JP4165154B2 - Method and apparatus for manufacturing fuel cell electrode - Google Patents

Method and apparatus for manufacturing fuel cell electrode Download PDF

Info

Publication number
JP4165154B2
JP4165154B2 JP2002245733A JP2002245733A JP4165154B2 JP 4165154 B2 JP4165154 B2 JP 4165154B2 JP 2002245733 A JP2002245733 A JP 2002245733A JP 2002245733 A JP2002245733 A JP 2002245733A JP 4165154 B2 JP4165154 B2 JP 4165154B2
Authority
JP
Japan
Prior art keywords
catalyst
electrode
polymer electrolyte
catalyst layer
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002245733A
Other languages
Japanese (ja)
Other versions
JP2004087267A (en
Inventor
美咲 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002245733A priority Critical patent/JP4165154B2/en
Publication of JP2004087267A publication Critical patent/JP2004087267A/en
Application granted granted Critical
Publication of JP4165154B2 publication Critical patent/JP4165154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用触媒とその製造方法および製造装置に関する。
【0002】
【従来の技術】
水素イオンの選択透過性を有する固体高分子電解質膜に触媒担持体を積層してなる電極触媒層を密着させ、該固体高分子電解質膜を該電極触媒層を介在させて一対のガス拡散性の電極で挟持した燃料電池では、固体高分子電解質膜を挟持する両電極においてその極性に応じて以下に記す反応式で示される電極反応を進行させ、電気エネルギを得ている。
アノード(水素極):H2→2H++2e- …▲1▼
カソード(酸素極):2H++2e-+(1/2)O2→H2O …▲2▼
アノードで式▲1▼の反応により生成した水素イオンは、H+ (XH2O)の水和状態で固体高分子電解質膜を透過(拡散)し、膜を透過した水素イオンは、カソードで式▲2▼の反応に供される。このアノードおよびカソードにおける電極反応は、固体高分子電解質膜に密着した電極触媒層を反応サイトとし、当該電極触媒層における触媒と固体高分子電解質膜との界面で進行する。
【0003】
この触媒と固体高分子電解質膜との界面が増大し界面形成が均一化すれば、上記した▲1▼,▲2▼の反応がより円滑かつ活発に進行する。よって、この界面の増大と均一化を図るべく、特表平5−507583では、電極触媒層を触媒担持カーボンがプロトン伝導性イオノマーに分散された状態のものとする技術が提案されている。なお、プロトン伝導性イオノマーは、固体高分子電解質膜と同一の機能である水素イオンの選択透過を発揮する高分子電解質溶液に外ならない。
【0004】
この電極触媒層の形成には、触媒担持カーボンが高分子電解質溶液に分散された電極触媒層形成用ペーストが用いられる。つまり、この電極触媒層形成用ペーストを固体高分子電解質膜に直接塗布する、あるいは、ペーストから膜成形して得たシートを固体高分子電解質膜にプレスすることで、固体高分子電解質膜に密着した電極触媒層が形成されている。これにより、電極触媒層における触媒の界面は、固体高分子電解質膜ばかりか高分子電解質とでも形成されるため、界面の増大と均一化が図られている。
【0005】
アノード,カソードにおける上記した▲1▼,▲2▼の反応の円滑化および活発化には、電極触媒層における触媒の界面の増大や界面形成の均一化のほかに、電極触媒層における反応ガスの拡散透過と水素イオンの導電が不可欠である。ところが、上記公報で提案された燃料電池では、電極触媒層において触媒担持カーボンが高分子電解質に平均的に分散されているため、次のような問題点が指摘されている。
【0006】
触媒担持カーボンが高分子電解質に分散された電極触媒層では、高分子電解質は隣接する触媒担持カーボン間の間隙に介在し、触媒担持カーボンはこの高分子電解質によりバインドされたような状態で存在する。このため、電極触媒層における高分子電解質の量を増やせば、触媒担持カーボン間の間隙に介在する高分子電解質量が増大する。よって、電極触媒層における触媒担持カーボン間の空隙が小さくなり、反応ガスの拡散透過性は低下する。その反面、電極触媒層における水素イオンの導電性は、高分子電解質量が増えるほど高まる。一方、高分子電解質量を少なくすれば、触媒担持カーボン間の空隙が大きくなって反応ガスの拡散透過性は高まる反面、水素イオンの導電性は低くなる。つまり、反応ガスの拡散透過性と水素イオンの導電性とは、背反する特性である。
【0007】
電極触媒層において触媒担持カーボンを高分子電解質に平均的に分散されていた従来の燃料電池では、高分子電解質量の増減により上記したように反応ガスの拡散透過性と水素イオンの導電性とが変化する。このため、電極触媒層において好適な反応ガスの拡散透過性と水素イオンの導電性とを両立させることは困難であり、電池性能の向上の余地が残されている。
【0008】
また、反応ガスの拡散透過性については、反応ガスをその流入箇所から速やかに拡散透過させる必要上、電極触媒層内側(固体高分子電解質膜側)より外側(ガス拡散電極側)で高いことが望ましい。一方、水素イオンの導電性については、水素イオンを速やかに固体高分子電解質膜に拡散させる都合上、ガス拡散電極側より固体高分子電解質膜側で高いことが望ましい。しかしながら、上記従来の燃料電池では、反応ガスの拡散透過性と水素イオンの導電性とは電極触媒層の内側から外側に亘ってそれぞれ一律となる。このため、反応ガスの拡散透過性と水素イオンの導電性とに層の内側と外側で高低をつけることができず、この点からも電池性能の向上の余地が残されている。換言すれば、層の内側から外側に亘って一律な反応ガスの拡散透過性により、ガス拡散電極側での反応ガスの拡散速度が制約される。一方、一律な水素イオンの導電性により、固体高分子電解質膜側での水素イオンの導電速度が制約される。このため、電極触媒層における触媒利用の効率が低く電池性能の更なる向上が阻害されていた。
【0009】
【発明が解決しようとする課題】
そこで、上記問題点を解決するために、本出願人は、特開平8−88008号公報として、電極触媒層は、水素イオンの選択透過性を有する高分子電解質で被覆した触媒担持体を積層してなり、前記電極触媒層における触媒担持体間の空隙は、前記触媒担持体を被覆する前記高分子電解質量を前記触媒担持体の積層方向に沿って変えることによって、前記固体高分子電解質膜側より前記電極側で大きくした。この発明は、電極触媒層の厚さ方向に触媒濃度を制御するものであり、具体的には、▲1▼触媒担持体と高分子電解質溶液と揮発性の有機溶媒との混合溶液を準備し、該混合溶液を薄膜状に延ばし、揮発性の有機溶媒が揮発しない環境に触媒担持体が沈降できる時間に亘って静置する、▲2▼触媒担持体に対する高分子電解質量が異なる二以上の混合溶液を、触媒担持体と前記高分子電解質溶液と揮発性の有機溶媒とを混合して準備し、該二以上の混合溶液を用いて、触媒担持体に対する高分子電解質量が異なる二以上の薄膜を形成する、または▲3▼触媒担持体と高分子電解質溶液と揮発性の有機溶媒との混合溶液を準備し、混合溶液を揮発性の有機溶媒が揮発しない環境に置かれて回転する回転容器に入れ込み、入れ込まれた混合溶液に遠心力を及ぼして該混合溶液を薄膜状に延ばす薄膜化し、薄膜状に延ばされた混合溶液から、乾燥処理を経て薄膜を形成する方法が採用されている。
【0010】
特開平8−88008号公報の電極は、重力の作用や遠心力により、燃料電池電極の構造を膜の厚み方向で高分子電解質の多い層と触媒の多い層とに分離して形成することにより、発電性能が高いセル構造とする技術である。そのため、▲1▼自然分離や遠心力による強制分離は、その傾斜配置度合いの制御が困難である、▲2▼触媒層の面方向への傾斜配置が出来ない、▲3▼特に遠心力は触媒層の厚みの管理が難しく、厚さの不均一を生じる可能性が大である、▲4▼遠心力場を形成するための装置が大きくなる、▲5▼上記2項目の理由により、触媒層の大面積化が困難である等の問題がある。
【0011】
一方、比較的低温で運転される燐酸形燃料電池や固体高分子形燃料電池では、白金黒やカーボン担体に、白金または白金合金を担持した白金触媒または白金合金触媒が電極に使用されている。これらの電極触媒は、燃料ガス中に一酸化炭素が含有されていると、この一酸化炭素が吸着して燃料電極における分極が大きくなり、その結果燃料電池の発生電圧が低下し、特に、燃料電池の運転温度が低い場合は、発生電圧が極端に低下することが知られている。
【0012】
一酸化炭素の触媒への吸着量はその濃度にも比例する。前述のように、改質装置により燃料ガス中の一酸化炭素濃度を低くすることはできるが、電極上では、燃料ガスの流れに沿って燃料ガス中の水素が使われていくために、燃料ガスの流れの下流側は、相対的に一酸化炭素濃度が高くなる。したがって、燃料ガスの流れの下流側では、一酸化炭素の吸着量が多くなり、上記▲1▼式に示す触媒反応による水素の解離が妨げられる。その結果、下流側では▲3▼式に示す反応による電極のカーボンの腐食が起きやすくなる。
