JP2015002035A - Method for manufacturing solid oxide fuel battery cell - Google Patents

Method for manufacturing solid oxide fuel battery cell Download PDF

Info

Publication number
JP2015002035A
JP2015002035A JP2013125259A JP2013125259A JP2015002035A JP 2015002035 A JP2015002035 A JP 2015002035A JP 2013125259 A JP2013125259 A JP 2013125259A JP 2013125259 A JP2013125259 A JP 2013125259A JP 2015002035 A JP2015002035 A JP 2015002035A
Authority
JP
Japan
Prior art keywords
air electrode
solid oxide
cell
setter
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013125259A
Other languages
Japanese (ja)
Inventor
田口 博章
Hiroaki Taguchi
博章 田口
渡部 仁貴
Kimitaka Watabe
仁貴 渡部
姫子 大類
Himeko Orui
姫子 大類
由梨 田原
Yuri Tawara
由梨 田原
小林 隆一
Ryuichi Kobayashi
隆一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013125259A priority Critical patent/JP2015002035A/en
Publication of JP2015002035A publication Critical patent/JP2015002035A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve both suppression of occurrence of cell warpage and suppression of deterioration in electric conductivity of an air electrode surface.SOLUTION: A raw material for an air electrode 3 is formed on a surface of an electrolyte 1, the surface being on an opposite side to a fuel electrode 2 of a half cell comprising the fuel electrode 2 and the electrolyte 1. The half cell is disposed so that the surface where the raw material of the air electrode 3 is formed is directed upward, and a plate-like setter 4 made of a ceria-containing material is mounted on the raw material of the air electrode 3. The half cell and the raw material of the air electrode 3 are subjected to heat treatment to fire the air electrode 3.

Description

本発明は、固体酸化物形燃料電池のセルに関するものである。   The present invention relates to a cell of a solid oxide fuel cell.

近年、酸化物イオン伝導体を電解質に用いた固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)に関心が高まりつつある。特に、エネルギーの有効利用という観点から、SOFCはカルノー効率の制約を受けないために本質的に高いエネルギー変換効率を有し、さらに、良好な環境保全が期待されるなどの優れた特徴を持っている。このような特徴を備えているSOFCに用いられる電解質は、空気極と電解質界面で、酸素が電子と反応して生成された酸化物イオン(酸素イオン)を燃料極に供給する役割を有するため、速やかに酸化物イオンを伝導することが要求される。   In recent years, there has been a growing interest in solid oxide fuel cells (SOFCs) using oxide ion conductors as electrolytes. In particular, from the viewpoint of effective use of energy, SOFC has high energy conversion efficiency because it is not restricted by Carnot efficiency, and has excellent features such as good environmental conservation. Yes. Since the electrolyte used in the SOFC having such characteristics has a role of supplying oxide ions (oxygen ions) generated by reaction of oxygen with electrons at the air electrode / electrolyte interface to the fuel electrode, It is required to conduct oxide ions promptly.

近年、電解質の薄肉化等により600〜800℃程度の低温作動かつ高出力化が可能となっており、SOFC用部材の一つであるインターコネクタ材料に耐熱性の金属合金材料が使用できる可能性が高まっている。   In recent years, it has become possible to operate at a low temperature of about 600 to 800 ° C. and increase the output by reducing the thickness of the electrolyte, and the possibility of using a heat-resistant metal alloy material as an interconnector material that is one of the SOFC members. Is growing.

このSOFCのセルは主にセラミックスで構成されており、燃料極には金属酸化物と電解質材料とが混合されたサーメットと呼ばれる材料が広く用いられている。電解質上への電極形成は焼成を行う事が一般的であり、電極作製時は、1200〜1500℃の高温で焼成されている。   This SOFC cell is mainly composed of ceramics, and a material called cermet in which a metal oxide and an electrolyte material are mixed is widely used for the fuel electrode. In general, the electrode is formed on the electrolyte by firing, and the electrode is fired at a high temperature of 1200 to 1500 ° C.

通常、セルを焼成する際は、セルの下にセッター(棚板、敷板、焼成板とも呼ばれる)を設置することが一般的であり、セラミックス焼成用のセッターにはAl23が広く用いられている。また、空気極焼成時にも、セルの上にセッターを載せて焼成することで、セルの反りを抑制することが行われている。 Usually, when firing a cell, it is common to install a setter (also called a shelf board, a floor board, or a fired board) under the cell, and Al 2 O 3 is widely used as a setter for firing ceramics. ing. In addition, even during air electrode firing, cell warpage is suppressed by placing a setter on the cell and firing.

