JPH0656554A - Production of porous electrode - Google Patents

Production of porous electrode

Info

Publication number
JPH0656554A
JPH0656554A JP4209122A JP20912292A JPH0656554A JP H0656554 A JPH0656554 A JP H0656554A JP 4209122 A JP4209122 A JP 4209122A JP 20912292 A JP20912292 A JP 20912292A JP H0656554 A JPH0656554 A JP H0656554A
Authority
JP
Japan
Prior art keywords
electrode
raw material
green sheet
porous
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4209122A
Other languages
Japanese (ja)
Inventor
Sadaaki Sakamoto
禎章 坂本
Hiroshi Takagi
洋 鷹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4209122A priority Critical patent/JPH0656554A/en
Publication of JPH0656554A publication Critical patent/JPH0656554A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain a porous electrode whose orientational direction in the electrode is arrayed in the thickness direction of the electrode and also in which closed pores are hardly present. CONSTITUTION:An electrode raw material is formed of electrically conductive powder 2a prepared by mixing nylon short fiber 2c having a magnetic pole in the longitudinal direction with, nickel oxide and zirconium oxide stabilized with yttrium, a binder and a solvent 2b, etc. Static magnetic field is impressed on the electrode raw material to form an electrode green sheet 2B of the electrode raw material in the state that the orientational direction of the nylon short 2C is arrayed in the thickness direction of the electrode. After the electrode green sheet 2B was pressed to stick to a solid electrolysis green sheet, the nylon short fiber 2c is eliminated by roasting, thus the porous electrode is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスセンサ、湿度セン
サ及び燃料電池等に用いられている多孔質電極の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a porous electrode used in gas sensors, humidity sensors, fuel cells and the like.

【0002】[0002]

【従来の技術と課題】内部に気孔を有する多孔質電極
は、集電性能の他に、ガスを透過させる性能が要求され
る。この多孔質電極のガス透過性を向上させるために
は、電極内の気孔の配向方向を電極の厚み方向に揃えて
ガスの透過経路長を短くし、かつ、電極内の気孔のうち
閉気孔であるものの割合を少なくすればよい。
2. Description of the Related Art A porous electrode having pores inside is required to have gas collection performance as well as gas permeation performance. In order to improve the gas permeability of this porous electrode, the gas permeation path length is shortened by aligning the orientation direction of the pores in the electrode with the thickness direction of the electrode, and the closed pores among the pores in the electrode are used. It is better to reduce the ratio of some.

【0003】しかし、従来の方法は、導電体粉末と、結
合剤と、有機溶剤と、多孔質にするための有機高分子と
からなる電極原料をセラミック基板に塗布し、焼き付け
るだけなので、作製された電極の気孔の配向方向及び閉
気孔の割合を少なくすることができなかった。そこで、
本発明の課題は、電極内の気孔の配向方向が電極の厚み
方向に揃い、かつ、閉気孔が殆どない多孔質電極を提供
することにある。
However, according to the conventional method, an electrode raw material composed of a conductor powder, a binder, an organic solvent and an organic polymer for making it porous is applied to a ceramic substrate and baked, so that it is produced. It was not possible to reduce the orientation direction of pores of the electrode and the ratio of closed pores. Therefore,
An object of the present invention is to provide a porous electrode in which the orientation direction of the pores in the electrode is aligned with the thickness direction of the electrode and there are almost no closed pores.

