polycondensation reaction of metal oxide precursor
How to produce an ion exchange resin membrane by casting a liquid
About the law. The ion exchange resin used in the present invention is a fluorinated resin.
Olefin and ion exchange group precursor (sulfonic acid group precursor
Fluorinated compound having an isomer or a carboxylic acid group precursor)
Fluorocarbon polymer obtained by copolymerizing
(Referred to as an ion exchange resin precursor)
Hydrolyzes the cation-exchange group precursor to form a sulfonic acid group or
To make a fluorocarbon polymer having a boronic acid group
Therefore, it is manufactured. The ion exchange resin precursor is CFTwo=
CX1XTwo(X1And XTwoIs independently a halogen element or charcoal
A perfluoroalkyl group of 1 to 10
A fluorinated olefin represented by the formula:
Two= CF (-O- (CFTwo−CF (CF TwoXThree))b-OC
(CFR1)d− (CFRTwo)e− (CFTwo)f-XFive)
Vinyl fluoride compound (c is 0 or 1, d and e and
And f are independently integers from 0 to 6 (where d + e + f is equal to 0)
Not), R1And RTwoIs independently a halogen element or charcoal
A perfluoroalkyl group of 1 to 10
A loroalkyl group, XFiveIs COTwoRThree, CORFourOr SOTwo
RFour(RThreeIs a hydrocarbon alkyl group having 1 to 3 carbon atoms, RFour
Is preferably a fluorocarbon copolymer with a halogen element)).
Good.

【0011】代表的なフッ化オレフィンとしては、CF
2=CF2、CF2=CFCl、CF2=CCl2が挙げら
れる。フッ化ビニル化合物としては、具体的には、CF
2=CFO(CF2z−SO2F、CF2=CFOCF2
F(CF3)O(CF2z−SO2F、CF2=CF(C
2z−SO2F、CF2=CF(OCF2CF(C
3))z-1−(CF22−SO2F、CF2=CFO(C
2z−CO2R、CF2=CFOCF2CF(CF3)O
(CF2z−CO2R、CF2=CF(CF2z−CO 2
R、CF2=CF(OCF2CF(CF3))z−(C
22−CO2R(zは1〜8の整数、Rは炭素数1〜
3の炭化水素系アルキル基を表す)が挙げられる。
Representative fluorinated olefins include CF
Two= CFTwo, CFTwo= CFCl, CFTwo= CClTwoBut
It is. As the vinyl fluoride compound, specifically, CF
Two= CFO (CFTwo)z-SOTwoF, CFTwo= CFOCFTwoC
F (CFThree) O (CFTwo)z-SOTwoF, CFTwo= CF (C
FTwo)z-SOTwoF, CFTwo= CF (OCFTwoCF (C
FThree))z-1− (CFTwo)Two-SOTwoF, CFTwo= CFO (C
FTwo)z-COTwoR, CFTwo= CFOCFTwoCF (CFThree) O
(CFTwo)z-COTwoR, CFTwo= CF (CFTwo)z-CO Two
R, CFTwo= CF (OCFTwoCF (CFThree))z− (C
FTwo)Two-COTwoR (z is an integer of 1 to 8, R is 1 to
3 represents a hydrocarbon alkyl group).

【0012】なお、上記フルオロカーボン共重合体は、
ヘキサフルオロプロピレン、クロロトリフルオロエチレ
ン等のパーフルオロオレフィン、又はパーフルオロアル
キルビニルエーテル等の第三成分を含む共重合体であっ
てもよい。このようなイオン交換樹脂前駆体の重合方法
としては、上記フッ化ビニル化合物をフロン等の溶媒に
溶かした後、フッ化オレフィンのガスと反応させ重合す
る溶液重合法、フロン等の溶媒を使用せずに重合する塊
状重合法、フッ化ビニル化合物を界面活性剤とともに水
中に仕込んで乳化させた後、フッ化オレフィンのガスと
反応させ重合する乳化重合法等が挙げられる。イオン交
換樹脂前駆体は、下記式(1)のように表される。 −[CF2CX12a−[CF2−CF(−O−(CF2−CF(CF23))b −OC−(CFR1d−(CFR2e−(CF2f−X5)]− (1) (式中のX1、X2及びX3は独立にハロゲン元素又は炭
素数1〜3のパーフルオロアルキル基、aは0〜20の
整数、bは0〜8の整数、cは0又は1、d及びe及び
fは独立に0〜6の整数(但しd+e+fは0に等しく
ない)、R1及びR2は独立にハロゲン元素ないしは炭素
数1〜10のパーフルオロアルキル基又はフルオロクロ
ロアルキル基、X5はCO23、COR4、又はSO24
(R3は炭素数1〜3の炭化水素系アルキル基、R4はハ
ロゲン元素))
[0012] The above fluorocarbon copolymer is
It may be a perfluoroolefin such as hexafluoropropylene or chlorotrifluoroethylene, or a copolymer containing a third component such as perfluoroalkylvinyl ether. As a method for polymerizing such an ion exchange resin precursor, a solution polymerization method in which the vinyl fluoride compound is dissolved in a solvent such as chlorofluorocarbon and then reacted with a fluorinated olefin gas to perform polymerization, a solvent such as chlorofluorocarbon is used. A bulk polymerization method in which a vinyl fluoride compound is charged into water together with a surfactant and emulsified, followed by a reaction with a fluorinated olefin gas for polymerization, and the like. The ion exchange resin precursor is represented by the following formula (1). - [CF 2 CX 1 X 2 ] a - [CF 2 -CF (-O- (CF 2 -CF (CF 2 X 3)) b -O C - (CFR 1) d - (CFR 2) e - ( CF 2 ) f -X 5 )]-(1) (wherein X 1 , X 2 and X 3 are each independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, a is an integer of 0 to 20, b is an integer of 0 to 8, c is 0 or 1, d and e and f are each independently an integer of 0 to 6 (however, d + e + f is not equal to 0), and R 1 and R 2 are each independently a halogen element or carbon number. 1 to 10 perfluoroalkyl groups or fluorochloroalkyl groups, and X 5 is CO 2 R 3 , COR 4 , or SO 2 R 4
(R 3 is a hydrocarbon alkyl group having 1 to 3 carbon atoms, and R 4 is a halogen element)