しかしながら、Al23製のセッターを用いてセルを焼成した場合、Al23が空気極表面の金属酸化物と反応してしまい、空気極表面の金属酸化物がAl23と相互拡散し、空気極の組成が変わってしまうことで、セル性能の低下を引き起こすことが考えられる。(非特許文献1参照)。 However, when firing the cell using a setter made of Al 2 O 3, Al 2 O 3 reacts with the metal oxide of the cathode surface, the mutual metal oxides of the air electrode surface and Al 2 O 3 It is conceivable that the cell performance is deteriorated by diffusion and the change of the composition of the air electrode. (Refer nonpatent literature 1).

R.D.Peelamedu,R.Roy,D.K.Agrawal,“Microwave-induced reaction sintering of NiAl2O4”,Materials Letters,55,p.234-240,2002R.D.Peelamedu, R.Roy, D.K.Agrawal, “Microwave-induced reaction comprising of NiAl2O4”, Materials Letters, 55, p.234-240, 2002

上述したようにAl23製のセッターを空気極の上に載せて空気極を焼成した場合、Al23が空気極表面の金属酸化物と反応してしまい、空気極表面の金属酸化物とAl23とが相互拡散を起こし、電気抵抗の高い層が空気極表面に形成され、このような空気極の組成変化によってセル性能が低下してしまうという問題点があった。 As described above, when an air electrode is fired by placing a setter made of Al 2 O 3 on the air electrode, Al 2 O 3 reacts with the metal oxide on the air electrode surface, resulting in metal oxidation on the air electrode surface. The material and Al 2 O 3 cause mutual diffusion, and a layer having high electrical resistance is formed on the surface of the air electrode, and the cell performance deteriorates due to the composition change of the air electrode.

本発明は、上記課題を解決するためになされたもので、セルの反りの抑制と空気極表面の電気伝導度の低下の抑制とを両立させることができる固体酸化物形燃料電池セルの作製方法を提供することを目的とする。   The present invention has been made to solve the above problems, and a method for producing a solid oxide fuel cell capable of achieving both suppression of cell warpage and suppression of decrease in electrical conductivity of the air electrode surface. The purpose is to provide.

本発明の固体酸化物形燃料電池セルの作製方法は、燃料極と電解質とから構成されるハーフセルの燃料極とは反対側の電解質の面に空気極原料を形成する工程と、前記空気極原料を形成した面が上になるように前記ハーフセルを配置し、前記空気極原料の上に、少なくとも空気極原料と接する面がセリアを含む材料からなる板状のセッターを載せる工程と、前記ハーフセルおよび空気極原料を熱処理して空気極を焼成する工程とを含むことを特徴とするものである。
また、本発明の固体酸化物形燃料電池セルの作製方法の1構成例において、前記セッターは、CeO2または異元素を添加したCeO2からなるものである。
また、本発明の固体酸化物形燃料電池セルの作製方法の1構成例において、前記セッターは、Al23製またはZrO2製の板の表面に、CeO2膜または異元素を添加したCeO2膜を塗布して焼結させたものである。
また、本発明の固体酸化物形燃料電池セルの作製方法の1構成例において、前記空気極原料は、ペロブスカイト構造の金属酸化物からなるものである。
また、本発明の固体酸化物形燃料電池セルの作製方法の1構成例において、前記ペロブスカイト構造の金属酸化物は、LaNi(1-X)FeX3、La(1-X)SrXMnO3、La(1-X)SrXCoYFe(1-Y)3、La(1-X)SrXCoO3、LaNi0.6Fe0.43(LNF)、LaNi(1-X-Y)CoXFeY3(LNCF)、Sm(1-X)SrXCoO3のいずれかを含むものである。
The method for producing a solid oxide fuel cell of the present invention includes a step of forming an air electrode material on the surface of the electrolyte opposite to the fuel electrode of a half cell composed of a fuel electrode and an electrolyte, and the air electrode material Placing the half-cell so that the surface on which the surface is formed is placed, and placing a plate-like setter made of a material containing ceria on at least the surface in contact with the air electrode material on the air electrode material; and the half cell and And a step of baking the air electrode by heat-treating the air electrode material.
Additionally, in an example of a method for manufacturing a solid oxide fuel cell of the present invention, the setter is made of CeO 2 with the addition of CeO 2 or foreign element.
Further, in one configuration example of the method for producing a solid oxide fuel cell according to the present invention, the setter includes a CeO 2 film or a CeO 2 film added with a different element on the surface of an Al 2 O 3 or ZrO 2 plate. Two films are applied and sintered.
In one configuration example of the method for producing a solid oxide fuel cell according to the present invention, the air electrode raw material is made of a metal oxide having a perovskite structure.
In one configuration example of the method for producing a solid oxide fuel cell according to the present invention, the metal oxide having the perovskite structure is LaNi (1-X) Fe x O 3 , La (1-x) Sr x MnO. 3, La (1-X) Sr X Co Y Fe (1-Y) O 3, La (1-X) Sr X CoO 3, LaNi 0.6 Fe 0.4 O 3 (LNF), LaNi (1-XY) Co X Any of Fe Y O 3 (LNCF) and Sm (1-X) Sr X CoO 3 is included.

