JP2001035505A - Fuel cell stack and method and member for joining same - Google Patents

Fuel cell stack and method and member for joining same

Info

Publication number
JP2001035505A
JP2001035505A JP11206647A JP20664799A JP2001035505A JP 2001035505 A JP2001035505 A JP 2001035505A JP 11206647 A JP11206647 A JP 11206647A JP 20664799 A JP20664799 A JP 20664799A JP 2001035505 A JP2001035505 A JP 2001035505A
Authority
JP
Japan
Prior art keywords
electrode film
fuel
interconnector
current collector
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11206647A
Other languages
Japanese (ja)
Inventor
Masaaki Izumi
政明 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP11206647A priority Critical patent/JP2001035505A/en
Publication of JP2001035505A publication Critical patent/JP2001035505A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a joining member superior in durability with respect to heat cycling by reducing electrical contact resistance between an inter-connector and an electrode film on the fuel side in a unit cell or a current collector. SOLUTION: When a fuel cell stack is formed by connecting a unit cell 4 including a solid electrolyte film 1 and electrode films 2, 3 on the fuel side and the air side respectively laminated at both surfaces of the film 1 via inter- connectors 7, a joining member is interposed between the electrode film 2 on the fuel side in the unit cell 4 or a current collector 5 and the inner-connector 7. The joining member is made of a composite material, containing NiO and LaCrO3 added with at least one kind of element selected from among Sr, Ca, Mg, Ti, Zr, V, Mn, Fe, Co, Ni, Cu, Zn, Al, Ba, Mo and Pb, wherein the content of NiO is gradually increased from the surface of the inter-connector as it nears the electrode film on the fuel side or the current collector.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池スタック
並びにその接合方法および接合材に係り、特に、単セル
の燃料側電極または該燃料側電極に当接された燃料側集
電体とインターコネクタとの間の電気的接触抵抗を低減
することができる燃料電池スタック並びにその接合方法
および接合材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell stack, a joining method and a joining material thereof, and more particularly, to a fuel cell electrode of a single cell or a fuel collector and an interconnector contacting the fuel electrode. TECHNICAL FIELD The present invention relates to a fuel cell stack capable of reducing electrical contact resistance between the fuel cell stack and a joining method and a joining material thereof.

【0002】[0002]

【従来の技術】固体電解質型の燃料電池スタックは、Y
2 3 安定化ZrO2 (YSZ)等の固体電解質膜の両
面に、(La,Sr)MnO3 等からなる酸素側電極と
Ni+YSZサーメット(NiO/Y2 3 安定化Zr
2 サーメット)等からなる燃料側電極をそれぞれ積層
した3層構造の単セルを、LaCrO3 系セラミックス
等からなるインターコネクタを介して多数積層して構成
され、前記単セルの電極膜とインターコネクタとの間に
は集電体が介在されることがある。燃料側集電体および
空気側集電体は、それぞれ単セルの燃料側電極および空
気側電極に近い組成の材料で構成されるが、前記燃料側
集電体としてまたはその一部としてNi等の金属材料が
用いられることもある。
2. Description of the Related Art A solid electrolyte type fuel cell stack is known as Y
An oxygen-side electrode made of (La, Sr) MnO 3 or the like and a Ni + YSZ cermet (NiO / Y 2 O 3 stabilized Zr) are formed on both surfaces of a solid electrolyte membrane such as 2O 3 stabilized ZrO 2 (YSZ).
A single cell having a three-layer structure in which fuel-side electrodes made of O 2 cermet) or the like are stacked is stacked in large numbers via an interconnector made of LaCrO 3 ceramics or the like. And a current collector may be interposed between them. The fuel-side current collector and the air-side current collector are made of a material having a composition close to the fuel-side electrode and the air-side electrode of a single cell, respectively. A metal material may be used.

【0003】このような固体電解質型の燃料電池スタッ
クにおいて、単セルの燃料側電極膜または該燃料側電極
膜に当接される集電体と前記インターコネクタとの間の
電気的接触抵抗を低減するために種々の工夫がなされて
おり、従来から燃料側電極膜または燃料側集電体とイン
ターコネクタとの当接面にNi等の薄膜を介在させ、発
電時に押し当てることによって接続した燃料電池スタッ
クが知られている。
In such a solid oxide fuel cell stack, the electrical contact resistance between the fuel cell electrode film of a single cell or a current collector contacting the fuel electrode film and the interconnector is reduced. Conventionally, a fuel cell has been conventionally connected by interposing a thin film of Ni or the like on the contact surface between the fuel-side electrode film or the fuel-side current collector and the interconnector, and pressing it during power generation. Stacks are known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、接合面に形成したNi等の薄膜と前記イン
ターコネクタとの熱膨張差が大きいために、熱サイクル
中に、前記Ni等の薄膜がインターコネクタ面から剥離
して電気的接触抵抗が増加するという問題があった。
However, in the above prior art, since the thermal expansion difference between the thin film of Ni or the like formed on the joint surface and the interconnector is large, the thin film of Ni or the like during the heat cycle is not used. There has been a problem that the electrical contact resistance increases due to separation from the interconnector surface.