【0013】次に、上記方法によって製造されたイオン
交換樹脂前駆体をアルカリ溶液に接触させる事でイオン
交換基前駆体を加水分解してイオン交換樹脂を製造す
る。イオン交換基前駆体の加水分解は、水酸化アルカリ
水溶液中で実施する事ができ、さらに加水分解反応速度
を増加させるために比較的高温の溶液を使用するのが有
利である。例えば、特開昭61−19638号公報に示
されている水酸化ナトリウムを20〜25%含んだ水溶
液を用い70〜90℃において16時間加水分解処理す
る方法等がこれである。また、膜を膨潤させ加水分解反
応速度を促進するために水酸化アルカリ水溶液とメチル
アルコール、エチルアルコール、プロピルアルコールの
ようなアルコール系溶剤、もしくはジメチルスルオキシ
ド等の水溶性有機溶剤との混合物により加水分解する方
法が用いられている。例えば、特開昭57−13912
7号公報の水酸化カリウムを11〜13%とジメチルス
ルオキシドを30%含んだ水溶液を用い90℃で1時間
加水分解処理する方法、特開平3−6240号公報の水
酸化アルカリを15〜50wt%と水溶性有機化合物を
0.1〜30wt%含んだ水溶液を用いて60〜130
℃で20分〜24時間加水分解処理する方法がこれであ
る。
Next, the ion exchange resin precursor is hydrolyzed by bringing the ion exchange resin precursor produced by the above method into contact with an alkaline solution to produce an ion exchange resin. The hydrolysis of the ion exchange group precursor can be carried out in an aqueous alkali hydroxide solution, and it is advantageous to use a solution having a relatively high temperature in order to further increase the hydrolysis reaction rate. For example, there is a method disclosed in JP-A-61-19638 in which an aqueous solution containing 20 to 25% of sodium hydroxide is subjected to a hydrolysis treatment at 70 to 90 ° C. for 16 hours. In addition, in order to swell the membrane and accelerate the hydrolysis reaction rate, a mixture of an aqueous alkali hydroxide solution and an alcoholic solvent such as methyl alcohol, ethyl alcohol and propyl alcohol, or a water-soluble organic solvent such as dimethyl sulfoxide is used. Decomposition methods are used. For example, Japanese Patent Application Laid-Open No. 57-13912
JP-A-3-6240 discloses a method of hydrolyzing for 1 hour at 90 ° C. using an aqueous solution containing 11 to 13% of potassium hydroxide and 30% of dimethyl sulfoxide. % And an aqueous solution containing 0.1 to 30% by weight of a water-soluble organic compound.
This is a method of performing a hydrolysis treatment at 20 ° C for 20 minutes to 24 hours.

【0014】このように加水分解処理によりイオン交換
基を形成させた後、水洗する事で、アルカリ金属型イオ
ン交換基ないしはアルカリ土類金属型イオン交換基を有
する下記式(2)で表されるイオン交換樹脂を得る事が
できる。さらに塩酸等の無機酸で酸処理する事で、酸型
イオン交換基を有するイオン交換樹脂を製造する事も可
能である。 −[CF2CX12a−[CF2−CF(−O−(CF2−CF(CF23))b −OC−(CFR1d−(CFR2e−(CF2f−X4)]− (2) (式中のX1、X2及びX3は独立にハロゲン元素又は炭
素数1〜3のパーフルオロアルキル基、aは0〜20の
整数、bは0〜8の整数、cは0又は1、d及びe及び
fは独立に0〜6の整数(但しd+e+fは0に等しく
ない)、R1及びR2は独立にハロゲン元素ないしは炭素
数1〜10のパーフルオロアルキル基又はフルオロクロ
ロアルキル基、X4はCOOZ又はSO3Z(Zはアルカ
リ金属原子、又はアルカリ土類金属原子、又は水素原
子))
After forming an ion-exchange group by the hydrolysis treatment as described above, the resultant is washed with water to be represented by the following formula (2) having an alkali-metal-type ion-exchange group or an alkaline-earth-metal-type ion-exchange group. An ion exchange resin can be obtained. Further, by performing an acid treatment with an inorganic acid such as hydrochloric acid, an ion exchange resin having an acid type ion exchange group can be produced. - [CF 2 CX 1 X 2 ] a - [CF 2 -CF (-O- (CF 2 -CF (CF 2 X 3)) b -O C - (CFR 1) d - (CFR 2) e - ( CF 2) f -X 4)] - (2) (X 1, X 2 and X 3 are independently perfluoroalkyl group of halogen or 1 to 3 carbon atoms in the formula, a is 0 to 20 integer, b is an integer of 0 to 8, c is 0 or 1, d and e and f are independently an integer of 0 to 6 (however, d + e + f is not equal to 0), and R 1 and R 2 are independently a halogen element or a carbon number. 1 to 10 perfluoroalkyl groups or fluorochloroalkyl groups, X 4 is COOZ or SO 3 Z (Z is an alkali metal atom, or an alkaline earth metal atom, or a hydrogen atom)

【0015】本発明の製造方法に用いるイオン交換樹脂
のEWは特に限定されないが、250以上1200以下
であり、好ましくは250以上1000以下、より好ま
しくは250以上800以下、更により好ましくは25
0以上700以下である。次に、以上の方法で製造した
イオン交換樹脂を水、又は非水溶媒、又は水と非水溶媒
の混合溶媒に一般的な方法で溶解させて溶液化する。こ
こで言う非水溶媒としては特に限定されないが、メタノ
ールやエタノール、イソプロパノール等のアルコール溶
媒が好ましい。また、ここで言う溶液化とは、イオン交
換樹脂がミセル状に分散した状態も含む。イオン交換樹
脂が溶解しにくい場合には、加温またはオートクレーブ
等の加圧下で溶解することも可能である。
Although the EW of the ion exchange resin used in the production method of the present invention is not particularly limited, it is 250 to 1200, preferably 250 to 1000, more preferably 250 to 800, still more preferably 25 to 800.
It is 0 or more and 700 or less. Next, the ion exchange resin produced by the above method is dissolved in water, a non-aqueous solvent, or a mixed solvent of water and a non-aqueous solvent by a general method to form a solution. The non-aqueous solvent referred to herein is not particularly limited, but alcohol solvents such as methanol, ethanol, and isopropanol are preferable. The term “solution” as used herein also includes a state in which the ion exchange resin is dispersed in a micelle. When the ion exchange resin is difficult to dissolve, it can be dissolved under heating or under pressure in an autoclave or the like.