【0004】[0004]

【課題を解決するための手段】以上の課題を解決するた
め、本発明に係る多孔質電極の製造方法は、(a)磁性
体粉末と複合化して長さ方向に磁気極性を有した有機高
分子繊維と、導電体粉末と、結合剤と、溶剤とを混合し
て電極原料を作製する工程と、(b)前記電極原料に静
磁場を印加して前記有機高分子繊維の配向方向を電極の
厚み方向に揃えた状態で、前記電極原料にて電極を成形
する工程と、(c)前記成形された電極を焼成して前記
有機高分子繊維を飛散させ、多孔質電極を作製する工程
と、を備えたことを特徴とする。
In order to solve the above-mentioned problems, the method for producing a porous electrode according to the present invention comprises (a) an organic compound having a magnetic polarity in the longitudinal direction which is compounded with a magnetic powder. A step of preparing an electrode raw material by mixing a molecular fiber, a conductor powder, a binder, and a solvent, and (b) applying a static magnetic field to the electrode raw material so that the orientation direction of the organic polymer fiber is an electrode. A step of forming an electrode with the electrode raw material in a state of being aligned in the thickness direction of the electrode, and (c) a step of firing the formed electrode to scatter the organic polymer fibers to produce a porous electrode. , Is provided.

【0005】[0005]

【作用】以上の方法において、磁性体粉末と複合化した
有機高分子繊維は長さ方向に磁気極性を有するものとな
る。この有機高分子繊維は電極原料に混ぜられた状態で
は、その配向方向は無秩序にあらゆる方向に向いてい
る。この電極原料に静磁場を印加すると、有機高分子繊
維は静磁場の方向に配向する。従って、静磁場を印加し
て、有機高分子繊維の配向方向を電極の厚み方向に揃
え、かつ、有機高分子繊維の長さを電極の厚みと略同じ
か若干長めの寸法にした場合、図2に示すように、高分
子繊維の両端部は成形された電極の表裏面に達する。そ
して、この成形された電極を焼成することにより、この
高分子繊維は飛散して高分子繊維跡に電極の厚み方向に
略配向している開気孔が形成されることになる。
In the above method, the organic polymer fiber composited with the magnetic powder has magnetic polarity in the length direction. When the organic polymer fibers are mixed with the electrode raw material, the orientation directions thereof are randomly oriented in all directions. When a static magnetic field is applied to this electrode raw material, the organic polymer fibers are oriented in the direction of the static magnetic field. Therefore, when a static magnetic field is applied, the orientation direction of the organic polymer fibers is aligned with the thickness direction of the electrode, and the length of the organic polymer fibers is set to be approximately the same as or slightly longer than the thickness of the electrode. As shown in FIG. 2, both ends of the polymer fiber reach the front and back surfaces of the molded electrode. Then, by firing the formed electrode, the polymer fibers are scattered to form open pores in the traces of the polymer fibers which are substantially oriented in the thickness direction of the electrode.

【0006】[0006]

【実施例】以下、本発明に係る多孔質電極の製造方法の
一実施例を説明する。実施例として、固体電解質型燃料
電池の空気側電極及び燃料側電極の製造に適用した場合
について説明する。まず、燃料側電極のグリーンシート
製造方法について説明する。
EXAMPLES An example of the method for producing a porous electrode according to the present invention will be described below. As an example, a case where the invention is applied to manufacture of an air side electrode and a fuel side electrode of a solid oxide fuel cell will be described. First, a method for manufacturing the green sheet for the fuel side electrode will be described.

【0007】図1は燃料側電極の原料2Aを示す組成図
である。ナイロン材料と磁性体粉末であるバリウムフェ
ライトとを混ぜ、磁場を射出方向に印加しながら射出成
形し、50μmの長さに裁断して、長さ方向に磁気極性
を有するナイロン短繊維2cを作製する。次に、粉末状
のセラミックス材料である酸化ニッケルとイットリウム
安定化酸化ジルコニウムとを同重量ずつ混合して導電体
粉末2aとした後、前記ナイロン短繊維2cを所定量加
えて混合する。そして、得られた混合物100重量%に
対して、15重量%の結合剤(例えば、ポリビニルブチ
ラール系バインダ)、溶剤(エタノール、トルエン)及
び可塑剤等(これらをまとめて図中2bで表示する)を
適当量加えてスラリー(泥しょう)とする。この状態で
は、各ナイロン短繊維2cの配向方向は無秩序にあらゆ
る方向に向いている。
FIG. 1 is a composition diagram showing a raw material 2A for the fuel side electrode. A nylon material and barium ferrite, which is a magnetic powder, are mixed, injection-molded while applying a magnetic field in the injection direction, and cut into a length of 50 μm to produce a nylon short fiber 2c having magnetic polarity in the length direction. . Next, nickel oxide, which is a powdery ceramic material, and yttrium-stabilized zirconium oxide are mixed in equal weights to form a conductor powder 2a, and then a predetermined amount of the nylon short fibers 2c is added and mixed. Then, with respect to 100% by weight of the obtained mixture, 15% by weight of a binder (for example, polyvinyl butyral binder), a solvent (ethanol, toluene), a plasticizer, etc. (these are collectively indicated by 2b in the figure) Add an appropriate amount to make a slurry. In this state, the nylon short fibers 2c are randomly oriented in all directions.