【0005】本発明の課題は、上記従来技術の問題点を
解決し、固体電解質型燃料電池スタックの構成部材であ
るインターコネクタと単セルの燃料側電極膜または該燃
料側電極膜に当接された集電体との電気的接触抵抗を低
減し、熱サイクルに対する耐久性に優れた燃料電池スタ
ック並びにその接合方法および接合材を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an interconnector which is a constituent member of a solid oxide fuel cell stack and a fuel cell electrode film of a single cell or a fuel cell electrode film in contact with the fuel cell electrode film. Another object of the present invention is to provide a fuel cell stack which reduces electrical contact resistance with a current collector and has excellent durability against thermal cycling, and a joining method and a joining material therefor.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本願で特許請求する発明は以下のとおりである。 (1)固体電解質膜と、該固体電解質膜の両面にそれぞ
れ積層された燃料側電極膜および空気側電極膜とからな
る単セルをインターコネクタを介して電気的に多数接続
して燃料電池スタックを形成する際の、前記単セルの燃
料側電極膜または該燃料側電極膜に当接された集電体と
前記インターコネクタとの間に介在させる接合材であっ
て、NiOと、Sr、Ca、Mg、Ti、Zr、V、M
n、Fe、Co、Ni、Cu、Zn、Al、Ba、Mo
およびPbのうち少なくとも1種類の元素を添加したL
aCrO3 を含む複合材料からなり、前記インターコネ
クタ面から燃料側電極膜または集電体に近づくに従って
前記NiOの存在割合を次第に増加させたことを特徴と
する固体電解質型燃料電池スタックの接合材。
Means for Solving the Problems To solve the above problems, the invention claimed in the present application is as follows. (1) A fuel cell stack is formed by electrically connecting a large number of single cells each composed of a solid electrolyte membrane and a fuel-side electrode film and an air-side electrode film laminated on both sides of the solid electrolyte membrane via an interconnector. A bonding material to be interposed between the interconnector and the fuel-side electrode film of the single cell or the current collector abutted on the fuel-side electrode film when forming the NiO, Sr, Ca, Mg, Ti, Zr, V, M
n, Fe, Co, Ni, Cu, Zn, Al, Ba, Mo
L to which at least one element of Pb and Pb is added
A joining material for a solid oxide fuel cell stack, comprising a composite material containing aCrO 3 , wherein an existing ratio of the NiO is gradually increased from a surface of the interconnector toward a fuel-side electrode film or a current collector.

【0007】(2)前記NiOの存在割合を、前記イン
ターコネクタ面から燃料側電極膜または集電体に近づく
に従って30%から100%の範囲で次第に増加させた
ことを特徴とする上記(1)に記載の接合材。 (3)固体電解質膜と、該固体電解質膜の両面にそれぞ
れ積層された燃料側電極膜および空気側電極膜とからな
る単セルをインターコネクタを介して電気的に多数接続
してスタックを形成する固体電解質型燃料電池スタック
の接合方法であって、前記インターコネクタと単セルの
燃料側電極膜または該燃料側電極膜に当接される集電体
との間に、上記(1)または(2)に記載の接合材を介
在させ、接合面を圧着しながら焼成することを特徴とす
る固体電解質型燃料電池スタックの接合方法。
(2) The content ratio of NiO is gradually increased in the range of 30% to 100% as the distance from the interconnector surface to the fuel-side electrode film or the current collector increases. The bonding material according to the above. (3) A plurality of single cells each composed of a solid electrolyte membrane and a fuel-side electrode film and an air-side electrode film laminated on both surfaces of the solid electrolyte membrane are electrically connected to each other via an interconnector to form a stack. A method of joining a solid oxide fuel cell stack, wherein the above (1) or (2) is provided between the interconnector and a fuel cell electrode film of a single cell or a current collector abutted on the fuel cell electrode film. A method for joining a solid oxide fuel cell stack, comprising sintering while bonding the joining surface by interposing the joining material described in (1).

【0008】(4)前記インターコネクタまたは燃料側
電極膜もしくは集電体の表面に、NiO含有量を順次異
ならせた上記(1)に記載の複合材料のスラリを順次塗
布して前記インターコネクタ表面から燃料側電極膜また
は集電体表面に近づくに従って接合材中のNiOの存在
割合を30%〜100%の範囲で次第に増加させること
を特徴とする上記(3)に記載の燃料電池スタックの接
合方法。
(4) The surface of the interconnector, the fuel-side electrode film, or the current collector is coated with a slurry of the composite material according to the above (1), in which the NiO content is sequentially varied, and the surface of the interconnector is formed. The fuel cell stack according to the above (3), wherein the proportion of NiO in the bonding material is gradually increased in the range of 30% to 100% as it approaches the fuel-side electrode film or the surface of the current collector. Method.

【0009】(5)固体電解質膜と、該固体電解質膜の
両面にそれぞれ積層された燃料側電極膜および空気側電
極膜とからなる単セルをインターコネクタを介して電気
的に多数接続した固体電解質型の燃料電池スタックであ
って、前記インターコネクタと単セルの燃料側電極膜ま
たは該燃料側電極膜に当接された集電体との接合面に、
上記(1)または(2)に記載の接合材を介在させたこ
とを特徴とする固体電解質型燃料電池スタック。
(5) A solid electrolyte in which a plurality of single cells each composed of a solid electrolyte membrane and a fuel-side electrode film and an air-side electrode film laminated on both sides of the solid electrolyte membrane are electrically connected via an interconnector. A fuel cell stack of the type, wherein the interconnector and a fuel cell electrode film of a single cell or a bonding surface of a current collector abutted on the fuel electrode film,
A solid oxide fuel cell stack comprising the bonding material according to the above (1) or (2).

【0010】[0010]

【発明の実施の形態】次に、本発明を図面を用いて詳細
に説明する。図1は、本発明の一実施例である平板固体
電解質型の燃料電池スタックの接合方法を示す説明図で
ある。図において、固体電解質膜1の両面にそれぞれ燃
料側電極膜2および空気側電極膜3が積層された単セル
4の前記燃料側電極膜2と空気側電極3にそれぞれ対向
して燃料側集電体5および空気側集電体6が配置されて
おり、インターコネクタ7の燃料側集電体5に対向する
面には接合材8が形成されている。接合材8は、NiO
と、Sr、Ca、Mg、Ti、Zr、V、Mn、Fe、
Co、Ni、Cu、Zn、Al、Ba、MoおよびPb
のうち少なくとも1種類の元素をドープしたLaCrO
3 を含む複合材料からなり、前記インターコネクタ7の
表面から燃料側集電体5に近づくに従ってNiOの存在
割合を次第に増加させたものである。このような、電極
膜面に集電体を配置、当接した単セル4が燃料側集電体
5との当接面に前記接合材8を配置したインターコネク
タ7を介して多数積層され、例えば100g/cm2
圧力で圧着しながら、空気中、1350℃で3時間焼成
して燃料電池スタックが形成される。
Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing a method for joining a flat solid electrolyte fuel cell stack according to one embodiment of the present invention. In FIG. 1, a fuel cell current collector opposing the fuel electrode film 2 and the air electrode 3 of a single cell 4 in which a fuel electrode film 2 and an air electrode film 3 are laminated on both surfaces of a solid electrolyte membrane 1 respectively. The body 5 and the air-side current collector 6 are arranged, and a bonding material 8 is formed on a surface of the interconnector 7 facing the fuel-side current collector 5. The joining material 8 is made of NiO
And Sr, Ca, Mg, Ti, Zr, V, Mn, Fe,
Co, Ni, Cu, Zn, Al, Ba, Mo and Pb
LaCrO doped with at least one kind of element
The composite ratio of NiO is gradually increased from the surface of the interconnector 7 toward the fuel-side current collector 5. A large number of such unit cells 4 having the current collector disposed on the electrode film surface and in contact with the fuel-side current collector 5 are stacked via the interconnector 7 in which the bonding material 8 is disposed on the contact surface with the fuel-side current collector 5, For example, it is fired in air at 1350 ° C. for 3 hours while being pressed under a pressure of 100 g / cm 2 to form a fuel cell stack.