【0016】更に、イオン交換樹脂を含有する溶液に金
属酸化物前駆体を添加する。金属酸化物前駆体の添加量
は特に限定されないが、イオン交換樹脂1当量に対し、
0.01以上200当量以下、好ましくは0.1以上1
00当量以下、より好ましくは0.1以上50当量以
下、更により好ましくは0.1以上20当量以下であ
る。
Further, a metal oxide precursor is added to the solution containing the ion exchange resin. The amount of the metal oxide precursor to be added is not particularly limited.
0.01 to 200 equivalents, preferably 0.1 to 1
The equivalent amount is at most 00 equivalent, more preferably at least 0.1 and at most 50 equivalents, even more preferably at least 0.1 and at most 20 equivalents.

【0017】本発明で用いる金属酸化物前駆体は特に限
定されないが、 Al,B,P,Si,Ti,Zr,Y
を含有するアルコキシドが好ましい。Alのアルコキシ
ドの具体例としては、Al(OCH33,Al(OC2
53,Al(OC373,Al(OC493、Bを
含有するアルコキシドの具体例としては、B(OC
33、 Pを含有するアルコキシドの具体例として
は、P(OCH33、 Siを含有するアルコキシドの
具体例としては、Si(OCH34,Si(OC25
4,Si(OC374,Si(OC494、 Tiを含
有するアルコキシドの具体例としては、Ti(OC
34, Ti(OC254,Ti(OC374,T
i(OC494、Zrを含有するアルコキシドの具体
例としては、Zr(OCH34,Zr(OC254
Zr(OC374,Zr(OC494が挙げられる。
Yを含有するアルコキシドの具体例としては、Y(OC
493が挙げられる。これらは、単独でもちいても、
2種以上を混合してもちいても構わない。また、La
[Al(i−OC374]3,Mg[Al(i−OC
374]2,Mg[Al(sec−OC494]2,Ni
[Al(i−OC374]2,(C37O) 2Zr[Al
(OC374]2,Ba[Zr2(OC259]2といった
2金属アルコキシドを用いても良い。
The metal oxide precursor used in the present invention is particularly limited.
Not specified, Al, B, P, Si, Ti, Zr, Y
Alkoxides containing are preferred. Al alkoxy
As a specific example of C, Al (OCHThree)Three, Al (OCTwo
HFive)Three, Al (OCThreeH7)Three, Al (OCFourH9)Three, B
As a specific example of the alkoxide contained, B (OC
HThree)ThreeSpecific examples of alkoxides containing P
Is P (OCHThree)ThreeOf alkoxides containing Si
As a specific example, Si (OCHThree)Four, Si (OCTwoHFive)
Four, Si (OCThreeH7)Four, Si (OCFourH9)Four, Including Ti
Specific examples of the alkoxides include Ti (OC
HThree)Four, Ti (OCTwoHFive)Four, Ti (OCThreeH7)Four, T
i (OCFourH9)FourSpecific examples of alkoxides containing Zr
As an example, Zr (OCHThree)Four, Zr (OCTwoHFive)Four,
Zr (OCThreeH7)Four, Zr (OCFourH9)FourIs mentioned.
Specific examples of the alkoxide containing Y include Y (OC
FourH9)ThreeIs mentioned. These can be used alone,
Two or more kinds may be mixed and used. Also, La
[Al (i-OCThreeH7)Four]Three, Mg [Al (i-OC
ThreeH7)Four]Two, Mg [Al (sec-OCFourH9)Four]Two, Ni
[Al (i-OCThreeH7)Four]Two, (CThreeH7O) TwoZr [Al
(OCThreeH7)Four]Two, Ba [ZrTwo(OCTwoHFive)9]Twosuch as
Bimetallic alkoxides may be used.

【0018】イオン交換樹脂を含有する溶液が水を含む
場合、金属酸化物前駆体の添加と同時に、金属酸化物前
駆体の加水分解及び重縮合反応が開始する。イオン交換
樹脂を含有する溶液が非水又は含水量が小さい場合、金
属酸化物前駆体を添加、攪拌後に水を添加、攪拌して金
属酸化物前駆体を加水分解及び重縮合反応を開始させ
る。水の量としては特に限定されないが、金属酸化物前
駆体1当量に対し1当量以上100当量以下、好ましく
は2当量以上80当量以下、より好ましくは3当量以上
50当量以下、更により好ましくは3当量以上30当量
以下である。
When the solution containing the ion exchange resin contains water, hydrolysis and polycondensation of the metal oxide precursor start simultaneously with the addition of the metal oxide precursor. When the solution containing the ion exchange resin is non-water or has a low water content, the metal oxide precursor is added, water is added after stirring, and the metal oxide precursor is hydrolyzed and polycondensation reaction is started. The amount of water is not particularly limited, but is 1 equivalent to 100 equivalents, preferably 2 equivalents to 80 equivalents, more preferably 3 equivalents to 50 equivalents, and still more preferably 3 equivalents to 1 equivalent of the metal oxide precursor. It is equal to or more than 30 equivalents.

【0019】反応温度としては、特に限定されないが、
好ましくは1℃以上100℃以下、より好ましくは10
℃以上80℃以下、更により好ましくは20℃以上50
℃以下である。尚、金属酸化物前駆体の添加時から上記
温度にしていても構わない。反応時間としては、特に限
定されないが、1秒以上24時間以下が好ましく、より
好ましくは30秒以上8時間以下、更により好ましくは
1分以上1時間以下である。金属酸化物前駆体の加水分
解及び重縮合反応の進行に伴い、溶液の粘度は上昇す
る。
The reaction temperature is not particularly limited,
Preferably 1 ° C or higher and 100 ° C or lower, more preferably 10 ° C or lower.
C. to 80.degree. C., more preferably 20.degree. C. to 50.
It is below ° C. The above temperature may be set from the time of addition of the metal oxide precursor. The reaction time is not particularly limited, but is preferably from 1 second to 24 hours, more preferably from 30 seconds to 8 hours, and still more preferably from 1 minute to 1 hour. As the hydrolysis and polycondensation reaction of the metal oxide precursor progresses, the viscosity of the solution increases.