C+2H2 O→CO2 +4H+ +4e- ▲3▼
以上のようにして電極面の燃料ガスの下流側から電極の腐食が進み、電池の寿命を低下させる。
【0013】
そこで、特開平7−85874号公報には、燃料電池の燃料電極に供給される燃料ガスの上流側から下流側に至る全域に亘って、触媒に用いる白金微粒子の担持量を、段階的に順次増加させ、または白金微粒子の粒径が段階的に順次小さくなるように形成した触媒層を用いるか、または白金−ルテニウム合金を担持した触媒を用い、燃料ガスの上流側から下流側まで、ルテニウムの含有量が段階的に順次多くなるように触媒層を形成する発明が開示されている。
【0014】
特開平7−85874号公報の方法は、▲1▼傾斜配置の程度に応じて組成の異なるインクを複数用意しなければならない、▲2▼傾斜配置が不連続で電気化学的・熱量的ストレスが境界に集中する恐れがある、▲3▼触媒の厚み方向への傾斜配置が出来ない、▲4▼傾斜配置の程度に応じて塗布装置が大型化する恐れがある等の問題がある。結局、燃料電池の電極の構造を面方向に触媒リッチ層と電解質リッチ層とすることで発電性能を向上することは、電極構造が複雑であり、高コストな製造方法とならざるを得なかった。
【0015】
本発明は、上記問題点を解決するためになされ、電池性能の更なる向上を図ると共に、高い電池性能を有する燃料電池の電極、その簡便な製造方法および製造装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記課題を解決するため、第1に、本発明は、水素イオンの選択透過性を有する固体高分子電解質膜に触媒担持体を積層してなる電極触媒層を密着させ、該固体高分子電解質膜を該電極触媒層を介在させて一対のガス拡散性の電極で挟持した燃料電池に用いる電極であって、触媒物質を担持した導電多孔性担体の濃度が、厚さ方向、面2方向の3次元方向のいずれか1方向以上に連続的に傾斜配置されたことを特徴とする燃料電池用電極である。
【0017】
第2に、本発明は、水素イオンの選択透過性を有する固体高分子電解質膜に触媒担持体を積層してなる電極触媒層を密着させ、該固体高分子電解質膜を該電極触媒層を介在させて一対のガス拡散性の電極で挟持した燃料電池に用いる電極の製造方法であって、導電多孔性担体に触媒物質を担持した触媒材料と、高分子電解質とを溶媒で分散させた触媒インクを平面状に塗布する工程、該平面状触媒インクに電場および磁場を印加中に乾燥させて溶媒を蒸発させる工程を有することを特徴とする電極触媒の製造方法である。ここで、前記平面状触媒インクに電場および磁場を印加中に乾燥させて溶媒を蒸発させる工程において、印加する電圧、磁場の強さ、方向の少なくとも1つを制御することが可能である。
【0018】
第3に、本発明は、水素イオンの選択透過性を有する固体高分子電解質膜に触媒担持体を積層してなる電極触媒層を密着させ、該固体高分子電解質膜を該電極触媒層を介在させて一対のガス拡散性の電極で挟持した燃料電池に用いる電極の製造装置であって、導電多孔性担体に触媒物質を担持した触媒材料と、高分子電解質とを溶媒で分散させた触媒インクを平面状に塗布する手段、該平面状触媒インクに電場および磁場を印加する手段、該該平面状触媒インクを乾燥させて溶媒を蒸発させる手段を有することを特徴とする電極触媒の製造装置である。
【0019】
本発明が適用される燃料電池用電極、即ち水素イオンの選択透過性を有する固体高分子電解質膜に触媒担持体を積層してなる電極触媒層を密着させ、該固体高分子電解質膜を該電極触媒層を介在させて一対のガス拡散性の電極で挟持した燃料電池は何ら制限されず、従来より知られた構造、材料、物性、機能のものが用いられる。
【0020】
例えば、触媒担持体としては、カーボン粉末、特に多孔性カーボンが好ましく例示される。触媒としては、白金が好ましく例示される。そして、触媒担持カーボンとしては、触媒としての白金を10〜60wt%の割合で担持したカーボン粉末を好適に用いることができる。また、触媒を担持したカーボン粒子は、親水処理が施されていることが望ましい。このとき、親水処理に用いる酸化剤が、過酸化水素、次亜塩素酸ナトリウム、過マンガン酸カリウム、塩酸、硝酸、燐酸、硫酸、フッ酸、酢酸、オゾンから選ばれた少なくとも1種以上の酸化剤であることが望ましい。
【0021】
固体高分子電解質としては、固体高分子型燃料電池における電解質として機能するものであれば如何なるものでもよいが、特にパーフルオロスルホン酸型ポリマが好適である。
【0022】
また、導電多孔性担体に触媒物質を担持した触媒材料と、高分子電解質とを溶媒で分散させて調製された触媒インクに、粘度調整用溶剤を添加して粘度が30〜200cpsで含水率が50%以下に調製されてなるものとすることもできる。こうすれば、触媒電極を形成する際のインクとしての取り扱い、即ち印刷性や乾燥性などを向上させることができる。
【0023】
固体高分子電解質膜には、通常、Nafion(デュポン社製)、Flemion(旭硝子株式会社製)、Aciplex(旭化成工業株式会社製)などが使用されている。触媒には単に白金黒を用いる場合もあるが、通常はアセチレンブラック、ファーネスブラックなどの高い比表面積を有するカーボン表面に、触媒作用を有する白金あるいは白金とルテニウム等他の金属との合金(白金合金)の微粒子を分散担持したもの(カーボン担持白金触媒)を使用する。また、電極触媒層中には、通常、電解質膜と同組成の高分子並びにフッ素樹脂粒子などの撥水性を有する微粒子も混合されている。このように電解質膜と同組成の高分子を触媒層中に混合することより、白金あるいは白金合金の利用率を向上させることができる。また、撥水性を有する微粒子を触媒層中に混合することにより、電解質膜への水供給や、電池反応により生じた反応生成水の取り出しがスムーズに行われる。これら電極触媒層は200μm以下と厚みが薄く、かつ脆いために単層では取り扱い困難な場合が多い。このため、これらの電極触媒層を補強する意味でもガス拡散層が用いられる。このガス拡散層に必要な機能は、電池の取り扱いを容易にし、かつ積層に耐える強度、電気伝導性、ガス拡散性などであり、多孔質構造を有するカーボン材料に撥水処理を行ったものが使用されることが多い。多孔質構造を有するカーボン材料は、カーボン繊維からなる骨格材料を有しており、この骨格材料間に多数の間隙を有しているために、この間隙を通してガス拡散性が確保される。このガス拡散層としては、具体的には、カーボンペーパーにフッ素樹脂で撥水処理を行ったものや、カーボンとフッ素樹脂との混合物を板状に焼き固めたものが使用されている。このようにフッ素樹脂を含んでいるのは、ガス拡散層中での水の滞留を抑制するためである。
【0024】
本発明の電極は、高分子電解質膜の少なくとも片面に接合された膜電極接合体において好適に用いることができる。また、この電極は、PPやPETなどの転写フィルムや拡散層の片面に成形された電極において好適に用いることができる。さらに、この電極は、高分子電解質膜、前記高分子電解質膜を挟むアノードおよびカソード、前記アノードに燃料ガスを供給するガス流路を有するアノード側導電性セパレータ板、ならびに前記カソードに酸化剤ガスを供給するガス流路を有するカソード側セパレータ板を具備する固体高分子型燃料電池ならびに液体燃料電池において好適に用いることができる。
本発明では、触媒インクは、例えばブレード法やスプレー法で塗布される。
【0025】
【作用】
本発明によれば、電場、磁場により導電多孔性担体にフレンミングの法則に伴う力が作用し、触媒インク中を導電性多孔担体が移動して所望の分布(傾斜配置)となるので、特性を有する電極触媒を製造することが可能となる。また、印加する電圧、磁場の強さや方向を制御することで電極触媒の構造を調整することが可能である。
【0026】
本発明において傾斜配置出来るのは、電子伝導性を有するカーボンや、Pt、Ruのような金属で構成される坦持触媒である。電子伝導性を持たない電解質成分は傾斜配置の対象ではないが、傾斜配置の方向に関係なく、カーボンやPt濃度の高いところでは電解質成分が薄くなる。
【0027】
図1に、磁場による触媒層面方向傾斜配置の原理図を示す。
Pt担持カーボンと電解質成分を溶媒で分散させた触媒インクを、スキージでキャストする。面方向に伸ばされた触媒インクに対して、図のように電極を設け電圧を印加する。また、鉛直方向に磁場をかける。すると、触媒インク中のPt担持カーボン粒子はフレンミングの法則に則って図の右方向に力を受けて移動する。この状態で触媒インク中の溶媒を飛ばして乾燥させれば、Pt担持カーボン粒子が面方向に傾斜配置した触媒層が作製できる。また、磁場を触媒インクに並行方向にかければ、厚さ方向に傾斜配置した触媒層が作製できる。
【0028】
このように、電流や磁場の強度や方向を変化させる事で、Pt担持カーボン粒子の連続的な傾斜配置を、3次元方向(厚さ方向・面方向)に容易に制御することができる。
【0029】
【発明の実施の形態】
以下、本発明の実施例および比較例について説明する。
図2に示されるように、触媒インクをキャストし、その両端にカーボン電極を接触させた。また、銅線を巻いてコイル状にしたものに、1Aの電流を流し磁場を発生させた。その磁場の中に36mmX36mmのサンプルを入れ、カーボン電極に電圧を印可してy方向に電流を流した。この状態で自然乾燥させて溶媒を飛ばし、触媒層を作製した。
また、比較の為磁場も電位もかけない通常の方法で乾燥させた触媒層も用意した。
磁場を印加した触媒層をサンプル1とし、磁場無し触媒層をサンプル2とする。
【0030】
[ICPによる触媒層の面方向原子分布分析]
触媒層サンプル1および2について図3に示すように傾斜配置されている断面で1cm2の面積を切り出し、ICP(Inductively Coupled Plasma)による金属元素定量分析を行った。その結果、表1に示されるように、磁場・電場に鉛直方向にPt触媒が傾斜配置されていた。そして、磁場・電場等条件と傾斜度合いの相関を求めれば傾斜コントロールが可能になる。
【0031】
【表1】

Figure 0004165154
【0032】
[燃料電池としての放電性能]