【0011】本実施例によれば、接合材8が、燃料側電
極膜2または燃料側集電体5の主構成材料であるNiO
とインターコネクタの構成材料であるLaCrO3 系セ
ラミックスとの複合材料からなり、かつ接合材8中のN
iOの存在割合を燃料側集電体5に近づくに従って次第
大きくし、すなわち、LaCrO3 系セラミックスの存
在割合をインターコネクタ7に近づくに従って次第に大
きくしたことにより、燃料電池スタックを構成した際
に、燃料側電極に供給される水素リッチガスによって前
記接合材8中のNiOが還元されてNiとなるので、こ
の高い導電率を有するNiの作用によって接合面の電気
的接触抵抗が低下する。また、接合材8中のインターコ
ネクタ7に近い部分におけるLaCrO3 系セラミック
スの存在割合を高くしたことにより、LaCrO3 系セ
ラミックスからなるインターコネクタ7との熱膨張差が
小さく抑えられて強固な付着力が発揮されるので、耐熱
サイクル性が向上して歪み、剥離等が生じることもな
い。LaCrO3 系セラミックスは元来導電材料であ
り、電気的接触抵抗を低減する作用もある。
According to this embodiment, the bonding material 8 is made of NiO which is a main constituent material of the fuel-side electrode film 2 or the fuel-side current collector 5.
And a composite material of LaCrO 3 ceramics, which is a constituent material of the interconnector, and
When the existence ratio of iO gradually increases as approaching the fuel-side current collector 5, that is, the existence ratio of LaCrO 3 -based ceramics gradually increases as approaching the interconnector 7, the fuel cell stack has Since NiO in the bonding material 8 is reduced to Ni by the hydrogen-rich gas supplied to the side electrode, the electrical contact resistance of the bonding surface is reduced by the action of Ni having high conductivity. Further, by increasing the proportion of the LaCrO 3 -based ceramic in the portion of the joining material 8 close to the interconnector 7, the difference in thermal expansion with the interconnector 7 made of the LaCrO 3 -based ceramic is suppressed to be small, and a strong adhesive force is obtained. , The heat cycle resistance is improved, and no distortion, peeling or the like occurs. LaCrO 3 -based ceramics are originally conductive materials, and also have the effect of reducing electrical contact resistance.

【0012】本実施例において、図1の上側のインター
コネクタ7の上方にさらに単セル4が積層される場合
は、前記上側のインターコネクタ7の表面にも接合材8
が配置される。本発明において、接合材はNiO粉末
と、Sr、Ca、Mg、Ti、Zr、V、Mn、Fe、
Co、Ni、Cu、Zn、Al、Ba、MoおよびPb
のうち少なくとも1種類の元素を添加したLaCrO3
系セラミックス粉末とを含む複合材料で構成される。複
合材料を構成する上記各粉末の平均粒径は、いずれも1
0μm以下が好ましく、通常2〜8μm程度のものが好
適に使用される。本発明において、接合材は、上記複合
材料の粉末にバインダ、溶媒、その他必要に応じて分散
剤等を添加したスラリの塗膜として、または前記スラリ
を成形したグリーン体として適用される。
In this embodiment, when the unit cells 4 are further stacked above the upper interconnector 7 in FIG. 1, the bonding material 8 is also provided on the surface of the upper interconnector 7.
Is arranged. In the present invention, the bonding material is NiO powder, Sr, Ca, Mg, Ti, Zr, V, Mn, Fe,
Co, Ni, Cu, Zn, Al, Ba, Mo and Pb
LaCrO 3 to which at least one element is added
It is composed of a composite material containing a base ceramic powder. Each of the powders constituting the composite material has an average particle size of 1
It is preferably 0 μm or less, and usually about 2 to 8 μm is suitably used. In the present invention, the bonding material is applied as a slurry coating film obtained by adding a binder, a solvent, and other additives as necessary to the powder of the composite material, or as a green body obtained by molding the slurry.

【0013】溶媒としては、例えばトルエンとエタノー
ルを体積比で3対2に混合した有機溶剤または水溶媒が
用いられる。溶媒として有機溶媒を用いる場合は、結合
材として、例えばポリビニルブチラール、テレピン油、
ポリエチレン、ポリ塩化ビニル、ポリメチルメタアクリ
レート、ニトロセルロース等が、可塑材としては、例え
ばフタル酸ジブチル、フタル酸ジメチル、フタル酸ブチ
ルベンジル、ステアリン酸ブチル、アビエチン酸メチ
ル、ポリエチレングリコール、リン酸トリクレジル等
が、また分散材としては、例えば脂肪酸、魚油、ベンゼ
ンスルホン酸等が使用される。一方、溶媒として水溶媒
を用いる場合は、結合材として、例えばアクリル酸ポリ
マー、エチレンオキシドポリマー、ヒドロキシエチルセ
ルロース、メチルセルロース、ポリビニルアルコール、
イソシアナート、ワックス等が、可塑材としては、例え
ばグリセリン、フタル酸ジブチル、トルエンスルホン酸
エチル、ポリアルキレングリコール、トリエチレングリ
コール、リン酸トリブチル等が、また分散材としては、
例えばリン酸ガラス、スルホン酸アリル等が使用され
る。
As the solvent, for example, an organic solvent or a water solvent in which toluene and ethanol are mixed at a volume ratio of 3: 2 is used. When using an organic solvent as a solvent, as a binder, for example, polyvinyl butyral, turpentine oil,
Polyethylene, polyvinyl chloride, polymethyl methacrylate, nitrocellulose, etc., as plasticizers, for example, dibutyl phthalate, dimethyl phthalate, butyl benzyl phthalate, butyl stearate, methyl abietate, polyethylene glycol, tricresyl phosphate, etc. However, as the dispersing agent, for example, fatty acid, fish oil, benzenesulfonic acid and the like are used. On the other hand, when an aqueous solvent is used as the solvent, as the binder, for example, acrylic acid polymer, ethylene oxide polymer, hydroxyethyl cellulose, methyl cellulose, polyvinyl alcohol,
Isocyanate, wax, etc., as a plasticizer, for example, glycerin, dibutyl phthalate, ethyl toluenesulfonate, polyalkylene glycol, triethylene glycol, tributyl phosphate, etc., and as a dispersant,
For example, phosphate glass, allyl sulfonate and the like are used.

