JP2003109606A - High molecular electrolyte fuel cell and method of manufacturing the same - Google Patents

High molecular electrolyte fuel cell and method of manufacturing the same

Info

Publication number
JP2003109606A
JP2003109606A JP2001301733A JP2001301733A JP2003109606A JP 2003109606 A JP2003109606 A JP 2003109606A JP 2001301733 A JP2001301733 A JP 2001301733A JP 2001301733 A JP2001301733 A JP 2001301733A JP 2003109606 A JP2003109606 A JP 2003109606A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
catalyst layer
fuel cell
electrode
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001301733A
Other languages
Japanese (ja)
Inventor
Eiichi Yasumoto
栄一 安本
Akihiko Yoshida
昭彦 吉田
Junji Morita
純司 森田
Makoto Uchida
誠 内田
Yasuo Takebe
安男 武部
Hisaaki Gyoten
久朗 行天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001301733A priority Critical patent/JP2003109606A/en
Publication of JP2003109606A publication Critical patent/JP2003109606A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a simple electrode of high performance without using a foaming material as an electrode for a high molecular electrolyte fuel cell, and to provide a compact electrode of high performance by smoothing the movement of materials in the electrode. SOLUTION: The electrode having a porous catalyst layer is manufactured by atomizing and spraying ink to a porous conductive electrode base. By spraying a coating material from plural spray nozzles, the electrode wherein the quantity of high molecular electrolyte is gradually reduced from a side abutted on the high molecular electrode film to a gas diffusion electrode side is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、民生用コジェネレ
ーションや移動体用の発電機として燃料電池、特に高分
子電解質を用いた高分子電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell as a power generator for consumer cogeneration and mobiles, and more particularly to a polymer electrolyte fuel cell using a polymer electrolyte.

【0002】[0002]

【従来の技術】燃料電池は、水素などの燃料と空気など
の酸化剤ガスを触媒を含む電極で電気化学的に反応さ
せ、電気と熱を同時に発生させるものである。燃料電池
には用いる電解質の種類によりいくつかのタイプがあ
る。電解質に水素イオン伝導性の高分子電解質を用いた
ものを高分子電解質型燃料電池と呼ぶ。高分子電解質型
燃料電池に用いる水素イオン伝導性の高分子電解質に
は、−CF2−を骨格として、スルホン酸を側鎖の末端
に導入したものが現在一般的に用いられている。電池構
成は、高分子電解質膜の両面に白金系の貴金属を担持し
た炭素粉末を主成分とする触媒層を密着し、さらにこの
外面に、ガス通気性と導電性を兼ね備えたガス拡散層を
配置する。以上の構成では、触媒層にガス拡散層を接合
した部分を電極といい、高分子電解質膜の両面に電極を
接合したものをMEA(電解質膜電極接合体)という。
2. Description of the Related Art A fuel cell electrochemically reacts a fuel such as hydrogen and an oxidant gas such as air at an electrode containing a catalyst to simultaneously generate electricity and heat. There are several types of fuel cells depending on the type of electrolyte used. A polymer electrolyte fuel cell uses a polymer electrolyte having hydrogen ion conductivity as an electrolyte. As a hydrogen-ion conductive polymer electrolyte used in a polymer electrolyte fuel cell, a polymer in which -CF2- is used as a skeleton and a sulfonic acid is introduced at the end of a side chain is generally used at present. The battery structure consists of a polymer electrolyte membrane, both sides of which a catalyst layer mainly composed of carbon powder carrying a platinum-based noble metal is adhered, and a gas diffusion layer having both gas permeability and conductivity is arranged on this outer surface. To do. In the above structure, the portion where the gas diffusion layer is joined to the catalyst layer is called an electrode, and the portion where the electrodes are joined to both sides of the polymer electrolyte membrane is called an MEA (electrolyte membrane electrode assembly).

【0003】MEAの外側には電極と電解質との接合体
を機械的に固定するとともに、隣接する接合体を互いに
電気的に直列に接続するための導電性のセパレータ板を
配置する。セパレータ板には、電極一方に水素を含有す
る燃料ガスを供給し、他方に酸素を含む酸化剤ガスを供
給するためのガス流路を形成する。ここで、燃料ガスを
供給する電極を燃料極、酸化剤ガスを供給する電極を空
気極と呼んでいる。ガス流路は、電極にガスを供給する
ためだけではなく、水素と酸素との反応で生成した水や
余剰ガスを排出する機能も有する。ガス流路や電極の周
囲には、ガスケットやシール剤などのシール部材を配置
し、反応ガスが直接混合することや外部へ漏逸するのを
防止する。
On the outside of the MEA, a conductive separator plate for mechanically fixing a bonded body of an electrode and an electrolyte and for electrically connecting adjacent bonded bodies in series with each other is arranged. The separator plate is provided with a gas flow path for supplying a fuel gas containing hydrogen to one electrode and an oxidant gas containing oxygen to the other electrode. Here, the electrode that supplies the fuel gas is called the fuel electrode, and the electrode that supplies the oxidant gas is called the air electrode. The gas flow path has not only a function of supplying gas to the electrodes, but also a function of discharging water and surplus gas generated by the reaction of hydrogen and oxygen. A seal member such as a gasket or a sealant is arranged around the gas flow path and the electrode to prevent the reaction gas from directly mixing and leaking to the outside.

【0004】これを発電装置として実際に使用するとき
は、出力電圧を高めるためにMEAとセパレータ板など
で構成した単セルを複数個積層するのが通例である。各
単セルのガス流路の入り口には、マニホルドを通じて外
部から水素ガスなどの燃料ガスと空気とを供給する。
When this is actually used as a power generator, it is customary to stack a plurality of unit cells each composed of an MEA and a separator plate in order to increase the output voltage. A fuel gas such as hydrogen gas and air are supplied from the outside through a manifold to the inlet of the gas passage of each unit cell.

【0005】上述の電極においては、燃料極では電極で
生成した水素イオンを円滑に高分子電解質膜中に拡散さ
せるための水と燃料ガスを常に供給する、空気極では電
極反応で生成した水を円滑に除去するとともに酸化剤ガ
スとしての空気を供給するという機能を備える必要があ
る。特にガスの拡散性が悪い触媒層中で、上述のような
機能が必要となる。
In the above-mentioned electrode, the fuel electrode constantly supplies water and fuel gas for smoothly diffusing hydrogen ions generated in the electrode into the polymer electrolyte membrane, and the air electrode generates water generated by the electrode reaction. It is necessary to have a function of smoothly removing and supplying air as an oxidant gas. In particular, the above-mentioned function is required in the catalyst layer having poor gas diffusivity.

【0006】これまで、触媒層内でのガス拡散性を高め
る方法としては、触媒層中にPTFEなどの撥水性樹脂
を混合する方法が一般的に用いられている。また、これ
以外にも積極的に触媒層内にガス拡散のための細孔を形
成する方法が考案されている。
Heretofore, a method of mixing a water-repellent resin such as PTFE into the catalyst layer has been generally used as a method for enhancing the gas diffusivity in the catalyst layer. Other than this, a method of positively forming pores for gas diffusion in the catalyst layer has been devised.

