JP5003076B2 - Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell - Google Patents

Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5003076B2
JP5003076B2 JP2006257110A JP2006257110A JP5003076B2 JP 5003076 B2 JP5003076 B2 JP 5003076B2 JP 2006257110 A JP2006257110 A JP 2006257110A JP 2006257110 A JP2006257110 A JP 2006257110A JP 5003076 B2 JP5003076 B2 JP 5003076B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
catalyst layer
electrode catalyst
fuel cell
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006257110A
Other languages
Japanese (ja)
Other versions
JP2008078020A (en
Inventor
弘幸 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2006257110A priority Critical patent/JP5003076B2/en
Publication of JP2008078020A publication Critical patent/JP2008078020A/en
Application granted granted Critical
Publication of JP5003076B2 publication Critical patent/JP5003076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子型燃料電池用電極触媒層、その製造方法および固体高分子型燃料電池に関するものであり、詳しくは、高分子電解質膜に対して例えば厚さ方向にガス拡散性が高く、触媒の有効利用率が高い電極触媒層を有する固体高分子型燃料電池用電極触媒層、その製造方法および固体高分子型燃料電池に関する。   The present invention relates to an electrode catalyst layer for a polymer electrolyte fuel cell, a method for producing the electrode catalyst layer, and a polymer electrolyte fuel cell. The present invention relates to an electrode catalyst layer for a polymer electrolyte fuel cell having an electrode catalyst layer having a high effective utilization rate of a catalyst, a method for producing the same, and a polymer electrolyte fuel cell.

燃料電池は、水素を含有する燃料ガスと酸素を含む酸化剤ガスを、触媒を含む電極で水の電気分解の逆反応を起こさせ、熱と同時に電気を生み出す発電システムである。この発電システムは、従来の発電方式と比較して高効率や低環境負荷、低騒音などの特徴を有し、将来のクリーンなエネルギー源として注目されている。用いるイオン伝導体の種類によってタイプがいくつかあり、プロトン伝導性高分子膜を用いたものは、固体高分子型燃料電池と呼ばれる。   A fuel cell is a power generation system that generates electricity simultaneously with heat by causing a hydrogen gas-containing fuel gas and oxygen-containing oxidant gas to undergo reverse reaction of water electrolysis at an electrode including a catalyst. This power generation system has features such as high efficiency, low environmental load, and low noise compared to conventional power generation methods, and is attracting attention as a clean energy source in the future. There are several types depending on the type of ion conductor used, and those using proton conductive polymer membranes are called solid polymer fuel cells.

燃料電池の中でも固体高分子型燃料電池は、室温付近で使用可能なことから、車載用電源や家庭据置用電源などへの使用が有望視されており、近年、様々な研究開発が行われている。固体高分子型燃料電池は、MEA(電解質膜電極接合体)と呼ばれる高分子電解質膜の両面に一対の電極を配置させた接合体を、前記電極の一方に水素を含有する燃料ガスを供給し、前記電極の他方に酸素を含む酸化剤ガスを供給するためのガス流路を形成した一対のセパレータ板で挟持した電池である。ここで、燃料ガスを供給する電極を燃料極、酸化剤を供給する電極を空気極と呼んでいる。   Among polymer fuel cells, polymer electrolyte fuel cells can be used near room temperature, so they are considered promising for use in in-vehicle power sources and household stationary power sources. In recent years, various research and development have been conducted. Yes. A polymer electrolyte fuel cell is a MEA (electrolyte membrane electrode assembly) assembly in which a pair of electrodes are arranged on both sides of a polymer electrolyte membrane, and a fuel gas containing hydrogen is supplied to one of the electrodes. The battery is sandwiched between a pair of separator plates formed with a gas flow path for supplying an oxidant gas containing oxygen to the other electrode. Here, the electrode for supplying the fuel gas is called a fuel electrode, and the electrode for supplying the oxidant is called an air electrode.

上述の電極は、白金系の貴金属などの触媒物質を担持したカーボン粒子と高分子電解質を積層してなる電極触媒層と、ガス通気性と電導性を兼ね備えたガス拡散層からなる接合体である。固体高分子型燃料電池の実用化に向けての課題は、出力密度や耐久性の向上などがあげられるが、最大の課題はコスト削減であり、前記電極に触媒として使用されている白金の使用量の低減である。   The above-mentioned electrode is a joined body composed of an electrode catalyst layer formed by laminating carbon particles supporting a catalyst material such as a platinum-based noble metal and a polymer electrolyte, and a gas diffusion layer having both gas permeability and conductivity. . Issues for the practical application of polymer electrolyte fuel cells include improvement of power density and durability, but the biggest issue is cost reduction, and the use of platinum used as a catalyst for the electrode The amount is reduced.

燃料極では水素ガスの酸化、空気極ではプロトンの還元がそれぞれ起こる。この酸化還元反応は、電極内部において電子伝導体であるカーボン粒子と、プロトン伝導性高分子の両方に接し、且つ、燃料ガスもしくは酸化剤ガスが接触しうる触媒の表面でのみ起こる。酸化還元反応が起こるこの部分は三相界面と呼ばれており、この面積が燃料電池の性能に大きく影響してくる。三相界面ではないところに存在する白金は、電極の酸化還元反応に寄与しないため、触媒として全く機能しないことになる。現状では、電極触媒層のガス拡散性が悪く、カーボン粒子上に担持された触媒がプロトン伝導性高分子と接していないことや、触媒がプロトン伝導性高分子で覆われていること、その結果として、白金の利用率が低い値となっている。白金使用量を低減させる為には、電極触媒層の微細構造の最適化を行い、酸化還元反応に寄与しない白金の量をできるだけ減らし、使用した白金の有効利用率を高める必要がある。   Hydrogen gas oxidation occurs at the fuel electrode, and proton reduction occurs at the air electrode. This oxidation-reduction reaction occurs only on the surface of the catalyst that is in contact with both the carbon particles that are electron conductors and the proton-conducting polymer inside the electrode and that can be contacted with the fuel gas or the oxidant gas. This part where the oxidation-reduction reaction occurs is called a three-phase interface, and this area greatly affects the performance of the fuel cell. Platinum present at a location other than the three-phase interface does not contribute to the oxidation-reduction reaction of the electrode and therefore does not function as a catalyst at all. At present, the gas diffusibility of the electrode catalyst layer is poor, the catalyst supported on the carbon particles is not in contact with the proton conductive polymer, the catalyst is covered with the proton conductive polymer, and as a result As a result, the utilization rate of platinum is low. In order to reduce the amount of platinum used, it is necessary to optimize the microstructure of the electrode catalyst layer, reduce the amount of platinum that does not contribute to the oxidation-reduction reaction as much as possible, and increase the effective utilization rate of the platinum used.

電極触媒層中の細孔は、セパレータからガス拡散層を通じた先に位置し、複数の物質を輸送する通路の役割を果たす。燃料極では、酸化還元の反応場である三相界面に燃料ガスを円滑に供給するだけでなく、生成したプロトンを高分子電解質膜内で円滑に伝導させるための水も供給する機能を果たす。一方、空気極では、燃料極と同様に酸化剤ガスの供給と共に、電極反応で生成した水を円滑に除去する機能を果たす。しかし、細孔の量を多くしすぎると、相対的にカーボン粒子もしくはプロトン伝導性高分子が少なくなり、セル抵抗や反応抵抗を増加させると考えられる。従って、電極触媒層のガス拡散性の確保は非常に重要な課題であり、電極触媒層の微細構造の最適化には、電極触媒層中の細孔を任意の傾斜分布で形成させる必要がある。   The pores in the electrode catalyst layer are located in front of the separator through the gas diffusion layer and serve as a passage for transporting a plurality of substances. The fuel electrode functions not only to smoothly supply the fuel gas to the three-phase interface, which is a redox reaction field, but also to supply water for smoothly conducting the generated protons in the polymer electrolyte membrane. On the other hand, the air electrode performs the function of smoothly removing water generated by the electrode reaction together with the supply of the oxidant gas in the same manner as the fuel electrode. However, if the amount of pores is increased too much, it is considered that the number of carbon particles or proton conductive polymer is relatively decreased, and cell resistance and reaction resistance are increased. Therefore, ensuring the gas diffusibility of the electrode catalyst layer is a very important issue, and it is necessary to form pores in the electrode catalyst layer with an arbitrary gradient distribution in order to optimize the microstructure of the electrode catalyst layer. .

これまで、電極触媒層のガス拡散性を向上させるため、電極形成後に取り除くことが出来る造孔剤を触媒インクに分散させることで、電極触媒層のガス拡散性を向上させる方法が考案されている。特許文献1(特開平6−36771号公報)には、亜鉛やアルミニウム、クロムなどの金属あるいはこれらの金属塩などの無機塩の粉末を造孔剤として用いる方法が開示されている。これらの造孔剤を含む触媒インクをシート状に塗布し、この形成した電極を酸性溶液に浸漬して造孔剤を取り除き、電極触媒層に細孔を形成する方法が考案されている。   So far, in order to improve the gas diffusibility of the electrode catalyst layer, a method has been devised to improve the gas diffusibility of the electrode catalyst layer by dispersing a pore former that can be removed after electrode formation in the catalyst ink. . Patent Document 1 (Japanese Patent Application Laid-Open No. 6-36771) discloses a method of using a powder of an inorganic salt such as a metal such as zinc, aluminum or chromium or a metal salt thereof as a pore-forming agent. A method has been devised in which a catalyst ink containing these pore forming agents is applied in a sheet form, the formed electrode is immersed in an acidic solution to remove the pore forming agent, and pores are formed in the electrode catalyst layer.