【0014】次に、本発明の接合材の調製方法を説明す
る。図2は、本発明の接合材の調製方法の一例を示す説
明図である。図において、例えば平均粒径7μmに粉砕
したNiO粉末と、平均粒径5μmに粉砕したLaCr
O系セラミックス粉末を、その混合比が所定範囲、例え
ば65:35となるように採取し、これに溶媒を加えて
秤量し(1)、例えばポットミルで充分に混合し
(2)、必要に応じて乾燥したのち(3)、得られた混
合粉末に結合材、可塑剤および/または必要に応じて分
散剤を添加して秤量し(4)、混合、混練(5)し、そ
の後、スラリの粘土を調整し(6)、次いでスラリに含
まれる気泡を除去した後(7)、例えばドクターブレー
ド法によって成形し(8)、得られた成形体を乾燥し
(9)、所定サイズに裁断(10)して接合材のグリー
ン体とされる。
Next, a method for preparing the bonding material of the present invention will be described. FIG. 2 is an explanatory diagram illustrating an example of a method for preparing a bonding material according to the present invention. In the figure, for example, NiO powder pulverized to an average particle diameter of 7 μm and LaCr pulverized to an average particle diameter of 5 μm
The O-based ceramic powder is sampled so that its mixing ratio is within a predetermined range, for example, 65:35, and a solvent is added thereto and weighed (1), and thoroughly mixed with, for example, a pot mill (2). After drying (3), a binder, a plasticizer and / or a dispersant, if necessary, are added to the obtained mixed powder, weighed (4), mixed, kneaded (5), and then the slurry is mixed. After adjusting the clay (6) and then removing the air bubbles contained in the slurry (7), it is molded by, for example, a doctor blade method (8), and the obtained molded body is dried (9) and cut into a predetermined size ( 10) to form a green body of the bonding material.

【0015】グリーン体の成形法としては、ドクターブ
レード法の他、例えば押し出し成形法、テープキャステ
ィング法が挙げられる。また、接合材をグリーン体とし
てではなく、インターコネクタまたは燃料側電極膜もし
くは集電体表面に直接塗布した塗膜として適用する際
は、図2中、工程(7)後の接合材スラリが塗布材料と
して使用される。接合材スラリの塗布方法は、例えば刷
毛塗り法、スクリーン印刷法、スプレー法、ディピング
法、スピンコーター法等が好適に用いられる。
Examples of the method for forming the green body include, in addition to the doctor blade method, an extrusion method and a tape casting method. When the bonding material is applied not as a green body but as a coating applied directly to the interconnector, the fuel-side electrode film, or the surface of the current collector, the bonding material slurry after the step (7) in FIG. Used as material. As a method for applying the bonding material slurry, for example, a brush coating method, a screen printing method, a spray method, a dipping method, a spin coater method, or the like is suitably used.

【0016】本発明において、接合材の厚さは、例えば
10〜1000μmであり、好ましくは50〜500μ
mである。接合材の厚さが薄すぎると、熱膨張差を吸収
できなくなり、一方、厚すぎると電気的接触抵抗が大き
くなる傾向がある。厚さ方向におけるNiOの存在割合
は、燃料側電極膜または集電体に近づくにつれて30〜
100%、好ましくは60〜100%の範囲で増加する
ように調節される。
In the present invention, the thickness of the bonding material is, for example, 10 to 1000 μm, preferably 50 to 500 μm.
m. If the thickness of the joining material is too thin, the difference in thermal expansion cannot be absorbed, while if it is too thick, the electrical contact resistance tends to increase. The proportion of NiO in the thickness direction is 30 to 30% as the fuel electrode electrode film or the current collector approaches.
It is adjusted to increase by 100%, preferably in the range of 60-100%.

【0017】接合材中のNiOの存在割合を順次変化さ
せる方法としては、例えばNiO含有量が順次異なる複
合材料のスラリを複数準備し、これを用いてNiO含有
量が順次異なるグリーン体を成形し、該グリーン体をN
iO含有量の順に積層する方法、および前記NiO含有
量が順次異なる複合材料のスラリをインターコネクタ等
のスタック構成材料表面に順次重ね塗りして接合材層を
形成する方法が挙げられる。
As a method for sequentially changing the proportion of NiO in the joining material, for example, a plurality of slurries of a composite material having sequentially different NiO contents are prepared, and a green body having sequentially different NiO contents is formed using the prepared slurry. , The green body is N
There are a method of laminating in the order of iO content, and a method of forming a bonding material layer by successively applying a slurry of a composite material having a different NiO content on the surface of a stack constituting material such as an interconnector.