【0007】このような電極を製造する方法として、造
孔剤として金属やその酸化物などの粉末を予め触媒層中
に混合し、電極を形成した後に、酸性溶液に浸漬して触
媒層内部に細孔を有する電極を製造する方法が 特開平
6−36771号公報に開示されている。また、特開平
8−138715では、高分子電解質膜の上に触媒層を
形成する際に、電極触媒塩と高分子粒子をともに化学メ
ッキ法で吸着させた後、酸性溶液にて高分子粒子を除去
して多孔性の触媒層を形成するという高分子電解質型燃
料電池の製造方法が提案されている。さらに、特開平9
−199138では、貴金属を担持した炭素微粉末と、
高分子電解質溶液と、アルコール系溶媒とに、ショウノ
ウなどの昇華性造孔剤を混合してインク化し、このイン
クをスクリーン印刷法にて高分子電解質膜上に触媒層を
形成した後に、ショウノウを昇華させることで、複数の
細孔を有する触媒層を形成する電極の製造方法が提案さ
れている。
As a method for manufacturing such an electrode, a powder of a metal or an oxide thereof as a pore-forming agent is mixed in advance in the catalyst layer, and after forming the electrode, it is immersed in an acidic solution so that it is placed inside the catalyst layer. A method for producing an electrode having pores is disclosed in JP-A-6-36771. Further, in Japanese Patent Application Laid-Open No. 8-138715, when forming a catalyst layer on a polymer electrolyte membrane, an electrode catalyst salt and polymer particles are both adsorbed by a chemical plating method, and then the polymer particles are treated with an acidic solution. A method for producing a polymer electrolyte fuel cell has been proposed in which the porous catalyst layer is removed to form a polymer electrolyte fuel cell. Furthermore, JP-A-9
-199138, carbon fine powder carrying a noble metal,
A polymer electrolyte solution and an alcohol solvent are mixed with a sublimable pore-forming agent such as camphor to form an ink, and this ink is screen-printed to form a catalyst layer on the polymer electrolyte membrane. A method of manufacturing an electrode has been proposed in which a catalyst layer having a plurality of pores is formed by sublimation.

【0008】[0008]

【発明が解決しようとする課題】一般的に、通常の触媒
層中のガス拡散性は、セパレータ板を流れるガスが最初
に拡散してくるガス拡散層側で高く、高分子電解質膜側
で小さくなると考えられる。つまり、触媒層中の高分子
電解質膜側でのガス拡散性が悪くなる。しかしながら、
上述のように、造孔剤の大きさを規定することなく触媒
層中に細孔を形成させた場合には、触媒層中で細孔がほ
ぼ均一に分布することになる。このため、実際にガス拡
散性が最も必要とされる高分子電解質膜側での細孔が少
なくなってしまい、造孔剤を導入して細孔を形成した効
果が十分に発揮されない。また、造孔剤の形状にもよる
が、細孔の形状が球状に近い形で触媒層中に形成される
ため、ガス拡散層側から高分子電解質膜側へのガス拡散
の流れが小さくなる。さらに、昇華性の造孔剤を用いた
場合には、昇華時の温度分布によって細孔径がランダム
に変化して、ガス拡散性が不均一性になる。細孔径がラ
ンダムになると触媒層内で、大きな細孔が存在する部分
では、その空間が大きくなり、この部分では触媒層の導
電性が十分でなくなるとともに、触媒層自体が脆くなる
という問題があった。
Generally, the gas diffusivity in a normal catalyst layer is high on the gas diffusion layer side where the gas flowing through the separator plate diffuses first, and small on the polymer electrolyte membrane side. It is considered to be. That is, the gas diffusivity on the polymer electrolyte membrane side in the catalyst layer becomes poor. However,
As described above, when the pores are formed in the catalyst layer without defining the size of the pore-forming agent, the pores are almost evenly distributed in the catalyst layer. For this reason, the number of pores on the side of the polymer electrolyte membrane where gas diffusivity is most needed is actually reduced, and the effect of introducing a pore-forming agent to form pores is not sufficiently exhibited. Further, although it depends on the shape of the pore-forming agent, the shape of the pores is formed in the catalyst layer in a shape close to a sphere, so the flow of gas diffusion from the gas diffusion layer side to the polymer electrolyte membrane side becomes small. . Furthermore, when a sublimable pore-forming agent is used, the pore size changes randomly depending on the temperature distribution during sublimation, resulting in non-uniform gas diffusivity. When the pore size becomes random, there is a problem that the space in the catalyst layer where large pores exist becomes large, and the conductivity of the catalyst layer becomes insufficient in this part, and the catalyst layer itself becomes brittle. It was

【0009】[0009]

【課題を解決するための手段】以上の課題を解決するた
め本発明の高分子電解質型燃料電池は、高分子電解質膜
を挟んで配置した一対の電極を、前記電極の一方に水素
を含有する燃料ガスを、前記電極の他方に酸素を含む酸
化剤ガスを供給するためのガス流路を形成した一対のセ
パレータ板で狭持した高分子電解質型燃料電池におい
て、前記電極は前記高分子電解質膜に接する触媒層と、
前記セパレータ板に接するガス拡散層とを有し、前記触
媒層は少なくも高分子電解質と触媒を担持した炭素粒子
を有し、前記触媒層中の細孔の大きさが前記高分子電解
質膜側から前記ガス拡散層側に向かって厚み方向に変化
したことを特徴とする。
In order to solve the above problems, the polymer electrolyte fuel cell of the present invention comprises a pair of electrodes arranged with a polymer electrolyte membrane sandwiched therebetween, wherein one of the electrodes contains hydrogen. In a polymer electrolyte fuel cell in which a fuel gas is sandwiched by a pair of separator plates having a gas flow path for supplying an oxidant gas containing oxygen to the other of the electrodes, the electrode is the polymer electrolyte membrane. A catalyst layer in contact with
A gas diffusion layer in contact with the separator plate, the catalyst layer has at least carbon particles carrying a polymer electrolyte and a catalyst, the size of the pores in the catalyst layer is the polymer electrolyte membrane side From the above to the gas diffusion layer side in the thickness direction.

【0010】このとき、触媒層中の細孔の大きさが、高
分子電解質膜に接する側からガス拡散層側に向かって厚
み方向に大きくしたことが有効である。
At this time, it is effective that the size of the pores in the catalyst layer is increased in the thickness direction from the side in contact with the polymer electrolyte membrane toward the gas diffusion layer side.

【0011】さらに、高分子電解質膜を挟んで配置した
一対の電極を、前記電極の一方に水素を含有する燃料ガ
スを、前記電極の他方に酸素を含む酸化剤ガスを供給す
るためのガス流路を形成した一対のセパレータ板で狭持
した高分子電解質型燃料電池において、前記電極は前記
高分子電解質膜に接する触媒層と、前記セパレータ板に
接するガス拡散層とを有し、前記触媒層は少なくも高分
子電解質と触媒を担持した炭素粒子を有し、前記触媒層
中の細孔をアスペク比2〜10の異方形状にすることを
特徴とする。
Furthermore, a pair of electrodes arranged with a polymer electrolyte membrane sandwiched therebetween is used to supply a fuel gas containing hydrogen to one of the electrodes and an oxidant gas containing oxygen to the other of the electrodes. In a polymer electrolyte fuel cell sandwiched by a pair of separator plates having a path, the electrode has a catalyst layer in contact with the polymer electrolyte membrane, and a gas diffusion layer in contact with the separator plate, the catalyst layer It is characterized in that it has at least carbon particles supporting a polymer electrolyte and a catalyst, and that the pores in the catalyst layer have an anisotropic shape with an aspect ratio of 2 to 10.

【0012】このとき、触媒層中の細孔は、触媒層の厚
み方向に配向していることが有効である。
At this time, it is effective that the pores in the catalyst layer are oriented in the thickness direction of the catalyst layer.

【0013】また、触媒層中の細孔構造のフラクタル次
元が2〜3であることが有効である。
Further, it is effective that the fractal dimension of the pore structure in the catalyst layer is 2 to 3.