特許文献2(特開平10−189012号公報)には、長手方向に所定の配向性を持つ針状の鉄などを造孔剤として用いる方法が開示されている。電極に対して垂直方向に磁場を印加した環境下で触媒インクを塗布もしくは乾燥させることで、造孔剤の磁化容易軸と磁束が平行に配置した状態で電極が形成するため、電極触媒層に垂直な配向性を持った複数の細孔を形成する方法が考案されている。   Patent Document 2 (Japanese Patent Laid-Open No. 10-189012) discloses a method of using acicular iron or the like having a predetermined orientation in the longitudinal direction as a pore-forming agent. By applying or drying the catalyst ink in an environment in which a magnetic field is applied in a direction perpendicular to the electrode, the electrode is formed with the easy axis of magnetization of the pore forming agent and the magnetic flux arranged in parallel. A method of forming a plurality of pores having vertical orientation has been devised.

特許文献3(特開2003−109606号公報)には、粒径の異なる造孔剤を用いた複数個の触媒インクを調液し、これらを基材シート上に粒径の大きなものから順に塗工し、これを高分子電解質膜に転写・造孔剤を除去する方法が開示されている。電極触媒層中の細孔の大きさを、高分子電解質膜に接する側よりガス拡散層側にかけて大きく形成することで、電極触媒層の厚み方法でのガス拡散性を向上させる方法が考案されている。   In Patent Document 3 (Japanese Patent Application Laid-Open No. 2003-109606), a plurality of catalyst inks using pore formers having different particle diameters are prepared, and these are coated on a base sheet in order from the largest particle diameter. And a method for removing the transfer / pore-forming agent from the polymer electrolyte membrane is disclosed. A method has been devised to improve the gas diffusibility in the electrode catalyst layer thickness method by forming the pore size in the electrode catalyst layer larger from the side in contact with the polymer electrolyte membrane to the gas diffusion layer side. Yes.

特許文献4(特開2005−267981号公報)には、重力を利用した造孔剤の傾斜分布を形成する方法が開示されている。ガス拡散層からなるシートと、溶媒に溶出可能な造孔剤とを用い、重力を利用してシートに接している溶媒を流下させ、重力方向に対してガス拡散性が異なる電極触媒層の形成を考案されている。   Patent Document 4 (Japanese Patent Laid-Open No. 2005-267981) discloses a method for forming a gradient distribution of a pore-forming agent using gravity. Using a sheet consisting of a gas diffusion layer and a pore-forming agent that can be dissolved in a solvent, the solvent in contact with the sheet is made to flow down using gravity, and an electrode catalyst layer with different gas diffusivity in the direction of gravity is formed. Has been devised.

また、磁気力を用いた物質移動を利用する考案として、特許文献5(特開2005−317930号公報)に、流動性のある物質に磁場を印加することで、流動性のある物質を移動させて所望の形状を形成した後、この流動性のある物質を固化することにより、所望の形状パターンを形成する方法が開示されている。
特開平6−36771号公報 特開平10−189012号公報 特開2003−109606号公報 特開2005−267981号公報 特開2005−317930号公報
In addition, as a device for using mass transfer using magnetic force, Patent Document 5 (Japanese Patent Laid-Open No. 2005-317930) discloses that a fluid substance is moved by applying a magnetic field to the fluid substance. A method of forming a desired shape pattern by solidifying the fluid substance after forming a desired shape is disclosed.
JP-A-6-36771 JP-A-10-189012 JP 2003-109606 A Japanese Patent Laid-Open No. 2005-267981 JP 2005-317930 A

燃料ガスおよび酸化剤ガスの輸送は、セパレータからガス拡散層を通じ、最後に電極触媒層中の細孔によって酸化還元反応場である三相界面まで行われる。電極触媒層からみると、燃料ガスおよび酸化剤ガスの輸送はガス拡散層側からであり、反対側の高分子電解質膜側からは行われない。このことから、電極触媒層中の細孔を均一に形成した場合、高分子電解質膜側では、ガス拡散層側よりガス拡散性が劣ることが考えられる。つまり、高分子電解質膜側に存在する触媒は、電極の酸化還元反応に寄与しないため、触媒として全く機能しないことになる。従って、特許文献1で開示されている、金属あるいはこれらの金属塩などの無機塩の粉末を造孔剤として用いる方法では、使用した白金の有効利用率が十分に高められていないという問題点がある。   The fuel gas and the oxidant gas are transported from the separator through the gas diffusion layer, and finally to the three-phase interface that is a redox reaction field through the pores in the electrode catalyst layer. When viewed from the electrode catalyst layer, the transport of the fuel gas and the oxidant gas is from the gas diffusion layer side and is not performed from the opposite polymer electrolyte membrane side. From this, when the pores in the electrode catalyst layer are uniformly formed, it is considered that the gas diffusibility is inferior on the polymer electrolyte membrane side than on the gas diffusion layer side. That is, the catalyst existing on the polymer electrolyte membrane side does not contribute to the oxidation-reduction reaction of the electrode, and therefore does not function as a catalyst at all. Therefore, the method of using a powder of an inorganic salt such as a metal or a metal salt thereof disclosed in Patent Document 1 as a pore-forming agent has a problem that the effective utilization rate of platinum used is not sufficiently increased. is there.

また、強磁性体の造孔剤を磁場配向させて、異方性のある細孔を電極触媒層に形成する方法では、造孔剤の分散性保持に問題点がある。強磁性体の造孔剤が触媒インクに分散した状態であれば、個々の造孔剤の磁化容易軸と磁束が平行になるようにそれぞれ磁場配向する。しかし、強磁性体の造孔剤が磁場内では磁化することでそれぞれが小さな磁石となる。特に針状の強磁性体であれば、棒磁石のように引力もしくは斥力の作用を受けて造孔剤の分散性が悪くなり、電極触媒層の細孔径がランダムになるという問題点がある。また、造孔剤が凝集することで、個々の凝集体の磁化容易軸磁束が平行になるようにそれぞれ磁場配向し、異方性のある細孔の形成を困難にする問題点がある。従って、特許文献2で開示されている、長手方向に所定の配向性を持つ針状の鉄などを造孔剤として用いる方法は、磁場内における造孔剤の分散性保持に問題点があり、使用した白金の有効利用率が十分に高められていない。   In addition, the method of orienting a ferromagnetic pore former in a magnetic field to form anisotropic pores in the electrode catalyst layer has a problem in maintaining the dispersibility of the pore former. If the ferromagnetic pore former is dispersed in the catalyst ink, the magnetic orientation is performed so that the easy magnetization axis and the magnetic flux of each pore former are parallel to each other. However, each of the ferromagnetic pore-forming agents is magnetized in a magnetic field, so that each becomes a small magnet. In particular, in the case of a needle-shaped ferromagnetic material, there is a problem in that the pore-forming agent has a poor dispersibility due to attractive or repulsive action like a bar magnet, and the pore diameter of the electrode catalyst layer becomes random. In addition, since the pore-forming agent is aggregated, there is a problem that it is difficult to form anisotropic pores by orienting the magnetic fields so that the easy axis magnetic fluxes of the individual aggregates are parallel to each other. Therefore, the method of using acicular iron or the like having a predetermined orientation in the longitudinal direction as disclosed in Patent Document 2 has a problem in maintaining the dispersibility of the pore-forming agent in a magnetic field, The effective utilization rate of platinum used is not sufficiently increased.

更に、高分子電解質膜もしくはガス拡散層との界面近傍の電極触媒層において、細孔を均一に大きく形成する方法では、電極触媒層自体の機械的強度に問題がある。界面に接する電極触媒層中の細孔がそれぞれ均一に大きいことで、その細孔付近の電極触媒層が脆い。燃料電池は、燃料ガスおよび酸化剤ガスがセパレータ流路外にリークしないように、また、各電池部材間での接触抵抗の影響を低減させるために、一定の圧力でMEAを一対のセパレータで挟持される。電極触媒層が脆い場合、締め付け圧力による潰れでガス拡散性が低下し、白金の有効利用率が減少することが考えられる。   Furthermore, in the method of forming pores uniformly large in the electrode catalyst layer near the interface with the polymer electrolyte membrane or the gas diffusion layer, there is a problem in the mechanical strength of the electrode catalyst layer itself. Since the pores in the electrode catalyst layer in contact with the interface are uniformly large, the electrode catalyst layer near the pores is brittle. In the fuel cell, the MEA is sandwiched between a pair of separators at a constant pressure so that the fuel gas and the oxidant gas do not leak out of the separator flow path, and in order to reduce the influence of contact resistance between the battery members. Is done. When the electrode catalyst layer is brittle, it is conceivable that the gas diffusibility decreases due to crushing due to the clamping pressure, and the effective utilization rate of platinum decreases.