【0018】本発明において、インターコネクタと燃料
側電極または該燃料側電極に当接する燃料側集電体との
接合面に接合材を介在させたのち、接合面を圧着しなが
ら焼成する際の圧着圧力は、例えば10〜1000g/
cm2 より好ましくは50〜500g/cm2 、焼成温
度は1000〜1500℃、より好ましくは1200〜
1450℃である。焼成雰囲気は、空気中、H2 ガス中
またはN2 ガス中のいずれであってもよい。なお、本発
明においてインターコネクタとは、固体電解質型燃料電
池スタックを構成する際に、単セル相互間に配置され、
該単セルを電気的に接続する接合部材である。
In the present invention, a bonding material is interposed on a bonding surface between the interconnector and the fuel-side electrode or the fuel-side current collector abutting on the fuel-side electrode, and then the bonding is performed when firing while pressing the bonding surface. The pressure is, for example, 10 to 1000 g /
cm 2, more preferably 50 to 500 g / cm 2 , and the firing temperature is 1000 to 1500 ° C., more preferably 1200 to 500 g / cm 2 .
1450 ° C. The firing atmosphere may be any of air, H 2 gas and N 2 gas. In the present invention, the interconnector is arranged between the single cells when forming a solid oxide fuel cell stack,
A joining member for electrically connecting the single cells.

【0019】[0019]

【実施例】次に、本発明の具体的実施例を説明する。Next, specific examples of the present invention will be described.

【実施例1】平均粒径7μmのNiO粉末と平均粒径5
μmのLa0.7 Ca0.3 CrO3 粉末を下記表1に示す
割合になるように混合し、これに溶剤としてトルエンを
加えてポットミルで充分に混練し、この混合物からトル
エンを蒸発させて5種類の混合粉末とした。得られた複
合材料粉末100gに対して、それぞれポリビニルブチ
ラール8gをトルエン+エタノール混合溶剤(体積比
3:2)200mlに溶かして添加し、ポットミルで充
分混合、混練して接合材スラリA〜Eとした。
Example 1 NiO powder having an average particle size of 7 μm and an average particle size of 5
μm La 0.7 Ca 0.3 CrO 3 powder was mixed at the ratio shown in Table 1 below, toluene was added as a solvent, and the mixture was sufficiently kneaded with a pot mill, and toluene was evaporated from the mixture to obtain five types of mixed powder. Powder. To 100 g of the obtained composite material powder, 8 g of polyvinyl butyral dissolved in 200 ml of a mixed solvent of toluene and ethanol (volume ratio of 3: 2) was added, and the mixture was sufficiently mixed and kneaded in a pot mill to form a joining material slurry A to E. did.

【0020】[0020]

【表1】 次に、La0.7 Ca0.3 CrO3 からなるインターコネ
クタ7の表面に、塗布厚さが100μmとなるように接
合材スラリAを塗布し、充分乾燥させたのち、その上に
同様にして接合材スラリBを塗布し、以下順次接合材ス
ラリCおよび接合材スラリAの順に重ねて塗布し、厚さ
500μmの接合材層を形成し、該接合材層が形成され
たインターコネクタ表面にNiO−ZrO2 −Y2 3
からなる燃料側集電体を載せて100g/cm2 の力で
押し付けながら、空気中雰囲気、1350℃で3時間焼
成して燃料側集電体とインターコネクタとの接合体を得
た。
[Table 1] Next, the surface of the interconnector 7 consisting of La 0.7 Ca 0.3 CrO 3, the bonding material slurry A as the coating thickness is 100μm was applied, sufficient after drying, the bonding material slurry in the same manner thereon B, and thereafter, the joining material slurry C and the joining material slurry A are successively applied in this order to form a joining material layer having a thickness of 500 μm, and NiO—ZrO 2 is formed on the surface of the interconnector on which the joining material layer is formed. -Y 2 O 3
Was baked at 1350 ° C. for 3 hours in an air atmosphere while being pressed with a force of 100 g / cm 2 to obtain a joined body of the fuel-side current collector and the interconnector.

【0021】得られた接合体を1000℃の水素ガス
(30℃で加湿)中に曝してインターコネクタと燃料側
集電体との間の電気的接触抵抗を測定したところ、接合
直後の接触抵抗は32(mΩ・cm2 )、5回の熱サイ
クル後の接触抵抗は33(mΩ・cm2 )であった。な
お、5回の熱サイクル後とは、水素ガス(30℃で加
湿)中で、室温から1000℃まで、さらに1000℃
から室温までの熱履歴を5回繰り返した後という意味で
ある。
The obtained joined body was exposed to a hydrogen gas at 1000 ° C. (humidified at 30 ° C.) to measure the electrical contact resistance between the interconnector and the fuel-side current collector. Was 32 (mΩ · cm 2 ) and the contact resistance after 5 heat cycles was 33 (mΩ · cm 2 ). In addition, after 5 heat cycles, the term “from room temperature to 1000 ° C. and further 1000 ° C. in hydrogen gas (humidified at 30 ° C.)”
This means that after the heat history from the temperature to room temperature is repeated 5 times.

【0022】[0022]

【実施例2】接合材スラリとしてスラリB、スラリC、
スラリDおよびスラリEの4種を用いて重ね塗りし、厚
さ400μmの接合材層を形成した以外は上記実施例1
と同様にして接合体を得、同様にして電気的接触抵抗を
測定したところ、接合直後の接触抵抗は19(mΩ・c
2 )、5回の熱サイクル後の接触抵抗は18(mΩ・
cm2 )であった。
Embodiment 2 Slurry B, Slurry C,
Example 1 described above except that the four kinds of the slurry D and the slurry E were used to repeatedly apply to form a bonding material layer having a thickness of 400 μm.
And the electrical contact resistance was measured in the same manner. The contact resistance immediately after joining was 19 (mΩ · c).
m 2 ), the contact resistance after 5 thermal cycles is 18 (mΩ ·
cm 2 ).

【0023】[0023]

【実施例3】接合材スラリとしてスラリB、スラリCお
よびスラリEの3種を用いて重ね塗りし、厚さ300μ
mの接合材層を形成した以外は上記実施例1と同様にし
て接合体を得、同様にして電気的接触抵抗を測定したと
ころ、接合直後の接触抵抗は17(mΩ・cm2 )、5
回の熱サイクル後の接触抵抗は18(mΩ・cm2 )で
あった。
Embodiment 3 Three types of joining material slurries, Slurry B, Slurry C and Slurry E, were applied in a thickness of 300 μm.
A bonded body was obtained in the same manner as in Example 1 except that a bonding material layer of m was formed, and the electrical contact resistance was measured in the same manner. The contact resistance immediately after bonding was 17 (mΩ · cm 2 ), 5
The contact resistance after 18 thermal cycles was 18 (mΩ · cm 2 ).