本発明によれば、固体酸化物形燃料電池セルの空気極を作製する際に、少なくとも空気極原料と接する面がセリアを含む材料からなる板状のセッターを空気極の上に載せて空気極を焼成する。これにより、本発明では、固体酸化物形燃料電池セルの反りを抑制すると共に、空気極表面の金属酸化物と従来のAl23製のセッターとの相互拡散による空気極の組成変化を抑制することができるので、焼成による空気極の導電性低下を抑えることができ、集電効率の高い固体酸化物形燃料電池を作製することができる。 According to the present invention, when an air electrode of a solid oxide fuel cell is produced, a plate-like setter made of a material containing at least a ceria on the surface in contact with the air electrode material is placed on the air electrode. Is fired. As a result, in the present invention, the warpage of the solid oxide fuel cell is suppressed, and the composition change of the air electrode due to the mutual diffusion between the metal oxide on the surface of the air electrode and the conventional Al 2 O 3 setter is suppressed. Therefore, a decrease in the conductivity of the air electrode due to firing can be suppressed, and a solid oxide fuel cell with high current collection efficiency can be produced.

本発明の第1の実施の形態に係る固体酸化物形燃料電池のセルの構成を示す断面図である。It is sectional drawing which shows the structure of the cell of the solid oxide fuel cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る固体酸化物形燃料電池のセルの作製方法を説明する図である。It is a figure explaining the manufacturing method of the cell of the solid oxide fuel cell which concerns on the 1st Embodiment of this invention.

[第1の実施の形態]
以下、本発明の実施の形態について図を参照して説明する。始めに、本発明の第1の実施の形態について図1を用いて説明する。図1は、本発明の第1の実施の形態に係るSOFCのセルの構成を示す断面図である。平板型構造のSOFCのセルは、ジルコニア系の材料からなる板状の電解質1と、電解質1の一方の面に形成された板状の燃料極2と、電解質1の他方の面に形成されたAMO3のペロブスカイト構造の金属酸化物からなる板状の空気極3とから構成される。本実施の形態では、電極である燃料極2と空気極3とは、所定の粒径の粉末を有する多孔質焼結体から形成されていればよい。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing the configuration of the SOFC cell according to the first embodiment of the present invention. An SOFC cell having a flat plate structure is formed on a plate-like electrolyte 1 made of a zirconia-based material, a plate-like fuel electrode 2 formed on one surface of the electrolyte 1, and the other surface of the electrolyte 1. It is composed of a plate-like air electrode 3 made of a metal oxide of AMO 3 perovskite structure. In this Embodiment, the fuel electrode 2 and the air electrode 3 which are electrodes should just be formed from the porous sintered compact which has a powder of a predetermined particle diameter.

電解質1は、例えば酸化スカンジウム(Sc23)および酸化アルミニウム(Al23)安定化ZrO2(SASZ)、イットリア安定化ジルコニア(YSZ)、スカンジア安定化ジルコニア(ScSZ)などのジルコニア材料の粉体の焼結体から構成されていればよい。 The electrolyte 1 is made of, for example, zirconia material such as scandium oxide (Sc 2 O 3 ) and aluminum oxide (Al 2 O 3 ) stabilized ZrO 2 (SASZ), yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ). What is necessary is just to be comprised from the sintered compact of powder.

燃料極2は、例えば電解質1を構成する酸化物材料に金属ニッケルが混合された電子伝導性を有する金属−酸化物混合体(サーメット)の粉体の焼成体(多孔質焼結体)から構成されていればよい。このような混合体としては、例えばニッケル−イットリア安定化ジルコニアサーメット(Ni−YSZ)、ニッケル−アルミナ添加スカンジア安定化ジルコニア(Ni−SASZ)などがある。   The fuel electrode 2 is composed of, for example, a sintered body (porous sintered body) of a powder of a metal-oxide mixture (cermet) having electronic conductivity in which metal nickel is mixed with an oxide material constituting the electrolyte 1. It only has to be done. Examples of such a mixture include nickel-yttria stabilized zirconia cermet (Ni-YSZ) and nickel-alumina-added scandia stabilized zirconia (Ni-SASZ).