本発明は上記課題点について鑑み、固体高分子型燃料電池用電極触媒層において、機械的強度を保ちつつ、高分子電解質膜に対して厚さ方向または膜面方向にガス拡散性が傾斜分布を持ち、触媒の有効利用率が高い固体高分子型燃料電池用電極触媒層、その製造方法および固体高分子型燃料電池を提供することを目的とする。   In view of the above-mentioned problems, the present invention has an electrode catalyst layer for a polymer electrolyte fuel cell, in which the gas diffusivity has a gradient distribution in the thickness direction or the membrane surface direction with respect to the polymer electrolyte membrane while maintaining mechanical strength. An object of the present invention is to provide an electrode catalyst layer for a polymer electrolyte fuel cell having a high effective utilization rate of a catalyst, a method for producing the electrode catalyst layer, and a polymer electrolyte fuel cell.

本発明者は鋭意検討を重ねた結果、上記課題を解決することができ、本発明を完成するに至った。   As a result of intensive studies, the present inventor has been able to solve the above-mentioned problems and has completed the present invention.

すなわち、請求項1に記載の発明は、 一対の電極触媒層で挟まれたプロトン伝導性高分子電解質膜を、一対のガス拡散層で挟持した固体高分子型燃料電池における、前記電極触媒層の製造方法であって、触媒物質を担持したカーボン粒子と高分子電解質と造孔剤とを分散溶媒に分散させた触媒インクに、前記造孔剤と異なる磁化率を有する少なくとも1種の物質を溶解もしくは分散させ、前記造孔剤と前記分散溶媒との磁化率差を増大させたものを、平面状の基材上に塗布する工程および前記触媒インク中の分散溶媒を蒸発させる工程から選択された少なくとも1つの工程を不均一な磁束密度分布のある磁場内で行い、磁気力によって前記電極触媒層中の細孔が、前記高分子電解質膜に対して厚さ方向または膜面方向にガス拡散性が高くなる空隙率の傾斜分布を持つことを特徴とする固体高分子型燃料電池用電極触媒層の製造方法である。 In other words, the invention according to claim 1 is directed to a polymer electrolyte fuel cell in which a proton conductive polymer electrolyte membrane sandwiched between a pair of electrode catalyst layers is sandwiched between a pair of gas diffusion layers. A manufacturing method , wherein at least one substance having a magnetic susceptibility different from that of the pore forming agent is dissolved in a catalyst ink in which carbon particles carrying a catalyst substance, a polymer electrolyte, and a pore forming agent are dispersed in a dispersion solvent. Or it was selected from the step of dispersing and increasing the magnetic susceptibility difference between the pore former and the dispersion solvent on a planar substrate and the step of evaporating the dispersion solvent in the catalyst ink. At least one step is performed in a magnetic field having a non-uniform magnetic flux density distribution, and the pores in the electrode catalyst layer are gas diffusible in the thickness direction or the film surface direction with respect to the polymer electrolyte membrane by a magnetic force . Becomes higher A method for producing an electrode catalyst layer for a polymer electrolyte fuel cell, characterized by having a gradient distribution of porosity .

請求項2に記載の発明は、前記磁束密度分布のある磁場を形成する永久磁石もしくは磁場発生装置の最大磁束密度が0.1テスラ以上であることを特徴とする請求項1に記載の固体高分子型燃料電池用電極触媒層の製造方法である。   According to a second aspect of the present invention, the maximum magnetic flux density of the permanent magnet or magnetic field generator that forms the magnetic field having the magnetic flux density distribution is 0.1 Tesla or higher. It is a manufacturing method of the electrode catalyst layer for molecular fuel cells.

請求項3に記載の発明は、磁化率の異なる2種の物質で構成された基材に磁場を印加して、前記基材内における磁化率の最も高い物質に磁力を集中させ、所望の磁束密度分布を有する磁場を用いることを特徴とする請求項1または2に記載の固体高分子型燃料電池用電極触媒層の製造方法である。   According to a third aspect of the present invention, a magnetic field is applied to a base material composed of two kinds of substances having different magnetic susceptibility, the magnetic force is concentrated on the substance having the highest magnetic susceptibility in the base material, and a desired magnetic flux 3. The method for producing an electrode catalyst layer for a polymer electrolyte fuel cell according to claim 1, wherein a magnetic field having a density distribution is used.

請求項4に記載の発明は、前記触媒インクの分散溶媒と異なる磁化率を有する少なくとも1種の造孔剤を前記分散溶媒に分散させたことを特徴とする請求項1〜3のいずれかに記載の固体高分子型燃料電池用電極触媒層の製造方法である。   The invention according to claim 4 is characterized in that at least one pore former having a magnetic susceptibility different from that of the dispersion solvent of the catalyst ink is dispersed in the dispersion solvent. It is a manufacturing method of the electrode catalyst layer for solid polymer type fuel cells of description.

請求項に記載の発明は、前記分散溶媒に分散させた前記造孔剤を、電極触媒層形成後に前記造孔剤の溶媒によって除去することで、前記電極触媒層の細孔が前記高分子電解質膜に対して厚さ方向または膜面方向にガス拡散性が高くなる空隙率の傾斜分布を持つことを特徴とする請求項4に記載の固体高分子型燃料電池用電極触媒層の製造方法である。 According to a fifth aspect of the present invention, the pore forming agent dispersed in the dispersion solvent is removed by the solvent of the pore forming agent after forming the electrode catalyst layer, so that the pores of the electrode catalyst layer are the polymer. 5. The method for producing an electrode catalyst layer for a polymer electrolyte fuel cell according to claim 4, wherein the electrolyte membrane has a gradient distribution of porosity that increases gas diffusivity in a thickness direction or a membrane surface direction with respect to the electrolyte membrane. It is.

請求項に記載の発明は、前記分散溶媒に分散させた前記造孔剤を、発電で発生する水によって除去することで、前記電極触媒層の細孔が前記高分子電解質膜に対して厚さ方向または膜面方向にガス拡散性が高くなる空隙率の傾斜分布を持つことを特徴とする請求項4に記載の固体高分子型燃料電池用電極触媒層の製造方法である。 The invention described in claim 6 is such that the pore-forming agent dispersed in the dispersion solvent is removed by water generated by power generation so that the pores of the electrode catalyst layer are thicker than the polymer electrolyte membrane. 5. The method for producing an electrode catalyst layer for a polymer electrolyte fuel cell according to claim 4, wherein the method has a gradient distribution of porosity that increases gas diffusivity in a vertical direction or a film surface direction.

請求項8に記載の発明は、前記基材の温度が20℃〜120℃であることを特徴とする請求項1〜7のいずれかに記載の固体高分子型燃料電池用電極触媒層の製造方法である。   The invention according to claim 8 is the production of an electrode catalyst layer for a polymer electrolyte fuel cell according to any one of claims 1 to 7, wherein the temperature of the base material is 20 ° C to 120 ° C. Is the method.

本発明によれば、機械的強度を保ちつつ、高分子電解質膜に対して厚さ方向または膜面方向にガス拡散性が傾斜分布を持ち、触媒の有効利用率が高い固体高分子型燃料電池用電極触媒層、その製造方法および固体高分子型燃料電池が提供される。   According to the present invention, a solid polymer fuel cell with a high effective utilization rate of a catalyst having a gradient distribution of gas diffusivity in a thickness direction or a membrane surface direction with respect to a polymer electrolyte membrane while maintaining mechanical strength. An electrode catalyst layer, a production method thereof, and a polymer electrolyte fuel cell are provided.

以下、本発明をさらに詳細に説明する。
本発明は、磁束密度分布のある磁場内で触媒インクの塗布もしくは乾燥を行うことで、造孔剤と触媒インク分散溶媒にそれぞれ異なる磁気力を発生させ、造孔剤を磁気力で移動させる手法を用いて、高分子電解質膜に対してパターン状に厚さ方向または膜面方向にガス拡散性を高くした固体高分子型燃料電池用電極触媒層の製造方法を提供するものである。
Hereinafter, the present invention will be described in more detail.
The present invention is a method of generating different magnetic forces in the pore forming agent and the catalyst ink dispersion solvent by applying or drying the catalyst ink in a magnetic field having a magnetic flux density distribution, and moving the pore forming agent by the magnetic force. Is used to provide a method for producing an electrode catalyst layer for a polymer electrolyte fuel cell in which gas diffusivity is increased in the thickness direction or the membrane surface direction in a pattern with respect to the polymer electrolyte membrane.

造孔剤と触媒インク分散溶媒は、それぞれ反磁性体で磁性が弱く、磁気相互作用が非常に小さいので磁気力を利用した物質移動を行わせるのは困難であるが本発明の好適な形態では、触媒インク分散溶媒に磁化率を大きくする物質を溶解または分散させることで、造孔剤との磁化率差が増大するので、その結果、本発明では磁気力を利用した物質移動が利用できることになる。具体的には、触媒インク分散溶媒に溶解もしくは分散する常磁性遷移元素化合物を添加することで、触媒インク分散溶媒が常磁性体になる。   Since the pore-forming agent and the catalyst ink dispersion solvent are diamagnetic materials and weak in magnetism and have very little magnetic interaction, it is difficult to cause mass transfer using magnetic force. The difference in magnetic susceptibility from the pore-forming agent is increased by dissolving or dispersing the substance that increases the magnetic susceptibility in the catalyst ink dispersion solvent. As a result, in the present invention, mass transfer using magnetic force can be used. Become. Specifically, the catalyst ink dispersion solvent becomes a paramagnetic substance by adding a paramagnetic transition element compound that is dissolved or dispersed in the catalyst ink dispersion solvent.