【0020】尚、本発明のイオン交換樹脂溶液を用いて
製膜したイオン交換樹脂膜に柔軟性を付与するため、金
属酸化物前駆体添加と同時に有機珪素化合物を添加する
ことも可能である。有機珪素化合物としては特に限定さ
れないが、例えば、トリメチルクロロシラン、ジメチル
ジクロロシラン、ヘキサメチルジシラザン等のシリル化
剤、ビニルトリクロロシラン、ビニルトリメトキシシラ
ン等のシランカップリング剤、その他、エチルジクロロ
シラン、エチルトリクロロシラン、ジメチルジクロロシ
ラン、テトライソシアネートシラン、テトラメチルシラ
ン、トリクロロシラン、トリメチルクロロシラン、ビニ
ルトリクロロシラン、メチルジクロロシラン、メチルト
リクロロシラン、モノメチルトリイソイサネートシラ
ン、ジエトキシジメチルシラン等が挙げられる。
In order to impart flexibility to the ion-exchange resin membrane formed using the ion-exchange resin solution of the present invention, it is possible to add an organic silicon compound simultaneously with the addition of the metal oxide precursor. The organic silicon compound is not particularly limited, for example, trimethylchlorosilane, dimethyldichlorosilane, a silylating agent such as hexamethyldisilazane, vinyltrichlorosilane, a silane coupling agent such as vinyltrimethoxysilane, other, ethyldichlorosilane, Ethyltrichlorosilane, dimethyldichlorosilane, tetraisocyanatesilane, tetramethylsilane, trichlorosilane, trimethylchlorosilane, vinyltrichlorosilane, methyldichlorosilane, methyltrichlorosilane, monomethyltriisoisanatosilane, diethoxydimethylsilane, and the like.

【0021】また、イオン交換樹脂膜のひび割れを防止
するため、乾燥制御剤を添加することもある。乾燥制御
剤としては特に限定されないが、ジメチルホルムアミ
ド、ホルムアミド等が挙げられる。以上のように製造さ
れたイオン交換樹脂を含有した溶液に金属酸化物前駆体
を添加し、該金属酸化物前駆体を加水分解及び重縮合反
応させて得た液体を基材上にキャスト製膜する事によっ
て、イオン交換樹脂膜を得る事ができる。該液体の粘度
としては特に限定されないが、1〜100000cpsで
あることが好ましい。また、該液体は未反応の金属酸化
物前駆体を含んでいても良い。
In order to prevent cracking of the ion exchange resin membrane, a drying control agent may be added. The drying control agent is not particularly limited, but includes dimethylformamide, formamide and the like. A liquid obtained by adding a metal oxide precursor to the solution containing the ion exchange resin produced as described above and subjecting the metal oxide precursor to hydrolysis and polycondensation reaction is cast on a substrate to form a film. By doing so, an ion exchange resin membrane can be obtained. The viscosity of the liquid is not particularly limited, but is preferably from 1 to 100,000 cps. Further, the liquid may contain an unreacted metal oxide precursor.

【0022】キャスト方法は特に限定されず、例えばグ
ラビアロールコータ−、ナチュラルロールコータ、リバ
ースロールコータ、ナイフコータ−、ディップコータ−
等、公知の塗工方法を用いる事ができる。また、基材と
しては特に限定されないが、一般的なポリマーフィルム
や金属箔、またはアルミナやSi等の基板、また特開平
8−162132号公報記載のPTFE膜を延伸処理し
た多孔質膜、特開昭53−149881号公報及び特公
昭63−61337号公報に示されるフィブリル化繊維
等を用いる事ができる。
The casting method is not particularly limited. For example, gravure roll coater, natural roll coater, reverse roll coater, knife coater, dip coater
For example, a known coating method can be used. The substrate is not particularly limited, but may be a general polymer film, a metal foil, a substrate of alumina or Si, a porous film obtained by stretching a PTFE film described in JP-A-8-162132, Fibrillated fibers and the like described in JP-B-53-149881 and JP-B-63-61337 can be used.

【0023】キャスト後、熱風乾燥等の公知の方法によ
り、乾燥及びまたは熱処理を行い固化させて、イオン交
換樹脂膜を得る。このようにして製膜したイオン交換樹
脂膜を、燃料電池に用いる場合は、基材ごと使用する場
合と、基材からイオン交換樹脂膜を剥離させて、イオン
交換樹脂膜のみを使用する場合がある。本発明の製造方
法で得られるイオン交換樹脂膜のEWは特に限定されな
いが、250以上1200以下であり、好ましくは25
0以上1000以下、より好ましくは250以上800
以下、更により好ましくは250以上700以下であ
る。厚みとしては特に限定されないが、ガス透過率を低
くするために1μm以上、また発電時の電気抵抗を小さ
くする500μm以下である事が好ましい。
After the casting, drying and / or heat treatment is performed by a known method such as hot air drying to solidify, thereby obtaining an ion exchange resin membrane. When the ion-exchange resin membrane formed in this way is used for a fuel cell, there are cases where the ion-exchange resin membrane is used alone, and cases where the ion-exchange resin membrane is peeled off from the substrate and only the ion-exchange resin membrane is used. is there. Although the EW of the ion exchange resin membrane obtained by the production method of the present invention is not particularly limited, it is 250 or more and 1200 or less, preferably 25 or less.
0 to 1000, more preferably 250 to 800
Hereinafter, it is even more preferably 250 or more and 700 or less. The thickness is not particularly limited, but is preferably 1 μm or more to reduce the gas permeability and 500 μm or less to reduce the electric resistance during power generation.

【0024】本発明の製造方法で得られるイオン交換樹
脂膜は、金属酸化物を含有する。金属酸化物としては、
特に限定されないが、Al,B,P,Si,Ti,Z
r,Yからなる酸化物であることが好ましい。金属酸化
物の含有量としては特に限定されないが、水に溶解せ
ず、かつ吸水及び脱水に伴う寸法変化の小さいイオン交
換樹脂膜を得るためには1wt%以上、また十分なプロ
トン伝導度を得るためには90wt%以下である事が好
ましい。より好ましくは2wt%以上70wt%以下、
更により好ましくは5wt%以上50wt%以下であ
る。
The ion exchange resin membrane obtained by the production method of the present invention contains a metal oxide. As metal oxides,
Although not particularly limited, Al, B, P, Si, Ti, Z
An oxide composed of r and Y is preferable. The content of the metal oxide is not particularly limited. However, in order to obtain an ion exchange resin membrane that is not dissolved in water and has a small dimensional change due to water absorption and dehydration, 1 wt% or more and sufficient proton conductivity are obtained. For this purpose, the content is preferably 90 wt% or less. More preferably, 2 wt% or more and 70 wt% or less,
Still more preferably, it is 5 wt% or more and 50 wt% or less.