サンプル1および2の触媒層を電解質膜(Gore−Select 20μm)に転写して片面膜電極接合体(MEA)を作製した。これをカソード側に、市販の片面MEA(GORE−TEX社製、PRIMEA5510+Gore−Select 20μm)をアノード側に合わせ燃料電池フォルダーをそれぞれ形成した。傾斜配置触媒層は、カソード側でのドライアアップを考えて、カソード流体上流にPtリッチ側がくる方向に設定した。サンプル1および2による燃料電池の電流−電圧特性を調べ、本実施例の電池性能が優れていることを見出した。
【0033】
今回は13cm2という小面積であったが、実機の様な大面積の燃料電池においてはMEA面方向のガス分圧・水分・温度分布が発生することにより、面方向に電池性能も分布する。この様な場合、触媒の傾斜配置によって面方向により効率よく電池性能を引き出す事が出来るものと考えられる。よって、今回の技術は触媒濃度の傾斜配置を実現するための有効な技術である。
【0034】
[燃料電池セル]
図4に示すように、本発明の電極が適用される燃料電池セルは、膜状の電解質である電解質膜10と、この電解質膜10の膜面に密着したカソード側電極触媒層12およびアノード側電極触媒層14と、これら各電極触媒層に密着したカソード50およびアノード52とにより構成されている。
【0035】
電解質膜10は、水素イオンに対するイオン交換基としてスルホン基を有する固体高分子電解質膜であり、水素イオンを膜厚方向に沿って選択的に透過する。具体的に説明すると、電解質膜10は、フッ素系スルホン酸高分子樹脂から作製された固体高分子電解質膜(例えばパーフルオロカーボンスルホン酸高分子膜(商品名:ナフィオン, Du Pont社製))であり、その膜厚は120μm程度である。
【0036】
カソード側電極触媒層12,アノード側電極触媒層14は、カソード50,アノード52と電解質膜10との間に介在し、これらのホットプレスを経ることで、電解質膜10の膜面および各電極の電解質側の電極表面に密着される。このカソード側電極触媒層12,アノード側電極触媒層14は、触媒として白金を20wt%担持したカーボン粒子が積層したものであり、後述の製造工程を経て形成される。なお、図4においては、カソード側電極触媒層12,アノード側電極触媒層14を構成するカーボン粒子は誇張して描かれている。
【0037】
カソード50,アノード52は、多孔質でガス透過性を有すると共に導電性のポーラスカーボンにより形成されており、その気孔率は60ないし80%である。また、カソード50およびアノード52には、対応する電極触媒層側にそれぞれ流路41が形成されている。なお、このカソード50およびアノード52は、ポーラスカーボンであることから、隣接する燃料電池セルを仕切るセパレータとしての機能をも果たす。
【0038】
上記した構成の燃料電池は、各極に流路41,43から燃料ガス(加湿水素ガス,酸素ガス)が供給されると、供給された燃料ガスは、カソード50,アノード52を透過(拡散)して、カソード側電極触媒層12,アノード側電極触媒層14に到る。そして、その燃料ガスは、当該電極触媒層において、上述した式▲1▼,▲2▼に示す反応に供される。つまり、アノード52側では、式▲1▼の反応の進行により生成した水素イオンは、H+ (XH2O)の水和状態で電解質膜10を透過(拡散)し、膜を透過した水素イオンは、カソード50で式▲2▼の反応に供される。なお、この反応はカソード側電極触媒層12,アノード側電極触媒層14の触媒作用により促進して進行する。
【0039】
本発明においては、ペースト印刷物を常温乾燥に付した後に加熱下真空乾燥に処して、膜形成工程を行なう。この真空乾燥により、ペースト印刷物からは、有機溶媒とフッ素系スルホン酸高分子樹脂溶液の溶液分とが乾燥蒸発して除去される。このため、この膜形成工程を経ることで、フッ素系スルホン酸高分子樹脂溶液で覆われていた個々の触媒担持カーボンは高分子電解質であるフッ素系スルホン酸高分子樹脂で被覆されると共に、この触媒担持カーボンが積層した薄膜が形成される。なお、以下の説明にあっては、フッ素系スルホン酸高分子樹脂を単に高分子電解質という。
【0040】
触媒担持カーボンの積層の上方では、触媒担持カーボンを被覆する高分子電解質量が多くなる。よって、形成された薄膜において、その底面側では高分子電解質量が少なく、薄膜の上面側で高分子電解質量が多くなる。このため、この薄膜は、高分子電解質量が多い膜上面側で小さい触媒担持カーボン間の空隙と高い水素イオンの導電性を備える。一方、高分子電解質量が少ない底面側で、大きい触媒担持カーボン間の空隙と低い水素イオンの導電性を備えることになる。
【0041】
その後は、次のようにして燃料電池(セル)を完成された。まず、真空乾燥後のペースト印刷物をテフロン(登録商標)シートごと電解質膜10の両膜面に重ねてホットプレス(126℃×100kg/cm2 )し、このホットプレスの後にテフロン(登録商標)シートを除去する。次いで、この電解質膜10をカソード50,アノード52で挟持した状態で更にホットプレス(126℃×100kg/cm2 )した。上記した各工程を経て、電極触媒層形成用ペーストからカソード側電極触媒層12,アノード側電極触媒層14が形成されると共に、両電極触媒層を有する燃料電池(セル)が完成する。なお、ホットプレスに先立ちテフロン(登録商標)シートを除去し、ペースト印刷物を電解質膜10の両膜面に重ね、更にその両側をカソード50,アノード52で挟持した状態でホットプレスしてもよい。
【0042】
[触媒担持カーボンと高分子電解質の存在の様子]
こうして形成されたカソード側電極触媒層12,アノード側電極触媒層14における触媒担持カーボンと高分子電解質の存在の様子を、カソード側電極触媒層12を例に、図をもって説明する。
【0043】
カソード側電極触媒層12を模式的に表わした図5に示すように、各触媒担持カーボンは高分子電解質により被覆されている。しかし、触媒担持カーボン当たりの高分子電解質被覆量は、電解質膜10側で多くカソード50側で少ない。その一方、隣接する触媒担持カーボン間の間隙に高分子電解質が介在する介在量は電解質膜10側で多くカソード50側で少ない。このため、電極触媒層としての触媒担持カーボン間の空隙は、カソード50側で大きく電解質膜10側で小さい。よって、電解質膜10の膜面からカソード側電極触媒層12への水素イオンの拡散は、カソード側電極触媒層12の電解質膜10側では高分子電解質量が多いことから速やかに行なわれる。しかも、カソード50からカソード側電極触媒層12への反応ガス(酸素ガス)の拡散透過は、カソード側電極触媒層12のカソード50側では触媒担持カーボン間の空隙が大きいことから速やかに行なわれる。
【0044】
このため、カソード側電極触媒層12,アノード側電極触媒層14によれば、電解質膜10からのあるいは電解質膜10への水素イオンの導電性を高めることができる。その反面、カソード50,アノード52側では、これら電極からの反応ガスの拡散透過性を高めることができる。
【0045】
よって、本発明の燃料電池では、電極触媒層において、カソード50,アノード52側で反応ガスの拡散速度を高め、電解質膜10側で水素イオンの導電速度を高めることができる。この結果、本実施例の燃料電池によれば、電極触媒層における触媒の利用効率を高めて電極反応をより円滑で活発にし、電池性能をより一層向上することができる。
【0046】
【発明の効果】
本発明が奏する効果を、上記した先行技術と比較して述べると、▲1▼準備するインクは1種類で良い、▲2▼傾斜配置が連続で電気化学的・熱量的ストレスが集中するポイントが無い、▲3▼電場、磁場の構成により傾斜配置方向が厚さ方向、面2方向、それらの組み合わせ方向(3次元方向)が可能である、▲4▼電場、磁場を空間的に変化させることにより、傾斜配置も空間的に変化させることが出来る(燃料電池の使用状況に合わせた複雑な傾斜配置が可能)、▲5▼電場、磁場を構成するための装置を乾燥工程装置の周囲に配するだけであり、触媒層の大面積化が可能である等のメリットを持つ。
【0047】
以上の通り、本発明の触媒電極を有する燃料電池では、電流や磁場の強度や方向を変化させる事で、触媒担持体粒子の連続的な傾斜配置を、3次元方向(厚さ方向・面2方向)に簡単に制御できる。例えば、触媒濃度を厚さ方向に傾斜させることで、電極触媒層における触媒担持体間の空隙を電極側で大きくして反応ガスの拡散透過性を電極側で高くし、高分子電解質量を電極と反対側の固体高分子電解質膜側で多くして水素イオンの導電性を固体高分子電解質膜側で高くできる。よって、電極触媒層では、電極側で反応ガスの拡散速度が高まると共に、電極と反対側の固体高分子電解質膜側で水素イオンの導電速度が高まる。この結果、電極触媒層における触媒の利用効率を高めて電極反応をより円滑で活発にし、電池性能をより一層向上することができる。
【0048】
また、本発明の燃料電池用電極触媒の製造方法によれば、電圧および磁場を印加するという簡便な工程を採るだけで、高い電池性能を有する燃料電池を製造することが出来る。
さらに、本発明の燃料電池用電極触媒の製造装置は、大きな付帯装置を必要とせず、触媒層の大型化に対処することが出来る。
【図面の簡単な説明】
【図1】電圧と磁場による触媒層の傾斜装置の原理図。
【図2】電圧と磁場による触媒層の傾斜方法。
【図3】本実施例および比較例における触媒層サンプルの切り出し。
【図4】実施例における燃料電池のセル構造の模式図。
【図5】本発明のカソード側電極触媒層における触媒担持カーボンと高分子電解質の存在の様子を模式的に表わした模式図。
【符号の説明】
10…電解質膜、12…カソード側電極触媒層、14…アノード側電極触媒層、41…流路、50…カソード、52…アノード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for a fuel cell, a manufacturing method thereof, and a manufacturing apparatus.
[0002]
[Prior art]