空気極3は、AMO3のペロブスカイト構造の金属酸化物から構成される。このような金属酸化物としては、例えばLaNi(1-X)FeX3、La(1-X)SrXMnO3、La(1-X)SrXCoYFe(1-Y)3、La(1-X)SrXCoO3、LaNi0.6Fe0.43(LNF)、LaNi(1-X-Y)CoXFeY3(LNCF)、Sm(1-X)SrXCoO3のいずれかを用いればよい。 The air electrode 3 is composed of a metal oxide having a perovskite structure of AMO 3 . Examples of such metal oxides, for example LaNi (1-X) Fe X O 3, La (1-X) Sr X MnO 3, La (1-X) Sr X Co Y Fe (1-Y) O 3 , La (1-X) Sr X CoO 3 , LaNi 0.6 Fe 0.4 O 3 (LNF), LaNi (1-XY) Co X Fe Y O 3 (LNCF), Sm (1-X) Sr X CoO 3 Can be used.

このようなSOFCセルの空気極3を作製する際に、図2に示すようにセリア(酸化セリウム)製のセッター4を空気極3の上に載せて空気極3を焼成する。これにより、SOFCセルの反りを抑制すると共に、空気極表面の金属酸化物と従来のAl23製のセッターとの相互拡散による空気極3の組成変化を抑制することができるので、焼成による空気極3の導電性低下を抑えることができ、集電効率の高いSOFCを作製することができる。 When the air electrode 3 of such an SOFC cell is manufactured, a setter 4 made of ceria (cerium oxide) is placed on the air electrode 3 as shown in FIG. Thus, it is possible to suppress the warping of the SOFC cell, it is possible to suppress the change in composition of the air electrode 3 due to mutual diffusion between the metal oxide and conventional made of Al 2 O 3 setter of the air electrode surface, by calcining A decrease in conductivity of the air electrode 3 can be suppressed, and an SOFC with high current collection efficiency can be produced.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。本実施の形態は、第1の実施の形態をより具体的に説明するものである。なお、当然のことであるが本発明は以下の実施の形態に限定されるものではない。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the present embodiment, the first embodiment will be described more specifically. Of course, the present invention is not limited to the following embodiments.

本実施の形態のSOFCセルの作製方法では、まずドクターブレード法を用いて、NiO−8YSZ(0.92ZrO2−0.08Y23)のスラリ(平均粒径が約0.6μmの10mol%、Y23添加ジルコニア粉末、平均粒径が約0.2μmのNiO粉末が60wt%)をシート状に形成する。このときスラリの厚みは、焼成後に形成される燃料極2の厚みが1.0mm程度になるようにする。こうして、燃料極シートを作製する。 In the manufacturing method of the SOFC cell of the present embodiment, first, a doctor blade method is used to make a slurry of NiO-8YSZ (0.92ZrO 2 -0.08Y 2 O 3 ) (10 mol% with an average particle size of about 0.6 μm). , Y 2 O 3 added zirconia powder, NiO powder having an average particle diameter of about 0.2 μm is 60 wt%). At this time, the thickness of the slurry is set so that the thickness of the fuel electrode 2 formed after firing is about 1.0 mm. In this way, a fuel electrode sheet is produced.

同様に、ドクターブレード法を用いて、8YSZのスラリをシート状に形成する。このときスラリの厚みは、焼成後に形成される電解質1の厚みが30μm程度になるようにする。こうして、電解質シートを作製する。続いて、燃料極シートと電解質シートとを貼り合わせ、この貼り合わせたものを3cm×3cmの大きさに加工して脱脂をした後に、1300℃の熱処理条件で焼成する。こうして、燃料極2と電解質1とから構成されるハーフセルが完成する。   Similarly, an 8YSZ slurry is formed into a sheet using a doctor blade method. At this time, the thickness of the slurry is set so that the thickness of the electrolyte 1 formed after firing is about 30 μm. In this way, an electrolyte sheet is produced. Subsequently, the fuel electrode sheet and the electrolyte sheet are bonded together, the bonded sheet is processed into a size of 3 cm × 3 cm, degreased, and fired under heat treatment conditions of 1300 ° C. Thus, a half cell composed of the fuel electrode 2 and the electrolyte 1 is completed.