【0014】これらの触媒層中の細孔は、造孔剤を用い
て形成することが有効である。
The pores in these catalyst layers are effectively formed by using a pore-forming agent.

【0015】[0015]

【発明の実施の形態】本発明の高分子電解質型燃料電池
の構成は、高分子電解質膜に接する面より、触媒層、ガ
ス拡散層を配置した構成で、触媒層中の細孔の大きさ
が、高分子電解質膜に接する側より、ガス拡散層側にか
けて変化しているものである。ここで、触媒層中の細孔
の大きさは、高分子膜に接する側より、ガス拡散層側に
かけて、大きくなっていることが好ましい。 このよう
な構成を実現する手段としては、触媒層を構成するとき
に、粒子径の異なる造孔剤を触媒インク中に混合し、い
ったんPET(ポリエチレンテレフタレート)などの基
材シート上に触媒層を形成する。このとき、粒子径の大
きい粒子は沈降性が高いため、基材シート側に移動し、
小さな造孔剤は沈降性が低いため触媒層上層部にとどま
る。これを高分子電解質膜に熱転写させ、造孔剤を除去
することにより、図1に示すような高分子電解質膜に接
する側よりガス拡散層側にかけて、細孔が大きくなった
高分子電解質型燃料電池を作製できる。また、この触媒
インクをカーボンペーパーなどのガス拡散層基材の上に
直接塗工して触媒層を形成し、これを高分子電解質膜と
接合し、造孔剤を除去しても同様の構成の高分子電解質
型燃料電池を作製できる。
BEST MODE FOR CARRYING OUT THE INVENTION The polymer electrolyte fuel cell of the present invention has a structure in which a catalyst layer and a gas diffusion layer are arranged from the surface in contact with the polymer electrolyte membrane, and the size of pores in the catalyst layer is large. However, it changes from the side in contact with the polymer electrolyte membrane to the gas diffusion layer side. Here, the size of the pores in the catalyst layer is preferably larger from the side in contact with the polymer membrane toward the gas diffusion layer side. As means for realizing such a constitution, when forming the catalyst layer, pore-forming agents having different particle diameters are mixed in the catalyst ink and once the catalyst layer is formed on a base material sheet such as PET (polyethylene terephthalate). Form. At this time, since particles having a large particle size have high sedimentability, they move to the base material sheet side,
Since the small pore-forming agent has a low sedimentation property, it stays in the upper layer of the catalyst layer. By thermally transferring this to a polymer electrolyte membrane and removing the pore-forming agent, a polymer electrolyte fuel with large pores from the side in contact with the polymer electrolyte membrane to the gas diffusion layer side as shown in FIG. Batteries can be made. Also, this catalyst ink is directly applied onto a gas diffusion layer base material such as carbon paper to form a catalyst layer, which is bonded to a polymer electrolyte membrane and the pore-forming agent is removed to obtain the same structure. The polymer electrolyte fuel cell can be produced.

【0016】これ以外にも、粒径の異なる造孔剤を用い
た複数個の触媒インクを作製し、これらを基材シート上
に粒子径の大きなものから順に塗工し、先と同様に転写
・造孔剤を除去することでも本発明の構成の高分子電解
質型燃料電池を作製できる。この場合、ガス拡散層上に
触媒層を形成しても同様の構成のものを作製できる。ま
た、高分子電解質膜に、粒子径の小さな造孔剤を用いた
触媒インクから順に塗工することもできる。上述の触媒
インクを塗工する方法は、スクリーン印刷法、ドクター
ブレード法、グラビア印刷法、ダイコータ塗工法などを
使用することが出来る。
In addition to the above, a plurality of catalyst inks using pore-forming agents having different particle diameters were prepared, and these were coated on a base material sheet in order of decreasing particle diameter, and transferred in the same manner as above. The polymer electrolyte fuel cell having the constitution of the present invention can also be produced by removing the pore-forming agent. In this case, the same structure can be produced by forming the catalyst layer on the gas diffusion layer. It is also possible to coat the polymer electrolyte membrane in order from a catalyst ink using a pore former having a small particle size. As a method of applying the above-mentioned catalyst ink, a screen printing method, a doctor blade method, a gravure printing method, a die coater coating method, or the like can be used.

【0017】このように触媒層中の細孔の大きさを、高
分子膜に接する側より、ガス拡散層側にかけて、大きく
することにより、触媒層厚み方向でのガス拡散性を向上
することが出来る。ガス拡散層に近い側から、高分子電
解質膜に向けて細孔径を小さくすることで、供給ガスが
より高分子電解質膜に近い部分にまで容易に拡散するこ
とが可能になる。また、この構成により、反応による生
成水の排出もスムーズになる。この場合、細孔が樹木の
樹枝の構造に似た形になるため、触媒層厚み方向でのガ
ス拡散がスムーズになり、結果として水によるフイラッ
ディングなどがない、高性能で長寿命な高分子電解質型
燃料電池が得られる。 また、本発明の高分子電解質型
燃料電池の構成は、高分子電解質膜に接する面より、触
媒層、ガス拡散層を配置した構成で、触媒層中の細孔
が、アスペクト比2〜10の異方形状であるものであ
る。ここで、触媒層中の細孔は、触媒層の厚み方向に配
向していることが好ましい。
By thus increasing the size of the pores in the catalyst layer from the side in contact with the polymer membrane to the gas diffusion layer side, the gas diffusibility in the thickness direction of the catalyst layer can be improved. I can. By reducing the pore size from the side closer to the gas diffusion layer toward the polymer electrolyte membrane, the supply gas can be easily diffused to a portion closer to the polymer electrolyte membrane. Further, with this configuration, the water produced by the reaction can be discharged smoothly. In this case, the pores have a shape similar to the tree branch structure, so that gas diffusion in the thickness direction of the catalyst layer is smooth, and as a result, there is no flooding due to water, high performance and long life. A molecular electrolyte fuel cell is obtained. Further, the constitution of the polymer electrolyte fuel cell of the present invention is such that the catalyst layer and the gas diffusion layer are arranged from the surface in contact with the polymer electrolyte membrane, and the pores in the catalyst layer have an aspect ratio of 2 to 10. It has an anisotropic shape. Here, the pores in the catalyst layer are preferably oriented in the thickness direction of the catalyst layer.

【0018】このような構成を実現する手段としては、
触媒層を構成するときに、アスペクト比2〜10の形状
を持つ金属微粉末や酸化物粉末を触媒インク中に混合
し、基材シート上に塗工する。この塗工した基材シート
を乾燥させる際に塗工面に垂直な磁場を与えることによ
り触媒層の厚み方向に配向させる。これを高分子電解質
膜に熱転写させ、造孔剤を除去することにより、図2の
ような触媒層の厚み方向に配向した細孔を持つ高分子電
解質型燃料電池を作製できる。この場合、高分子電解質
膜やカーボンペーパーなどのガス拡散層の上に、触媒層
を形成することもできる。
As means for realizing such a structure,
When forming the catalyst layer, fine metal powder or oxide powder having a shape with an aspect ratio of 2 to 10 is mixed in the catalyst ink and coated on the substrate sheet. When the coated substrate sheet is dried, a magnetic field perpendicular to the coated surface is applied to orient it in the thickness direction of the catalyst layer. By thermally transferring this to a polymer electrolyte membrane and removing the pore-forming agent, a polymer electrolyte fuel cell having pores oriented in the thickness direction of the catalyst layer as shown in FIG. 2 can be produced. In this case, the catalyst layer can be formed on the gas diffusion layer such as the polymer electrolyte membrane or carbon paper.