【0008】次に、図2に示すように、このスラリー状
の原料2AにX方向の静磁場を印加しながら、ドクター
ブレード法によって厚み40μmの燃料側電極のグリー
ンシート2Bを作製した。このとき、グリーンシート2
Bは静磁場に対して、その厚み方向が平行な状態で作製
される。従って、グリーンシート2Bに含まれている各
ナイロン短繊維2cは、グリーンシート2Bの厚み方向
に略配向している。しかも、ナイロン短繊維2cの長さ
寸法はグリーンシート2Bの厚み寸法より若干長いの
で、ナイロン短繊維2cの両端部はグリーンシート2B
の表裏面に達している。
Next, as shown in FIG. 2, while applying a static magnetic field in the X direction to the slurry-like raw material 2A, a green sheet 2B for a fuel side electrode having a thickness of 40 μm was prepared by the doctor blade method. At this time, green sheet 2
B is produced in a state where its thickness direction is parallel to the static magnetic field. Therefore, each nylon short fiber 2c included in the green sheet 2B is substantially oriented in the thickness direction of the green sheet 2B. Moreover, since the length of the nylon short fiber 2c is slightly longer than the thickness of the green sheet 2B, both ends of the nylon short fiber 2c are green sheet 2B.
Has reached the front and back.

【0009】次に、空気側電極のグリーンシート製造方
法について説明する。燃料側電極のグリーンシート製造
方法と同様に、粉末状のランタンマンガナイトに前記ナ
イロン短繊維を所定量加えて混合する。そして、得られ
た混合物100重量%に対して15重量%の結合剤(例
えば、ポリビニルブチラール系バインダ)及び溶剤(エ
タノール、トルエン)、可塑剤等を適当量加えてスラリ
ー状の空気側電極の原料とする。この状態では、各ナイ
ロン短繊維の配向方向は無秩序にあらゆる方向に向いて
いる。このスラリー状の原料に静磁場を印加しながら、
ドクターブレード法によって厚み40μmの空気側電極
のグリーンシートを作製した。このとき、グリーンシー
トは静磁場に対して、その厚み方向が平行な状態で作製
される。従って、グリーンシートに含まれている各ナイ
ロン短繊維はグリーンシートの厚み方向に略配向してい
る。
Next, a method of manufacturing the green sheet for the air side electrode will be described. Similar to the method for producing the green sheet for the fuel side electrode, a predetermined amount of the above nylon short fibers is added to and mixed with powdered lanthanum manganite. Then, an appropriate amount of a binder (for example, polyvinyl butyral binder), a solvent (ethanol, toluene), a plasticizer, etc., of 15% by weight with respect to 100% by weight of the obtained mixture is added, and a raw material for an air-side electrode in a slurry state. And In this state, the orientation directions of the respective nylon short fibers are randomly oriented in all directions. While applying a static magnetic field to this slurry-like raw material,
A 40 μm thick air side electrode green sheet was prepared by the doctor blade method. At this time, the green sheet is produced in a state where its thickness direction is parallel to the static magnetic field. Therefore, each nylon short fiber contained in the green sheet is substantially oriented in the thickness direction of the green sheet.