An electrode catalyst layer formed by laminating a catalyst carrier is adhered to a solid polymer electrolyte membrane having hydrogen ion selective permeability, and the solid polymer electrolyte membrane is interposed between the electrode catalyst layer and a pair of gas diffusive layers. In a fuel cell sandwiched between electrodes, electrical energy is obtained by causing an electrode reaction represented by the following reaction formula to proceed according to the polarity of both electrodes sandwiching a solid polymer electrolyte membrane.
Anode (hydrogen electrode): H2→ 2H++ 2e- … ▲ 1 ▼
Cathode (oxygen electrode): 2H++ 2e-+ (1/2) O2→ H2O… ▲ 2 ▼
Hydrogen ions generated by the reaction of formula (1) at the anode are H+ (XH2O) permeates (diffuses) the solid polymer electrolyte membrane in the hydrated state, and the hydrogen ions that permeate the membrane are subjected to the reaction of the formula (2) at the cathode. The electrode reaction at the anode and the cathode proceeds at the interface between the catalyst and the solid polymer electrolyte membrane in the electrode catalyst layer with the electrode catalyst layer in close contact with the solid polymer electrolyte membrane as a reaction site.
[0003]
If the interface between the catalyst and the solid polymer electrolyte membrane is increased and the formation of the interface becomes uniform, the above reactions (1) and (2) proceed more smoothly and actively. Therefore, in order to increase and homogenize the interface, Japanese Patent Laid-Open No. 5-507583 proposes a technique in which the electrode catalyst layer is in a state where the catalyst-supporting carbon is dispersed in the proton conductive ionomer. The proton conductive ionomer is nothing but a polymer electrolyte solution that exhibits selective permeation of hydrogen ions, which has the same function as the solid polymer electrolyte membrane.
[0004]
For the formation of this electrode catalyst layer, an electrode catalyst layer forming paste in which catalyst-supporting carbon is dispersed in a polymer electrolyte solution is used. In other words, the electrode catalyst layer forming paste is directly applied to the solid polymer electrolyte membrane, or a sheet obtained by forming a film from the paste is pressed onto the solid polymer electrolyte membrane, thereby being adhered to the solid polymer electrolyte membrane. The electrode catalyst layer thus formed is formed. Thereby, the interface of the catalyst in the electrode catalyst layer is formed not only by the solid polymer electrolyte membrane but also by the polymer electrolyte, so that the interface is increased and made uniform.
[0005]
In order to facilitate and activate the above reactions (1) and (2) at the anode and cathode, in addition to increasing the interface of the catalyst in the electrode catalyst layer and making the interface uniform, the reaction gas in the electrode catalyst layer Diffusive transmission and conduction of hydrogen ions are essential. However, in the fuel cell proposed in the above publication, the following problems have been pointed out because the catalyst-supporting carbon is dispersed on the polymer electrolyte in the electrode catalyst layer on average.
[0006]
In the electrode catalyst layer in which the catalyst-supported carbon is dispersed in the polymer electrolyte, the polymer electrolyte is interposed in the gap between adjacent catalyst-supported carbons, and the catalyst-supported carbon exists in a state bound by the polymer electrolyte. . For this reason, if the amount of the polymer electrolyte in the electrode catalyst layer is increased, the polymer electrolysis mass interposed in the gap between the catalyst-supporting carbons increases. Therefore, the space between the catalyst-supporting carbons in the electrode catalyst layer is reduced, and the diffusion permeability of the reaction gas is lowered. On the other hand, the conductivity of hydrogen ions in the electrode catalyst layer increases as the polymer electrolysis mass increases. On the other hand, if the polymer electrolysis mass is reduced, the gap between the catalyst-carrying carbons increases and the diffusion permeability of the reaction gas increases, but the conductivity of hydrogen ions decreases. That is, the diffusion permeability of the reaction gas and the conductivity of hydrogen ions are contradictory characteristics.