次に、平均粒径が1.0μmのLa0.8Sr0.2MnO3、La0.6Sr0.4Co0.2Fe0.83、La0.6Sr0.4CoO3、LaNi0.6Fe0.43、LaNi0.6Co0.2Fe0.23粉末のスラリを作製する。このスラリを上記のハーフセルの電解質1の上にスクリーン印刷法により塗布し、空気極塗布膜を形成する。このときスラリの厚みは、焼成後に形成される空気極3の厚みが100μmとなるようにする。そして、図2に示したようにSOFCセルの燃料極2が下になるようにして配置し、セリア(CeO2)製のセッター4を空気極塗布膜の上に載せて1100℃、2時間の熱処理条件で焼成する。こうして、燃料極支持型のSOFCセルが完成する。 Then, the average particle diameter is 1.0μm in the La 0.8 Sr 0.2 MnO 3, La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3, La 0.6 Sr 0.4 CoO 3, LaNi 0.6 Fe 0.4 O 3, LaNi 0.6 Co 0.2 Fe 0.2 O 3 Make a powder slurry. This slurry is applied onto the half-cell electrolyte 1 by screen printing to form an air electrode coating film. At this time, the thickness of the slurry is set so that the thickness of the air electrode 3 formed after firing is 100 μm. Then, as shown in FIG. 2, the SOFC cell is disposed with the fuel electrode 2 facing downward, and a setter 4 made of ceria (CeO 2 ) is placed on the air electrode coating film at 1100 ° C. for 2 hours. Firing under heat treatment conditions. Thus, a fuel electrode supported SOFC cell is completed.

作製したSOFCセルの空気極表面の電気伝導度を測定するため、直流四端子法を用いた。具体的には作製したSOFCセルの空気極表面にPt線で出来た電流線、電圧線を取り付け、1000℃、2時間の熱処理条件で焼成する。そして、SOFCセルを雰囲気炉内に入れ、大気雰囲気下で800℃まで昇温した後1時間経過した後の空気極表面の電気伝導度を測定した。測定には、マルチメータ(例えばケースレイ社製、THD マルチメータ 2015−P等)を用いた。測定結果を表1に示す。   In order to measure the electrical conductivity of the surface of the air electrode of the fabricated SOFC cell, a direct current four-terminal method was used. Specifically, a current line and a voltage line made of Pt wire are attached to the surface of the air electrode of the manufactured SOFC cell and fired under heat treatment conditions at 1000 ° C. for 2 hours. Then, the SOFC cell was placed in an atmospheric furnace, and the electrical conductivity of the air electrode surface after one hour had elapsed after the temperature was raised to 800 ° C. in an air atmosphere was measured. For the measurement, a multimeter (for example, THD Multimeter 2015-P manufactured by Caseley Co., Ltd.) was used. The measurement results are shown in Table 1.

Figure 2015002035
Figure 2015002035

表1では、空気極3の焼成時に空気極3の上にセッターを載せずに作製したSOFCセルの番号を#1−0−0、空気極3の焼成時に空気極3の上に従来と同様の6×6cmの大きさのAl23製のセッターを載せて作製したSOFCセルの番号を#1−0−1〜#1−0−5としている。また、空気極3の焼成時に空気極3の上にCeO2製のセッター4を載せて作製した本実施の形態のSOFCセルの番号を#2−0−1〜#2−0−5、空気極3の焼成時に空気極3の上に(Gd0.1Ce0.9)O2製のセッター4を載せて作製した本実施の形態のSOFCセルの番号を#3−0−1〜#3−0−5としている。さらに、Al23製の板の表面にスピンコート法によりCeO2膜を塗布して焼結させたものをセッター4とし、空気極3の焼成時にこのセッター4を空気極3の上に載せて作製した本実施の形態のSOFCセルの番号を#4−0−1〜#4−0−5としている。 In Table 1, the number of the SOFC cell produced without placing a setter on the air electrode 3 at the time of firing the air electrode 3 is # 1-0-0, and the number on the air electrode 3 at the time of firing the air electrode 3 is the same as the conventional one. The numbers of SOFC cells produced by placing a setter made of Al 2 O 3 having a size of 6 × 6 cm are # 1-0-1 to # 1-0-5. The numbers of the SOFC cells of the present embodiment prepared by placing the CeO 2 setter 4 on the air electrode 3 when the air electrode 3 is fired are # 2-0-1 to # 2-0-5, air. The numbers of the SOFC cells of the present embodiment prepared by mounting the setter 4 made of (Gd 0.1 Ce 0.9 ) O 2 on the air electrode 3 when the electrode 3 is fired are # 3-0-1 to # 3-0- Five. Further, a setter 4 is obtained by applying a CeO 2 film on the surface of an Al 2 O 3 plate by a spin coating method and sintering the setter 4. When the air electrode 3 is fired, the setter 4 is placed on the air electrode 3. The numbers of the SOFC cells manufactured in this embodiment are # 4-0-1 to # 4-0-5.