【0010】さらに、固体電解質となるイットリウム安
定化酸化ジルコニウムのグリーンシートを作製した。す
なわち、粉末状のイットリウム安定化酸化ジルコニウム
100重量%に対して15重量%の結合剤(例えばポリ
ビニルブチラール系バインダ)及び溶剤(エタノール、
トルエン)、可塑剤等を適当量加えてスラリー化し、ド
クターブレード法によって、このスラリーから固体電解
質グリーンシートを作製した。
Further, a green sheet of yttrium-stabilized zirconium oxide as a solid electrolyte was prepared. That is, 15 wt% of a binder (for example, polyvinyl butyral binder) and a solvent (ethanol, 15 wt% to 100 wt% of powdery yttrium-stabilized zirconium oxide).
Toluene), a plasticizer, etc. were added in appropriate amounts to form a slurry, and a solid electrolyte green sheet was produced from this slurry by the doctor blade method.

【0011】作製された固体電解質グリーンシートを適
当枚数重ねたものに、燃料側電極のグリーンシートと空
気側電極のグリーンシートをそれぞれ上下から重ねて圧
着し、所定の大きさに裁断して成形体を得た。この成形
体を400℃の温度下で3時間にわたって加熱して結合
剤を飛散させた後、毎分1℃の速度で1300℃まで昇
温し、この温度下で2時間焼成した。この焼成によっ
て、ナイロン短繊維は飛散して、ナイロン短繊維跡に成
形体の厚み方向に略配向している開気孔が形成されるこ
ととなる。この後、室温まで冷却することによって、多
孔質電極である燃料側電極2と空気側電極3を表裏面に
設けた固体電解質1を得た(図3参照)。
A green sheet for the fuel side electrode and a green sheet for the air side electrode are respectively stacked from above and below on a stack of an appropriate number of the produced solid electrolyte green sheets, and the sheets are cut into a predetermined size to form a molded body. Got The molded body was heated at a temperature of 400 ° C. for 3 hours to scatter the binder, then heated to 1300 ° C. at a rate of 1 ° C./min, and baked at this temperature for 2 hours. By this firing, the short nylon fibers are scattered, and open pores that are substantially oriented in the thickness direction of the molded body are formed in the traces of the short nylon fibers. Then, by cooling to room temperature, a solid electrolyte 1 having a fuel side electrode 2 and an air side electrode 3 which are porous electrodes provided on the front and back surfaces was obtained (see FIG. 3).

【0012】こうして得られた2種類の実施例品1,2
を気孔率及び発電能力について評価した。評価結果を表
1に示す。比較のために、グリーンシート作製時に静磁
場を印加しないということ以外は、前記製造方法と同様
の方法で作製した従来品1,2の評価結果も合わせて示
す。
Two types of example products 1 and 2 thus obtained
Was evaluated for porosity and power generation capacity. The evaluation results are shown in Table 1. For comparison, the evaluation results of the conventional products 1 and 2 manufactured by the same method as the above manufacturing method are also shown, except that the static magnetic field is not applied when manufacturing the green sheet.

【0013】[0013]

【表1】 [Table 1]