【0019】このように構成された触媒層では、図2の
ように、触媒層の厚み方向に配向した細孔が形成される
ため、ガス拡散層から供給されるガスを高分子電解質膜
側に十分に供給することが出来る。従来の構成の触媒層
では、ガス拡散層側から高分子電解質側へのガスの拡散
が図3に示すように複雑で、拡散経路が長くなるのに対
して、本発明の構成では図4に示すように、拡散経路が
短くなるとともに、触媒層断面での細孔占有面積が小さ
くなるために、ガスの流れの密度(流束)が高くなる。
さらに、この構成では、触媒層が脆弱にならず、高い電
導性も維持でき、高性能で耐久性のあ高分子電解質型燃
料電池が得られる。
In the thus constituted catalyst layer, pores oriented in the thickness direction of the catalyst layer are formed as shown in FIG. 2, so that the gas supplied from the gas diffusion layer is directed to the polymer electrolyte membrane side. We can supply enough. In the catalyst layer having the conventional structure, the gas diffusion from the gas diffusion layer side to the polymer electrolyte side is complicated as shown in FIG. 3, and the diffusion path becomes long. As shown, since the diffusion path is shortened and the pore occupying area in the catalyst layer cross section is reduced, the gas flow density (flux) is increased.
Further, with this configuration, the catalyst layer does not become brittle, high conductivity can be maintained, and a polymer electrolyte fuel cell with high performance and durability can be obtained.

【0020】ここで、造孔剤のアスペクト比が2より小
さい場合には、図3に近い形状になるため、ガス拡散性
が従来とほとんど同じになり、本発明特有の効果が得ら
れない。また、アスペクト比が10より大きくなると、
造孔剤が触媒インク中で凝集し、均一に分散できず絡み
合ってしまうためにガス拡散性が低下してしまう。よっ
て、アスペクト比2〜10造孔剤を用いなければ、十分
なガス拡散性を得ることは出来ない。
Here, when the aspect ratio of the pore-forming agent is smaller than 2, the shape is similar to that of FIG. 3, so that the gas diffusivity is almost the same as the conventional one, and the effect peculiar to the present invention cannot be obtained. Also, when the aspect ratio becomes larger than 10,
Since the pore-forming agent aggregates in the catalyst ink and cannot be uniformly dispersed and entangled with each other, the gas diffusivity decreases. Therefore, sufficient gas diffusivity cannot be obtained unless a pore-forming agent having an aspect ratio of 2 to 10 is used.

【0021】また、本発明の高分子電解質型燃料電池の
構成は、触媒層の細孔構造のフラクタル次元が2〜3と
なっている。本発明の細孔の構造を調べてみたところ、
触媒層のどの部分でも同様な形状に形成されており、細
孔構造がフラクタル構造になっており、従来の細孔構造
とは全く異なった構造である。この細孔構造について、
フラクタル解析を行ってフラクタル次元を求めたとこ
ろ、2〜3の間であった。フラクタル解析は、粗視化の
度合い(パターン)を変える常法により行った。すなわ
ち、透過型電子顕微鏡写真を画像処理して得られるパタ
ーンを多数の正方形で細分化し、細孔部分に完全に含ま
れる正方形の数が、正方形の辺の長さが変化したときに
変わる程度を数値化する方法を用い、フラクタル次元を
求めた。フラクタル次元が大きいほど多次元的であり、
本発明のフラクタル次元は2〜3の間であることから、
触媒層内部にまで細孔が分布形成されていることが明ら
かとなった。
Further, in the constitution of the polymer electrolyte fuel cell of the present invention, the fractal dimension of the pore structure of the catalyst layer is 2 to 3. When examining the structure of the pores of the present invention,
All parts of the catalyst layer are formed in the same shape, and the pore structure is a fractal structure, which is completely different from the conventional pore structure. Regarding this pore structure,
The fractal analysis was performed to obtain the fractal dimension, which was between 2 and 3. The fractal analysis was performed by a conventional method that changes the degree (pattern) of coarse graining. That is, a pattern obtained by image-processing a transmission electron micrograph is subdivided into a large number of squares, and the extent to which the number of squares completely contained in a pore portion changes when the side length of the square changes is determined. The fractal dimension was calculated using a numerical method. The larger the fractal dimension, the more multidimensional it is,
Since the fractal dimension of the present invention is between 2 and 3,
It was clarified that pores were distributed and formed even inside the catalyst layer.

【0022】以下、本発明の燃料電池用電極について図
面を参照して述べる。
The fuel cell electrode of the present invention will be described below with reference to the drawings.

【0023】(実施例1)まず、平均粒径0.1μmと
0.5μmおよび1.0μmのニッケル粉末を等量比で
混合して造孔剤Aを作製した。25重量%の白金を担持
したカーボン粉末と、造孔剤Aと、5重量%の高分子電
解質溶液(アルドリッチ製、ナフィオン)と、溶媒とし
て2−プロパノール(IPA)とを、3:3:50:4
4の重量比で混合し、超音波分散することで、触媒イン
クAを作製した。
Example 1 First, a pore-forming agent A was prepared by mixing nickel powders having an average particle diameter of 0.1 μm, 0.5 μm and 1.0 μm in an equal ratio. Carbon powder supporting 25% by weight of platinum, pore-forming agent A, 5% by weight of polymer electrolyte solution (Nafion manufactured by Aldrich), and 2-propanol (IPA) as a solvent were mixed at 3: 3: 50. : 4
The catalyst ink A was prepared by mixing in a weight ratio of 4 and ultrasonically dispersing.

【0024】この触媒インクAをガス拡散層となるカー
ボンペーパー(東レ製、TGP−H−90)上に、ドク
ターブレード式の塗布装置で塗工を行った。これを60
℃の温度で乾燥して2枚の電極を作製した後、高分子電
解質膜(デュポン社製、ナフィオン112)を介して挟
み、120℃に設定されたホットプレス装置で接合して
MEA−Aとした。
The catalyst ink A was coated on a carbon paper (TGP-H-90 manufactured by Toray) serving as a gas diffusion layer by a doctor blade type coating device. 60 this
After the two electrodes were prepared by drying at a temperature of ° C, they were sandwiched with a polymer electrolyte membrane (Nafion 112, manufactured by DuPont), joined by a hot press machine set at 120 ° C, and MEA-A. did.

【0025】このMEA−Aを1規定の希硫酸に浸漬し
て煮沸し、MEA−Aの触媒層中から造孔剤を除去し
た。この希硫酸による処理3回繰り返し行った後、イオ
ン交換水を用いた煮沸洗浄を5回行うことで、MEA−
Aから完全に造孔剤を溶出除去した。
This MEA-A was immersed in 1N dilute sulfuric acid and boiled to remove the pore-forming agent from the catalyst layer of MEA-A. After repeating this treatment with dilute sulfuric acid 3 times, boiling washing with ion-exchanged water 5 times is performed, and thus MEA-
The pore-forming agent was completely eluted and removed from A.

【0026】こうして得られたMEA−Aをガスケット
とともにガス流路の加工が施された一対のセパレータ板
で挟み込んだ。このセパレータ板の両側に絶縁体を介し
てステンレス製の端板で挟み込んで、単電池Aを作製し
た。
The MEA-A thus obtained was sandwiched together with a gasket between a pair of separator plates having a gas flow path processed. The separator plate was sandwiched on both sides of the separator plate by stainless steel end plates to prepare a unit cell A.