【0025】また、本発明の製造方法を適切に用いる事
で、吸水及び脱水に伴う膜の寸法変化が小さい、イオン
交換樹脂膜を得る事ができる。ここで言う寸法変化と
は、30℃の水中の24時間浸漬した後の膜面積と、そ
れを30℃にて減圧乾燥を8時間おこなった後の膜面積
を測定し、その変化率で表すことで評価する。燃料電池
に用いる場合、耐久性を満足させるために特に限定はさ
れないが、100%以下である事が好ましく、より好ま
しくは50%以下、更により好ましくは30%以下であ
る。
Further, by appropriately using the production method of the present invention, it is possible to obtain an ion-exchange resin membrane having a small dimensional change of the membrane due to water absorption and dehydration. The dimensional change here means that the film area after immersion in water at 30 ° C. for 24 hours and the film area after drying under reduced pressure at 30 ° C. for 8 hours are measured and expressed as a change rate. To evaluate. When used in a fuel cell, it is not particularly limited in order to satisfy durability, but is preferably 100% or less, more preferably 50% or less, and still more preferably 30% or less.

【0026】さらに、本発明の製造方法を適切に用いる
事で、EWが小さくても水に溶解しにくいイオン交換樹
脂膜を得る事もできる。水分に対する溶解性は、膜を9
0℃の水中に8時間浸漬した前後の膜の重量減少率で評
価する。燃料電池に用いる場合、特に限定されないが、
5%以下である事が好ましく、より好ましくは2%以
下、更により好ましくは1%以下である。次に、本発明
の製造方法により得られたイオン交換樹脂膜を燃料電池
に用いる場合について説明する。
Further, by appropriately using the production method of the present invention, it is possible to obtain an ion-exchange resin membrane which is hardly soluble in water even if the EW is small. Solubility in water is 9
Evaluation is made based on the weight loss rate of the film before and after immersion in water at 0 ° C. for 8 hours. When used for a fuel cell, there is no particular limitation,
It is preferably at most 5%, more preferably at most 2%, even more preferably at most 1%. Next, a case where the ion exchange resin membrane obtained by the production method of the present invention is used for a fuel cell will be described.

【0027】本発明のイオン交換樹脂膜を固体高分子型
燃料電池に用いる場合、アノードとカソード2種類の電
極が両側に接合された膜電極接合体(MEA)として使
用される。電極は触媒金属の微粒子とこれを担持した導
電剤より構成され、必要に応じて撥水剤が含まれる。電
極に使用される触媒としては水素の酸化反応および酸素
の還元反応を促進する金属であれば特に限定されず、白
金、金、銀、パラジウム、イリジウム、ロジウム、ルテ
ニウム、鉄、コバルト、ニッケル、クロム、タングステ
ン、マンガン、バナジウムあるいはそれらの合金が挙げ
られる。この中では主として白金が用いられる。前記電
極と本発明のイオン交換樹脂膜よりMEAを作製するに
は、例えば次のような方法が行われる。フッ素系イオン
交換樹脂をアルコールと水の混合溶液に溶解したものに
電極物質となる白金担持カーボンを分散させてペースト
状にする。これをPTFEシートに一定量塗布して乾燥
させる。次に当該PTFEシートの塗布面を向かい合わ
せにしてその間にイオン交換樹脂膜を挟み込み、熱プレ
スにより転写接合する。熱プレス温度はイオン交換樹脂
膜の種類によるが、通常は100℃以上であり、好まし
くは130℃以上、さらに好ましくは150℃以上であ
る。
When the ion exchange resin membrane of the present invention is used in a polymer electrolyte fuel cell, it is used as a membrane electrode assembly (MEA) in which two types of electrodes, an anode and a cathode, are joined on both sides. The electrode is composed of fine particles of catalytic metal and a conductive agent carrying the fine particles, and optionally contains a water repellent. The catalyst used for the electrode is not particularly limited as long as it promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen.Platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron, cobalt, nickel, chromium , Tungsten, manganese, vanadium or alloys thereof. Among them, platinum is mainly used. In order to manufacture an MEA from the electrodes and the ion exchange resin membrane of the present invention, for example, the following method is performed. Platinum-supporting carbon serving as an electrode substance is dispersed in a solution in which a fluorine-based ion exchange resin is dissolved in a mixed solution of alcohol and water to form a paste. A predetermined amount of this is applied to a PTFE sheet and dried. Next, the application surfaces of the PTFE sheet are faced to each other, and an ion exchange resin membrane is sandwiched therebetween, and transfer bonding is performed by hot pressing. The hot pressing temperature depends on the type of the ion exchange resin membrane, but is usually 100 ° C. or higher, preferably 130 ° C. or higher, more preferably 150 ° C. or higher.

【0028】固体高分子型燃料電池は、上記のように製
造されたMEA、集電体、燃料電池フレーム、ガス供給
装置等から構成される。このうち集電体(バイポーラプ
レート)は、表面などにガス流路を有するグラファイト
製あるいは金属製のフランジの事であり、電子を外部負
荷回路へ伝達する他に水素や酸素をMEA表面に供給す
る流路としての機能を持っている。こうした集電体の間
にMEAを挿入して複数積み重ねる事により、燃料電池
を作製される。燃料電池の運転は、一方の電極に水素
を、他方の電極に酸素あるいは空気を供給する事によっ
て行われる。燃料電池の作動温度は高温であるほど触媒
活性が上がるために好ましく通常は水分管理が容易な5
0℃〜100℃で運転する事が多いが、100℃〜15
0℃で作動させる事もある。酸素や水素の供給圧力につ
いては高いほど燃料電池出力が高まるため好ましいが、
膜の破損が起きないように適当な圧力範囲に調整する事
が好ましい。
The polymer electrolyte fuel cell includes the MEA, the current collector, the fuel cell frame, the gas supply device and the like manufactured as described above. Among these, the current collector (bipolar plate) is a graphite or metal flange having a gas flow path on the surface and the like, and supplies hydrogen and oxygen to the MEA surface in addition to transmitting electrons to an external load circuit. It has a function as a flow path. A fuel cell is manufactured by inserting an MEA between such current collectors and stacking a plurality of them. The operation of the fuel cell is performed by supplying hydrogen to one electrode and oxygen or air to the other electrode. The higher the operating temperature of the fuel cell is, the higher the catalyst activity becomes.
It is often operated at 0 ° C to 100 ° C.
It may be operated at 0 ° C. The higher the supply pressure of oxygen or hydrogen is, the higher the output of the fuel cell is.
It is preferable to adjust the pressure to an appropriate range so that the membrane is not damaged.