【0014】電極2,3の気孔率は、電極断面のSEM
写真を撮り、その写真を画像解析することにより算出し
た。また、図4に示すように、電極2,3にそれぞれ燃
料ガス供給管7a,空気供給管7bを取り付けて燃料電
池を作製した。この燃料電池を測定回路19に接続し、
発電能力を測定した。すなわち、燃料電池を1000℃
の温度に保持しながら、燃料ガスと空気をそれぞれ電極
2,3に供給し、固体電解質1を介して電極反応を起こ
させ、かつ、電流計11にて観察しながら単位電極面積
当たり0.3A/cm2の電流が流れる状態下の燃料電
池に発生する電圧値を電圧計10で測定した。なお、8
a,8bは白金線、9は可変抵抗器である。この発電能
力の値が大きいほど電極のガス透過性が優れ、かつ、電
池としての性能も優れていることになる。表1は、実施
例品1,2が従来例品1,2より大きな発電能力を有し
ていることが示されている。
The porosities of the electrodes 2 and 3 are determined by the SEM of the electrode cross section.
It was calculated by taking a picture and analyzing the picture. Further, as shown in FIG. 4, a fuel gas supply pipe 7a and an air supply pipe 7b were attached to the electrodes 2 and 3, respectively, to fabricate a fuel cell. Connect this fuel cell to the measuring circuit 19,
The power generation capacity was measured. That is, the fuel cell at 1000 ° C
Fuel gas and air are supplied to the electrodes 2 and 3, respectively, while maintaining the temperature of 3 A to cause an electrode reaction through the solid electrolyte 1, and 0.3 A per unit electrode area while observing with an ammeter 11. The voltage value generated in the fuel cell under the condition that a current of / cm 2 flows was measured by the voltmeter 10. 8
Reference numerals a and 8b are platinum wires, and 9 is a variable resistor. The larger the value of this power generation capacity, the better the gas permeability of the electrode and the better the performance as a battery. Table 1 shows that the example products 1 and 2 have a larger power generation capacity than the conventional example products 1 and 2.

【0015】以上のことから、実施例品1,2の方が電
極2,3のガス透過性に優れていることがわかる。な
お、本発明に係る多孔質電極の製造方法は前記実施例に
限定するものではなく、その要旨の範囲内で種々に変形
することができる。特に、前記実施例では固体電解質型
燃料電池の燃料側電極及び空気側電極に適用した場合を
説明したが、これ以外、例えばガスセンサや湿度センサ
の多孔質電極に適用してもよい。
From the above, it can be seen that the products of Examples 1 and 2 are superior in gas permeability of the electrodes 2 and 3. The method for manufacturing the porous electrode according to the present invention is not limited to the above-mentioned embodiment, but can be variously modified within the scope of the gist. In particular, in the above-mentioned embodiment, the case where it is applied to the fuel side electrode and the air side electrode of the solid oxide fuel cell has been described, but other than this, it may be applied to, for example, a porous electrode of a gas sensor or a humidity sensor.

【0016】[0016]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、静磁場の印加によって、電極の厚み方向に揃え
られ有機高分子繊維を、焼成の際に飛散させて高分子繊
維跡に電極の厚み方向に略配向している開気孔を形成す
ることができる。従って、電極のガス透過性を従来より
アップさせることができ、かつ、集電性にも優れた多孔
質電極を得ることができる。
As is apparent from the above description, according to the present invention, by applying a static magnetic field, organic polymer fibers aligned in the thickness direction of the electrode are scattered during firing to leave traces of polymer fibers. It is possible to form open pores that are substantially oriented in the thickness direction of the electrode. Therefore, the gas permeability of the electrode can be improved as compared with the conventional one, and a porous electrode excellent in current collecting property can be obtained.

【0017】この結果、ガスセンサ、湿度センサ及び燃
料電池等の性能を向上させることが可能になる。
As a result, it becomes possible to improve the performance of the gas sensor, the humidity sensor, the fuel cell and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る多孔質電極の製造方法の一実施例
を示す製造手順を説明するための組成図。
FIG. 1 is a composition diagram for explaining a manufacturing procedure showing an embodiment of a method for manufacturing a porous electrode according to the present invention.

【図2】図1に続く製造手順を説明するための組成図。FIG. 2 is a composition diagram for explaining a manufacturing procedure subsequent to FIG.

【図3】図1に示した多孔質電極を表裏面に設けた固体
電解質の構造図。
FIG. 3 is a structural diagram of a solid electrolyte in which the porous electrodes shown in FIG. 1 are provided on the front and back surfaces.