[0007]
In the conventional fuel cell in which the catalyst-supporting carbon is averagely dispersed in the polymer electrolyte in the electrode catalyst layer, as described above, the diffusion permeability of the reaction gas and the conductivity of hydrogen ions are increased by increasing or decreasing the polymer electrolysis mass. Change. For this reason, it is difficult to make both the diffusion permeability of the reactive gas suitable for the electrode catalyst layer and the conductivity of hydrogen ions compatible, leaving room for improvement in battery performance.
[0008]
Further, the diffusion permeability of the reaction gas is higher on the outer side (gas diffusion electrode side) than on the inner side of the electrode catalyst layer (solid polymer electrolyte membrane side) because the reaction gas needs to be quickly diffused and permeated from the inflow point. desirable. On the other hand, the conductivity of hydrogen ions is preferably higher on the solid polymer electrolyte membrane side than on the gas diffusion electrode side for the purpose of quickly diffusing hydrogen ions into the solid polymer electrolyte membrane. However, in the conventional fuel cell described above, the diffusion permeability of the reaction gas and the conductivity of hydrogen ions are uniform from the inside to the outside of the electrode catalyst layer. For this reason, the diffusion permeability of the reaction gas and the conductivity of hydrogen ions cannot be raised or lowered on the inside and outside of the layer, and there is still room for improvement in battery performance from this point. In other words, the diffusion rate of the reaction gas on the gas diffusion electrode side is restricted by the uniform diffusion permeability of the reaction gas from the inside to the outside of the layer. On the other hand, the conductivity of hydrogen ions on the solid polymer electrolyte membrane side is limited by the uniform conductivity of hydrogen ions. For this reason, the efficiency of utilization of the catalyst in the electrode catalyst layer is low, and further improvement in battery performance has been hindered.
[0009]
[Problems to be solved by the invention]
Therefore, in order to solve the above problems, the present applicant has disclosed, as Japanese Patent Application Laid-Open No. 8-88008, an electrode catalyst layer formed by laminating a catalyst carrier coated with a polymer electrolyte having hydrogen ion selective permeability. The gap between the catalyst supports in the electrode catalyst layer is changed by changing the polymer electrolysis mass covering the catalyst support along the stacking direction of the catalyst support. It was made larger on the electrode side. The present invention controls the catalyst concentration in the thickness direction of the electrode catalyst layer. Specifically, (1) a mixed solution of a catalyst carrier, a polymer electrolyte solution, and a volatile organic solvent is prepared. , Extending the mixed solution into a thin film, and allowing the catalyst carrier to settle in an environment where the volatile organic solvent does not volatilize. (2) two or more polymer electrolysis masses differing from the catalyst carrier A mixed solution is prepared by mixing a catalyst carrier, the polymer electrolyte solution, and a volatile organic solvent. Using the two or more mixed solutions, two or more polymer electrolyte masses with respect to the catalyst carrier are different. Rotating to form a thin film, or (3) preparing a mixed solution of a catalyst support, a polymer electrolyte solution, and a volatile organic solvent, and rotating the mixed solution in an environment where the volatile organic solvent does not volatilize Put it in a container and add the mixed solution Exerting centering forces thinned prolong the mixed solution into a thin film, from a mixed solution which is extended into a thin film, a method of forming a thin film through the drying process is employed.
[0010]
The electrode disclosed in Japanese Patent Laid-Open No. 8-88008 is formed by separating the structure of the fuel cell electrode into a layer containing many polymer electrolytes and a layer containing many catalysts in the thickness direction of the membrane by the action of gravity or centrifugal force. This is a technology for creating a cell structure with high power generation performance. Therefore, (1) forced separation by natural separation or centrifugal force is difficult to control the degree of inclination, (2) it is not possible to incline the catalyst layer in the surface direction, (3) especially centrifugal force is the catalyst It is difficult to control the thickness of the layer, and the possibility of non-uniform thickness is high. (4) The apparatus for forming the centrifugal force field becomes large. (5) For the reasons of the above two items, the catalyst layer. There is a problem that it is difficult to increase the area.
[0011]
On the other hand, in phosphoric acid fuel cells and polymer electrolyte fuel cells that are operated at a relatively low temperature, platinum catalysts or platinum alloy catalysts in which platinum or a platinum alloy is supported on platinum black or a carbon carrier are used as electrodes. In these electrode catalysts, when carbon monoxide is contained in the fuel gas, the carbon monoxide is adsorbed to increase the polarization in the fuel electrode, resulting in a decrease in the generated voltage of the fuel cell. It is known that when the battery operating temperature is low, the generated voltage is extremely reduced.
[0012]
The amount of carbon monoxide adsorbed on the catalyst is also proportional to its concentration. As described above, the carbon monoxide concentration in the fuel gas can be lowered by the reformer, but the hydrogen in the fuel gas is used on the electrode along the flow of the fuel gas. The carbon monoxide concentration is relatively high on the downstream side of the gas flow. Therefore, on the downstream side of the fuel gas flow, the amount of carbon monoxide adsorbed increases, and the dissociation of hydrogen due to the catalytic reaction shown in the above formula (1) is prevented. As a result, the carbon of the electrode is easily corroded by the reaction shown in the formula (3) on the downstream side.
C + 2H2O → CO2+ 4H++ 4e- ... ▲ 3 ▼
As described above, the corrosion of the electrode proceeds from the downstream side of the fuel gas on the electrode surface, thereby reducing the battery life.
[0013]
In view of this, Japanese Patent Application Laid-Open No. 7-85874 discloses the amount of platinum fine particles used for the catalyst in a stepwise manner over the entire region from the upstream side to the downstream side of the fuel gas supplied to the fuel electrode of the fuel cell. Use a catalyst layer formed so that the particle size of the platinum fine particles is increased step by step, or a catalyst supporting a platinum-ruthenium alloy, and from the upstream side to the downstream side of the fuel gas, An invention is disclosed in which the catalyst layer is formed so that the content gradually increases step by step.
[0014]
According to the method disclosed in Japanese Patent Laid-Open No. 7-85874, (1) a plurality of inks having different compositions must be prepared according to the degree of the inclined arrangement, and (2) the electrochemical arrangement and the caloric stress are discontinuous because the inclined arrangement is discontinuous. There are problems such as the possibility of concentration at the boundary, (3) the inability to place the catalyst in the thickness direction, and (4) the applicator may become larger depending on the degree of the inclination. In the end, improving the power generation performance by making the electrode structure of the fuel cell into a catalyst rich layer and an electrolyte rich layer in the plane direction has a complicated electrode structure and has to be a costly manufacturing method. .
[0015]
The present invention has been made to solve the above-described problems, and aims to provide a fuel cell electrode having high battery performance, a simple manufacturing method and a manufacturing apparatus thereof, while further improving battery performance. .
[0016]
[Means for Solving the Problems]
In order to solve the above-described problems, first, the present invention provides a solid polymer electrolyte membrane in which an electrode catalyst layer formed by laminating a catalyst carrier is adhered to a solid polymer electrolyte membrane having selective permeability of hydrogen ions. The electrode is used for a fuel cell sandwiched between a pair of gas diffusible electrodes with the electrode catalyst layer interposed therebetween, and the concentration of the conductive porous carrier carrying the catalyst substance is 3 in the thickness direction and the surface 2 direction. An electrode for a fuel cell, wherein the electrode is continuously inclined in at least one of the dimensional directions.
[0017]
Second, in the present invention, an electrode catalyst layer formed by laminating a catalyst carrier is adhered to a solid polymer electrolyte membrane having selective permeability of hydrogen ions, and the solid polymer electrolyte membrane is interposed between the electrode catalyst layers. A method for producing an electrode for use in a fuel cell sandwiched between a pair of gas diffusible electrodes, comprising a catalyst material in which a catalyst material is supported on a conductive porous carrier and a polymer electrolyte dispersed in a solvent A method of producing an electrode catalyst, comprising: a step of coating a planar catalyst ink; and a step of drying the planar catalyst ink while applying an electric field and a magnetic field to evaporate the solvent. Here, it is possible to control at least one of the applied voltage, the strength of the magnetic field, and the direction in the step of drying the planar catalyst ink while applying an electric field and a magnetic field to evaporate the solvent.