しかし、磁束密度分布が均一であれば、造孔剤と触媒インク分散溶媒の磁化率差が増大させても物質移動は起きず、不均一な磁束密度分布の形成も重要な点である。磁束密度分布のある磁場を形成するには、磁化率の異なる2の物質で構成された基材、例えば強磁性体と弱磁性体で構成された基材に磁場を印加することで得られる。物質を透過する磁力線は、磁石と相互作用が大きいFeやNi、Coといった強磁性体で磁束密度を高める効果がある。しかし、弱磁性体では磁場との相互作用が極めて小さいので、そのまま磁力線が透過する。従って、基材表面では、強磁性体と弱磁性体のパターンに相当する磁束密度分布のある磁場が電極触媒層の面方向に形成される。また、磁束密度分布は、基材から遠ざかるほど均一になるので、電極触媒層の厚さ方向にも形成される。つまり、Feなどの強磁性体の表面では磁束密度が高いので、常磁性体の触媒インク分散溶媒が移動し、また、Alなどの弱磁性体の表面では磁束密度が低いので、反磁性体の造孔剤が高分子電解質膜に対して面方向または厚さ方向にパターン状に移動し、結果として、電極触媒層中の細孔が、前記高分子電解質膜に対して厚さ方向または膜面方向に傾斜分布を持ち、電極触媒層の厚さ方向または膜面方向にガス拡散性が高くなる。これにより、本発明で製造した電極触媒層は、機械的強度を保ちつつ、電極触媒層の厚み方向または膜面方向にガス拡散性が高く、また、触媒の有効利用率が高い。   However, if the magnetic flux density distribution is uniform, mass transfer does not occur even if the magnetic susceptibility difference between the pore former and the catalyst ink dispersion solvent is increased, and the formation of a non-uniform magnetic flux density distribution is also an important point. Forming a magnetic field having a magnetic flux density distribution is obtained by applying a magnetic field to a substrate composed of two substances having different magnetic susceptibility, for example, a substrate composed of a ferromagnetic material and a weak magnetic material. The magnetic field lines that pass through the substance are effective in increasing the magnetic flux density with a ferromagnetic material such as Fe, Ni, or Co that has a large interaction with the magnet. However, the weak magnetic material has very little interaction with the magnetic field, so that the lines of magnetic force pass through as it is. Therefore, a magnetic field having a magnetic flux density distribution corresponding to the pattern of the ferromagnetic material and the weak magnetic material is formed on the substrate surface in the surface direction of the electrode catalyst layer. Further, since the magnetic flux density distribution becomes uniform as the distance from the substrate increases, the magnetic flux density distribution is also formed in the thickness direction of the electrode catalyst layer. That is, since the magnetic flux density is high on the surface of the ferromagnetic material such as Fe, the catalyst ink dispersion solvent of the paramagnetic material moves, and the magnetic flux density is low on the surface of the weak magnetic material such as Al. The pore-forming agent moves in a pattern in the surface direction or the thickness direction with respect to the polymer electrolyte membrane, and as a result, the pores in the electrode catalyst layer are in the thickness direction or the membrane surface with respect to the polymer electrolyte membrane. It has a gradient distribution in the direction, and the gas diffusivity increases in the thickness direction or the film surface direction of the electrode catalyst layer. As a result, the electrode catalyst layer produced in the present invention has high gas diffusibility in the thickness direction or the film surface direction of the electrode catalyst layer while maintaining the mechanical strength, and the effective utilization rate of the catalyst is high.

前述のように、本発明の好適な形態は、触媒物質を担持したカーボン粒子(以下、触媒担持カーボンという)と高分子電解質、造孔剤を分散溶媒で分散させた従来の触媒インクに、CoF・4HO、FeCl・4HO、MnPO・HOのような常磁性遷移元素化合物を溶解もしくは分散することである。すなわち、触媒インクに造孔剤と異なる磁化率を有する少なくとも1種の物質を溶解させることで磁化率差が増大し、造孔剤が磁気力で移動し、高分子電解質膜に対してパターン状に厚さ方向または膜面方向にガス拡散性を高くできる。 As described above, a preferred embodiment of the present invention is a conventional catalyst ink in which carbon particles supporting catalyst material (hereinafter referred to as catalyst-supporting carbon), polymer electrolyte, and pore former are dispersed in a dispersion solvent. 2 · 4H 2 O, FeCl 2 · 4H 2 O, is to dissolve or disperse the paramagnetic transition element compound such as MnPO 4 · H 2 O. That is, by dissolving at least one substance having a magnetic susceptibility different from that of the pore forming agent in the catalyst ink, the difference in magnetic susceptibility is increased, and the pore forming agent is moved by the magnetic force, so that the pattern is formed with respect to the polymer electrolyte membrane. Furthermore, gas diffusivity can be increased in the thickness direction or the film surface direction.

本発明で用いる触媒粒子としては、白金やパラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素の他、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属又はこれらの合金、または酸化物、複酸化物等が使用できる。また、これらの触媒の粒径は、大きすぎると触媒の活性が低下し、小さすぎると触媒の安定性が低下するため、0.5〜20nmが好ましい。更に好ましくは、1〜5nmが良い。   The catalyst particles used in the present invention include platinum, palladium, ruthenium, iridium, rhodium, osmium, platinum group elements, iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and the like. A metal or an alloy thereof, or an oxide or a double oxide can be used. Moreover, since the activity of a catalyst will fall when the particle size of these catalysts is too large, and stability of a catalyst will fall when too small, 0.5-20 nm is preferable. More preferably, 1-5 nm is good.

これらの触媒を担持する電子伝導性の粉末は、一般的に炭素粒子が使用される。炭素の種類は、微粒子状で導電性を有し、触媒におかされないものであればどのようなものでも構わないが、カーボンブラックやグラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレンが使用できる。カーボンの粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると触媒層のガス拡散性が低下したり、触媒の利用率が低下したりするので、10〜1000nm程度が好ましい。更に好ましくは、10〜100nmが良い。   Carbon particles are generally used as the electron conductive powder supporting these catalysts. Any kind of carbon may be used as long as it is in the form of fine particles, has conductivity and is not affected by the catalyst, but carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, fullerene can be used. . If the particle size of the carbon is too small, it becomes difficult to form an electron conduction path, and if it is too large, the gas diffusibility of the catalyst layer is lowered or the utilization factor of the catalyst is lowered. . More preferably, 10-100 nm is good.

触媒インキ中に含まれる高分子電解質(プロトン伝導性高分子)には様々なものが用いられるが、用いる電解質膜の成分により、触媒インキ中のプロトン伝導性高分子を選択する必要がある。市販のナフィオンを電解質膜として用いた場合は、ナフィオンを使用するのが好ましい。電解質膜にナフィオン以外の材料を用いた場合は、触媒インキ中に高分子電解質膜と同じ成分を溶解させるなど、最適化をはかる必要がある。   Various polymer electrolytes (proton conductive polymers) contained in the catalyst ink are used, and it is necessary to select the proton conductive polymer in the catalyst ink depending on the components of the electrolyte membrane to be used. When commercially available Nafion is used as the electrolyte membrane, Nafion is preferably used. When a material other than Nafion is used for the electrolyte membrane, it is necessary to optimize such as dissolving the same components as the polymer electrolyte membrane in the catalyst ink.

触媒インクの分散媒として使用される溶媒は、触媒粒子やプロトン伝導性高分子を浸食することがなく、高分子電解質を流動性の高い状態で溶解または微細ゲルとして分散できるものあれば特に制限はないが、揮発性の液体有機溶媒が少なくとも含まれることが望ましく、特に限定されるものではないが、メタノール、エタノール、1−プロパノ―ル、2−プロパノ―ル、1−ブタノ−ル、2−ブタノ−ル、イソブチルアルコール、tert−ブチルアルコール、ペンタノ−ル等のアルコール類、アセトン、メチルエチルケトン、ペンタノン、メチルイソブチルケトン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジイソブチルケトンなどのケトン系溶剤、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジブチルエーテル等のエーテル系溶剤、その他ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、エチレングリコール、ジエチレングリコール、ジアセトンアルコール、1−メトキシ−2−プロパノ-ル等の極性溶剤等が使用される。また、これらの溶剤のうち二種以上を混合させたものも使用できる。また、溶剤として低級アルコールを用いたものは発火の危険性が高く、このような溶媒を用いる際は水との混合溶媒にするのが好ましい。プロトン伝導性高分子となじみがよい水が含まれていてもよい。水の添加量は、高分子電解質が分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限はない。   The solvent used as a dispersion medium for the catalyst ink is not particularly limited as long as it does not erode the catalyst particles and the proton conductive polymer and can dissolve or disperse the polymer electrolyte in a highly fluid state as a fine gel. However, it is desirable to include at least a volatile liquid organic solvent, and is not particularly limited, but includes methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2- Alcohols such as butanol, isobutyl alcohol, tert-butyl alcohol, pentanole, ketone solvents such as acetone, methyl ethyl ketone, pentanone, methyl isobutyl ketone, heptanone, cyclohexanone, methylcyclohexanone, acetonyl acetone, diisobutyl ketone, Tetrahydrofuran, dioxane, diethylene Ether solvents such as recall dimethyl ether, anisole, methoxytoluene, dibutyl ether, and other polar solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol, diacetone alcohol, 1-methoxy-2-propanol Etc. are used. Moreover, what mixed 2 or more types of these solvents can also be used. In addition, those using lower alcohol as a solvent have a high risk of ignition, and when using such a solvent, it is preferable to use a mixed solvent with water. Water that is compatible with the proton-conducting polymer may be contained. The amount of water added is not particularly limited as long as the polymer electrolyte is not separated to cause white turbidity or gelation.