【図4】図1に示した多孔質電極を備えた燃料電池の発
電能力を測定するための測定回路を示す電気回路図。
FIG. 4 is an electric circuit diagram showing a measuring circuit for measuring the power generation capacity of the fuel cell provided with the porous electrode shown in FIG.

【符号の説明】[Explanation of symbols]

2…燃料側電極 2A…燃料側電極原料 2B…燃料側電極グリーンシート 2a…導電体粉末 2b…結合剤、溶剤及び可塑剤等 2c…ナイロン短繊維(有機高分子繊維) 2 ... Fuel side electrode 2A ... Fuel side electrode raw material 2B ... Fuel side electrode green sheet 2a ... Conductor powder 2b ... Binder, solvent, plasticizer, etc. 2c ... Nylon short fiber (organic polymer fiber)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 1/20 Z 7244−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01B 1/20 Z 7244-5G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 磁性体粉末と複合化して長さ方向に磁気
極性を有した有機高分子繊維と、導電体粉末と、結合剤
と、溶剤とを混合して電極原料を作製する工程と、 前記電極原料に静磁場を印加して前記有機高分子繊維の
配向方向を電極の厚み方向に揃えた状態で、前記電極原
料にて電極を成形する工程と、 前記成形された電極を焼成して前記有機高分子繊維を飛
散させ、多孔質電極を作製する工程と、 を備えたことを特徴とする多孔質電極の製造方法。
1. A step of preparing an electrode raw material by mixing an organic polymer fiber having a magnetic polarity in the lengthwise direction in a composite with a magnetic powder, a conductive powder, a binder, and a solvent. Applying a static magnetic field to the electrode raw material and aligning the orientation direction of the organic polymer fibers in the thickness direction of the electrode, a step of forming an electrode with the electrode raw material, and firing the formed electrode. And a step of producing a porous electrode by scattering the organic polymer fiber, the method for producing a porous electrode.
JP4209122A 1992-08-05 1992-08-05 Production of porous electrode Pending JPH0656554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4209122A JPH0656554A (en) 1992-08-05 1992-08-05 Production of porous electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4209122A JPH0656554A (en) 1992-08-05 1992-08-05 Production of porous electrode

Publications (1)

Publication Number Publication Date
JPH0656554A true JPH0656554A (en) 1994-03-01

Family

ID=16567656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4209122A Pending JPH0656554A (en) 1992-08-05 1992-08-05 Production of porous electrode

Country Status (1)