[0018]
Third, in the present invention, an electrode catalyst layer formed by laminating a catalyst carrier is adhered to a solid polymer electrolyte membrane having selective permeability to hydrogen ions, and the solid polymer electrolyte membrane is interposed between the electrode catalyst layers. An electrode manufacturing apparatus for use in a fuel cell sandwiched between a pair of gas diffusible electrodes, wherein a catalyst material in which a catalyst material is supported on a conductive porous carrier and a polymer electrolyte are dispersed in a solvent An apparatus for producing an electrode catalyst, comprising: means for applying a planar shape; means for applying an electric field and a magnetic field to the planar catalyst ink; and means for drying the planar catalyst ink to evaporate a solvent. is there.
[0019]
An electrode for a fuel cell to which the present invention is applied, that is, an electrode catalyst layer formed by laminating a catalyst support on a solid polymer electrolyte membrane having hydrogen ion permselectivity is adhered, and the solid polymer electrolyte membrane is attached to the electrode. A fuel cell sandwiched between a pair of gas diffusible electrodes with a catalyst layer interposed therebetween is not limited at all, and a conventionally known structure, material, physical property, and function are used.
[0020]
For example, the catalyst carrier is preferably exemplified by carbon powder, particularly porous carbon. Preferred examples of the catalyst include platinum. And as a catalyst carrying | support carbon, the carbon powder which carry | supported platinum as a catalyst in the ratio of 10-60 wt% can be used suitably. Further, it is desirable that the carbon particles carrying the catalyst have been subjected to a hydrophilic treatment. At this time, the oxidizing agent used for the hydrophilic treatment is at least one oxidation selected from hydrogen peroxide, sodium hypochlorite, potassium permanganate, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrofluoric acid, acetic acid, and ozone. It is desirable to be an agent.
[0021]
Any solid polymer electrolyte may be used as long as it functions as an electrolyte in a solid polymer fuel cell, and a perfluorosulfonic acid polymer is particularly preferable.
[0022]
In addition, a viscosity adjusting solvent is added to a catalyst ink prepared by dispersing a catalyst material carrying a catalyst substance on a conductive porous carrier and a polymer electrolyte with a solvent, and the viscosity is 30 to 200 cps and the water content is high. It can also be prepared to be 50% or less. By doing so, it is possible to improve the handling as ink when forming the catalyst electrode, that is, the printability and the drying property.
[0023]
As the solid polymer electrolyte membrane, Nafion (manufactured by DuPont), Flemion (manufactured by Asahi Glass Co., Ltd.), Aciplex (manufactured by Asahi Kasei Kogyo Co., Ltd.) and the like are usually used. In some cases, platinum black is simply used as a catalyst. Usually, platinum having catalytic action on a carbon surface having a high specific surface area such as acetylene black or furnace black, or an alloy of platinum and other metals such as ruthenium (platinum alloy). ) In which fine particles are dispersed and supported (carbon supported platinum catalyst). In the electrode catalyst layer, usually, a polymer having the same composition as the electrolyte membrane and fine particles having water repellency such as fluororesin particles are also mixed. Thus, the utilization factor of platinum or a platinum alloy can be improved by mixing the polymer having the same composition as the electrolyte membrane in the catalyst layer. Further, by mixing fine particles having water repellency in the catalyst layer, water supply to the electrolyte membrane and removal of reaction product water generated by the battery reaction can be performed smoothly. These electrocatalyst layers are as thin as 200 μm or less and are fragile, so that it is often difficult to handle with a single layer. For this reason, a gas diffusion layer is also used to reinforce these electrode catalyst layers. The functions required for this gas diffusion layer are easy handling of the battery and strength to withstand lamination, electrical conductivity, gas diffusibility, etc., which is obtained by subjecting a carbon material having a porous structure to a water repellent treatment. Often used. Since the carbon material having a porous structure has a skeleton material made of carbon fibers and has a large number of gaps between the skeleton materials, gas diffusibility is ensured through the gaps. As the gas diffusion layer, specifically, carbon paper subjected to water repellency treatment with a fluororesin or a mixture of carbon and fluororesin baked into a plate shape is used. The reason why the fluororesin is contained is to suppress the retention of water in the gas diffusion layer.
[0024]
The electrode of the present invention can be suitably used in a membrane / electrode assembly bonded to at least one surface of a polymer electrolyte membrane. Moreover, this electrode can be used suitably in the electrode shape | molded on one side of transfer films, such as PP and PET, and a diffusion layer. The electrode further includes a polymer electrolyte membrane, an anode and a cathode sandwiching the polymer electrolyte membrane, an anode side conductive separator plate having a gas flow path for supplying fuel gas to the anode, and an oxidant gas to the cathode. It can be suitably used in a polymer electrolyte fuel cell and a liquid fuel cell each having a cathode separator plate having a gas flow path to be supplied.
In the present invention, the catalyst ink is applied by, for example, a blade method or a spray method.
[0025]
[Action]
According to the present invention, the force accompanying the Fleming's law acts on the conductive porous carrier due to the electric and magnetic fields, and the conductive porous carrier moves in the catalyst ink to obtain a desired distribution (tilted arrangement). It becomes possible to manufacture the electrode catalyst which has. Further, the structure of the electrode catalyst can be adjusted by controlling the applied voltage and the strength and direction of the magnetic field.
[0026]
In the present invention, an inclined catalyst can be a supported catalyst composed of carbon having electron conductivity or a metal such as Pt or Ru. Electrolyte components that do not have electron conductivity are not subject to tilting arrangement, but the electrolyte component becomes thin where carbon or Pt concentration is high, regardless of the direction of tilting arrangement.
[0027]
FIG. 1 shows a principle diagram of the inclined arrangement in the catalyst layer surface direction by a magnetic field.
A catalyst ink in which Pt-supported carbon and an electrolyte component are dispersed in a solvent is cast with a squeegee. An electrode is provided as shown in the figure and a voltage is applied to the catalyst ink stretched in the surface direction. A magnetic field is applied in the vertical direction. Then, the Pt-supported carbon particles in the catalyst ink move by receiving a force in the right direction in the figure in accordance with Fleming's law. In this state, if the solvent in the catalyst ink is removed and dried, a catalyst layer in which the Pt-supported carbon particles are inclined in the plane direction can be produced. Further, if a magnetic field is applied in parallel to the catalyst ink, a catalyst layer inclined in the thickness direction can be produced.
[0028]
Thus, by changing the intensity and direction of the current and magnetic field, the continuous inclined arrangement of the Pt-supported carbon particles can be easily controlled in the three-dimensional direction (thickness direction / plane direction).
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention and comparative examples will be described below.
As shown in FIG. 2, the catalyst ink was cast and carbon electrodes were brought into contact with both ends thereof. A magnetic field was generated by applying a current of 1 A to a coiled copper wire. A sample of 36 mm × 36 mm was placed in the magnetic field, a voltage was applied to the carbon electrode, and a current was passed in the y direction. In this state, it was naturally dried to remove the solvent, thereby preparing a catalyst layer.
For comparison, a catalyst layer dried by an ordinary method without applying a magnetic field or potential was also prepared.
A catalyst layer to which a magnetic field is applied is designated as sample 1, and a catalyst layer without a magnetic field is designated as sample 2.
[0030]
[Atom direction distribution analysis of catalyst layer by ICP]
The catalyst layer samples 1 and 2 have a cross section of 1 cm as shown in FIG.2Then, the metal element was quantitatively analyzed by ICP (Inductively Coupled Plasma). As a result, as shown in Table 1, the Pt catalyst was tilted in the vertical direction in the magnetic field / electric field. Then, if the correlation between the magnetic field / electric field conditions and the inclination is obtained, the inclination can be controlled.
[0031]
[Table 1]
Figure 0004165154
[0032]
[Discharge performance as a fuel cell]
The catalyst layers of Samples 1 and 2 were transferred to an electrolyte membrane (Gore-Select 20 μm) to produce a single-sided membrane electrode assembly (MEA). A fuel cell folder was formed on the cathode side by combining a commercially available single-sided MEA (manufactured by GORE-TEX, PRIMEA 5510 + Gore-Select 20 μm) on the anode side. The inclined catalyst layer was set in such a direction that the Pt rich side comes upstream of the cathode fluid in consideration of dry-up on the cathode side. The current-voltage characteristics of the fuel cells of Samples 1 and 2 were examined, and it was found that the battery performance of this example was excellent.