【0027】次に、比較のために平均粒径0.5μmの
ニッケル粉末だけを造孔剤に用いて触媒インクBを調製
し、同様に電極を作製した後、MEA−Bを作製した。
これを、上述と同様の工程を経て単電池Bを作製した。
Next, for comparison, a catalyst ink B was prepared by using only nickel powder having an average particle size of 0.5 μm as a pore-forming agent, electrodes were prepared in the same manner, and then MEA-B was prepared.
This was subjected to the same steps as described above to fabricate a single battery B.

【0028】ここで、MEA−AとMEA−Bの電極部
分の断面を調べたところ、図1および図3の様な構成と
なっていた。このように高分子電解質膜側からガス拡散
層にかけて、細孔が大きくなっていることが分かった。
Here, when the cross sections of the electrode portions of MEA-A and MEA-B were examined, the structures as shown in FIGS. 1 and 3 were obtained. Thus, it was found that the pores were enlarged from the polymer electrolyte membrane side to the gas diffusion layer.

【0029】次に、作製した単電池は、燃料極に水素ガ
スを空気極に空気を流し、電池温度を80℃、燃料利用
率を90%、空気利用率を40%、ガス加湿は水素ガス
を75℃、空気を70℃と50℃の露点になるように調
整して電池特性を調べた。
Next, in the produced unit cell, hydrogen gas was supplied to the fuel electrode and air was supplied to the air electrode, the cell temperature was 80 ° C., the fuel utilization rate was 90%, the air utilization rate was 40%, and the gas humidification was hydrogen gas. Was adjusted to 75 ° C. and air was adjusted to 70 ° C. and 50 ° C. to examine the battery characteristics.

【0030】この時の電池の電流−電圧特性を比較して
図5に示す。これより本発明の単電池Aの方が単電池B
よりも、電池特性が高くなることが分かった。特に空気
の加湿温度が高い70℃の場合と高電流密度域で、単電
池Bではガス拡散性の低下によるフラッディングにより
電池電圧が低下した。
A comparison of the current-voltage characteristics of the batteries at this time is shown in FIG. The unit cell A of the present invention is the unit cell B more than this.
It has been found that the battery characteristics are higher than the above. In particular, in the case where the humidification temperature of air was high at 70 ° C. and in the high current density range, the cell voltage of the unit cell B was lowered due to flooding due to the lowered gas diffusibility.

【0031】また、先の触媒インクAにかえて、平均粒
径0.1μmと1.0μmのニッケル粉末を造孔剤に用
いた触媒インクC、Dを作製して、カーボンペーパーの
上に触媒インクD、上述の触媒インクB、触媒インクC
の順に、造孔剤の大きさが順次小さくなるようにドクタ
ーブレード式の塗布装置で、順次塗工を行った。このよ
うにして作製した電極を用いてMEAを作製し、上述と
同様の工程を経て単電池Cを作製した。この単電池の電
池特性を調べたところ、単電池Aと同様の特性を示すこ
とが分かった。
Further, instead of the above catalyst ink A, catalyst inks C and D using nickel powder having an average particle diameter of 0.1 μm and 1.0 μm as a pore forming agent were prepared, and the catalyst ink was placed on carbon paper. Ink D, catalyst ink B described above, catalyst ink C
In this order, coating was sequentially performed with a doctor blade type coating apparatus so that the size of the pore-forming agent was gradually reduced. An MEA was produced using the electrode thus produced, and a unit cell C was produced through the same steps as described above. When the battery characteristics of this single cell were examined, it was found that the same characteristics as those of the single cell A were exhibited.

【0032】これらの結果より、本実施例で採用した高
分子電解質膜側からガス拡散電極側にかけて細孔が大き
くなる電極を用いた高分子電解質型燃料電池は、従来の
均一な造孔剤を用いて作製した電池に比べて、ガス拡散
性が向上し、高加湿下でも安定した電池電圧を示すこと
が分かった。本実施例では、造孔剤としてニッケル粉末
を用いたが、亜鉛、鉄、アルミニウムなどの酸に溶解可
能な金属や塩、また、水溶性のアルコールやゼラチンな
どのタンパク質、デンプンなど本発明の構成を形成でき
るものであれば本実施例に限るものではない。また、粒
径に関しても、0.05μm、0.1μm、0.3μm
などの組合せでも良く、本実施例に限定されるものでは
ない。触媒層の形成方法は、スクリーン印刷法などの別
の塗布方式を用いても良く、いったんPETフィルム上
に触媒層を形成した後に高分子電解質膜に転写を行う方
法でも構わない。ガス拡散層はカーボンペーパーを用い
たがカーボンクロスやカーボンフェルトなどの材料を用
いることもできる。その他、触媒インクの成分や組成、
高分子電解質膜の種類など本発明が適応できるものであ
れば、どんなものを用いても構わない。
From these results, the polymer electrolyte fuel cell using the electrode in which the pores are enlarged from the side of the polymer electrolyte membrane to the side of the gas diffusion electrode, which is adopted in the present example, has a conventional uniform pore forming agent. It was found that the gas diffusivity was improved as compared with the battery produced by using the battery, and the battery voltage was stable even under high humidification. In this example, nickel powder was used as the pore-forming agent, but metals and salts that are soluble in acids such as zinc, iron, and aluminum, as well as proteins such as water-soluble alcohol and gelatin, starch, and the like according to the present invention. The present invention is not limited to this embodiment as long as it can form Also regarding the particle size, 0.05 μm, 0.1 μm, 0.3 μm
However, the combination is not limited to the present embodiment. As a method for forming the catalyst layer, another coating method such as a screen printing method may be used, or a method in which the catalyst layer is once formed on the PET film and then transferred to the polymer electrolyte membrane may be used. Although carbon paper is used for the gas diffusion layer, a material such as carbon cloth or carbon felt can also be used. Other components and composition of catalyst ink,
As long as the present invention is applicable, such as the type of polymer electrolyte membrane, any one may be used.

【0033】(実施例2)まず、造孔剤として、直径
0.2μm、長さ1.6μmのアスペクト比が8の鉄の
粉末を準備し、これに25重量%の白金を担持したカー
ボン粉末と、5重量%の高分子電解質溶液(アルドリッ
チ製、ナフィオン)と、溶媒として2−プロパノール
(IPA)とを、3:3:50:44の重量比で混合
し、超音波分散することで、触媒インクEを作製した。
Example 2 First, as a pore-forming agent, iron powder having a diameter of 0.2 μm and a length of 1.6 μm and an aspect ratio of 8 was prepared, and 25 wt% of platinum-supported carbon powder was prepared. By mixing a 5 wt% polyelectrolyte solution (Aldrich, Nafion) and 2-propanol (IPA) as a solvent in a weight ratio of 3: 3: 50: 44, and ultrasonically dispersing the mixture. A catalyst ink E was prepared.

【0034】この触媒インクAをガス拡散層となるカー
ボンペーパー(東レ製、TGP−H−90)上に、ドク
ターブレード式の塗布装置で塗工を行った。これを60
℃の温度で、電極面に垂直な磁界を単位面積当たり10
0A/mで作用させた状態で乾燥した。このようにして
作製した電極を2枚用意して、高分子電解質膜(デュポ
ン社製、ナフィオン112)を介して挟み、120℃に
設定されたホットプレス装置で接合してMEA−Eとし
た。このMEA−Eから実施例1で示した方法で造孔剤
を除去し、単電池Dを作製した。
This catalyst ink A was coated on a carbon paper (TGP-H-90 manufactured by Toray) serving as a gas diffusion layer by a doctor blade type coating device. 60 this
A magnetic field perpendicular to the electrode surface at a temperature of ℃ 10 per unit area
It was dried while operating at 0 A / m. Two electrodes prepared in this manner were prepared, sandwiched between polymer electrolyte membranes (Nafion 112 manufactured by DuPont), and joined by a hot press machine set at 120 ° C. to obtain MEA-E. The pore-forming agent was removed from this MEA-E by the method shown in Example 1 to fabricate a unit cell D.