【0024】[0024]

【実施例4】接合材スラリとしてスラリCおよびスラリ
Eの2種を用いて重ね塗りし、厚さ200μmの接合材
層を形成した以外は上記実施例1と同様にして接合体を
得、同様にして電気的接触抵抗を測定したところ、接合
直後の接触抵抗は122(mΩ・cm2 )、5回の熱サ
イクル後の接触抵抗は209(mΩ・cm2 )であっ
た。
Example 4 A joined body was obtained in the same manner as in Example 1 except that two types of joining material slurries, Slurry C and Slurry E, were applied repeatedly to form a joining material layer having a thickness of 200 μm. The contact resistance immediately after joining was 122 (mΩ · cm 2 ), and the contact resistance after five thermal cycles was 209 (mΩ · cm 2 ).

【0025】[0025]

【比較例1】接合材スラリとしてスラリBのみを用い、
厚さ100μmで、NiOの存在割合を均一にした接合
材層を形成した以外は、上記実施例1と同様にして接合
体を得、同様にして電気的接触抵抗を測定したところ、
接合直後の接触抵抗は325(mΩ・cm2 )、5回の
熱サイクル後の接触抵抗は571(mΩ・cm2 )であ
った。
[Comparative Example 1] Only slurry B was used as a joining material slurry.
A joined body was obtained in the same manner as in Example 1 except that a joining material layer having a thickness of 100 μm and having a uniform NiO content was formed, and the electrical contact resistance was measured in the same manner.
The contact resistance immediately after joining was 325 (mΩ · cm 2 ), and the contact resistance after five thermal cycles was 571 (mΩ · cm 2 ).

【0026】[0026]

【比較例2】接合材を用いないこと以外は上記実施例1
と同様にして接合体を得、同様にして電気的接触抵抗を
測定したところ、接合直後の接触抵抗は829(mΩ・
cm 2 )、5回の熱サイクル後の接触抵抗は1014
(mΩ・cm2 )であった。実施例1〜4および比較例
1、2の結果を表2にまとめて示す。
Comparative Example 2 Example 1 except that no bonding material was used.
In the same manner as above to obtain a joined body, and in the same manner, the electrical contact resistance
When measured, the contact resistance immediately after joining was 829 (mΩ ·
cm Two) Contact resistance after 10 thermal cycles is 1014
(MΩ · cmTwo)Met. Examples 1-4 and Comparative Examples
Tables 1 and 2 summarize the results.

【0027】[0027]

【表2】 表2において、インターコネクタ表面から燃料側集電体
表面に近づくに従ってNiOの割合が増大する接合材を
用いた実施例1〜4は、NiOの割合が一定の接合材を
用いた比較例1および接合材を全く介在させなかった比
較例2に較べて電気的接触抵抗が著しく減少しているこ
とが分かる。実施例2および3は、インターコネクタと
燃料側集電体との接着性がきわめて良好で電気的な接触
抵抗は非常に小さく、5回の熱サイクル後も増加するこ
とはなかった。
[Table 2] In Table 2, in Examples 1 to 4 using the bonding material in which the ratio of NiO increases as approaching from the surface of the interconnector to the surface of the fuel-side current collector, Comparative Examples 1 and 4 using the bonding material in which the ratio of NiO is constant were used. It can be seen that the electrical contact resistance is significantly reduced as compared with Comparative Example 2 in which no bonding material was interposed. In Examples 2 and 3, the adhesion between the interconnector and the fuel-side current collector was extremely good, and the electrical contact resistance was very small, and did not increase even after five thermal cycles.

【0028】実施例1の電気的接触抵抗が実施例2また
は3に較べて高いのはインターコネクタ面に最初に塗布
した接合材スラリAのNiO含有量が実施例2または3
に較べて低く、導電率が小さいためと考えられる。ま
た、実施例4の電気的接触抵抗が実施例1〜3に較べて
高いのは、接合材スラリの積層数が少なく、La0.7
0.3 CrO3 からなるインターコネクタ表面にLa
0.7 Ca0.3 CrO3 割合の少ない接合材層を直接接合
させたために前記インターコネクタと接合材との熱膨張
差が充分に緩和されなかったためと考えられる。
The electrical contact resistance of the first embodiment is higher than that of the second or third embodiment because the NiO content of the bonding material slurry A first applied to the interconnector surface is higher than that of the second or third embodiment.
This is considered to be due to the lower electric conductivity and the lower electric conductivity. The reason why the electrical contact resistance of Example 4 is higher than that of Examples 1 to 3 is that the number of layers of the bonding material slurry is small and La 0.7 C
a The surface of the interconnector made of 0.3 CrO 3 is La
It is considered that the difference in thermal expansion between the interconnector and the bonding material was not sufficiently reduced because the bonding material layer having a small proportion of 0.7 Ca 0.3 CrO 3 was directly bonded.

【0029】[0029]

【発明の効果】本願の請求項1に記載の発明によれば、
接合面の電気的接触抵抗を増加させることがなく、かつ
熱サイクルに対する耐久性に優れた、インターコネクタ
と単セルの燃料側電極膜または該燃料側電極膜に当接さ
れた集電体との接合面に介在される接合材が得られる。
本願の請求項2に記載の発明によれば、上記発明の効果
に加え、電気的接触抵抗がより低減し、かつ接合強度が
より高まる接合材が得られる。
According to the invention described in claim 1 of the present application,
Without increasing the electrical contact resistance of the joint surface, and having excellent durability against thermal cycling, the interconnector and the fuel cell electrode film of the single cell or the current collector abutted on the fuel electrode film A joining material interposed on the joining surface is obtained.
According to the invention as set forth in claim 2 of the present application, in addition to the effects of the above invention, a bonding material having further reduced electrical contact resistance and higher bonding strength can be obtained.