#1−0−0のSOFCセルと#1−0−1のSOFCセルを比較すると、#1−0−1のSOFCセルの方が反りが抑えられているのに対し、#1−0−0のSOFCセルの方が空気極表面の電気伝導度が高い。このような測定結果が得られる理由は、空気極3の焼成時にAl23製のセッターを用いることでセルの反りが抑えられる反面、空気極表面の金属酸化物とAl23とが相互拡散を起こし、電気抵抗の高い層が空気極表面に形成されるためである。 When comparing the # 1-0-0 SOFC cell and the # 1-0-1 SOFC cell, the # 1-0-1 SOFC cell is less warped, but the # 1-0- The 0 SOFC cell has higher electrical conductivity on the air electrode surface. The reason why such a measurement result can be obtained is that the warpage of the cell can be suppressed by using a setter made of Al 2 O 3 at the time of firing the air electrode 3, while the metal oxide on the surface of the air electrode and Al 2 O 3 are This is because interdiffusion occurs and a layer with high electrical resistance is formed on the air electrode surface.

これに対し、#2−0−1〜#2−0−5、#3−0−1〜#3−0−5、#4−0−1〜#4−0−5の本実施の形態のSOFCセルにおいては、#1−0−1〜#1−0−5のSOFCセルと比較して、セルの反りが同程度で、かつ空気極表面の電気伝導度の低下が抑えられていることが分かる。また、セッターおよび空気極の種類によらず、いずれも高い電気伝導度を有していることが分かる。以上のように、本実施の形態では、第1の実施の形態で説明した効果が得られていることが分かる。   On the other hand, this embodiment of # 2-0-1 to # 2-0-5, # 3-0-1 to # 3-0-5, # 4-0-1 to # 4-0-5 In the SOFC cell, compared with the SOFC cells of # 1-0-1 to # 1-0-5, the warpage of the cell is approximately the same, and the decrease in the electric conductivity on the air electrode surface is suppressed. I understand that. Moreover, it turns out that all have high electrical conductivity irrespective of the kind of setter and an air electrode. As described above, it can be seen that the effects described in the first embodiment are obtained in the present embodiment.

なお、#2−0−1、#3−0−1、#4−0−1のSOFCセルの空気極表面の電気伝導度は、#1−0−0のSOFCセルの空気極表面の電気伝導度より若干低くなっているが、#2−0−1、#3−0−1、#4−0−1のSOFCセルの反りは、#1−0−0のSOFCセルの反りの半分以下に抑制されている。そして、#2−0−1、#3−0−1、#4−0−1のSOFCセルの空気極表面の電気伝導度は、上記のとおり#1−0−1のSOFCセルの空気極表面の電気伝導度よりも向上している。したがって、本実施の形態では、セルの反りの抑制と空気極表面の電気伝導度の低下の抑制とを両立させることができる。   Note that the electrical conductivity of the air electrode surface of the # 2-0-1, # 3-0-1, # 4-0-1 SOFC cell is the electric conductivity of the air electrode surface of the # 1-0-0 SOFC cell. Although the conductivity is slightly lower, the warpage of the # 2-0-1, # 3-0-1, and # 4-0-1 SOFC cells is half that of the # 1-0-0 SOFC cells. It is suppressed to the following. And the electrical conductivity of the air electrode surface of the SOFC cells # 2-0-1, # 3-0-1, # 4-0-1 is the air electrode of the SOFC cell # 1-0-1 as described above. It is higher than the electrical conductivity of the surface. Therefore, in this Embodiment, suppression of the curvature of a cell and suppression of the fall of the electrical conductivity of the air electrode surface can be made compatible.

本実施の形態では、セッター4の材料としてCeO2または異元素(本実施の形態の例ではGd)を添加したCeO2を用いたが、これに限るものではない。CeO2に添加する異元素は20mol%以下であればよい。また、Al23製の板の表面にスピンコート法によりCeO2膜を塗布して焼結させたものをセッター4としたが、これに限るものではなく、ZrO2製の板の表面にスピンコート法によりCeO2膜を塗布して焼結させたものをセッター4としてもよい。また、Al23製またはZrO2製の板の表面に、20mol%以下の異元素(例えばGd)を添加したCeO2膜を塗布して焼結させたものをセッター4としてもよい。 In the present embodiment uses CeO 2 with the addition of (Gd in the example of this embodiment) CeO 2 or different elements as the material of the setter 4, the present invention is not limited thereto. The foreign element added to CeO 2 may be 20 mol% or less. Further, the setter 4 is obtained by applying a CeO 2 film to the surface of an Al 2 O 3 plate by a spin coating method and sintering it, but the setter 4 is not limited to this, and the surface of the ZrO 2 plate is not limited thereto. A setter 4 may be formed by applying and sintering a CeO 2 film by spin coating. Alternatively, the setter 4 may be formed by applying and sintering a CeO 2 film added with 20 mol% or less of a different element (eg, Gd) on the surface of an Al 2 O 3 or ZrO 2 plate.