Country Link
JP (1) JPH0656554A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189012A (en) * 1996-12-20 1998-07-21 Toyota Motor Corp Electrode for fuel cell and power generation layer, and its manufacture
WO2005068397A1 (en) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. Pore-forming material for porous body, method for producing pore-forming material for porous body, method for producing porous body, porous body and honeycomb structure
JP2007250337A (en) * 2006-03-15 2007-09-27 Toppan Printing Co Ltd Electrode catalyst layer for solid polyelectrolyte fuel cell, its manufacturing method and solid polyelectrolyte fuel cell
JP2008078075A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2008078074A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2008078020A (en) * 2006-09-22 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
US7754370B2 (en) 2002-08-21 2010-07-13 Kabushiki Kaisha Toshiba Fuel cell catalyst material, fuel cell electrode, membrane-electrode assembly, fuel cell, fuel cell catalyst material manufacturing method, and fuel cell electrode manufacturing method
JP2011008975A (en) * 2009-06-23 2011-01-13 Kyodo Printing Co Ltd Electrode for dye-sensitized solar battery, method of manufacturing the same, and dye-sensitized solar cell
JP2015504588A (en) * 2011-12-07 2015-02-12 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Solid oxide fuel cell product and formation method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189012A (en) * 1996-12-20 1998-07-21 Toyota Motor Corp Electrode for fuel cell and power generation layer, and its manufacture
US7754370B2 (en) 2002-08-21 2010-07-13 Kabushiki Kaisha Toshiba Fuel cell catalyst material, fuel cell electrode, membrane-electrode assembly, fuel cell, fuel cell catalyst material manufacturing method, and fuel cell electrode manufacturing method
JPWO2005068397A1 (en) * 2004-01-13 2007-12-27 イビデン株式会社 Porous material for porous material, method for producing porous material for porous material, method for producing porous material, porous material and honeycomb structure
WO2005068397A1 (en) * 2004-01-13 2005-07-28 Ibiden Co., Ltd. Pore-forming material for porous body, method for producing pore-forming material for porous body, method for producing porous body, porous body and honeycomb structure
EP1588995A1 (en) * 2004-01-13 2005-10-26 Ibiden Co., Ltd. Pore-forming material for porous body, method for producing pore-forming material for porous body, method for producing porous body, porous body and honeycomb structure
EP1588995A4 (en) * 2004-01-13 2008-02-20 Ibiden Co Ltd Pore-forming material for porous body, method for producing pore-forming material for porous body, method for producing porous body, porous body and honeycomb structure
US7473465B2 (en) 2004-01-13 2009-01-06 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
US7396586B2 (en) 2004-01-13 2008-07-08 Ibiden Co., Ltd. Pore forming material for porous body, manufacturing method of pore forming material for porous body, manufacturing method of porous body, porous body, and honeycomb structural body
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
JP2007250337A (en) * 2006-03-15 2007-09-27 Toppan Printing Co Ltd Electrode catalyst layer for solid polyelectrolyte fuel cell, its manufacturing method and solid polyelectrolyte fuel cell
JP2008078020A (en) * 2006-09-22 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2008078074A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2008078075A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2011008975A (en) * 2009-06-23 2011-01-13 Kyodo Printing Co Ltd Electrode for dye-sensitized solar battery, method of manufacturing the same, and dye-sensitized solar cell
JP2015504588A (en) * 2011-12-07 2015-02-12 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Solid oxide fuel cell product and formation method
US9368823B2 (en) 2011-12-07 2016-06-14 Saint-Gobain Ceramics & Plastics, Inc. Solid oxide fuel cell articles and methods of forming

Similar Documents

Publication Publication Date Title
JP3267034B2 (en) Method for manufacturing solid oxide fuel cell
JP3100979B2 (en) Ceramic solid electrolyte based electrochemical oxygen concentrator
US5356730A (en) Monolithic fuel cell having improved interconnect layer
JP3351791B2 (en) Solid oxide fuel cell
Zha et al. Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs
CZ275498A3 (en) Cheap stable material of air electrodes for high-temperature electrochemical cells with electrolyte of solid oxide
KR920005401A (en) Thin tubular self-supporting electrodes for solid oxide electrolyte electrochemical cells
JPH0656554A (en) Production of porous electrode
JP2001332122A (en) Oxide ion conducting material, its manufacturing method, and fuel cell using it
WO2006098272A1 (en) Ion conductor
JPH0656556A (en) Production of porous electrode
JP3435608B2 (en) Method for manufacturing porous electrode and method for manufacturing fuel cell
JP5330849B2 (en) Conductive bonding material and solid oxide fuel cell having the same
JPH0656555A (en) Production of porous electrode
JPH0992294A (en) Solid electrolyte type fuel cell and its manufacture
JP3342610B2 (en) Solid oxide fuel cell
JPS5819873A (en) Leak prevention of oxygen-gas concentration cell
JP3336171B2 (en) Solid oxide fuel cell
JP2001118590A (en) High conductivity solid electrolyte film and method for manufacturing the same
JPH0660883A (en) Porous electrode and manufacture thereof
JPH05170444A (en) Stabilized zirconia-alumina powder for solid electrolyte fuel cell
JP3533694B2 (en) Porous conductive material powder, method for producing the same, and method for producing fuel cell
JPH08287921A (en) Fuel electrode for solid electrolyte fuel cell
JPH05114404A (en) Porous electrode
JPH06318463A (en) Solid electrolytic fuel cell