また、電極触媒層の空隙率を制御するために、グリセリンや界面活性剤を用いることもできる。   Moreover, in order to control the porosity of an electrode catalyst layer, glycerin and surfactant can also be used.

造孔剤としては、酸やアルカリ、水に溶ける物質ならどのようなものでも構わないが、炭酸カルシウム、炭酸リチウム、炭酸アンモニウム、フッ化リチウム、ポリビニルアルコール、ポリエチレンオキサイドが使用される。   As the pore-forming agent, any substance that is soluble in acid, alkali, and water may be used, but calcium carbonate, lithium carbonate, ammonium carbonate, lithium fluoride, polyvinyl alcohol, and polyethylene oxide are used.

造孔剤と触媒インク分散溶媒の磁化率差を大きくするための物質は、分散溶媒に溶解もしくは分散するのであれば特に制限はないが、少量の添加で磁化率差が大きくなるような分散溶媒と大きく異なる磁性であることが好ましい。大量の添加は形成した電極触媒層の機械的強度の低下になり、分散溶媒中、1〜30wt%であることが好ましく、分散溶媒の磁化率を大きくする物質として、常磁性遷移元素化合物が使用できる。この他として、FeやNi、Coなどの強磁性体を添加することもでき、この際、強磁性体だけが磁場と相互作用を起こして分散溶媒と分離しないように溶解して加えたり、100nm以下の微粒子で加えたりすることが好ましく、後者の場合、その粒子径は10〜20nmの範囲が更に好ましい。また、これらの物質を造孔剤に添加することで、造孔剤と触媒インク分散溶媒の磁化率差を大きくしても良い。   The substance for increasing the magnetic susceptibility difference between the pore former and the catalyst ink dispersion solvent is not particularly limited as long as it dissolves or disperses in the dispersion solvent, but the dispersion solvent increases the magnetic susceptibility difference with a small amount of addition. It is preferable that the magnetism is significantly different from that of the magnetic field. Addition of a large amount reduces the mechanical strength of the formed electrode catalyst layer, and is preferably 1 to 30 wt% in the dispersion solvent. Paramagnetic transition element compounds are used as substances that increase the magnetic susceptibility of the dispersion solvent. it can. In addition, ferromagnetic materials such as Fe, Ni, and Co can also be added. At this time, only the ferromagnetic material is dissolved and added so as not to interact with the magnetic field and separate from the dispersion solvent, or 100 nm. The following fine particles are preferably added. In the latter case, the particle diameter is more preferably in the range of 10 to 20 nm. Further, the magnetic susceptibility difference between the pore forming agent and the catalyst ink dispersion solvent may be increased by adding these substances to the pore forming agent.

触媒インク分散溶媒に添加して造孔剤との磁化率差を大きくするための物質は、電極触媒層を形成後に溶媒で取り除いてもよく、この場合、電極触媒層の空隙率および空孔径が大きくなる。また、発電で発生する水によって取り除いても良い。   The substance added to the catalyst ink dispersion solvent to increase the difference in magnetic susceptibility with the pore former may be removed with a solvent after the electrode catalyst layer is formed. In this case, the porosity and pore diameter of the electrode catalyst layer are growing. Further, it may be removed by water generated by power generation.

触媒インク中の固形分含有量は、多すぎると触媒インクの粘度が高くなるため、本発明における磁気力による物質移動が困難になり、また少なすぎると成膜レートが非常に遅く、生産性が低下してしまうため、1〜50wt%であることが好ましい。固形分は触媒担持カーボンとプロトン伝導性高分子からなるが、触媒担持カーボンの含有量を多くすると同じ固形分含有量でも粘度は高くなり、少なくすると粘度は低くなる。触媒担持カーボンの固形分に占める割合は10〜80%が好ましい。また、このときの触媒インクの粘度は、磁気力による物質移動を行うことを考慮すると、0.1〜500cP程度が好ましい。さらに好ましくは5〜100cPが良い。また触媒インクの分散時に分散剤を添加することで、粘度の制御をすることもできる。   If the solid content in the catalyst ink is too high, the viscosity of the catalyst ink will be high, so that mass transfer by the magnetic force in the present invention will be difficult, and if it is too low, the film formation rate will be very slow and productivity will be low. Since it will fall, it is preferable that it is 1-50 wt%. The solid content is composed of a catalyst-supporting carbon and a proton conductive polymer. When the content of the catalyst-supporting carbon is increased, the viscosity is increased even at the same solid content, and when the content is decreased, the viscosity is decreased. The proportion of the catalyst-supporting carbon in the solid content is preferably 10 to 80%. In addition, the viscosity of the catalyst ink at this time is preferably about 0.1 to 500 cP in consideration of performing mass transfer by magnetic force. More preferably, 5-100 cP is good. Further, the viscosity can be controlled by adding a dispersing agent when the catalyst ink is dispersed.

触媒インクの粘度、粒子のサイズは、触媒インクの分散処理の条件によって制御することができる。分散処理は、様々な装置を用いて行うことができる。例えば、ボールミルやロールミル、せん断ミル、湿式ミル、超音波分散処理などが挙げられる。また、遠心力で撹拌を行うホモジナイザーなどを用いてもよい。   The viscosity and particle size of the catalyst ink can be controlled by the conditions for the dispersion treatment of the catalyst ink. Distributed processing can be performed using various apparatuses. Examples thereof include a ball mill, a roll mill, a shear mill, a wet mill, and an ultrasonic dispersion treatment. Moreover, you may use the homogenizer etc. which stir with centrifugal force.

本発明では、触媒インクを塗布する工程、分散溶媒を蒸発させる工程の少なくとも1の工程を磁束密度分布のある磁場内で行うことに特徴がある。   The present invention is characterized in that at least one of the step of applying the catalyst ink and the step of evaporating the dispersion solvent is performed in a magnetic field having a magnetic flux density distribution.

図1は、本発明の電極触媒層製造の製造装置の一例を示す模式図である。磁場は、図1の下方向から上方向に形成される。強磁性体と弱磁性体によってパターン状に構成された基材3に、磁場を印加することで不均一な磁束密度分布が形成される。平面状の基材3上に、ガス拡散層2もしくはプロトン伝導性高分子電解質膜を配置して、触媒インクを直接塗布し、電極触媒層1を形成する。磁場発生装置は、永久磁石でも可能であるが、磁場強度が強く、また、大きな電極触媒層を形成するために磁場発生空間が広いことが好ましい。例えば、電磁石や超伝導マグネットなどが挙げられる。磁場発生装置は、その他に、Nガス導入管、基材周辺の温度を制御するための、入口部および出口部を有する水導入管を備える。触媒インクは、図1の形態では、圧力式スプレーによって、ガス拡散層2上にスプレー塗布される。また、磁場発生装置の最大磁束密度が0.1テスラ以上であることが好ましく、さらに好ましくは2テスラ以上が好ましい。特に超伝導マグネットを用いる場合は、超伝導コイルの冷却の影響により磁場発生空間の温度が安定しないので、例えば、ガラス二重管に恒温槽からの水を循環させることが好ましい。 FIG. 1 is a schematic view showing an example of a production apparatus for producing an electrode catalyst layer of the present invention. The magnetic field is formed from the lower direction to the upper direction in FIG. A non-uniform magnetic flux density distribution is formed by applying a magnetic field to the substrate 3 configured in a pattern by a ferromagnetic material and a weak magnetic material. The gas diffusion layer 2 or the proton conductive polymer electrolyte membrane is disposed on the planar substrate 3 and the catalyst ink is directly applied to form the electrode catalyst layer 1. The magnetic field generator can be a permanent magnet, but preferably has a strong magnetic field strength and a wide magnetic field generation space in order to form a large electrode catalyst layer. For example, an electromagnet, a superconducting magnet, etc. are mentioned. In addition, the magnetic field generator includes an N 2 gas introduction pipe and a water introduction pipe having an inlet portion and an outlet portion for controlling the temperature around the substrate. In the form of FIG. 1, the catalyst ink is spray-coated on the gas diffusion layer 2 by pressure spray. The maximum magnetic flux density of the magnetic field generator is preferably 0.1 Tesla or more, more preferably 2 Tesla or more. In particular, when a superconducting magnet is used, the temperature of the magnetic field generation space is not stabilized due to the influence of cooling of the superconducting coil. Therefore, for example, it is preferable to circulate water from a thermostatic chamber in a glass double tube.

電極触媒層の形成方法としては、ディッピング法やスクリーン印刷法、ロールコーティング法、スプレー法などの塗布法が一般的に用いられる。中でもスプレー法は、塗工されたインキを乾燥させる際に触媒担持カーボンの凝集が起こりにくく、均質で空孔率の高い触媒層が得られるため、好ましい。   As a method for forming the electrode catalyst layer, a coating method such as a dipping method, a screen printing method, a roll coating method, or a spray method is generally used. Among them, the spray method is preferable because the catalyst-supporting carbon hardly aggregates when the coated ink is dried, and a homogeneous catalyst layer having a high porosity can be obtained.