[0033]
This time 13cm2However, in a large area fuel cell such as an actual device, the gas performance, the moisture, and the temperature distribution in the MEA plane direction are generated, so that the cell performance is also distributed in the plane direction. In such a case, it is considered that the battery performance can be efficiently extracted in the surface direction by the inclined arrangement of the catalyst. Therefore, this technique is an effective technique for realizing the gradient arrangement of the catalyst concentration.
[0034]
[Fuel battery cell]
As shown in FIG. 4, the fuel cell to which the electrode of the present invention is applied includes an electrolyte membrane 10 that is a membrane electrolyte, a cathode-side electrode catalyst layer 12 that is in close contact with the membrane surface of the electrolyte membrane 10, and an anode side. The electrode catalyst layer 14 includes a cathode 50 and an anode 52 that are in close contact with the electrode catalyst layers.
[0035]
The electrolyte membrane 10 is a solid polymer electrolyte membrane having a sulfone group as an ion exchange group for hydrogen ions, and selectively transmits hydrogen ions along the film thickness direction. More specifically, the electrolyte membrane 10 is a solid polymer electrolyte membrane (for example, perfluorocarbon sulfonic acid polymer membrane (trade name: Nafion, manufactured by Du Pont)) made from a fluorine-based sulfonic acid polymer resin. The film thickness is about 120 μm.
[0036]
The cathode-side electrode catalyst layer 12 and the anode-side electrode catalyst layer 14 are interposed between the cathode 50, the anode 52 and the electrolyte membrane 10, and through these hot presses, the membrane surface of the electrolyte membrane 10 and each electrode It is in close contact with the electrode surface on the electrolyte side. The cathode side electrode catalyst layer 12 and the anode side electrode catalyst layer 14 are formed by laminating carbon particles carrying 20 wt% of platinum as a catalyst, and are formed through a manufacturing process described later. In FIG. 4, the carbon particles constituting the cathode side electrode catalyst layer 12 and the anode side electrode catalyst layer 14 are exaggerated.
[0037]
The cathode 50 and the anode 52 are made of porous carbon that is porous and has gas permeability, and has a porosity of 60 to 80%. The cathode 50 and the anode 52 are each formed with a channel 41 on the corresponding electrode catalyst layer side. Since the cathode 50 and the anode 52 are porous carbon, they also function as separators that partition adjacent fuel cells.
[0038]
In the fuel cell having the above-described configuration, when fuel gas (humidified hydrogen gas, oxygen gas) is supplied to the respective electrodes from the flow paths 41 and 43, the supplied fuel gas permeates (diffuses) the cathode 50 and the anode 52. Thus, the cathode side electrode catalyst layer 12 and the anode side electrode catalyst layer 14 are reached. Then, the fuel gas is subjected to the reactions shown in the above-described formulas (1) and (2) in the electrode catalyst layer. That is, on the anode 52 side, the hydrogen ions generated by the progress of the reaction of formula (1) are H+ (XH2The hydrogen ions that permeate (diffuse) the electrolyte membrane 10 in the hydrated state of O) and pass through the membrane are subjected to the reaction of the formula (2) at the cathode 50. This reaction is promoted by the catalytic action of the cathode side electrode catalyst layer 12 and the anode side electrode catalyst layer 14 and proceeds.
[0039]
In the present invention, the paste print is subjected to room temperature drying and then subjected to vacuum drying under heating to perform a film forming step. By this vacuum drying, the organic solvent and the solution of the fluorinated sulfonic acid polymer resin solution are removed by evaporation from the paste print. For this reason, through this film formation step, each catalyst-supported carbon covered with the fluorinated sulfonic acid polymer resin solution is coated with the fluorinated sulfonic acid polymer resin, which is a polymer electrolyte. A thin film in which catalyst-carrying carbon is laminated is formed. In the following description, the fluorinated sulfonic acid polymer resin is simply referred to as a polymer electrolyte.
[0040]
Above the catalyst-carrying carbon stack, the polymer electrolysis mass covering the catalyst-carrying carbon increases. Therefore, in the formed thin film, the polymer electrolysis mass is small on the bottom surface side, and the polymer electrolysis mass is increased on the top surface side of the thin film. For this reason, this thin film is provided with a small gap between the catalyst-carrying carbon and high hydrogen ion conductivity on the upper surface side of the membrane where the polymer electrolysis mass is large. On the other hand, on the bottom side where the polymer electrolysis mass is small, a large gap between the catalyst-carrying carbon and low hydrogen ion conductivity is provided.
[0041]
Thereafter, the fuel cell (cell) was completed as follows. First, the paste printed matter after vacuum drying is put on both membrane surfaces of the electrolyte membrane 10 together with the Teflon (registered trademark) sheet and hot pressed (126 ° C. × 100 kg / cm2 And the Teflon (registered trademark) sheet is removed after the hot pressing. Next, in a state where the electrolyte membrane 10 is sandwiched between the cathode 50 and the anode 52, hot pressing (126 ° C. × 100 kg / cm 2) is performed.2 )did. Through the above-described steps, the cathode side electrode catalyst layer 12 and the anode side electrode catalyst layer 14 are formed from the electrode catalyst layer forming paste, and a fuel cell (cell) having both electrode catalyst layers is completed. Prior to hot pressing, the Teflon (registered trademark) sheet may be removed, the paste print may be superimposed on both membrane surfaces of the electrolyte membrane 10, and hot pressing may be performed with both sides sandwiched between the cathode 50 and the anode 52.
[0042]
[Catalyst-supported carbon and polymer electrolyte]
The state of the catalyst-supporting carbon and the polymer electrolyte in the cathode side electrode catalyst layer 12 and the anode side electrode catalyst layer 14 thus formed will be described with reference to the cathode side electrode catalyst layer 12 as an example.
[0043]
As shown in FIG. 5 schematically showing the cathode-side electrode catalyst layer 12, each catalyst-supporting carbon is coated with a polymer electrolyte. However, the amount of polymer electrolyte coating per catalyst-carrying carbon is large on the electrolyte membrane 10 side and small on the cathode 50 side. On the other hand, the amount of polymer electrolyte intervening in the gap between adjacent catalyst-supporting carbons is large on the electrolyte membrane 10 side and small on the cathode 50 side. For this reason, the gap between the catalyst-supporting carbons as the electrode catalyst layer is large on the cathode 50 side and small on the electrolyte membrane 10 side. Accordingly, the diffusion of hydrogen ions from the membrane surface of the electrolyte membrane 10 to the cathode side electrode catalyst layer 12 is rapidly performed because the polymer electrolyte mass is large on the electrolyte membrane 10 side of the cathode side electrode catalyst layer 12. Moreover, the diffusion permeation of the reaction gas (oxygen gas) from the cathode 50 to the cathode side electrode catalyst layer 12 is quickly performed because the gap between the catalyst-supporting carbons is large on the cathode 50 side of the cathode side electrode catalyst layer 12.
[0044]
For this reason, according to the cathode side electrode catalyst layer 12 and the anode side electrode catalyst layer 14, the conductivity of hydrogen ions from or to the electrolyte membrane 10 can be increased. On the other hand, the diffusion permeability of the reaction gas from these electrodes can be enhanced on the cathode 50 and anode 52 side.
[0045]
Therefore, in the fuel cell of the present invention, in the electrode catalyst layer, the reaction gas diffusion rate can be increased on the cathode 50 and anode 52 sides, and the hydrogen ion conduction rate can be increased on the electrolyte membrane 10 side. As a result, according to the fuel cell of the present embodiment, the utilization efficiency of the catalyst in the electrode catalyst layer can be increased to make the electrode reaction smoother and more active, and the cell performance can be further improved.
[0046]
【The invention's effect】
The effects achieved by the present invention will be described in comparison with the prior art described above. (1) One kind of ink may be prepared, and (2) the point that the inclined arrangement is continuous and the electrochemical / caloric stress is concentrated. None, (3) The configuration of the electric and magnetic fields can be arranged in the direction of thickness, the surface 2 direction, and their combined direction (three-dimensional direction). (4) Spatial variation of the electric and magnetic fields. Can also change the tilt arrangement spatially (complex tilt arrangement according to the use situation of the fuel cell is possible). (5) An apparatus for configuring an electric field and a magnetic field is arranged around the drying process apparatus. This is advantageous in that the catalyst layer can be enlarged.