【0029】本発明のイオン交換樹脂溶液から製膜され
たイオン交換樹脂膜は、燃料電池以外にも、クロルアル
カリ、水電解、ハロゲン化水素酸電解、食塩電解、酸素
濃縮器、湿度センサー、ガスセンサー等に用いる事も可
能である。
The ion-exchange resin membrane formed from the ion-exchange resin solution of the present invention can be used in addition to a fuel cell, such as chloralkali, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor, It can also be used for sensors and the like.

【0030】[0030]

【発明の実施の形態】以下、本発明を実施例に基づいて
更に詳細に説明するが、本発明は実施例に制限されるも
のではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.

【0031】[0031]

【実施例1】イオン交換樹脂前駆体として、CF2CF2
とCF2=CFOCF2CF(CF3)O(CF22−S
2Fとのフルオロカーボン共重合体を用いた。このイ
オン交換樹脂前駆体のEWは614、JIS K−72
10に基づいた温度270℃、荷重2.16kgで測定
されるメルトインデックス(MI(g/10分))は4
4230であった。このイオン交換樹脂前駆体を溶融押
出して500μm厚に成形した1g程度の成形物を、1
5wt%の水酸化カリウムと30wt%のジメチルスル
オキシドと55wt%の水を含有する反応液体に、60
℃にて4時間接触させて、加水分解処理を行った。
Example 1 CF 2 CF 2 was used as an ion exchange resin precursor.
And CF 2 = CFOCF 2 CF (CF 3) O (CF 2) 2 -S
A fluorocarbon copolymer with O 2 F was used. The EW of this ion exchange resin precursor is 614, JIS K-72
The melt index (MI (g / 10 min)) measured at a temperature of 270 ° C. and a load of 2.16 kg based on the sample No. 10 is 4
4230. This ion-exchange resin precursor was melt-extruded and molded into a thickness of about 500 μm to form a molded product of about 1 g.
A reaction liquid containing 5% by weight of potassium hydroxide, 30% by weight of dimethylsulfoxide and 55% by weight of water contains 60%
C. for 4 hours to carry out a hydrolysis treatment.

【0032】そして、30℃のイオン交換水で洗浄し、
次に30℃の2N塩酸水溶液に3時間浸漬した後、イオ
ン交換水にて酸を洗い出し、スルホン酸基を有するイオ
ン交換樹脂を得た。このイオン交換樹脂を60℃のイオ
ン交換水に溶かした50%溶液2gに、テトラエトキシ
シランとメタノールを1:1の重量割合で混合した1.
4gの混合溶媒を添加、攪拌して加水分解及び重縮合反
応を開始させた。60℃にてこの液体を攪拌して反応を
進行させ、液体が高粘度になった時点で、シャーレに液
体を注いだ。この液体を室温で1晩乾燥後、110℃で
熱処理を行い、本発明のイオン交換樹脂膜を得た。
Then, it is washed with ion-exchanged water at 30 ° C.
Next, after being immersed in a 2N hydrochloric acid aqueous solution at 30 ° C. for 3 hours, the acid was washed out with ion-exchanged water to obtain an ion-exchange resin having a sulfonic acid group. Tetraethoxysilane and methanol were mixed at a weight ratio of 1: 1 to 2 g of a 50% solution of this ion exchange resin in ion exchange water at 60 ° C.
4 g of the mixed solvent was added and stirred to start hydrolysis and polycondensation reaction. The liquid was stirred at 60 ° C. to progress the reaction, and when the liquid became highly viscous, the liquid was poured into a petri dish. After drying this liquid at room temperature overnight, it was heat-treated at 110 ° C. to obtain an ion exchange resin membrane of the present invention.

【0033】次に、この膜を30℃で8時間真空乾燥
し、膜重量W1(g)を測定した。秤量後、膜を再びイ
オン交換水中に入れ、90℃で8時間浸漬した。冷却
後、膜を水中から取りだしイオン交換水で洗浄した。そ
して、この膜を再び、30℃で8時間真空乾燥し、フィ
ルム重量W2(g)を測定した。沸騰処理前の乾燥重量
基準での沸騰処理による重量減少率Y(%)を以下の式
で算出したところ、重量減少率は4%であった。 Y=(W1−W2)/W1×100
Next, the film was vacuum-dried at 30 ° C. for 8 hours, and the film weight W 1 (g) was measured. After weighing, the membrane was put again in ion-exchanged water and immersed at 90 ° C. for 8 hours. After cooling, the membrane was taken out of the water and washed with ion-exchanged water. Then, the film was dried again in vacuum at 30 ° C. for 8 hours, and the film weight W 2 (g) was measured. The weight loss rate Y (%) due to the boiling treatment on a dry weight basis before the boiling treatment was calculated by the following formula, and the weight loss rate was 4%. Y = (W 1 −W 2 ) / W 1 × 100

【0034】[0034]

【比較例1】実施例1と同様な方法で作製したイオン交
換樹脂をそのままイオン交換水中に入れ、90℃で8時
間浸漬したところ、全て水に溶解した。
Comparative Example 1 An ion-exchange resin prepared in the same manner as in Example 1 was placed in ion-exchanged water as it was, and immersed at 90 ° C. for 8 hours, all of which was dissolved in water.

【0035】[0035]

【実施例2】イオン交換樹脂前駆体として、のCF2
2とCF2=CFOCF2CF(CF 3)O(CF22
SO2Fとのフルオロカーボン共重合体(EW:67
3、MI:2061)を用いた。実施例1と同様な方法
で、1g程度のスルホン酸基を有するイオン交換樹脂の
成形体を得た。このイオン交換樹脂をイオン交換水に入
れて沸騰させて溶かした50%溶液2gに、60℃にて
テトラエトキシシランとメタノールを1:1の重量割合
で混合した1.4gの混合溶媒を添加、攪拌して加水分
解及び重縮合反応を開始させた。60℃にてこの液体を
攪拌して反応を進行させ、液体が高粘度になった時点
で、シャーレに液体を注いだ。この液体を室温で1晩乾
燥後、110℃で熱処理を行い、100μm厚の本発明
のイオン交換樹脂膜を得た。
Example 2 CF as an ion exchange resin precursorTwoC
FTwoAnd CFTwo= CFOCFTwoCF (CF Three) O (CFTwo)Two
SOTwoF and a fluorocarbon copolymer (EW: 67)
3, MI: 2061). Method similar to Example 1
Of an ion exchange resin having about 1 g of a sulfonic acid group.
A molded article was obtained. Put this ion exchange resin in ion exchange water.
2 g of a 50% solution that was boiled and dissolved at 60 ° C
Tetraethoxysilane and methanol in a 1: 1 weight ratio
Add 1.4 g of the mixed solvent mixed in
The dissolution and polycondensation reactions were started. At 60 ° C
When the reaction proceeds with stirring and the liquid becomes highly viscous
Then poured the liquid into the petri dish. Dry this liquid overnight at room temperature
After drying, heat treatment is performed at 110 ° C. to obtain a 100 μm thick invention.
Was obtained.