【0035】ここで、MEA−Eの電極部分の断面を調
べたところ、図2のように、触媒層の厚み方向に配向し
た細孔を持つことが分かった。
When the cross section of the electrode portion of MEA-E was examined, it was found that it had pores oriented in the thickness direction of the catalyst layer as shown in FIG.

【0036】次に、作製した単電池には、燃料極に水素
ガスを空気極に空気を流し、電池温度を80℃、燃料利
用率を90%、空気利用率を40%、ガス加湿は水素ガ
スを75℃、空気を70℃と50℃の露点になるように
調整して電池特性を調べた。
Next, in the prepared unit cell, hydrogen gas was passed through the fuel electrode and air was passed through the air electrode, the cell temperature was 80 ° C., the fuel utilization rate was 90%, the air utilization rate was 40%, and the gas humidification was hydrogen. The gas characteristics were adjusted by adjusting the gas to 75 ° C. and the air to 70 ° C. and 50 ° C. to examine the battery characteristics.

【0037】この時の電池の電流−電圧特性を実施例1
の単電池Bと比較して図6に示す。これより本発明の単
電池Dの方が単電池Bよりも、電池特性が高くなること
が分かった。また、実施例1と同様に、空気の加湿温度
が高い70℃の場合と高電流密度域で、単電池Bとの差
が大きくなった。
The current-voltage characteristics of the battery at this time are shown in Example 1.
6 shows a comparison with the single battery B of FIG. From this, it was found that the unit cell D of the present invention has higher battery characteristics than the unit cell B. Also, as in Example 1, the difference between the unit cell B and the case where the air humidification temperature was high at 70 ° C. and the high current density range was large.

【0038】さらに、造孔剤として種々のアスペクト比
を持つ鉄分を準備して、上述のように単電池を構成し
て、高加湿下での電池特性を調べた。表1は、電池温度
を80℃、燃料利用率を90%、空気利用率を40%、
ガス加湿は水素ガスを75℃、空気を50℃にして、電
流密度が0.7A/cm2時の電池電圧を示したもので
ある。これより、アスペクト比が2より小さい場合とア
スペクト比が10より大きい場合には、ともに電池特性
が低下することが分かった。これは、造孔剤のアスペク
ト比が2より小さい場合には、従来例に近い形状になる
ため、ガス拡散性が従来とほとんど同じになり、アスペ
クト比が10より大き異場合には、造孔剤が触媒インク
中で凝集し、均一に分散できず絡み合ってしまうため、
十分に配向出来ず、ガス拡散性が低下してしまうものと
考えられた。
Further, iron components having various aspect ratios were prepared as a pore-forming agent, a single cell was constructed as described above, and the cell characteristics under high humidification were examined. Table 1 shows that the cell temperature is 80 ° C, the fuel utilization rate is 90%, the air utilization rate is 40%,
Gas humidification shows the battery voltage when the current density is 0.7 A / cm 2 with hydrogen gas at 75 ° C. and air at 50 ° C. From this, it was found that the battery characteristics deteriorate both when the aspect ratio is smaller than 2 and when the aspect ratio is larger than 10. This is because when the aspect ratio of the pore-forming agent is smaller than 2, the shape is close to that of the conventional example, so that the gas diffusivity is almost the same as that of the conventional example, and when the aspect ratio is larger than 10, the pore-forming agent is different. The agent agglomerates in the catalyst ink and cannot be uniformly dispersed, resulting in entanglement.
It was considered that the orientation could not be sufficiently performed and the gas diffusibility was lowered.

【0039】[0039]

【表1】 [Table 1]

【0040】これらの結果より、本実施例で採用した触
媒層の厚み方向に配向したアスペクト比2〜10の細孔
をもつ電極を用いた高分子電解質型燃料電池は、従来の
均一な造孔剤を用いて作製した電池に比べて、ガス拡散
性が向上し、高加湿下でも安定した電池電圧を示すこと
が分かった。
From these results, the polymer electrolyte fuel cell using the electrode having the pores with the aspect ratio of 2 to 10 oriented in the thickness direction of the catalyst layer adopted in this example is the same as the conventional uniform pore forming. It was found that the gas diffusivity was improved and a stable battery voltage was exhibited even under high humidification as compared with the battery manufactured using the agent.

【0041】さらに、MEA−Eの触媒層のフラクタル
次元を上述の方法で測定した。測定したフラクタル次元
は、すべて2〜3の間の値であった。これより触媒層内
部にまで細孔が、分布形成され、上述のような安定した
特性を示すと考えられた。
Further, the fractal dimension of the catalyst layer of MEA-E was measured by the above method. The measured fractal dimensions were all values between 2-3. From this, it was considered that the pores were distributed and formed even in the inside of the catalyst layer, and exhibited the stable characteristics as described above.

【0042】本実施例では、造孔剤として鉄粉末を用い
たが、コバルトやニッケル、又はその合金など、酸に溶
解可能で強磁性体であれば、本実施例に限るものではな
い。また、造孔剤の配向の方法についても磁場を用いた
方法以外に、電場や重力場に設置することで本発明を実
現しても良い。また、植毛技術などを用いて基盤上に金
属繊維を立たせることにより形成することもできる。さ
らに、触媒インク中に造孔剤を入れずに触媒層を形成し
た後、造孔剤をスプレー法などの方法で触媒層中に挿入
し、本発明を実現することもできる。このような場合に
は、造孔剤は酸に溶解可能な強磁性体でなくとも良く、
アスペクト比が2〜10の除去可能なものであれば、金
属やその塩、また、水溶性のアルコールやゼラチンなど
のタンパク質、デンプンなどでもよい。また、触媒層の
形成方法は、スクリーン印刷法などの別の塗布方式を用
いても良く、いったんPETフィルム上に触媒層を形成
した後に高分子電解質膜に転写を行う方法でも構わな
い。ガス拡散層はカーボンペーパーを用いたがカーボン
クロスやカーボンフェルトなどの材料を用いることもで
きる。その他、触媒インクの成分や組成、高分子電解質
膜の種類など本発明が適応できるものであれば、どんな
ものを用いても構わない。
In this embodiment, iron powder was used as the pore-forming agent, but it is not limited to this embodiment as long as it is a ferromagnetic substance that is soluble in an acid, such as cobalt, nickel, or an alloy thereof. Further, as for the method of orienting the pore-forming agent, the present invention may be realized by installing it in an electric field or a gravitational field other than the method using a magnetic field. It can also be formed by erecting metal fibers on a substrate using a flocking technique or the like. Further, the present invention can be realized by forming the catalyst layer without adding the pore-forming agent to the catalyst ink and then inserting the pore-forming agent into the catalyst layer by a method such as a spray method. In such a case, the pore-forming agent need not be an acid-soluble ferromagnetic material,
Metals or salts thereof, proteins such as water-soluble alcohol or gelatin, and starch may be used as long as they can be removed with an aspect ratio of 2 to 10. Further, as a method for forming the catalyst layer, another coating method such as a screen printing method may be used, or a method in which the catalyst layer is once formed on the PET film and then transferred to the polymer electrolyte membrane may be used. Although carbon paper is used for the gas diffusion layer, a material such as carbon cloth or carbon felt can also be used. In addition, any material may be used as long as the present invention can be applied, such as the components and composition of the catalyst ink and the type of polymer electrolyte membrane.