[0047]
As described above, in the fuel cell having the catalyst electrode of the present invention, the continuous inclined arrangement of the catalyst carrier particles is changed in the three-dimensional direction (thickness direction / surface 2) by changing the strength and direction of the current and magnetic field. Direction). For example, by inclining the catalyst concentration in the thickness direction, the gap between the catalyst carriers in the electrode catalyst layer is increased on the electrode side, the diffusion permeability of the reaction gas is increased on the electrode side, and the polymer electrolysis mass is increased to the electrode The conductivity of hydrogen ions can be increased on the solid polymer electrolyte membrane side by increasing the amount on the opposite side of the solid polymer electrolyte membrane side. Therefore, in the electrode catalyst layer, the diffusion rate of the reaction gas is increased on the electrode side, and the conduction rate of hydrogen ions is increased on the solid polymer electrolyte membrane side opposite to the electrode. As a result, the utilization efficiency of the catalyst in the electrode catalyst layer can be increased to make the electrode reaction smoother and more active, and the battery performance can be further improved.
[0048]
Further, according to the method for producing an electrode catalyst for a fuel cell of the present invention, a fuel cell having high cell performance can be produced only by taking a simple process of applying a voltage and a magnetic field.
Furthermore, the fuel cell electrode catalyst production apparatus of the present invention does not require a large accessory device, and can cope with an increase in the size of the catalyst layer.
[Brief description of the drawings]
FIG. 1 is a principle diagram of a device for tilting a catalyst layer by a voltage and a magnetic field.
FIG. 2 shows a method of tilting a catalyst layer by a voltage and a magnetic field.
FIG. 3 is a cutout of a catalyst layer sample in this example and a comparative example.
FIG. 4 is a schematic diagram of a cell structure of a fuel cell in an example.
FIG. 5 is a schematic view schematically showing the presence of catalyst-supporting carbon and polymer electrolyte in the cathode-side electrode catalyst layer of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Electrolyte membrane, 12 ... Cathode side electrode catalyst layer, 14 ... Anode side electrode catalyst layer, 41 ... Channel, 50 ... Cathode, 52 ... Anode

Claims (3)

水素イオンの選択透過性を有する固体高分子電解質膜に触媒担持体を積層してなる電極触媒層を密着させ、該固体高分子電解質膜を該電極触媒層を介在させて一対のガス拡散性の電極で挟持した燃料電池に用いる電極の製造方法であって、
導電多孔性担体に触媒物質を担持した触媒材料と、高分子電解質とを溶媒で分散させた触媒インクを平面状に塗布する工程、該平面状触媒インクに電場および磁場を印加中に乾燥させて溶媒を蒸発させる工程を有することを特徴とする電極の製造方法。
An electrode catalyst layer formed by laminating a catalyst carrier is adhered to a solid polymer electrolyte membrane having hydrogen ion selective permeability, and the solid polymer electrolyte membrane is interposed between the electrode catalyst layer and a pair of gas diffusive layers. A method for producing an electrode for use in a fuel cell sandwiched between electrodes,
A step of applying a catalyst ink in which a catalyst material carrying a catalyst substance on a conductive porous carrier and a polymer electrolyte dispersed in a solvent is applied in a planar shape, and the planar catalyst ink is dried while an electric field and a magnetic field are applied. method of manufacturing electrodes, characterized in that it comprises a step of evaporating the solvent.
前記平面状触媒インクに電場および磁場を印加中に乾燥させて溶媒を蒸発させる工程において、印加する電圧、磁場の強さ、方向の少なくとも1つを制御することを特徴とする請求項に記載の電極の製造方法。In the step of evaporating the planar catalyst ink to dry the electric and magnetic fields in the applied solvent, the voltage applied, the intensity of the magnetic field, according to claim 1, wherein the controlling at least one direction the method of manufacturing electrodes. 水素イオンの選択透過性を有する固体高分子電解質膜に触媒担持体を積層してなる電極触媒層を密着させ、該固体高分子電解質膜を該電極触媒層を介在させて一対のガス拡散性の電極で挟持した燃料電池に用いる電極の製造装置であって、
導電多孔性担体に触媒物質を担持した触媒材料と、高分子電解質とを溶媒で分散させた触媒インクを平面状に塗布する手段、該平面状触媒インクに電場および磁場を印加する手段、平面状触媒インクを乾燥させて溶媒を蒸発させる手段を有することを特徴とする電極の製造装置。
An electrode catalyst layer formed by laminating a catalyst carrier is adhered to a solid polymer electrolyte membrane having hydrogen ion selective permeability, and the solid polymer electrolyte membrane is interposed between the electrode catalyst layer and a pair of gas diffusive layers. An electrode manufacturing apparatus for use in a fuel cell sandwiched between electrodes,
Conductive and porous support catalyst material carrying the catalyst material, means for applying a polymer electrolyte means for applying a catalyst ink obtained by dispersing a solvent in a plane, the electric and magnetic fields in the plane-like catalyst ink, the plane the Jo catalyst ink is dried manufacturing apparatus electrodes, characterized in that it comprises a means for evaporating the solvent.
JP2002245733A 2002-08-26 2002-08-26 Method and apparatus for manufacturing fuel cell electrode Expired - Fee Related JP4165154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245733A JP4165154B2 (en) 2002-08-26 2002-08-26 Method and apparatus for manufacturing fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245733A JP4165154B2 (en) 2002-08-26 2002-08-26 Method and apparatus for manufacturing fuel cell electrode

Publications (2)

Publication Number Publication Date
JP2004087267A JP2004087267A (en) 2004-03-18
JP4165154B2 true JP4165154B2 (en) 2008-10-15

Family

ID=32053836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245733A Expired - Fee Related JP4165154B2 (en) 2002-08-26 2002-08-26 Method and apparatus for manufacturing fuel cell electrode

Country Status (1)

Country Link
JP (1) JP4165154B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216404A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Fuel cell
JP5135704B2 (en) * 2006-04-04 2013-02-06 凸版印刷株式会社 Method for producing electrode catalyst layer for polymer electrolyte fuel cell
JP4961879B2 (en) * 2006-07-28 2012-06-27 トヨタ自動車株式会社 Fuel cell system
JP5003076B2 (en) * 2006-09-22 2012-08-15 凸版印刷株式会社 Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
JP5003078B2 (en) * 2006-09-25 2012-08-15 凸版印刷株式会社 Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
JP5055913B2 (en) * 2006-09-25 2012-10-24 凸版印刷株式会社 Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
JP4766014B2 (en) 2007-08-08 2011-09-07 トヨタ自動車株式会社 Manufacturing method of membrane electrode assembly
CN112397737B (en) * 2021-01-20 2021-04-13 北京科技大学 Electric pile device of platinum-based magnetic field regulation fuel cell and manufacturing method thereof
CN115084606B (en) * 2022-08-03 2023-07-14 上海捷氢科技股份有限公司 Fuel cell membrane electrode and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004087267A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JPH05251086A (en) Fuel cell and its applied device
JPH11126615A (en) Electrode for fuel cell and manufacture of electrode for fuel cell
JP2008311180A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP2006252967A (en) Solid polymer electrolyte membrane for fuel cell, and fuel cell using the same
WO2011083842A1 (en) Apparatus for production of catalyst layer for fuel cell, method for production of catalyst layer for fuel cell, polyelectrolyte solution, and process for production of polyelectrolyte solution
JP2009199988A (en) Anode electrode for direct methanol fuel cell and direct methanol type fuel cell using the same
JP4165154B2 (en) Method and apparatus for manufacturing fuel cell electrode
JP4896393B2 (en) Method for producing fuel cell electrode paste, method for producing fuel cell electrode, method for producing membrane electrode assembly of fuel cell, and method for producing fuel cell system
JP2004185901A (en) Electrode for fuel cell and fuel cell
AU2003253438A1 (en) Conductive carbon, electrode catalyst for fuel cell using the same and fuel cell
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP4400177B2 (en) Fuel cell electrode
JP3523484B2 (en) Fuel cell
JP2006253042A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell
US20050147868A1 (en) Fuel cell
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP2008311181A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP2009043688A (en) Fuel cell
JP2007123196A (en) Solid-polymer fuel cell, catalyst layer thereof, and manufacturing method thereof
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
JP3619826B2 (en) Fuel cell electrode and fuel cell
JP2006059618A (en) Polymer electrolyte fuel cell
JP2001185162A (en) Fuel cell and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees