JP5330849B2 - Conductive bonding material and solid oxide fuel cell having the same - Google Patents

Conductive bonding material and solid oxide fuel cell having the same Download PDF

Info

Publication number
JP5330849B2
JP5330849B2 JP2009029610A JP2009029610A JP5330849B2 JP 5330849 B2 JP5330849 B2 JP 5330849B2 JP 2009029610 A JP2009029610 A JP 2009029610A JP 2009029610 A JP2009029610 A JP 2009029610A JP 5330849 B2 JP5330849 B2 JP 5330849B2
Authority
JP
Japan
Prior art keywords
bonding material
conductive
conductive bonding
side electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009029610A
Other languages
Japanese (ja)
Other versions
JP2010186623A (en
Inventor
靖彦 水流
一剛 森
弘一 武信
嘉範 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009029610A priority Critical patent/JP5330849B2/en
Publication of JP2010186623A publication Critical patent/JP2010186623A/en
Application granted granted Critical
Publication of JP5330849B2 publication Critical patent/JP5330849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体電解質型燃料電池の電極と他の構造部材を電気的に接合する場合に用いられる接合材、及び、この接合部材を有する固体電解質型燃料電池に関する。   The present invention relates to a bonding material used when an electrode of a solid oxide fuel cell and another structural member are electrically bonded, and a solid oxide fuel cell having the bonding member.

固体電解質型燃料電池(SOFC)の一般的な構成としては、図1に示すものが知られている。発電膜10は、固体電解質1とその両面に形成された燃料側電極2、空気側電極3から構成される。燃料側電極2側には導電性接合材4、インターコネクタ6が形成され、空気側電極3側には導電性接合材5、インターコネクタ7が形成されている。   As a general configuration of a solid oxide fuel cell (SOFC), the one shown in FIG. 1 is known. The power generation membrane 10 includes a solid electrolyte 1, a fuel side electrode 2 and an air side electrode 3 formed on both surfaces thereof. A conductive bonding material 4 and an interconnector 6 are formed on the fuel side electrode 2 side, and a conductive bonding material 5 and an interconnector 7 are formed on the air side electrode 3 side.

燃料側電極2側の導電性接合材4として、特許文献1に、NiOと、Feと、TiOを含み、更に、焼結時の熱収縮及びNiOの還元による収縮を抑制する目的でAlが添加される導電性接合材が開示されている。 Patent Document 1 includes NiO, Fe 2 O 3 and TiO 2 as the conductive bonding material 4 on the fuel side electrode 2 side, and further suppresses thermal shrinkage during sintering and shrinkage due to reduction of NiO A conductive bonding material to which Al 2 O 3 is added is disclosed.

固体電解質型燃料電池の運転温度は一般的には約1000℃であるが、より低温(例えば約800℃以下)で作動する固体電解質型燃料電池が求められている。しかしながら、従来の固体電解質型燃料電池では、固体電解質型燃料電池の運転温度を1000℃から800℃以下に低下させると燃料側電極の分極が大きくなり、反応抵抗が大きくなって発電性能が低下することが問題となっている。   The operating temperature of a solid oxide fuel cell is generally about 1000 ° C., but a solid oxide fuel cell that operates at a lower temperature (for example, about 800 ° C. or less) is desired. However, in the conventional solid oxide fuel cell, when the operating temperature of the solid oxide fuel cell is decreased from 1000 ° C. to 800 ° C. or less, the polarization of the fuel side electrode increases, the reaction resistance increases, and the power generation performance decreases. Is a problem.

特開2005−174585号公報JP 2005-174585 A

特許文献1に記載の導電性接合材は、絶縁体であるAlを含有するため、接合材の導電性を低下させる原因となっていた。固体電解質型燃料電池の運転温度の低温化に伴い、燃料極側電極材料の改良とともに、燃料側の導電性接合材の導電性を向上させることで、発電性能を向上させることが求められていた。 Since the conductive bonding material described in Patent Document 1 contains Al 2 O 3 that is an insulator, it has been a cause of reducing the conductivity of the bonding material. Along with the lowering of the operating temperature of the solid oxide fuel cell, it has been required to improve the power generation performance by improving the fuel electrode side electrode material and improving the conductivity of the fuel side conductive bonding material. .

本発明は、このような事情に鑑みてなされたものであって、高い導電性を示す燃料側電極の導電性接合材、及び、これを備える固体電解質型燃料電池を提供することを目的とする。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the electroconductive joining material of the fuel side electrode which shows high electroconductivity, and a solid oxide fuel cell provided with the same .

上記課題を解決するために、本発明の導電性接合材は、NiOと、Feと、TiOと、ランタンドープストロンチウムチタネート、ストロンチウムドープランタンクロマイト、及びバナジウム酸ストロンチウムからなる群から選択される1種以上の導電性酸化物とを含有する。 In order to solve the above problems, the conductive bonding material of the present invention is selected from the group consisting of NiO, Fe 2 O 3 , TiO 2 , lanthanum-doped strontium titanate, strontium doped lanthanum chromite, and strontium vanadate. And one or more conductive oxides.

ランタンドープストロンチウムチタネート(Sr1−mLaTiO)、ストロンチウムドープランタンクロマイト(La1−nSrCrO)、バナジウム酸ストロンチウム(SrVO)は、還元雰囲気において安定な酸化物である。また、固体電解質型燃料電池の低温運転条件である800℃還元雰囲気で高い電子導電性を示す。具体的に、800℃還元雰囲気における電子伝導性は、従来のAlではほぼ0S/cmであるのに対し、例えば、ストロンチウムドープランタンクロマイトでは30〜50S/cmである。従って、上記導電性酸化物を含む本発明の導電性接合材は、従来の導電性接合材よりも、例えば800℃還元雰囲気における導電性が向上する。 Lanthanum-doped strontium titanate (Sr 1-m La m TiO 3 ), strontium doped lanthanum chromite (La 1-n Sr n CrO 3 ), and strontium vanadate (SrVO 3 ) are stable oxides in a reducing atmosphere. In addition, it exhibits high electronic conductivity in a reducing atmosphere at 800 ° C., which is a low temperature operation condition of the solid oxide fuel cell. Specifically, the electron conductivity in a reducing atmosphere at 800 ° C. is about 0 S / cm in the conventional Al 2 O 3 , whereas it is 30 to 50 S / cm in the strontium doped planan chromite, for example. Therefore, the conductive bonding material of the present invention containing the conductive oxide has improved conductivity in a reducing atmosphere at, for example, 800 ° C., compared to the conventional conductive bonding material.

上記発明において、前記導電性酸化物を、前記NiOと前記Feと前記TiOとの合計に対し、10質量%以上20質量%以下の範囲の割合の内で選定されたいずれか1の割合で含有する。 In the above invention, the conductive oxide is any one selected within a range of 10% by mass to 20% by mass with respect to the total of the NiO, the Fe 2 O 3 and the TiO 2. you a proportion of.

本発明の導電性接合材は、上記導電性酸化物を10質量%以上20質量%以下の割合で含有することにより、NiOの還元による体積収縮や焼結性低下による接合強度低下を防止することができる。   The conductive bonding material of the present invention contains the conductive oxide in a proportion of 10% by mass or more and 20% by mass or less, thereby preventing volumetric shrinkage due to reduction of NiO and reduction in bonding strength due to decrease in sinterability. Can do.

上記発明において、前記導電性酸化物が、平均粒径5μm以上15μm以下の粒子状導電性酸化物を原料とすることが好ましい。   In the above invention, the conductive oxide is preferably made from a particulate conductive oxide having an average particle size of 5 μm or more and 15 μm or less.

平均粒径が5μmより小さい導電性酸化物から導電性接合材が形成されると、焼結時の収縮率が大きくなる。このため、導電性接合材にひび割れが生じて接合強度が低下する。一方、平均粒径が15μmを超える導電性酸化物から導電性接合材が形成されると、焼結性が低下する。このため、燃料側電極とインターコネクタとの接合強度が低下する。原料とされる粒子状導電性酸化物の平均粒径を5μm以上15μm以下とすることにより、導電性と接合強度とに優れる導電性接合材とすることができる。   When a conductive bonding material is formed from a conductive oxide having an average particle size of less than 5 μm, the shrinkage rate during sintering increases. For this reason, a crack arises in an electroconductive joining material, and joining strength falls. On the other hand, when the conductive bonding material is formed from a conductive oxide having an average particle size exceeding 15 μm, the sinterability is lowered. For this reason, the joint strength between the fuel-side electrode and the interconnector decreases. By setting the average particle size of the particulate conductive oxide used as a raw material to 5 μm or more and 15 μm or less, a conductive bonding material having excellent conductivity and bonding strength can be obtained.

また、本発明の固体電解質型燃料電池は、固体電解質と、該固体電解質の一側に設けられた空気側電極と、他の側に設けられた燃料側電極とを有する発電膜と、上記の導電性接合材を介して、前記燃料側電極と接合されたインターコネクタとを備える。   The solid electrolyte fuel cell of the present invention includes a solid electrolyte, a power generation membrane having an air-side electrode provided on one side of the solid electrolyte, and a fuel-side electrode provided on the other side; An interconnector joined to the fuel side electrode is provided via a conductive joining material.

本発明の固体電解質型燃料電池は、燃料側電極の側に、導電性に優れ高い接合強度を示す導電性接合材を備える。そのため、低温での運転においても接合抵抗が低いため、低温での発電特性に優れる。また、運転時における発電膜とインターコネクタとの剥離を防止して、耐久性に優れる固体電解質型燃料電池となる。   The solid oxide fuel cell of the present invention includes a conductive bonding material having excellent conductivity and high bonding strength on the fuel side electrode side. For this reason, since the junction resistance is low even during operation at low temperatures, the power generation characteristics at low temperatures are excellent. Moreover, peeling of the power generation film and the interconnector during operation is prevented, and a solid oxide fuel cell having excellent durability is obtained.

本発明によれば、還元雰囲気において安定であり、高い電子導電性を示すランタンドープストロンチウム、ストロンチウムドープランタンクロマイト、バナジウム酸ストロンチウムを含む導電性接合材であるため、800℃程度の運転でも固体電解質型燃料電池の接合抵抗を低減して発電特性を向上させることができる。   According to the present invention, since it is a conductive bonding material containing lanthanum-doped strontium, strontium doped lanthanum chromite, and strontium vanadate that is stable in a reducing atmosphere and exhibits high electronic conductivity, it is a solid electrolyte type even at an operation of about 800 ° C. The power generation characteristics can be improved by reducing the junction resistance of the fuel cell.

固体電解質型燃料電池の一例を示す概略図である。It is the schematic which shows an example of a solid oxide fuel cell. 発電膜とインターコネクタとの接合強度を測定する方法を説明する概略図である。It is the schematic explaining the method to measure the joint strength of a power generation film and an interconnector.

以下に、本実施形態に係る導電性接合材及び固体電解質型燃料電池を説明する。
本実施形態の固体電解質型燃料電池は、図1の構成を有する。発電膜10は、イットリア安定化ジルコニアからなる固体電解質膜1と、その両面に形成された燃料側電極2及び空気側電極3とから構成される。発電膜10は、ディンプル状の形状とされる。発電膜10の燃料側電極2の側には、導電性接合材4を介して燃料側電極2と電気的に接続されたインターコネクタ6が設けられる。
The conductive bonding material and the solid oxide fuel cell according to this embodiment will be described below.
The solid oxide fuel cell of this embodiment has the configuration shown in FIG. The power generation membrane 10 includes a solid electrolyte membrane 1 made of yttria-stabilized zirconia, and a fuel side electrode 2 and an air side electrode 3 formed on both surfaces thereof. The power generation film 10 has a dimple shape. An interconnector 6 that is electrically connected to the fuel side electrode 2 via the conductive bonding material 4 is provided on the fuel side electrode 2 side of the power generation membrane 10.

本実施形態において、燃料側電極2の側に設けられた導電性接合材4は、NiOと、Feと、TiOと、導電性酸化物とを含有する。導電性酸化物は、ランタンドープストロンチウムチタネート(Sr1−mLaTiO)、ストロンチウムドープランタンクロマイト(La1−nSrCrO)、バナジウム酸ストロンチウム(SrVO)から選択される1種以上とされる。列挙した導電性酸化物は、還元雰囲気で安定であり、高い電子導電性を示す。特に、ランタンドープストロンチウムチタネートは、耐熱性に優れるため、好適である。 In the present embodiment, the conductive bonding material 4 provided on the fuel side electrode 2 side contains NiO, Fe 2 O 3 , TiO 2, and a conductive oxide. The conductive oxide is at least one selected from lanthanum-doped strontium titanate (Sr 1-m La m TiO 3 ), strontium doped lanthanum chromite (La 1-n Sr n CrO 3 ), and strontium vanadate (SrVO 3 ). It is said. The listed conductive oxides are stable in a reducing atmosphere and exhibit high electronic conductivity. In particular, lanthanum-doped strontium titanate is preferable because it has excellent heat resistance.

図1の固体電解質型燃料電池は、以下の工程により作製される。
まず、導電性接合材原料として、NiO粉末、Fe粉末、TiO粉末、及び導電性酸化物粉末(粒子状)を混合する。混合粉末にビヒクルを添加して混練し、接合材ペーストを作製する。なお、ビヒクルとして、ブチルカルビトール、テレピン油、ブタノールなどを使用することができる。
The solid oxide fuel cell of FIG. 1 is manufactured by the following steps.
First, as the conductive bonding material raw material, NiO powder, Fe 2 O 3 powder, mixing TiO 2 powder, and the conductive oxide powder (particle shape). A vehicle is added to the mixed powder and kneaded to prepare a bonding material paste. As the vehicle, butyl carbitol, turpentine oil, butanol or the like can be used.

燃料側電極2の側に設けられるインターコネクタ6の一方の面に、スクリーンプリント法などにより、上述の接合材ペーストを100μmから200μmの厚さに均一に塗布する。そして、燃料側電極2が接するように、塗布された接合材ペースト上にディンプル状の発電膜10を配置する。   The above bonding material paste is uniformly applied to a thickness of 100 μm to 200 μm on one surface of the interconnector 6 provided on the fuel side electrode 2 side by a screen printing method or the like. Then, the dimple-shaped power generation film 10 is arranged on the applied bonding material paste so that the fuel-side electrode 2 is in contact therewith.

本実施形態の固体電解質型燃料電池では、発電膜10の空気側電極3の側には、導電性接合材5を介して空気側電極3と電気的に接続されたインターコネクタ7が設けられる。空気側電極3の側に設けられるインターコネクタ7の一方の面に、空気側電極用接合材ペーストを、100μmから200μmの厚さに均一に塗布する。本実施形態において、空気側電極用接合材ペーストは、ストロンチウムドープランタンマンガネートが用いられる。そして、空気側電極に空気側電極用接合材ペーストが接するように、インターコネクタ7を配置する。   In the solid oxide fuel cell according to the present embodiment, an interconnector 7 electrically connected to the air-side electrode 3 through the conductive bonding material 5 is provided on the air-side electrode 3 side of the power generation membrane 10. An air-side electrode bonding material paste is uniformly applied to a thickness of 100 μm to 200 μm on one surface of the interconnector 7 provided on the air-side electrode 3 side. In this embodiment, strontium dope plantan manganate is used for the air-side electrode bonding material paste. And the interconnector 7 is arrange | positioned so that the bonding material paste for air side electrodes may contact | connect an air side electrode.

その後、1200℃から1300℃の温度で大気中にて熱処理を実施する。この熱処理により、原料粉末が焼結し、発電膜10とインターコネクタ6,7とが、それぞれ導電性接合材4,5により接合される。   Thereafter, heat treatment is performed in the atmosphere at a temperature of 1200 ° C. to 1300 ° C. By this heat treatment, the raw material powder is sintered, and the power generation film 10 and the interconnectors 6 and 7 are joined by the conductive joining materials 4 and 5, respectively.

ここで、本実施形態の燃料側電極の導電性接合材において、Fe及びTiOは、焼成により導電性接合材4の強度を向上させる効果を有する。導電性と強度を考慮すると、本実施形態の導電性接合材は、NiO:70〜90質量%、Fe:5〜15質量%、TiO:5〜15質量%の割合で含有することが好ましい。 Here, in the conductive bonding material of the fuel side electrode of the present embodiment, Fe 2 O 3 and TiO 2 have the effect of improving the strength of the conductive bonding material 4 by firing. In consideration of conductivity and strength, the conductive bonding material of the present embodiment contains NiO: 70 to 90% by mass, Fe 2 O 3 : 5 to 15% by mass, TiO 2 : 5 to 15% by mass. It is preferable.

本実施形態の導電性接合材は、上記導電性酸化物を、NiOとFeとTiOとの合計に対して10質量%以上20質量%以下の割合で含有することが好ましい。
NiOは、還元雰囲気においてNiに還元される際に体積収縮する。導電性酸化物は、NiOの還元による導電性接合材の体積収縮を抑制する効果を有する。上述の導電性酸化物を、NiOとFeとTiOとの合計に対し10質量%以上の割合で含有することにより、NiOの還元収縮に起因する導電性接合材の接合強度低下を防止することができる。
一方、上述の導電性酸化物の含有量が、20質量%を超えると、接合材の焼結性が低下するため、接合強度が低下する。また、導電性酸化物は、Niに比べて800℃還元雰囲気における電子伝導性に劣るため、NiOに対する導電性酸化物の割合が相対的に大きくなると、接合材の導電性が低下する。
The conductive bonding material of this embodiment preferably contains the conductive oxide in a proportion of 10% by mass or more and 20% by mass or less with respect to the total of NiO, Fe 2 O 3 and TiO 2 .
NiO shrinks in volume when reduced to Ni in a reducing atmosphere. The conductive oxide has an effect of suppressing volume shrinkage of the conductive bonding material due to reduction of NiO. By containing the above-mentioned conductive oxide at a ratio of 10% by mass or more with respect to the total of NiO, Fe 2 O 3 and TiO 2, it is possible to reduce the bonding strength of the conductive bonding material due to the reduction shrinkage of NiO. Can be prevented.
On the other hand, when the content of the conductive oxide exceeds 20% by mass, the sinterability of the bonding material is lowered, so that the bonding strength is lowered. In addition, since the conductive oxide is inferior in electron conductivity in a reducing atmosphere at 800 ° C. compared to Ni, when the ratio of the conductive oxide to NiO is relatively large, the conductivity of the bonding material is lowered.

また、原料である粒子状の導電性酸化物粉末は、平均粒径5μm以上15μm以下であることが好ましい。
導電性酸化物原料粉末の平均粒径が5μmより小さいと、焼結時の収縮率が大きくなる。このため、導電性接合材にひび割れが生じ、発電膜とインターコネクタとの密着性(すなわち、接合強度)が低下する。また、導電性酸化物粒子がNi粒子間に侵入して充填されやすくなる。導電性酸化物はNiに比べて還元雰囲気での電子伝導性が低いために、Ni粒子間に侵入した導電性酸化物が導電性を阻害して、焼結後の接合材の導電率が低下する。一方、導電性酸化物原料粉末の平均粒径が15μmを超えると、焼結性が低下し、燃料側電極とインターコネクタとの接合強度が低下する。
Moreover, it is preferable that the particulate conductive oxide powder as a raw material has an average particle diameter of 5 μm or more and 15 μm or less.
When the average particle diameter of the conductive oxide raw material powder is smaller than 5 μm, the shrinkage rate during sintering increases. For this reason, a crack arises in an electroconductive joining material, and the adhesiveness (namely, joining strength) of a power generation film and an interconnector falls. In addition, the conductive oxide particles can easily enter between the Ni particles and be filled. Since the conductive oxide has a lower electronic conductivity in the reducing atmosphere than Ni, the conductive oxide that has entered between the Ni particles hinders the conductivity and decreases the conductivity of the sintered joint material after sintering. To do. On the other hand, when the average particle diameter of the conductive oxide raw material powder exceeds 15 μm, the sinterability is lowered, and the bonding strength between the fuel side electrode and the interconnector is lowered.

(実施例1)
NiO粉末(粒径1μm)、Fe粉末(粒径1μm)、TiO粉末(粒径1μm)、及びSLT粉末(Sr0.7La0.3TiO、粒径10μm)を、NiO:Fe:TiO:SLT=80:10:10:15(質量比)で混合した。混合粉末にビヒクル(ブチルカルビトール)を添加して混練し、接合材ペーストを作製した。
20mm角のインターコネクタ表面に、スクリーンプリント法により、厚さ150μmで接合材ペーストを塗布した。接合材ペースト上に、20mm角のディンプル状発電膜の燃料極側を載せた。なお、実施例1では、固体電解質:イットリア安定化ジルコニア、燃料側電極:NiO:YSZ=70:30、空気側電極:LSM:YSZ=80:20(ただし、LSMはLa0.8Sr0.2MnO)で構成される発電膜を使用した。
大気中にて1250℃1時間熱処理し、接合材ペーストを焼結して、発電膜とインターコネクタとを導電性接合材により接合し、試験片とした。
Example 1
NiO powder (particle size 1 μm), Fe 2 O 3 powder (particle size 1 μm), TiO 2 powder (particle size 1 μm), and SLT powder (Sr 0.7 La 0.3 TiO 3 , particle size 10 μm) : Fe 2 O 3 : TiO 2 : SLT = 80: 10: 10: 15 (mass ratio). A vehicle (butyl carbitol) was added to the mixed powder and kneaded to prepare a bonding material paste.
The bonding material paste was applied to the surface of the 20 mm square interconnector with a thickness of 150 μm by screen printing. The fuel electrode side of a 20 mm square dimple-shaped power generation film was placed on the bonding material paste. In Example 1, solid electrolyte: yttria stabilized zirconia, fuel side electrode: NiO: YSZ = 70: 30, air side electrode: LSM: YSZ = 80: 20 (where LSM is La 0.8 Sr 0. 2 A power generation film composed of 2MnO 3 ) was used.
It heat-processed in air | atmosphere 1250 degreeC for 1 hour, the joining material paste was sintered, the electric power generation film | membrane and the interconnector were joined by the electroconductive joining material, and it was set as the test piece.

熱処理後、発電膜の導電性接合材を塗布していない面及びインターコネクタの導電性接合材を塗布していない面に、白金ペーストと白金線を用いて端子を取り付けた。端子は、互いに対角位置となるように配置した。その後、大気雰囲気中1000℃にて、白金端子を発電膜及びインターコネクタに焼き付けた。
各端子に定電流発生装置及び電圧計を接続した。試験片を電気炉内で空気中にて800℃に昇温した。昇温後、100体積%Hを電気炉内に導入して還元処理を行い、直流4端子法により、導電性接合材の接合抵抗を測定した。
After the heat treatment, terminals were attached to the surface of the power generation film not coated with the conductive bonding material and the surface of the interconnector not coated with the conductive bonding material using a platinum paste and a platinum wire. The terminals were arranged so as to be diagonal to each other. Thereafter, the platinum terminal was baked on the power generation film and the interconnector at 1000 ° C. in an air atmosphere.
A constant current generator and a voltmeter were connected to each terminal. The test piece was heated to 800 ° C. in air in an electric furnace. After the temperature rise, 100% by volume H 2 was introduced into the electric furnace for reduction treatment, and the bonding resistance of the conductive bonding material was measured by a direct current four-terminal method.

(実施例2)
STLに換えて、LSC粉末(La0.7Sr0.3CrO、粒径10μm)を使用した以外は、実施例1と同様にして試験片を作成し、導電性接合材の接合抵抗を測定した。
(Example 2)
A test piece was prepared in the same manner as in Example 1 except that LSC powder (La 0.7 Sr 0.3 CrO 3 , particle size 10 μm) was used instead of STL, and the bonding resistance of the conductive bonding material was determined. It was measured.

(実施例3)
STLに換えて、SrVO粉末(粒径10μm)を使用した以外は、実施例1と同様にして試験片を作成し、導電性接合材の接合抵抗を測定した。
(Example 3)
A test piece was prepared in the same manner as in Example 1 except that SrVO 3 powder (particle size 10 μm) was used instead of STL, and the bonding resistance of the conductive bonding material was measured.

(比較例)
STLに換えて、Al粉末(粒径10μm)を使用した以外は、実施例1と同様にして試験片を作成し、導電性接合材の接合抵抗を測定した。
(Comparative example)
A test piece was prepared in the same manner as in Example 1 except that Al 2 O 3 powder (particle size: 10 μm) was used instead of STL, and the bonding resistance of the conductive bonding material was measured.

実施例1乃至実施例3及び比較例の導電性接合材の接合抵抗を、表1に示す。

Figure 0005330849
実施例1乃至実施例3の導電性接合材は、比較例の導電性接合材よりも還元雰囲気での接合抵抗を低減させることができた。還元雰囲気での接合抵抗と高温での安定性とを考慮すると、SLTを含む導電性接合材が最も好適と考えられた。 Table 1 shows the bonding resistance of the conductive bonding materials of Examples 1 to 3 and the comparative example.
Figure 0005330849
The conductive bonding materials of Examples 1 to 3 were able to reduce the bonding resistance in a reducing atmosphere as compared with the conductive bonding material of the comparative example. Considering the bonding resistance in a reducing atmosphere and the stability at high temperature, it was considered that a conductive bonding material containing SLT is most suitable.

(実施例4)
粒径が異なるSLT粉末(Sr0.7La0.3TiO、粒径1〜30μm)を用い、実施例1と同様の工程にて各試験片を作製した。各試験片を、4%H−Nバランス雰囲気中1000℃にて還元処理を施した。
Example 4
Using SLT powders (Sr 0.7 La 0.3 TiO 3 , particle size of 1 to 30 μm) having different particle sizes, test pieces were prepared in the same process as in Example 1. Each test piece was subjected to reduction treatment at 1000 ° C. in a 4% H 2 —N 2 balance atmosphere.

各試験片について、大気雰囲気中での熱処理後、及び、還元処理後の発電膜とインターコネクタとの接合強度を、以下の方法で測定した。図2は、接合強度測定方法を説明するための図である。
インターコネクタ6の導電性接合材4及び発電膜10が接合されていない面を、アクリル板8に接着剤で接着した。図2に示すように、ディンプル状の発電膜10に重りを収容できる容器9を取り付けた。容器9内に、重り(直径5mmのジルコニアボール)を徐々に入れ、インターコネクタと導電性接合材との間、または、導電性接合材と発電膜との間で剥離したときの重り総重量を、接合強度とした。
With respect to each test piece, the bonding strength between the power generation film and the interconnector after the heat treatment in the air atmosphere and after the reduction treatment was measured by the following method. FIG. 2 is a diagram for explaining a bonding strength measuring method.
The surface of the interconnector 6 where the conductive bonding material 4 and the power generation film 10 are not bonded was bonded to the acrylic plate 8 with an adhesive. As shown in FIG. 2, a container 9 capable of accommodating a weight was attached to a dimple-shaped power generation film 10. The weight (zirconia ball having a diameter of 5 mm) is gradually put into the container 9, and the total weight of the weight when peeled between the interconnector and the conductive bonding material or between the conductive bonding material and the power generation film is calculated. The bonding strength was used.

表2に、SLT粒径が異なる導電接合材の、大気中での焼成(熱処理)後及び還元処理後の接合強度を示す。

Figure 0005330849
SLT粒径5〜15μmの導電性接合材は、還元処理後も高い接合強度を示した。特に、SLT粒径10〜15μmである導電性接合材は、還元処理後の接合強度2000g以上と、十分な強度が得られた。 Table 2 shows the bonding strength of the conductive bonding materials having different SLT particle sizes after firing (heat treatment) in air and after reduction treatment.
Figure 0005330849
The conductive bonding material having an SLT particle size of 5 to 15 μm showed high bonding strength even after the reduction treatment. In particular, the conductive bonding material having an SLT particle size of 10 to 15 μm has a sufficient bonding strength of 2000 g or more after the reduction treatment.

(実施例5)
実施例1と同様のNiO粉末、Fe粉末、TiO粉末、及びSLT粉末を、NiO:Fe:TiO:SLT=80:10:10:5〜30(質量比)で混合した。SLT混合比率が異なる混合粉末を用いて、実施例1と同様にして各接合材ペーストを作製し、試験片を得た。
各試験片について、実施例4と同様の方法にて、還元処理を実施し、還元処理後の接合強度を測定した。
(Example 5)
The same NiO powder, Fe 2 O 3 powder, TiO 2 powder, and SLT powder as in Example 1 were mixed with NiO: Fe 2 O 3 : TiO 2 : SLT = 80: 10: 10: 5 to 30 (mass ratio). Mixed. Using mixed powders having different SLT mixing ratios, each bonding material paste was prepared in the same manner as in Example 1 to obtain test pieces.
About each test piece, the reduction process was implemented by the method similar to Example 4, and the joint strength after a reduction process was measured.

表3に、SLT混合比率が異なる導電性接合材の還元処理後の接合強度を示す。

Figure 0005330849
このように、SLT比率10〜20質量%において、還元処理後の接合強度2000g以上と、十分な強度が得られた。 Table 3 shows the bonding strength after reduction treatment of conductive bonding materials having different SLT mixing ratios.
Figure 0005330849
Thus, in the SLT ratio of 10 to 20% by mass, a sufficient strength of 2000 g or more after the reduction treatment was obtained.

1 固体電解質
2 燃料側電極
3 空気側電極
4,5 導電性接合材
6,7 インターコネクタ
8 アクリル板
9 容器
10 発電膜
DESCRIPTION OF SYMBOLS 1 Solid electrolyte 2 Fuel side electrode 3 Air side electrode 4,5 Conductive joining material 6,7 Interconnector 8 Acrylic board 9 Container 10 Power generation film

Claims (3)

NiOと、Feと、TiOと、ランタンドープストロンチウムチタネート、ストロンチウムドープランタンクロマイト、及びバナジウム酸ストロンチウムからなる群から選択される1種以上の導電性酸化物とを含有し、
前記導電性酸化物を、前記NiOと前記Fe と前記TiO との合計に対し、10質量%以上20質量%以下の範囲の割合の内で選定されたいずれか1の割合で含有する導電性接合材。
Containing one or more conductive oxides selected from the group consisting of NiO, Fe 2 O 3 , TiO 2 , lanthanum-doped strontium titanate, strontium doped lanthanum chromite, and strontium vanadate ,
The conductive oxide is contained in any one ratio selected within a range of 10% by mass or more and 20% by mass or less with respect to the total of the NiO, the Fe 2 O 3 and the TiO 2. Conductive bonding material.
前記導電性酸化物が、平均粒径5μm以上15μm以下の粒子状導電性酸化物を原料とする請求項1に記載の導電性接合材。 The conductive bonding material according to claim 1, wherein the conductive oxide is made from a particulate conductive oxide having an average particle diameter of 5 μm or more and 15 μm or less. 固体電解質と、該固体電解質の一側に設けられた空気側電極と、他の側に設けられた燃料側電極とを有する発電膜と、
請求項1または請求項に記載の導電性接合材を介して、前記燃料側電極と接合されたインターコネクタとを備える固体電解質型燃料電池。
A power generation membrane having a solid electrolyte, an air-side electrode provided on one side of the solid electrolyte, and a fuel-side electrode provided on the other side;
Through the conductive bonding material according to claim 1 or claim 2, the solid electrolyte fuel cell comprising a interconnector and which is bonded to the fuel side electrode.
JP2009029610A 2009-02-12 2009-02-12 Conductive bonding material and solid oxide fuel cell having the same Active JP5330849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009029610A JP5330849B2 (en) 2009-02-12 2009-02-12 Conductive bonding material and solid oxide fuel cell having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009029610A JP5330849B2 (en) 2009-02-12 2009-02-12 Conductive bonding material and solid oxide fuel cell having the same