【0043】[0043]

【発明の効果】以上のように、本発明は触媒層中の細孔
の大きさを、高分子膜に接する側より、ガス拡散層側に
かけて、大きくすることにより、触媒層厚み方向でのガ
ス拡散性を向上することができ、供給ガスがより高分子
電解質膜に近い部分にまで、容易に拡散することが可能
になる。また、本発明は触媒層の厚み方向に配向した細
孔が形成されるため、ガス拡散層から供給されるガスを
高分子電解質膜側に十分に供給することが出来る。この
構成により、触媒層厚み方向でのガス拡散をスムーズに
行わせることができ、結果として水によるフイラッディ
ングなどがない、高性能で長寿命な高分子電解質型燃料
電池が得られる。
As described above, according to the present invention, the size of the pores in the catalyst layer is increased from the side in contact with the polymer membrane to the gas diffusion layer side, so that the gas in the thickness direction of the catalyst layer is increased. The diffusivity can be improved, and the supply gas can be easily diffused to a portion closer to the polymer electrolyte membrane. Further, in the present invention, since the pores oriented in the thickness direction of the catalyst layer are formed, the gas supplied from the gas diffusion layer can be sufficiently supplied to the polymer electrolyte membrane side. With this configuration, gas diffusion in the thickness direction of the catalyst layer can be smoothly performed, and as a result, a polymer electrolyte fuel cell with high performance and long life can be obtained without filling due to water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の燃料電池の構成を示す
模式図
FIG. 1 is a schematic diagram showing a configuration of a fuel cell according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の燃料電池の構成を示す
模式図
FIG. 2 is a schematic diagram showing the configuration of a fuel cell according to a second embodiment of the present invention.

【図3】従来の燃料電池の構成とガス流れを示す模式図FIG. 3 is a schematic diagram showing the configuration and gas flow of a conventional fuel cell.

【図4】本発明の第2の実施例の燃料電池の構成とガス
流れを示す模式図
FIG. 4 is a schematic diagram showing the configuration and gas flow of a fuel cell according to a second embodiment of the present invention.

【図5】本発明の第1の実施例の高分子電解質型燃料電
池単セルの電流と電圧の関係を示す図
FIG. 5 is a diagram showing a relationship between current and voltage of the polymer electrolyte fuel cell single cell according to the first embodiment of the present invention.

【図6】本発明の第2の実施例の高分子電解質型燃料電
池単セルの電流と電圧の関係を示す図
FIG. 6 is a diagram showing a relationship between current and voltage of a polymer electrolyte fuel cell single cell according to a second embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 純司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 内田 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 武部 安男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 行天 久朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H018 AA06 AS01 BB01 BB03 BB05 BB08 BB12 BB13 DD01 DD06 EE03 EE05 EE18 HH00 HH05 5H026 AA06 CC01 CX05 EE05 HH00 HH05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Junji Morita             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Makoto Uchida             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yasuo Takebe             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Kuro Gyoten             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5H018 AA06 AS01 BB01 BB03 BB05                       BB08 BB12 BB13 DD01 DD06                       EE03 EE05 EE18 HH00 HH05                 5H026 AA06 CC01 CX05 EE05 HH00                       HH05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高分子電解質膜を挟んで配置した一対の
電極を、前記電極の一方に水素を含有する燃料ガス供給
し、前記電極の他方に酸素を含む酸化剤ガスを供給する
ためのガス流路を形成した一対のセパレータ板で狭持し
た高分子電解質型燃料電池において、前記電極は前記高
分子電解質膜に接する触媒層と、前記セパレータ板に接
するガス拡散層とを有し、前記触媒層は高分子電解質と
触媒とを担持した炭素粒子を有し、前記触媒層中の細孔
の大きさを、前記高分子電解質膜側から前記ガス拡散層
側に向かって厚み方向に変化させたことを特徴とする高
分子電解質型燃料電池。
1. A gas for supplying a fuel gas containing hydrogen to one of the electrodes and a oxidant gas containing oxygen to the other of a pair of electrodes arranged with a polymer electrolyte membrane sandwiched therebetween. In a polymer electrolyte fuel cell sandwiched by a pair of separator plates having a flow path, the electrode has a catalyst layer in contact with the polymer electrolyte membrane, and a gas diffusion layer in contact with the separator plate, the catalyst The layer has carbon particles supporting a polymer electrolyte and a catalyst, and the size of the pores in the catalyst layer was changed in the thickness direction from the polymer electrolyte membrane side toward the gas diffusion layer side. A polymer electrolyte fuel cell characterized by the above.
【請求項2】 触媒層中の細孔の大きさを、高分子電解
質膜に接する側からガス拡散層側に向かって大きくした
ことを特徴とする請求項1に記載の高分子電解質型燃料
電池。
2. The polymer electrolyte fuel cell according to claim 1, wherein the size of the pores in the catalyst layer is increased from the side in contact with the polymer electrolyte membrane toward the gas diffusion layer side. .
【請求項3】 高分子電解質膜を挟んで配置した一対の
電極を、前記電極の一方に水素を含有する燃料ガスを供
給し、前記電極の他方に酸素を含む酸化剤ガスを供給す
るためのガス流路を形成した一対のセパレータ板で狭持
した高分子電解質型燃料電池において、前記電極は前記
高分子電解質膜に接する触媒層と、前記セパレータ板に
接するガス拡散層とを有し、前記触媒層は高分子電解質
と触媒とを担持した炭素粒子を有し、前記触媒層中の細
孔のアスペク比が2以上10以下であり、かつ前記触媒
層中の細孔の形状が異方形状であることを特徴とする高
分子電解質型燃料電池。
3. A pair of electrodes arranged with a polymer electrolyte membrane sandwiched therebetween, for supplying a fuel gas containing hydrogen to one of the electrodes and supplying an oxidant gas containing oxygen to the other of the electrodes. In the polymer electrolyte fuel cell sandwiched by a pair of separator plates having a gas flow path, the electrode has a catalyst layer in contact with the polymer electrolyte membrane, and a gas diffusion layer in contact with the separator plate, The catalyst layer has carbon particles supporting a polymer electrolyte and a catalyst, the aspect ratio of the pores in the catalyst layer is 2 or more and 10 or less, and the shape of the pores in the catalyst layer is anisotropic. And a polymer electrolyte fuel cell.
【請求項4】 触媒層中の細孔が、触媒層の厚み方向に
配向していることを特徴とする請求項3に記載の高分子
電解質型燃料電池。
4. The polymer electrolyte fuel cell according to claim 3, wherein the pores in the catalyst layer are oriented in the thickness direction of the catalyst layer.
【請求項5】 触媒層中の細孔構造のフラクタル次元が
2〜3であることを特徴とする請求項1〜4に記載の高
分子電解質型燃料電池。
5. The polymer electrolyte fuel cell according to claim 1, wherein the fractal dimension of the pore structure in the catalyst layer is 2-3.
【請求項6】 触媒層中の細孔を、造孔剤を用いて形成
したことを特徴とする請求項1〜6に記載の高分子電解
質型燃料電池の製造方法。
6. The method for producing a polymer electrolyte fuel cell according to claim 1, wherein the pores in the catalyst layer are formed by using a pore-forming agent.
JP2001301733A 2001-09-28 2001-09-28 High molecular electrolyte fuel cell and method of manufacturing the same Pending JP2003109606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301733A JP2003109606A (en) 2001-09-28 2001-09-28 High molecular electrolyte fuel cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301733A JP2003109606A (en) 2001-09-28 2001-09-28 High molecular electrolyte fuel cell and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003109606A true JP2003109606A (en) 2003-04-11