Al23あるいはZrO2の表面にCeO2膜または異元素を添加したCeO2膜を形成してセッター4として用いる利点は、Al23やZrO2は様々な用途において一般的に利用されているため、コストが安いのに対して、あまり一般的に用いられていないCeO2は高価であるため、Al23あるいはZrO2の表面にCeO2膜または異元素を添加したCeO2膜を焼き付けることで、比較的安価でしかも空気極3との反応性が低いセッター4を実現できることである。 The advantage of using a CeO 2 film or a CeO 2 film with a different element added on the surface of Al 2 O 3 or ZrO 2 and using it as a setter 4 is that Al 2 O 3 and ZrO 2 are generally used in various applications. Therefore, the cost is low, but CeO 2 which is not generally used is expensive. Therefore, a CeO 2 film or a CeO 2 film with a different element added to the surface of Al 2 O 3 or ZrO 2 is used. Is capable of realizing a setter 4 that is relatively inexpensive and has low reactivity with the air electrode 3.

本発明は、セル作製時(空気極焼成時)の導電性低下を抑えつつセルの反りを抑制することで、集電効率の高い固体酸化物形燃料電池を作製することが可能となるため、固体酸化物形燃料電池の高効率化に大きな貢献をなすものである。   In the present invention, it is possible to produce a solid oxide fuel cell with high current collection efficiency by suppressing the warpage of the cell while suppressing the decrease in conductivity at the time of cell production (air electrode firing). This greatly contributes to improving the efficiency of solid oxide fuel cells.

1…電解質、2…燃料極、3…空気極、4…セッター。   1 ... electrolyte, 2 ... fuel electrode, 3 ... air electrode, 4 ... setter.

Claims (5)

燃料極と電解質とから構成されるハーフセルの燃料極とは反対側の電解質の面に空気極原料を形成する工程と、
前記空気極原料を形成した面が上になるように前記ハーフセルを配置し、前記空気極原料の上に、少なくとも空気極原料と接する面がセリアを含む材料からなる板状のセッターを載せる工程と、
前記ハーフセルおよび空気極原料を熱処理して空気極を焼成する工程とを含むことを特徴とする固体酸化物形燃料電池セルの作製方法。
Forming an air electrode raw material on the surface of the electrolyte opposite to the fuel electrode of the half cell composed of the fuel electrode and the electrolyte;
Placing the half cell so that the surface on which the air electrode material is formed is on top, and placing a plate-like setter made of a material containing ceria on at least the surface in contact with the air electrode material on the air electrode material; ,
A method for producing a solid oxide fuel cell, comprising: heat-treating the half cell and the air electrode material to heat the air electrode.
請求項1記載の固体酸化物形燃料電池セルの作製方法において、
前記セッターは、CeO2または異元素を添加したCeO2からなることを特徴とする固体酸化物形燃料電池セルの作製方法。
The method for producing a solid oxide fuel cell according to claim 1,
The setter method for manufacturing a solid oxide fuel cell characterized in that it consists of CeO 2 with the addition of CeO 2 or foreign element.
請求項1記載の固体酸化物形燃料電池セルの作製方法において、
前記セッターは、Al23製またはZrO2製の板の表面に、CeO2膜または異元素を添加したCeO2膜を塗布して焼結させたものからなることを特徴とする固体酸化物形燃料電池セルの作製方法。
The method for producing a solid oxide fuel cell according to claim 1,
The setter is formed by applying a CeO 2 film or a CeO 2 film added with a different element to the surface of an Al 2 O 3 or ZrO 2 plate and sintering the solid oxide. A method for producing a fuel cell.
請求項1乃至3のいずれか1項に記載の固体酸化物形燃料電池セルの作製方法において、
前記空気極原料は、ペロブスカイト構造の金属酸化物からなることを特徴とする固体酸化物形燃料電池セルの作製方法。
In the manufacturing method of the solid oxide form fuel cell of any one of Claims 1 thru | or 3,
The method for producing a solid oxide fuel cell, wherein the air electrode material is made of a metal oxide having a perovskite structure.
請求項4記載の固体酸化物形燃料電池セルの作製方法において、
前記ペロブスカイト構造の金属酸化物は、LaNi(1-X)FeX3、La(1-X)SrXMnO3、La(1-X)SrXCoYFe(1-Y)3、La(1-X)SrXCoO3、LaNi0.6Fe0.43(LNF)、LaNi(1-X-Y)CoXFeY3(LNCF)、Sm(1-X)SrXCoO3のいずれかを含むことを特徴とする固体酸化物形燃料電池セルの作製方法。
The method for producing a solid oxide fuel cell according to claim 4,
The metal oxide having the perovskite structure includes LaNi (1-X) Fe X O 3 , La (1-X) Sr X MnO 3 , La (1-X) Sr X Co Y Fe (1-Y) O 3 , One of La (1-X) Sr X CoO 3 , LaNi 0.6 Fe 0.4 O 3 (LNF), LaNi (1-XY) Co X Fe Y O 3 (LNCF), Sm (1-X) Sr X CoO 3 A method for producing a solid oxide fuel cell, comprising:
JP2013125259A 2013-06-14 2013-06-14 Method for manufacturing solid oxide fuel battery cell Pending JP2015002035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013125259A JP2015002035A (en) 2013-06-14 2013-06-14 Method for manufacturing solid oxide fuel battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013125259A JP2015002035A (en) 2013-06-14 2013-06-14 Method for manufacturing solid oxide fuel battery cell

Publications (1)

Publication Number Publication Date
JP2015002035A true JP2015002035A (en) 2015-01-05

Family

ID=52296468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013125259A Pending JP2015002035A (en) 2013-06-14 2013-06-14 Method for manufacturing solid oxide fuel battery cell

Country Status (1)

Country Link
JP (1) JP2015002035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6097873B1 (en) * 2016-03-23 2017-03-15 日本碍子株式会社 Electrochemical cell
WO2020060846A1 (en) * 2018-09-19 2020-03-26 Redox Power Systems, LLC Setter plates and manufacturing methods for ceramic-anode solid oxide fuel cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6097873B1 (en) * 2016-03-23 2017-03-15 日本碍子株式会社 Electrochemical cell
WO2020060846A1 (en) * 2018-09-19 2020-03-26 Redox Power Systems, LLC Setter plates and manufacturing methods for ceramic-anode solid oxide fuel cells
US10957933B2 (en) 2018-09-19 2021-03-23 Redox Power Systems, LLC Setter plates and manufacturing methods for ceramic-anode solid oxide fuel cells
US11594748B2 (en) 2018-09-19 2023-02-28 Redox Power Systems, LLC Setter plates and manufacturing methods for ceramic-anode solid oxide fuel cells

Similar Documents

Publication Publication Date Title
JP6018639B2 (en) Solid oxide fuel cell half-cell and solid oxide fuel cell
JP5160131B2 (en) Electrolyte / electrode assembly and method for producing the same
Rehman et al. Effect of GDC addition method on the properties of LSM–YSZ composite cathode support for solid oxide fuel cells
JP6045881B2 (en) Electrochemical cell and method for producing the same
JP2012074306A (en) Power generation cell for solid oxide fuel cell
JP2010238431A (en) Power generation cell of fuel battery
JP5226656B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP6208315B2 (en) Electrochemical cell and method for producing the same
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
JP2011060695A (en) Solid oxide fuel cell
JP2014067686A (en) Fuel battery cell
JP2015002035A (en) Method for manufacturing solid oxide fuel battery cell
JP6452424B2 (en) Electrode material and solid oxide fuel cell
JP2018139182A (en) Solid electrolytic member, solid oxide type fuel cell, water electrolysis device, hydrogen pump and method for manufacturing solid electrolytic member
JP6088949B2 (en) Fuel cell single cell and manufacturing method thereof
JP5502365B2 (en) Half cell for solid oxide fuel cell, solid oxide fuel cell, and method for producing half cell for solid oxide fuel cell
JP2012185928A (en) Manufacturing method of fuel electrode support type power generation cell
JP2012142241A (en) Method for manufacturing single cell for solid oxide fuel cell
JP2016085921A (en) Cell support and solid oxide fuel cell
JP2015207487A (en) Low-temperature operation type solid oxide fuel cell, and method for manufacturing the same
JP2012074305A (en) Power generation cell for solid oxide fuel cell
JP6075924B2 (en) Fuel cell single cell and manufacturing method thereof
JP2014063591A (en) Intermediate layer for solid oxide fuel cell, solid oxide fuel cell, production method of intermediate layer for solid oxide fuel cell, and manufacturing method for solid oxide fuel cell
JP2005243473A (en) Cerium based solid electrolyte and its manufacturing method
JP2007008778A (en) Ceramic material, oxygen electrode material, oxygen electrode, and fuel cell and manufacturing method thereof