前述のように、本発明の好適な形態では、強磁性体と弱磁性体によってパターン状に構成された基材上に、ガス拡散層もしくはプロトン伝導性高分子電解質膜を配置して、触媒インクを直接塗布する。あるいは、基材上に配置した転写シートに電極触媒層を形成後、ガス拡散層もしくはプロトン伝導性高分子電解質膜に転写してもよい。   As described above, in a preferred embodiment of the present invention, a gas diffusion layer or a proton conductive polymer electrolyte membrane is disposed on a substrate configured in a pattern by a ferromagnetic material and a weak magnetic material, and a catalyst ink is provided. Apply directly. Alternatively, after an electrode catalyst layer is formed on a transfer sheet disposed on a substrate, it may be transferred to a gas diffusion layer or a proton conductive polymer electrolyte membrane.

磁気力を利用した物質移動を増強させる基材は、強磁性体と弱磁性体で構成される。磁束密度を高める強磁性体は、磁性が強い材料ほど基材表面から離れても不均一な磁束密度分布を保つので好ましく、例えば、FeやNi、Coなどが挙げられる。また、弱磁性体は磁場と全く相互作用を起こさない物質が好ましく、例えば、アルミニウム、ガラス、紙、プラスチックなどが挙げられる。   A base material that enhances mass transfer using magnetic force is composed of a ferromagnetic material and a weak magnetic material. Ferromagnetic materials that increase the magnetic flux density are preferable for materials having stronger magnetism because they maintain a non-uniform magnetic flux density distribution even when they are separated from the substrate surface, and examples thereof include Fe, Ni, and Co. The weak magnetic material is preferably a substance that does not interact with the magnetic field at all, and examples thereof include aluminum, glass, paper, and plastic.

上記の基材は、強磁性体と弱磁性体によってパターン状に構成されるのが好ましい。例えば、弱磁性体の母材に強磁性体が規則的に埋め込まれた基材や、強磁性体と弱磁性体が市松模様に配置された基材、強磁性体の母材に弱磁性体が規則的に埋め込まれた基材など、任意の磁束密度分布を形成するためにパターンを設計することができる。本発明による電極触媒層製造で用いる基材の一例を図2に示す。強磁性体11と弱磁性体12とが交互に形成され、磁力線が密な部分と、磁力線が疎の部分が形成されている。基材の厚みは、薄いと強磁性体で磁束密度を高める効果が低いので、磁束密度分布が基材表面からすぐに均一になり、100nm以上であることが好ましく、さらに好ましくは1mm以上が好ましい。また、パターンの幅は、広すぎると電極触媒層の傾斜配置の効果がなくなり、狭すぎると基材表面から磁束密度分布がすぐに均一になるので、100nm〜10mmが好ましい。   The substrate is preferably configured in a pattern by a ferromagnetic material and a weak magnetic material. For example, a base material in which ferromagnetic materials are regularly embedded in a weak magnetic base material, a base material in which ferromagnetic materials and weak magnetic materials are arranged in a checkered pattern, or a weak magnetic material in a ferromagnetic base material The pattern can be designed to form any magnetic flux density distribution, such as a substrate with regularly embedded. An example of the substrate used in the production of the electrode catalyst layer according to the present invention is shown in FIG. The ferromagnetic bodies 11 and the weak magnetic bodies 12 are alternately formed, and portions where the magnetic lines of force are dense and portions where the lines of magnetic force are sparse are formed. If the thickness of the substrate is thin, the effect of increasing the magnetic flux density with a ferromagnetic material is low, so the magnetic flux density distribution becomes uniform immediately from the substrate surface, preferably 100 nm or more, more preferably 1 mm or more. . Further, if the width of the pattern is too wide, the effect of the inclined arrangement of the electrode catalyst layer is lost, and if it is too narrow, the magnetic flux density distribution immediately becomes uniform from the substrate surface.

ガス拡散層は、一般にガス拡散性と導電性とを有する材質から成り、例えば、カーボンペーパー又はカーボンクロス等が使用できる。触媒インクを塗布する前に、予めガス拡散層上に目処め層を形成させてもよい。目処め層は、触媒インクがガス拡散層の中に染み込むことを防止する層であり、その塗布量が少ない場合でも電極の中へ染み込むことがなく、電極上に堆積して三相界面を形成する。このような目処め層は、例えば、カーボンとフッ素系樹脂を混練してフッ素系樹脂の融点以上の温度で焼結させることにより形成することができる。フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE)等が利用できる。   The gas diffusion layer is generally made of a material having gas diffusibility and conductivity. For example, carbon paper or carbon cloth can be used. Before applying the catalyst ink, an eye layer may be formed on the gas diffusion layer in advance. The eye-catching layer is a layer that prevents the catalyst ink from penetrating into the gas diffusion layer, and even if the coating amount is small, it does not penetrate into the electrode and deposits on the electrode to form a three-phase interface. To do. Such a sealing layer can be formed, for example, by kneading carbon and a fluororesin and sintering at a temperature equal to or higher than the melting point of the fluororesin. As the fluororesin, polytetrafluoroethylene (PTFE) or the like can be used.

転写シートは、PTFEやポリエチレンテレフタレート(PET)などのシートが好ましい。   The transfer sheet is preferably a sheet such as PTFE or polyethylene terephthalate (PET).

磁束密度分布のある磁場内で、触媒インクを塗布する工程もしくは触媒インクの分散溶媒を蒸発させる工程において、塗布してから磁気力による物質移動が安定するまで一定時間保持し、その後に蒸発させることが好ましい。短すぎると物質移動が不十分もしくは安定せず、長すぎると成膜レートが遅くなるので、保持時間0.1秒〜1分が好ましい。   In the process of applying the catalyst ink or evaporating the dispersion solvent of the catalyst ink in a magnetic field with magnetic flux density distribution, hold for a certain period of time until the mass transfer due to magnetic force is stabilized after application, and then evaporate Is preferred. If it is too short, the mass transfer will be insufficient or unstable, and if it is too long, the film forming rate will be slow, so a holding time of 0.1 second to 1 minute is preferred.

また、基材の温度が20℃〜120℃に加熱した状態で触媒インクを塗布もしくは分散溶媒を蒸発させることが好ましい。20〜120℃に加熱した基材に電極触媒層を形成することによって、触媒インク中の溶媒を瞬時に乾燥させて、塗布後の触媒担持カーボンの凝集を防止して、触媒層の空孔度を向上させることができる。電極表面が20℃未満では溶媒を瞬時に乾燥させる効果が低い。また、電極表面が120℃を越えると乾燥ムラを発生することがある。   Further, it is preferable to apply the catalyst ink or evaporate the dispersion solvent in a state where the temperature of the substrate is heated to 20 ° C. to 120 ° C. By forming an electrode catalyst layer on a substrate heated to 20 to 120 ° C., the solvent in the catalyst ink is instantly dried to prevent aggregation of the catalyst-supported carbon after coating, and the porosity of the catalyst layer Can be improved. If the electrode surface is less than 20 ° C., the effect of instantly drying the solvent is low. Further, when the electrode surface exceeds 120 ° C., drying unevenness may occur.

電極触媒層とプロトン伝導性高分子電解質膜の間には、プロトン伝導性高分子を含む溶液を結着剤として塗布することが好ましく、プロトン伝導性高分子電解質膜と同一の物質がさらに好ましい。   A solution containing a proton conductive polymer is preferably applied as a binder between the electrode catalyst layer and the proton conductive polymer electrolyte membrane, and the same substance as the proton conductive polymer electrolyte membrane is more preferable.

本発明における固体高分子型燃料電池用電極触媒層およびその製造方法について、以下に具体的な実施例を挙げて説明するが、本発明は下記例によって制限されるものではない。   The electrode catalyst layer for a polymer electrolyte fuel cell and the production method thereof according to the present invention will be described below with reference to specific examples, but the present invention is not limited to the following examples.

《実施例》
〔触媒インクの調整〕
白金担持量が45wt%である白金担持カーボン触媒と、市販のプロトン伝導性高分子(ナフィオン)溶液と造孔剤とを溶媒中で混合し、遊星型ボールミル(FRITSCH社製 Pulverisette7)で分散処理を行った。ボールミルのポット、ボールにはジルコニア製のものを用いた。出発原料の組成比は白金担持カーボンとナフィオンと造孔剤の炭酸カルシウムは重量比で4:2:1とし、溶媒は10重量%塩化マンガン水溶液、1−プロパノ−ル、2−プロパノ−ルを体積比で1:1:1とした。また、固形分含有量は10重量%とした。
〔基材〕
不均一な磁束密度分布を形成する平面状の基材は、厚みが10mmのアルミニウム(弱磁性体)を母材に、直径1mmのシリンダー状の鉄(強磁性体)が基材を貫通しているものを使用した。
〔電極触媒層の作製方法〕
磁場発生装置に磁場強度10テスラを発生する超伝導マグネットを使用し、磁場発生空間内に25℃の水を循環させたガラス二重管を固定した。カーボンペーパーを基材上に配置し、磁場強度10テスラを印加した状態で、調整した触媒インキをカーボンペーパー上に加圧式スプレーで塗布し、乾燥することで電極触媒層を作製した。電極触媒層の厚さは、白金担持量が0.3mg/cmになるように調節した。造孔剤は、1N硝酸によって取り除いた。
"Example"
[Adjustment of catalyst ink]
A platinum-supported carbon catalyst with a platinum loading of 45 wt%, a commercially available proton conductive polymer (Nafion) solution and a pore former are mixed in a solvent and dispersed with a planetary ball mill (Pulversette 7 manufactured by FRITSCH). went. Ball mill pots and balls made of zirconia were used. The composition ratio of the starting materials was platinum-supporting carbon, Nafion, and calcium carbonate as a pore-forming agent in a weight ratio of 4: 2: 1. The volume ratio was 1: 1: 1. The solid content was 10% by weight.
〔Base material〕
The flat base material that forms a non-uniform magnetic flux density distribution has aluminum (weak magnetic material) with a thickness of 10 mm as a base material, and cylindrical iron (ferromagnetic material) with a diameter of 1 mm penetrates the base material. I used what I have.
[Method for producing electrode catalyst layer]
A superconducting magnet that generates a magnetic field strength of 10 Tesla was used in the magnetic field generator, and a glass double tube in which water at 25 ° C. was circulated was fixed in the magnetic field generation space. With the carbon paper placed on the substrate and a magnetic field strength of 10 Tesla applied, the prepared catalyst ink was applied onto the carbon paper by a pressure spray and dried to prepare an electrode catalyst layer. The thickness of the electrode catalyst layer was adjusted so that the amount of platinum supported was 0.3 mg / cm 2 . The pore former was removed with 1N nitric acid.