【0030】本願の請求項3記載の発明によれば、イン
ターコネクタと単セルの燃料側電極膜または該燃料側電
極膜に当接された集電体とを電気的接触抵抗を増加させ
ることなく、かつ熱サイクルに対する耐久性をもって接
合することができる。本願の請求項4に記載の発明によ
れば、上記発明の効果に加え、インターコネクタと燃料
側電極膜または集電体をより高い接合強度で接合するこ
とができる。本願の請求項5に記載の発明によれば、イ
ンターコネクタと単セルの燃料側電極膜または該燃料側
電極膜に当接された集電体とが電気的接触抵抗を増加さ
せることなく高い接合強度で接合された燃料電池スタッ
クが得られる。
According to the third aspect of the present invention, the interconnector and the fuel cell electrode film of the single cell or the current collector in contact with the fuel cell electrode film can be formed without increasing the electric contact resistance. In addition, the bonding can be performed with durability against heat cycles. According to the invention described in claim 4 of the present application, in addition to the effects of the above invention, the interconnector and the fuel-side electrode film or the current collector can be joined with higher joining strength. According to the invention described in claim 5 of the present application, the interconnector and the fuel-side electrode film of the single cell or the current collector contacting the fuel-side electrode film have a high bonding without increasing the electric contact resistance. A fuel cell stack joined with strength is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す燃料電池スタックの接
合方法を示す説明図。
FIG. 1 is an explanatory view showing a method of joining a fuel cell stack according to an embodiment of the present invention.

【図2】接合材の調製方法の一例を示す説明図。FIG. 2 is an explanatory view showing an example of a method for preparing a bonding material.

【符号の説明】 1…固体電解質膜、2…燃料側電極膜、3…空気側電極
膜、4…単セル、5…燃料側集電体、6…空気側集電
体、7…インターコネクタ、8…接合材。
[Description of Signs] 1 ... Solid electrolyte membrane, 2 ... Fuel side electrode film, 3 ... Air side electrode film, 4 ... Single cell, 5 ... Fuel side current collector, 6 ... Air side current collector, 7 ... Interconnector , 8 ... joining material.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質膜と、該固体電解質膜の両面
にそれぞれ積層された燃料側電極膜および空気側電極膜
とからなる単セルをインターコネクタを介して電気的に
多数接続して燃料電池スタックを形成する際の、前記単
セルの燃料側電極膜または該燃料側電極膜に当接された
集電体と前記インターコネクタとの間に介在させる接合
材であって、NiOと、Sr、Ca、Mg、Ti、Z
r、V、Mn、Fe、Co、Ni、Cu、Zn、Al、
Ba、MoおよびPbのうち少なくとも1種類の元素を
添加したLaCrO3 を含む複合材料からなり、前記イ
ンターコネクタ面から燃料側電極膜または集電体に近づ
くに従って前記NiOの存在割合を次第に増加させたこ
とを特徴とする固体電解質型燃料電池スタックの接合
材。
1. A fuel cell comprising: a plurality of single cells each composed of a solid electrolyte membrane and a fuel-side electrode film and an air-side electrode film laminated on both sides of the solid electrolyte membrane, respectively, electrically connected via an interconnector; When forming a stack, a bonding material to be interposed between the fuel cell electrode film of the single cell or the current collector abutted on the fuel cell electrode film and the interconnector, wherein NiO, Sr, Ca, Mg, Ti, Z
r, V, Mn, Fe, Co, Ni, Cu, Zn, Al,
It is made of a composite material containing LaCrO 3 to which at least one element of Ba, Mo and Pb is added, and the existence ratio of the NiO is gradually increased as approaching the fuel-side electrode film or the current collector from the interconnector surface. A bonding material for a solid oxide fuel cell stack, comprising:
【請求項2】 前記NiOの存在割合を、前記インター
コネクタ面から燃料側電極膜または集電体に近づくに従
って30%から100%の範囲で次第に増加させたこと
を特徴とする請求項1に記載の接合材。
2. The method according to claim 1, wherein the proportion of the NiO is gradually increased in the range of 30% to 100% as the distance from the interconnector surface to the fuel-side electrode film or the current collector increases. Joining material.
【請求項3】 固体電解質膜と、該固体電解質膜の両面
にそれぞれ積層された燃料側電極膜および空気側電極膜
とからなる単セルをインターコネクタを介して電気的に
多数接続してスタックを形成する固体電解質型燃料電池
スタックの接合方法であって、前記インターコネクタと
単セルの燃料側電極膜または該燃料側電極膜に当接され
る集電体との間に、請求項1または2に記載の接合材を
介在させ、接合面を圧着しながら焼成することを特徴と
する固体電解質型燃料電池スタックの接合方法。
3. A stack comprising a plurality of single cells each comprising a solid electrolyte membrane and a fuel-side electrode film and an air-side electrode film laminated on both surfaces of the solid electrolyte membrane, respectively, electrically connected via an interconnector to form a stack. 3. A method for joining a solid oxide fuel cell stack to be formed, wherein said interconnector and a fuel cell electrode film of a single cell or a current collector in contact with said fuel electrode film are disposed between said interconnector and a single cell. 3. A method for joining a solid oxide fuel cell stack, comprising sintering with the joining material described in 1) interposed therebetween while pressing the joining surface.
【請求項4】 前記インターコネクタまたは燃料側電極
膜もしくは集電体の表面に、NiO含有量を順次異なら
せた請求項1に記載の複合材料のスラリを順次塗布して
前記インターコネクタ表面から燃料側電極膜または集電
体表面に近づくに従って接合材中のNiOの存在割合を
30%〜100%の範囲で次第に増加させることを特徴
とする請求項3に記載の燃料電池スタックの接合方法。
4. The composite material slurry according to claim 1, wherein the NiO content is sequentially changed on the surface of the interconnector, the fuel-side electrode film, or the current collector, and the fuel is applied from the surface of the interconnector. The method according to claim 3, wherein the proportion of NiO in the bonding material is gradually increased in the range of 30% to 100% as approaching the side electrode film or the surface of the current collector.
【請求項5】 固体電解質膜と、該固体電解質膜の両面
にそれぞれ積層された燃料側電極膜および空気側電極膜
とからなる単セルをインターコネクタを介して電気的に
多数接続した固体電解質型燃料電池スタックであって、
前記インターコネクタと単セルの燃料側電極膜または該
燃料側電極膜に当接された集電体との接合面に、請求項
1または2に記載の接合材を介在させたことを特徴とす
る固体電解質型の燃料電池スタック。
5. A solid electrolyte type in which a large number of single cells each comprising a solid electrolyte membrane and a fuel-side electrode film and an air-side electrode film laminated on both sides of the solid electrolyte membrane are electrically connected via an interconnector. A fuel cell stack,
3. The bonding material according to claim 1 or 2, wherein a bonding surface of the interconnector and a fuel cell electrode film of a single cell or a current collector in contact with the fuel electrode film is interposed. Solid electrolyte fuel cell stack.
JP11206647A 1999-07-21 1999-07-21 Fuel cell stack and method and member for joining same Pending JP2001035505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11206647A JP2001035505A (en) 1999-07-21 1999-07-21 Fuel cell stack and method and member for joining same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11206647A JP2001035505A (en) 1999-07-21 1999-07-21 Fuel cell stack and method and member for joining same