【0036】次に、この膜を30℃のイオン交換水中に
1日浸漬させた後、膜を取り出して寸法を測定し、膜面
積A1を算出した。この膜を30℃で8時間真空乾燥し
た後、再び膜の寸法を測定し、膜面積A2を算出した。
湿潤時と乾燥時の寸法変化Dを以下の式で算出したとこ
ろ、90%であった。 D=(A1−A2)/A1×100
Next, the membrane was immersed in ion-exchanged water at 30 ° C. for one day, and the membrane was taken out and its dimensions were measured to calculate the membrane area A 1 . After vacuum drying this film at 30 ° C. for 8 hours, the dimensions of the film were measured again, and the film area A 2 was calculated.
The dimensional change D between wet and dry states was calculated by the following formula, and was 90%. D = (A 1 −A 2 ) / A 1 × 100

【0037】[0037]

【比較例2】実施例2と同じイオン交換樹脂前駆体を用
いて、実施例1と同様な方法で、100μm厚のイオン
交換樹脂膜を得た。この膜を実施例2と同様な方法で、
湿潤時と乾燥時の寸法変化を測定したところ、150%
であった。
Comparative Example 2 An ion exchange resin membrane having a thickness of 100 μm was obtained in the same manner as in Example 1 using the same ion exchange resin precursor as in Example 2. This film was prepared in the same manner as in Example 2,
The dimensional change between wet and dry was measured to be 150%
Met.

【0038】[0038]

【発明の効果】本発明の製造方法で得られるイオン交換
樹脂膜は、吸水及び脱水に伴う膜の寸法変化が小さく、
またEWが小さい場合でも水に溶けにくい膜であるた
め、燃料電池用途として非常に有効である。
According to the ion exchange resin membrane obtained by the production method of the present invention, the dimensional change of the membrane due to water absorption and dehydration is small,
Further, since the membrane is hardly soluble in water even when the EW is small, it is very effective for use in fuel cells.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 27:12 C08L 27:12 Fターム(参考) 4F071 AA26 AA67 AG02 AH14 FA05 FB03 FC01 FD02 4F205 AB16 AC05 AG01 GA07 GB01 GC06 GE02 GE24 GF02 HA08 HA14 HA25 HA33 HA45 HC05 5H026 AA06 BB10 CX05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (reference) // C08L 27:12 C08L 27:12 F term (reference) 4F071 AA26 AA67 AG02 AH14 FA05 FB03 FC01 FD02 4F205 AB16 AC05 AG01 GA07 GB01 GC06 GE02 GE24 GF02 HA08 HA14 HA25 HA33 HA45 HC05 5H026 AA06 BB10 CX05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換樹脂を含有する溶液に金属酸
化物前駆体を添加し、該金属酸化物前駆体を加水分解及
び重縮合反応させて得た液体を、キャスト製膜する事を
特徴とする、イオン交換樹脂膜の製造方法。
2. A method according to claim 1, wherein a metal oxide precursor is added to the solution containing the ion exchange resin, and a liquid obtained by subjecting the metal oxide precursor to hydrolysis and polycondensation is cast into a film. To manufacture an ion-exchange resin membrane.
【請求項2】 請求項1記載の方法により製造される事
を特徴とするイオン交換樹脂膜。
2. An ion exchange resin membrane produced by the method according to claim 1.
【請求項3】 請求項2記載のイオン交換樹脂膜を備え
る事を特徴とする、膜電極接合体。
3. A membrane electrode assembly comprising the ion exchange resin membrane according to claim 2.
【請求項4】 請求項2記載のイオン交換樹脂膜を備え
る事を特徴とする固体高分子型燃料電池。
4. A polymer electrolyte fuel cell comprising the ion exchange resin membrane according to claim 2.
JP2001030970A 2001-02-07 2001-02-07 Production method of ion exchange resin membrane Expired - Lifetime JP4911822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001030970A JP4911822B2 (en) 2001-02-07 2001-02-07 Production method of ion exchange resin membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001030970A JP4911822B2 (en) 2001-02-07 2001-02-07 Production method of ion exchange resin membrane

Publications (2)

Publication Number Publication Date
JP2002231270A true JP2002231270A (en) 2002-08-16
JP4911822B2 JP4911822B2 (en) 2012-04-04

Family

ID=18895115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001030970A Expired - Lifetime JP4911822B2 (en) 2001-02-07 2001-02-07 Production method of ion exchange resin membrane

Country Status (1)