Publications (2)

Publication Number Publication Date
JP2010186623A JP2010186623A (en) 2010-08-26
JP5330849B2 true JP5330849B2 (en) 2013-10-30

Family

ID=42767160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009029610A Active JP5330849B2 (en) 2009-02-12 2009-02-12 Conductive bonding material and solid oxide fuel cell having the same

Country Status (1)

Country Link
JP (1) JP5330849B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5449120B2 (en) * 2010-12-17 2014-03-19 三菱重工業株式会社 Method for forming seal component and method for manufacturing solid oxide fuel cell module
JP5885579B2 (en) * 2012-05-15 2016-03-15 日本特殊陶業株式会社 Solid oxide fuel cell and method for producing the same
JP6420697B2 (en) * 2014-03-19 2018-11-07 日本碍子株式会社 COMPOSITE, HONEYCOMB STRUCTURE, AND METHOD FOR PRODUCING COMPOSITE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3110265B2 (en) * 1994-10-31 2000-11-20 三井造船株式会社 Bonding material and bonding method for solid oxide fuel cell stack
JP3229160B2 (en) * 1995-04-07 2001-11-12 三菱重工業株式会社 Conductive bonding agent
JP2001035505A (en) * 1999-07-21 2001-02-09 Mitsui Eng & Shipbuild Co Ltd Fuel cell stack and method and member for joining same

Also Published As

Publication number Publication date
JP2010186623A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
Yoon et al. Polarization measurements on single-step co-fired solid oxide fuel cells (SOFCs)
JP2014535155A (en) Interconnection cells for solid oxide fuel cells
JP2007324087A (en) Ceria family buffer layer for air electrode of solid oxide fuel cell and its manufacturing method
JP2017076520A (en) Electrode material for solid oxide type fuel cell, and solid oxide type fuel cell arranged by use thereof
JP7089838B2 (en) Single cell for solid oxide fuel cell and its manufacturing method, and cathode for solid oxide fuel cell and its manufacturing method
JP5330849B2 (en) Conductive bonding material and solid oxide fuel cell having the same
WO2011138915A1 (en) High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
JP6042320B2 (en) Electrode materials and their use
JP2008034179A (en) Jointing material, jointing member, jointing method, and solid electrolyte fuel cell
JP6268209B2 (en) Fuel cell power generation unit and fuel cell stack
JPH10228911A (en) Electrode material for solid electrolyte fuel cell
JP6452424B2 (en) Electrode material and solid oxide fuel cell
JP6188569B2 (en) Electrode materials and their use
JP2008200724A (en) Joining material, joint member, joining method, and solid electrolyte fuel cell
JP5912536B2 (en) ELECTRODE FORMING MATERIAL, GREEN SHEET FORMED BY THE SAME, POROUS ELECTRODE, SOLID OXIDE FUEL CELL, AND METHOD FOR PRODUCING SOLID OXIDE FUEL CELL
JP5364292B2 (en) Conductive bonding material, bonding member, bonding method, solid oxide fuel cell and bonding material for solid oxide fuel cell
JP2008234927A (en) Manufacturing method of solid oxide fuel cell
JP2015002035A (en) Method for manufacturing solid oxide fuel battery cell
JP2007012498A (en) Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
JP5030747B2 (en) Method for producing solid oxide fuel cell and firing jig used in the method
JP2008207188A (en) Joining material, joining member, joining method, and solid electrolyte fuel cell
JP3533694B2 (en) Porous conductive material powder, method for producing the same, and method for producing fuel cell
JP6000927B2 (en) Conductive bonding material
JP5364291B2 (en) Bonding material, bonding member, bonding method, solid oxide fuel cell, and bonding material for solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R151 Written notification of patent or utility model registration

Ref document number: 5330849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350