Family

ID=19122097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301733A Pending JP2003109606A (en) 2001-09-28 2001-09-28 High molecular electrolyte fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003109606A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004023A1 (en) * 2004-06-30 2006-01-12 Canon Kabushiki Kaisha Catalyst layer for solid polymer electrolyte fuel cell and method of producing the same
WO2006041212A1 (en) * 2004-10-14 2006-04-20 Canon Kabushiki Kaisha Membrane electrode assembly for fuel cell, method of producing same, and fuel cell
JP2007250337A (en) * 2006-03-15 2007-09-27 Toppan Printing Co Ltd Electrode catalyst layer for solid polyelectrolyte fuel cell, its manufacturing method and solid polyelectrolyte fuel cell
JP2007280669A (en) * 2006-04-04 2007-10-25 Toppan Printing Co Ltd Electrode catalyst layer for solid polymer fuel cell, manufacturing method of same, and solid polymer fuel cell using method
WO2008013293A1 (en) 2006-07-24 2008-01-31 Toyota Jidosha Kabushiki Kaisha Assembly for fuel cell, fuel cell, and method for manufacturing fuel cell
JP2008078075A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2008078074A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2008078020A (en) * 2006-09-22 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JPWO2006061993A1 (en) * 2004-12-07 2008-06-05 東レ株式会社 MEMBRANE ELECTRODE COMPOSITE, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL
WO2009123274A1 (en) * 2008-04-01 2009-10-08 新日本製鐵株式会社 Fuel cell
JP2010536152A (en) * 2007-08-09 2010-11-25 パナソニック株式会社 Supported catalyst layer for direct oxidation fuel cell
WO2011152464A1 (en) * 2010-06-04 2011-12-08 日立造船株式会社 Metal air battery
JP2012104273A (en) * 2010-11-08 2012-05-31 Hitachi Zosen Corp Metal-air battery
JP2013073695A (en) * 2011-09-26 2013-04-22 Toshiba Corp Catalyst-carrying substrate, method for producing the same, membrane electrode assembly, and fuel cell
CN103299463A (en) * 2010-12-29 2013-09-11 帕马斯坎德公司 Gas diffusion electrode
CN112844920A (en) * 2021-01-06 2021-05-28 阳光电源股份有限公司 Spraying method of membrane electrode spraying machine and membrane electrode spraying machine

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004023A1 (en) * 2004-06-30 2006-01-12 Canon Kabushiki Kaisha Catalyst layer for solid polymer electrolyte fuel cell and method of producing the same
US8603697B2 (en) 2004-06-30 2013-12-10 Canon Kabushiki Kaisha Catalyst layer for solid polymer electrolyte fuel cell including catalyst with dendritic structure and method of producing the same
WO2006041212A1 (en) * 2004-10-14 2006-04-20 Canon Kabushiki Kaisha Membrane electrode assembly for fuel cell, method of producing same, and fuel cell
US8278004B2 (en) 2004-12-07 2012-10-02 Toray Industries, Inc. Membrane electrode assembly and method of producing the same and fuel cell
JPWO2006061993A1 (en) * 2004-12-07 2008-06-05 東レ株式会社 MEMBRANE ELECTRODE COMPOSITE, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL
JP5176321B2 (en) * 2004-12-07 2013-04-03 東レ株式会社 MEMBRANE ELECTRODE COMPOSITE, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL
JP2007250337A (en) * 2006-03-15 2007-09-27 Toppan Printing Co Ltd Electrode catalyst layer for solid polyelectrolyte fuel cell, its manufacturing method and solid polyelectrolyte fuel cell
JP2007280669A (en) * 2006-04-04 2007-10-25 Toppan Printing Co Ltd Electrode catalyst layer for solid polymer fuel cell, manufacturing method of same, and solid polymer fuel cell using method
WO2008013293A1 (en) 2006-07-24 2008-01-31 Toyota Jidosha Kabushiki Kaisha Assembly for fuel cell, fuel cell, and method for manufacturing fuel cell
JP2008078020A (en) * 2006-09-22 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2008078075A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2008078074A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2010536152A (en) * 2007-08-09 2010-11-25 パナソニック株式会社 Supported catalyst layer for direct oxidation fuel cell
JP2009252359A (en) * 2008-04-01 2009-10-29 Nippon Steel Corp Fuel cell
WO2009123274A1 (en) * 2008-04-01 2009-10-08 新日本製鐵株式会社 Fuel cell
KR101264969B1 (en) 2008-04-01 2013-05-15 신닛테츠스미킨 카부시키카이샤 Fuel Cell
US9735433B2 (en) 2008-04-01 2017-08-15 Nippon Steel & Sumitomo Metal Corporation Fuel cell
WO2011152464A1 (en) * 2010-06-04 2011-12-08 日立造船株式会社 Metal air battery
JP2012104273A (en) * 2010-11-08 2012-05-31 Hitachi Zosen Corp Metal-air battery
CN103299463A (en) * 2010-12-29 2013-09-11 帕马斯坎德公司 Gas diffusion electrode
JP2013073695A (en) * 2011-09-26 2013-04-22 Toshiba Corp Catalyst-carrying substrate, method for producing the same, membrane electrode assembly, and fuel cell
US9793549B2 (en) 2011-09-26 2017-10-17 Kabushiki Kaisha Toshiba Catalyst-supporting substrate, method of manufacturing the same, membrane electrode assembly, and fuel cell
CN112844920A (en) * 2021-01-06 2021-05-28 阳光电源股份有限公司 Spraying method of membrane electrode spraying machine and membrane electrode spraying machine

Similar Documents

Publication Publication Date Title
EP1304753B1 (en) Polyelectrolyte fuel cell
JP4144686B2 (en) Method for producing polymer electrolyte fuel cell
KR100474941B1 (en) Gas diffusion electrode and fuel cell using this
US7947411B1 (en) Membrane and electrode assembly and method of producing the same, and polymer electrolyte membrane fuel cell
US8168025B2 (en) Methods of making components for electrochemical cells
US20050255373A1 (en) Liquid fuel feed fuel cell, electrode for fuel cell and methods for manufacturing same
JP2003500822A (en) Materials and methods for providing fuel cells and active membranes
WO2007052650A1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
JP2003109606A (en) High molecular electrolyte fuel cell and method of manufacturing the same
US8614028B2 (en) Membrane and electrode assembly and method of producing the same, and polymer electrolyte membrane fuel cell
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
JP4876318B2 (en) Polymer electrolyte fuel cell and manufacturing method thereof
JP7363956B2 (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
CA2649903A1 (en) Methods of making components for electrochemical cells
JPH10189012A (en) Electrode for fuel cell and power generation layer, and its manufacture
JP2007214019A (en) Membrane electrode assembly for fuel cell and gas diffusion layer for fuel cell
JP3843838B2 (en) Fuel cell
JP4147321B2 (en) Electrode for polymer electrolyte fuel cell
JP2006318717A (en) Polyelectrolyte fuel cell and its manufacturing method
JP2003059511A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
KR101326190B1 (en) Membrane Electrode Assembly for fuel cell and fuel cell using the same
JP2005183263A (en) Porous structure
JP2004139789A (en) Catalyst powder for fuel cell and its manufacturing method as well as polyelectrolyte membrane/electrode joint body and polyelectrolyte fuel cell equipped with the same
JPH1116586A (en) Manufacture of high polymer electrolyte film-gas diffusion electrode body
JP2005317287A (en) Film-electrode junction, and solid polymer fuel cell