《比較例》
〔触媒インクの調整〕
実施例記載と同様の出発原料組成、分散方法で触媒インクを調整した。
〔基材〕
実施例記載と同様の基材を使用した。
〔電極触媒層の作製方法〕
超伝導マグネットを稼動させず、それ以外は全て実施例記載と同様に電極触媒層の作製を行った。
《Comparative example》
[Adjustment of catalyst ink]
A catalyst ink was prepared by the same starting material composition and dispersion method as described in the examples.
〔Base material〕
The same substrate as described in the examples was used.
[Method for producing electrode catalyst layer]
The electrode catalyst layer was prepared in the same manner as described in the examples except that the superconducting magnet was not operated.

《電解質膜電極接合体作製》
実施例および比較例において作製した電極を5.2cmの正方形に打ち抜き、燃料極および空気極とした。プロトン伝導性高分子膜はデュポン株式会社製ナフィオン112を用いた。結着剤として5%ナフィオン溶液を電極上に滴下し、プロトン伝導性高分子膜をカーボンペーパー上に形成した二つの電極で挟持して、125℃、6.0×10Pa、30分の条件でホットプレスを行い、電解質膜電極接合体を得た。
<Preparation of electrolyte membrane electrode assembly>
The electrodes produced in the examples and comparative examples were punched into a 5.2 cm 2 square to form a fuel electrode and an air electrode. Nafion 112 manufactured by DuPont Co., Ltd. was used as the proton conductive polymer membrane. A 5% Nafion solution was dropped onto the electrode as a binder, and the proton conductive polymer membrane was sandwiched between two electrodes formed on carbon paper. 125 ° C., 6.0 × 10 6 Pa, 30 minutes Hot pressing was performed under conditions to obtain an electrolyte membrane electrode assembly.

《評価》
〔水素吸着面積〕
各種膜電極接合体にセパレータを張り合わせ、これを燃料電池測定装置(東陽テクニカ社製GFT−SG1)でセル温度80℃の条件下、サイクリックボルタンメトリーを行い、水素脱着波から面積を求めた。この面積を、白金触媒が100%有効に使われたときの理論面積で除することで、白金の有効利用率を算出した。
〔発電特性〕
各種膜電極接合体にセパレータを張り合わせ、これを燃料電池測定装置(東陽テクニカ社製GFT−SG1)でセル温度80℃、アノード100%RH、カソード26%RHの条件下、電流電圧測定を行い、最大出力(mW/cm)を計測した。燃料ガスとして水素を毎分200ml、酸化剤ガスとして酸素を毎分100ml一定に流し、発電特性の評価を行った。
<Evaluation>
[Hydrogen adsorption area]
Various membrane electrode assemblies were bonded with a separator, and this was subjected to cyclic voltammetry with a fuel cell measurement device (GFT-SG1 manufactured by Toyo Technica Co., Ltd.) at a cell temperature of 80 ° C., and the area was determined from the hydrogen desorption wave. The effective utilization rate of platinum was calculated by dividing this area by the theoretical area when the platinum catalyst was used 100% effectively.
[Power generation characteristics]
A separator is attached to various membrane electrode assemblies, and this is measured with a fuel cell measurement device (GFT-SG1 manufactured by Toyo Technica Co., Ltd.) under conditions of a cell temperature of 80 ° C., an anode of 100% RH, and a cathode of 26% RH. The maximum output (mW / cm 2 ) was measured. The power generation characteristics were evaluated by flowing hydrogen as a fuel gas at a constant rate of 200 ml / min and oxygen as an oxidant gas at a constant rate of 100 ml / min.

《測定結果》
磁場強度10テスラを印加した状態で作製した電極触媒層は、水素吸着面積から求めた有効利用率は36%であり、最大出力は1.4W/cmと高い値を示した(実施例)。一方、超伝導マグネットを稼動していない状態で作製した電極触媒層は、水素吸着面積から求めた有効利用率は26%であり、最大出力は1.2W/cmと高い値を示した(比較例)。従って、実施例で得られた電極触媒層は白金の有効利用率が高く、電気化学反応場である三相界面が比較例と比べて増大していることが推察された。また、最大出力も比較例と比べて増大していることから、高負荷運転でも物質輸送が円滑に行われていることが推察される。
"Measurement result"
The electrocatalyst layer produced in a state where a magnetic field strength of 10 Tesla was applied had an effective utilization rate of 36% determined from the hydrogen adsorption area, and the maximum output was as high as 1.4 W / cm 2 (Example). . On the other hand, the electrocatalyst layer produced without operating the superconducting magnet had an effective utilization rate of 26% determined from the hydrogen adsorption area, and the maximum output was as high as 1.2 W / cm 2 ( Comparative example). Therefore, it was speculated that the electrode catalyst layer obtained in the example had a high effective utilization rate of platinum, and the three-phase interface as an electrochemical reaction field was increased as compared with the comparative example. In addition, since the maximum output is increased as compared with the comparative example, it is presumed that the material is transported smoothly even under high load operation.

1N硝酸による造孔剤の除去前に,磁場強度10テスラを印加した状態で作製した電極触媒層の断面を調べたところ、図3に示したように、パターン状に造孔剤が形成していた。なお、符号21はプロトン伝導性高分子電解質、22は触媒担持カーボン、23は造孔剤、24は鉄からなる強磁性体、25はアルミニウムからなる弱磁性体である。従って、電極触媒層の厚み方向にガス拡散性が高い構造が、白金の有効利用率向上および発電特性の向上に寄与していると思われる。   Before removing the pore-forming agent with 1N nitric acid, the cross-section of the electrode catalyst layer produced with a magnetic field strength of 10 Tesla applied was examined. As shown in FIG. 3, the pore-forming agent was formed in a pattern. It was. Reference numeral 21 is a proton conductive polymer electrolyte, 22 is a catalyst-supporting carbon, 23 is a pore former, 24 is a ferromagnetic material made of iron, and 25 is a weak magnetic material made of aluminum. Therefore, it seems that the structure with high gas diffusivity in the thickness direction of the electrode catalyst layer contributes to the improvement of the effective utilization rate of platinum and the improvement of power generation characteristics.

また、発電特性の測定後に発電セルから膜電極接合体を取り外し、発電後の電極触媒層の断面を調べたところ、実施例の電極触媒層は、比較例と比べてクラックの発生が抑制されていることを確認した。従って、パターン状の電極触媒層の構造が、均一な電極触媒層よりも、機械的強度を保たせることに寄与していると思われる。   Also, after measuring the power generation characteristics, the membrane electrode assembly was removed from the power generation cell, and when the cross section of the electrode catalyst layer after power generation was examined, the occurrence of cracks in the electrode catalyst layer of the example was suppressed compared to the comparative example. I confirmed. Therefore, it seems that the structure of the patterned electrode catalyst layer contributes to maintaining the mechanical strength as compared with the uniform electrode catalyst layer.

本発明による電極触媒層製造の装置模式図である。It is an apparatus schematic diagram of electrode catalyst layer manufacture by this invention. 基材の強磁性体に磁力線が集中する形態を示す模式的断面図である。It is typical sectional drawing which shows the form which a magnetic force line concentrates on the ferromagnetic material of a base material. 本発明による電極触媒層の模式的断面図である。It is typical sectional drawing of the electrode catalyst layer by this invention.

符号の説明Explanation of symbols

1……電極触媒層、2……ガス拡散層、3………強磁性体と弱磁性体で構成される基材、11……強磁性体、12……弱磁性体、21……プロトン伝導性高分子電解質、22……触媒担持カーボン、23……造孔剤、24……強磁性体、25……弱磁性体。   DESCRIPTION OF SYMBOLS 1 ... Electrode catalyst layer, 2 ... Gas diffusion layer, 3 ...... Base material comprised with a ferromagnetic material and a weak magnetic material, 11 ... Ferromagnetic material, 12 ... Weak magnetic material, 21 ... Proton Conductive polymer electrolyte, 22 ... catalyst-supported carbon, 23 ... pore former, 24 ... ferromagnetic material, 25 ... weak magnetic material.