Publications (1)

Publication Number Publication Date
JP2001035505A true JP2001035505A (en) 2001-02-09

Family

ID=16526824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11206647A Pending JP2001035505A (en) 1999-07-21 1999-07-21 Fuel cell stack and method and member for joining same

Country Status (1)

Country Link
JP (1) JP2001035505A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253376A (en) * 2003-01-27 2004-09-09 Kyocera Corp Fuel battery cell and method for manufacturing same, and fuel battery
JP2004265734A (en) * 2003-02-28 2004-09-24 Kyocera Corp Fuel battery cell
JP2005216619A (en) * 2004-01-28 2005-08-11 Kyocera Corp Fuel battery cell and fuel battery
JP2006177348A (en) * 2004-12-23 2006-07-06 Renault Sas Control method for internal combustion engine for reducing unevenness in exhaust of pollutant and internal combustion engine
JP2007157352A (en) * 2005-11-30 2007-06-21 Kyocera Corp Fuel cell cell stack and fuel cell
JP2010186623A (en) * 2009-02-12 2010-08-26 Mitsubishi Heavy Ind Ltd Conductive jointing material and solid electrolyte fuel cell equipped with the same
JP2012043808A (en) * 2011-10-24 2012-03-01 Kyocera Corp Fuel battery cell stack, and fuel battery
KR101220740B1 (en) * 2010-12-28 2013-01-09 주식회사 포스코 Solid oxide fuel cell separator comprising collector formed channel and method for manufacturing the same
JP2014112499A (en) * 2012-12-05 2014-06-19 Osaka Gas Co Ltd Method of manufacturing inter-cell connection member and solid oxide fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253376A (en) * 2003-01-27 2004-09-09 Kyocera Corp Fuel battery cell and method for manufacturing same, and fuel battery
JP4544872B2 (en) * 2003-01-27 2010-09-15 京セラ株式会社 Fuel cell and fuel cell
JP2004265734A (en) * 2003-02-28 2004-09-24 Kyocera Corp Fuel battery cell
JP4511122B2 (en) * 2003-02-28 2010-07-28 京セラ株式会社 Fuel cell
JP2005216619A (en) * 2004-01-28 2005-08-11 Kyocera Corp Fuel battery cell and fuel battery
JP4544874B2 (en) * 2004-01-28 2010-09-15 京セラ株式会社 Fuel cell and fuel cell
JP2006177348A (en) * 2004-12-23 2006-07-06 Renault Sas Control method for internal combustion engine for reducing unevenness in exhaust of pollutant and internal combustion engine
JP2007157352A (en) * 2005-11-30 2007-06-21 Kyocera Corp Fuel cell cell stack and fuel cell
JP2010186623A (en) * 2009-02-12 2010-08-26 Mitsubishi Heavy Ind Ltd Conductive jointing material and solid electrolyte fuel cell equipped with the same
KR101220740B1 (en) * 2010-12-28 2013-01-09 주식회사 포스코 Solid oxide fuel cell separator comprising collector formed channel and method for manufacturing the same
JP2012043808A (en) * 2011-10-24 2012-03-01 Kyocera Corp Fuel battery cell stack, and fuel battery
JP2014112499A (en) * 2012-12-05 2014-06-19 Osaka Gas Co Ltd Method of manufacturing inter-cell connection member and solid oxide fuel cell

Similar Documents

Publication Publication Date Title
JP5469795B2 (en) Anode-supported solid oxide fuel cell using cermet electrolyte
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP2008538449A5 (en)
EP0552055B1 (en) A process for producing solid oxide fuel cells
JP2004152773A (en) Creation method of device containing thin ceramic layer
JP2007529852A5 (en)
CN111384421A (en) Five-layer structure single cell, preparation method thereof and prepared product
JP2001035505A (en) Fuel cell stack and method and member for joining same
JPH08287926A (en) Manufacture of solid electrolyte fuel cell
JP2003178769A (en) Thin film laminated body, its manufacturing method, and solid oxide type fuel cell using the same
JP3110265B2 (en) Bonding material and bonding method for solid oxide fuel cell stack
JPH05151981A (en) Solid electrolyte fuel cell
JP3434883B2 (en) Method for manufacturing fuel cell
JP3643006B2 (en) Solid oxide fuel cell cell
JP2774227B2 (en) Method for joining solid oxide fuel cell stack
JP3342621B2 (en) Solid oxide fuel cell
JPH09180732A (en) Solid electrolyte fuel cell board and method for manufacturing cell using the board
JP5912536B2 (en) ELECTRODE FORMING MATERIAL, GREEN SHEET FORMED BY THE SAME, POROUS ELECTRODE, SOLID OXIDE FUEL CELL, AND METHOD FOR PRODUCING SOLID OXIDE FUEL CELL
JP3355075B2 (en) Solid oxide fuel cell
JP3220314B2 (en) Method for producing YSZ film integrated with porous substrate
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JPH08287921A (en) Fuel electrode for solid electrolyte fuel cell
JP3533694B2 (en) Porous conductive material powder, method for producing the same, and method for producing fuel cell
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
JPH0676842A (en) Flat plate solid electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421