Country Link
JP (1) JP4911822B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023883A1 (en) * 2001-09-10 2003-03-20 Asahi Kasei Kabushiki Kaisha Electrode catalyst layer for fuel cell
JP2003288917A (en) * 2002-02-21 2003-10-10 Daimlerchrysler Ag Method for producing composite membrane, membrane obtained by the method, and its use
JP2004273255A (en) * 2003-03-07 2004-09-30 Asahi Kasei Corp Method for manufacturing membrane electrode assembly for fuel cell
WO2007007771A1 (en) 2005-07-07 2007-01-18 Fujifilm Corporation Solid electrolyte multilayer membrane, method and apparatus of producing the same, membrane electrode assembly, and fuel cell
WO2007007773A1 (en) 2005-07-07 2007-01-18 Fuji Film Corporation Solid electrolyte multilayer membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
WO2008132875A1 (en) * 2007-04-25 2008-11-06 Japan Gore-Tex Inc. Method for producing polymer electrolyte membrane for solid polymer fuel cell, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2009211991A (en) * 2008-03-05 2009-09-17 Asahi Kasei E-Materials Corp Polymer electrolyte composition, and use application therefor
WO2009145570A3 (en) * 2008-05-28 2010-03-11 주식회사 엘지화학 Ion-conductive resin fibers, ion-conductive composite membrane, membrane electrode assembly, and fuel cell
JP2010103010A (en) * 2008-10-24 2010-05-06 Toyota Motor Corp Method for manufacturing electrolyte membrane
US8932509B2 (en) 2005-07-07 2015-01-13 Fujifilm Corporation Solid electrolyte membrane, method and apparatus of producing the same, membrane electrode assembly, and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000516014A (en) * 1995-03-20 2000-11-28 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Inorganic filler-containing membrane and assembly of membrane and electrode and electrochemical cell using the same
JP2001307752A (en) * 2000-04-19 2001-11-02 Kanegafuchi Chem Ind Co Ltd Manufacturing method for protic conduction membrane and fuel cell consisting of the same
JP2003529185A (en) * 1999-09-10 2003-09-30 ダイムラークライスラー アクチエンゲゼルシャフト Membrane for fuel cell and method for manufacturing the same
JP2004501229A (en) * 2000-05-02 2004-01-15 ウニヴェルズィテート ステュットガルト Organic-inorganic film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000516014A (en) * 1995-03-20 2000-11-28 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Inorganic filler-containing membrane and assembly of membrane and electrode and electrochemical cell using the same
JP2003529185A (en) * 1999-09-10 2003-09-30 ダイムラークライスラー アクチエンゲゼルシャフト Membrane for fuel cell and method for manufacturing the same
JP2001307752A (en) * 2000-04-19 2001-11-02 Kanegafuchi Chem Ind Co Ltd Manufacturing method for protic conduction membrane and fuel cell consisting of the same
JP2004501229A (en) * 2000-05-02 2004-01-15 ウニヴェルズィテート ステュットガルト Organic-inorganic film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023883A1 (en) * 2001-09-10 2003-03-20 Asahi Kasei Kabushiki Kaisha Electrode catalyst layer for fuel cell
US8652985B2 (en) 2001-09-10 2014-02-18 Asahi Kasei Kabushiki Kaisha Electrode catalyst layer for use in fuel cell
JP2003288917A (en) * 2002-02-21 2003-10-10 Daimlerchrysler Ag Method for producing composite membrane, membrane obtained by the method, and its use
JP4649094B2 (en) * 2003-03-07 2011-03-09 旭化成イーマテリアルズ株式会社 Manufacturing method of membrane electrode assembly for fuel cell
JP2004273255A (en) * 2003-03-07 2004-09-30 Asahi Kasei Corp Method for manufacturing membrane electrode assembly for fuel cell
WO2007007771A1 (en) 2005-07-07 2007-01-18 Fujifilm Corporation Solid electrolyte multilayer membrane, method and apparatus of producing the same, membrane electrode assembly, and fuel cell
US8586266B2 (en) 2005-07-07 2013-11-19 Fujifilm Corporation Solid electrolyte multilayer membrane, method and apparatus for producing the same, membrane electrode assembly, and fuel cell
WO2007007773A1 (en) 2005-07-07 2007-01-18 Fuji Film Corporation Solid electrolyte multilayer membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
US8932509B2 (en) 2005-07-07 2015-01-13 Fujifilm Corporation Solid electrolyte membrane, method and apparatus of producing the same, membrane electrode assembly, and fuel cell
WO2008132875A1 (en) * 2007-04-25 2008-11-06 Japan Gore-Tex Inc. Method for producing polymer electrolyte membrane for solid polymer fuel cell, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2009211991A (en) * 2008-03-05 2009-09-17 Asahi Kasei E-Materials Corp Polymer electrolyte composition, and use application therefor
WO2009145570A3 (en) * 2008-05-28 2010-03-11 주식회사 엘지화학 Ion-conductive resin fibers, ion-conductive composite membrane, membrane electrode assembly, and fuel cell
JP2011523982A (en) * 2008-05-28 2011-08-25 エルジー・ケム・リミテッド Ion conductive resin fiber, ion conductive composite membrane, membrane electrode assembly and fuel cell
US8617764B2 (en) 2008-05-28 2013-12-31 Lg Chem, Ltd. Ion conductive resin fiber, ion conductive hybrid membrane, membrane electrode assembly and fuel cell
JP2010103010A (en) * 2008-10-24 2010-05-06 Toyota Motor Corp Method for manufacturing electrolyte membrane

Also Published As

Publication number Publication date
JP4911822B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP2842220B2 (en) Structure of membrane and electrode
JP3546055B2 (en) Method of printing catalytically active particles on a membrane
JP5932727B2 (en) High durability fuel cell components with cerium oxide additive
JP3995261B2 (en) Method of coining catalytically active particles onto a membrane
JP4871591B2 (en) ELECTROLYTE POLYMER FOR SOLID POLYMER TYPE FUEL CELL, PROCESS FOR PRODUCING THE SAME
TW589759B (en) Fuel cell membranes
JP5216193B2 (en) Catalyst-coated membrane composite material and method for producing the same
EP2656425B1 (en) Ionomers and ionically conductive compositions for use as one or more electrode of a fuel cell
JP4911822B2 (en) Production method of ion exchange resin membrane
JP2003036856A (en) Gas diffusion electrode and polymer electrolyte fuel cell having its electrode
JP2009538966A (en) Fluoropolymer dispersions and membranes
JP4067315B2 (en) Fluorine ion exchange resin membrane
WO2020175677A1 (en) Solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer water electrolysis device
JPH06231781A (en) Solid high polymer electrolytic type fuel cell
JP5770163B2 (en) Method for producing a membrane for a polymer electrolyte fuel cell
JP4025582B2 (en) High heat resistant ion exchange membrane
JP2000188111A (en) Solid high polymer electrolyte fuel cell
JPH1079257A (en) Ion exchange membrane
JP2006114277A (en) Proton conductive material, solid polyelectrolyte membrane, and fuel cell
JPH06349498A (en) Gas diffusion electrode, connecting body, fuel cell, and manufacture thereof
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP5607435B2 (en) Electrolyte membrane and method for producing the same, electrode catalyst layer and method for producing the same, membrane electrode assembly, and solid polymer electrolyte fuel cell
JP7283486B2 (en) Catalyst layer, liquid for forming catalyst layer, and membrane electrode assembly
JPWO2002062878A1 (en) Ion exchange resin membrane and method for producing the same
WO2000063991A9 (en) Phosphorus atom containing fluorinated cationic exchange membrane and proton-conductive fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4911822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term