Claims (6)

一対の電極触媒層で挟まれたプロトン伝導性高分子電解質膜を、一対のガス拡散層で挟持した固体高分子型燃料電池における、前記電極触媒層の製造方法であって、触媒物質を担持したカーボン粒子と高分子電解質と造孔剤とを分散溶媒に分散させた触媒インクに、前記造孔剤と異なる磁化率を有する少なくとも1種の物質を溶解もしくは分散させ、前記造孔剤と前記分散溶媒との磁化率差を増大させたものを、平面状の基材上に塗布する工程および前記触媒インク中の分散溶媒を蒸発させる工程から選択された少なくとも1つの工程を不均一な磁束密度分布のある磁場内で行い、磁気力によって前記電極触媒層中の細孔が、前記高分子電解質膜に対して厚さ方向または膜面方向にガス拡散性が高くなる空隙率の傾斜分布を持つことを特徴とする固体高分子型燃料電池用電極触媒層の製造方法。 A method for producing an electrode catalyst layer in a polymer electrolyte fuel cell in which a proton conductive polymer electrolyte membrane sandwiched between a pair of electrode catalyst layers is sandwiched between a pair of gas diffusion layers. At least one substance having a magnetic susceptibility different from that of the pore forming agent is dissolved or dispersed in a catalyst ink in which carbon particles, a polymer electrolyte, and a pore forming agent are dispersed in a dispersion solvent, and the pore forming agent and the dispersion are dispersed. An at least one step selected from a step of applying a magnetic susceptibility difference with a solvent on a planar substrate and a step of evaporating the dispersed solvent in the catalyst ink is a non-uniform magnetic flux density distribution. The pores in the electrocatalyst layer have a gradient distribution of porosity that increases gas diffusivity in the thickness direction or the membrane surface direction with respect to the polymer electrolyte membrane due to the magnetic force. With features Method for producing that polymer electrolyte fuel cell electrode catalyst layer. 前記磁束密度分布のある磁場を形成する永久磁石もしくは磁場発生装置の最大磁束密度が0.1テスラ以上であることを特徴とする請求項1に記載の固体高分子型燃料電池用電極触媒層の製造方法。   2. The electrode catalyst layer for a polymer electrolyte fuel cell according to claim 1, wherein a maximum magnetic flux density of a permanent magnet or a magnetic field generator that forms a magnetic field having a magnetic flux density distribution is 0.1 Tesla or more. Production method. 磁化率の異なる2種の物質で構成された基材に磁場を印加して、前記基材内における磁化率の最も高い物質に磁力を集中させ、所望の磁束密度分布を有する磁場を用いることを特徴とする請求項1または2に記載の固体高分子型燃料電池用電極触媒層の製造方法。   Applying a magnetic field to a base material composed of two kinds of materials having different magnetic susceptibility, concentrating the magnetic force on the material having the highest magnetic susceptibility in the base material, and using a magnetic field having a desired magnetic flux density distribution The method for producing an electrode catalyst layer for a polymer electrolyte fuel cell according to claim 1 or 2. 前記触媒インクの分散溶媒と異なる磁化率を有する少なくとも1種の造孔剤を前記分散溶媒に分散させたことを特徴とする請求項1〜3のいずれかに記載の固体高分子型燃料電池用電極触媒層の製造方法。   4. The polymer electrolyte fuel cell according to claim 1, wherein at least one pore former having a magnetic susceptibility different from that of the catalyst ink dispersion solvent is dispersed in the dispersion solvent. A method for producing an electrode catalyst layer. 前記分散溶媒に分散させた前記造孔剤を、電極触媒層形成後に前記造孔剤の溶媒によって除去することで、前記電極触媒層の細孔が前記高分子電解質膜に対して厚さ方向または膜面方向にガス拡散性が高くなる空隙率の傾斜分布を持つことを特徴とする請求項4に記載の固体高分子型燃料電池用電極触媒層の製造方法。 The pore-forming agent dispersed in the dispersion solvent is removed by the solvent of the pore-forming agent after forming the electrode catalyst layer, so that the pores of the electrode catalyst layer are in the thickness direction or with respect to the polymer electrolyte membrane. 5. The method for producing an electrode catalyst layer for a polymer electrolyte fuel cell according to claim 4, wherein the gas catalyst has a gradient distribution of porosity that increases gas diffusivity in the film surface direction. 前記分散溶媒に分散させた前記造孔剤を、発電で発生する水によって除去することで、前記電極触媒層の細孔が前記高分子電解質膜に対して厚さ方向または膜面方向にガス拡散性が高くなる空隙率の傾斜分布を持つことを特徴とする請求項4に記載の固体高分子型燃料電池用電極触媒層の製造方法。 The pore-forming agent dispersed in the dispersion solvent is removed by water generated by power generation, so that the pores of the electrode catalyst layer are diffused in the thickness direction or the membrane surface direction with respect to the polymer electrolyte membrane. 5. The method for producing an electrode catalyst layer for a polymer electrolyte fuel cell according to claim 4, wherein the method has a gradient distribution of porosity that increases the property .
JP2006257110A 2006-09-22 2006-09-22 Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell Expired - Fee Related JP5003076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006257110A JP5003076B2 (en) 2006-09-22 2006-09-22 Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257110A JP5003076B2 (en) 2006-09-22 2006-09-22 Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2008078020A JP2008078020A (en) 2008-04-03
JP5003076B2 true JP5003076B2 (en) 2012-08-15

Family

ID=39349862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257110A Expired - Fee Related JP5003076B2 (en) 2006-09-22 2006-09-22 Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5003076B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188625B1 (en) 2022-02-02 2022-12-13 トヨタ自動車株式会社 water electrolysis cell
CN115020721A (en) * 2022-07-12 2022-09-06 一汽解放汽车有限公司 Membrane electrode catalytic slurry, membrane electrode, preparation method of membrane electrode and fuel cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656554A (en) * 1992-08-05 1994-03-01 Murata Mfg Co Ltd Production of porous electrode
JP3613654B2 (en) * 1996-12-20 2005-01-26 トヨタ自動車株式会社 Electrode for fuel cell and method for producing power generation layer
JP2003109606A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd High molecular electrolyte fuel cell and method of manufacturing the same
JP3651799B2 (en) * 2002-08-21 2005-05-25 株式会社東芝 Catalyst material for fuel cell, method for producing catalyst material for fuel cell, and fuel cell
JP4165154B2 (en) * 2002-08-26 2008-10-15 トヨタ自動車株式会社 Method and apparatus for manufacturing fuel cell electrode
JP4952008B2 (en) * 2006-03-15 2012-06-13 凸版印刷株式会社 Electrode catalyst layer for solid polymer electrolyte fuel cell, method for producing the same, and solid polymer electrolyte fuel cell
JP5135704B2 (en) * 2006-04-04 2013-02-06 凸版印刷株式会社 Method for producing electrode catalyst layer for polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2008078020A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
Kwok et al. Graphene-carbon nanotube composite aerogel with Ru@ Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell
Berber et al. Durability analysis of polymer-coated pristine carbon nanotube-based fuel cell electrocatalysts under non-humidified conditions
JP4952008B2 (en) Electrode catalyst layer for solid polymer electrolyte fuel cell, method for producing the same, and solid polymer electrolyte fuel cell
JP6053251B2 (en) Solid polymer fuel cell gas diffusion layer
US8614028B2 (en) Membrane and electrode assembly and method of producing the same, and polymer electrolyte membrane fuel cell
CN107921419B (en) Catalyst particles, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell each comprising same
Yang et al. Pt nanoparticles deposited on dihydroxy-polybenzimidazole wrapped carbon nanotubes shows a remarkable durability in methanol electro-oxidation
Wang et al. A novel multi-porous and hydrophilic anode diffusion layer for DMFC
JP2007214019A (en) Membrane electrode assembly for fuel cell and gas diffusion layer for fuel cell
JP2006252966A (en) Electrode catalyst layer for fuel cell and the fuel cell using the same
JP4798306B2 (en) Electrocatalyst layer production method, electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP5135704B2 (en) Method for producing electrode catalyst layer for polymer electrolyte fuel cell
JP2008047473A (en) Electrode catalyst
JP5003076B2 (en) Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
KR20060104821A (en) Catalyst for fuel cell, preparation method thereof, and fuel cell system comprising the same
EP3534446B1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
CA2643157C (en) Solid polymer fuel cell and method for producing mea used for solid polymer fuel cell
JP6759651B2 (en) Method for producing catalyst particles and method for producing electrode catalyst
US9947935B1 (en) Facile control of pore structure in carbon-supported PGM-based catalysts
JP2011175772A (en) Catalyst for polymer electrolyte fuel cell and method of manufacturing the same
JP2020057516A (en) Electrode layer, membrane electrode assembly including the electrode layer, and fuel cell
JP5003078B2 (en) Electrode catalyst layer for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
Abdelkareem et al. Enhancement of the passive direct methanol fuel cells performance by modification of the cathode microporous layer using carbon nanofibers
JP5103922B2 (en) Electrode catalyst layer, production method thereof, MEA (electrolyte membrane electrode assembly) and polymer electrolyte fuel cell using the same
JP2012212661A (en) Electrode catalyst layer for fuel cell, manufacturing method of electrode catalyst layer, membrane electrode assembly for fuel cell, and solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees