KR101220740B1 - Solid oxide fuel cell separator comprising collector formed channel and method for manufacturing the same - Google Patents

Solid oxide fuel cell separator comprising collector formed channel and method for manufacturing the same Download PDF

Info

Publication number
KR101220740B1
KR101220740B1 KR1020100136653A KR20100136653A KR101220740B1 KR 101220740 B1 KR101220740 B1 KR 101220740B1 KR 1020100136653 A KR1020100136653 A KR 1020100136653A KR 20100136653 A KR20100136653 A KR 20100136653A KR 101220740 B1 KR101220740 B1 KR 101220740B1
Authority
KR
South Korea
Prior art keywords
current collector
flow path
fuel cell
separator
oxide fuel
Prior art date
Application number
KR1020100136653A
Other languages
Korean (ko)
Other versions
KR20120074726A (en
Inventor
이재명
전재호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020100136653A priority Critical patent/KR101220740B1/en
Publication of KR20120074726A publication Critical patent/KR20120074726A/en
Application granted granted Critical
Publication of KR101220740B1 publication Critical patent/KR101220740B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 접촉저항을 저하시키고, 전기효율 및 경제성을 향상시킬 수 있는 유로가 형성된 집전체를 포함하는 금속 산화물 연료전지 분리판 및 그 제조방법을 제공하고자 하는 것이다.
이를 위해 본 발명은 일면에 유로가 형성된 금속 집전체 및 평판의 분리판 기재를 포함하고,
상기 금속 집전체의 유로가 형성되지 않는 면과 상기 분리판 기재가 접합되어 있는 유로가 형성된 집전체를 포함하는 고체 산화물 연료전지 분리판과 이를 제조하는 방법을 제공한다.
It is an object of the present invention to provide a metal oxide fuel cell separator and a method for manufacturing the same, including a current collector having a flow path formed therein capable of lowering contact resistance and improving electrical efficiency and economy.
To this end, the present invention includes a separator plate substrate of a metal current collector and a plate having a flow path formed on one surface thereof,
Provided are a solid oxide fuel cell separator comprising a current collector on which a side of the metal current collector on which a flow path is not formed and a flow path where the separation plate substrate is bonded are formed, and a method of manufacturing the same.

Description

유로가 형성된 집전체를 포함하는 고체 산화물 연료전지 분리판 및 그 제조방법{SOLID OXIDE FUEL CELL SEPARATOR COMPRISING COLLECTOR FORMED CHANNEL AND METHOD FOR MANUFACTURING THE SAME}Solid oxide fuel cell separator comprising a current collector having a flow path and a manufacturing method thereof {SOLID OXIDE FUEL CELL SEPARATOR COMPRISING COLLECTOR FORMED CHANNEL AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 고체 산화물 연료전지(Solid Oxide Fuel Cell, SOFC)의 분리판에 관한 것으로서, 보다 상세하게는 평판형 분리판을 사용하기 위해 유로가 형성된 집전체를 갖는 분리판 및 이를 제조하는 방법에 관한 것이다.
The present invention relates to a separator of a solid oxide fuel cell (SOFC), and more particularly to a separator having a current collector formed with a flow path for using a flat plate separator and a method of manufacturing the same. will be.

연료전지는 연료(수소)의 화학에너지가 전기에너지로 직접 변환되어 직류 전류를 생산하는 능력을 갖는 전지(Cell)로 정의되며, 산화물 전해질을 통해 산화제(예를 들어, 산소)와 기상 연료(예를 들어, 수소)를 전기화학적으로 반응시킴으로써, 직류 전기를 생산하는 에너지 전환 장치로써, 종래의 전지와는 다르게 외부에서 연료와 공기를 공급하여 연속적으로 전기를 생산하는 특징을 갖는다.
A fuel cell is defined as a cell that has the ability to produce direct current by converting the chemical energy of fuel (hydrogen) directly into electrical energy, and through the oxide electrolyte, oxidant (eg oxygen) and gaseous fuel (eg For example, hydrogen) is an energy conversion device for producing direct current electricity by electrochemically reacting, and unlike the conventional battery, has a characteristic of continuously producing electricity by supplying fuel and air from the outside.

연료전지의 종류로는 고온에서 작동하는 용융탄산염 연료전지(Molten Carbonate Fuel Cell, MCFC), 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC) 및 비교적 낮은 온도에서 작동하는 인산형 연료전지(Phosphoric Acid Fuel Cell, PAFC), 알칼리형 연료전지(Alkaline Fuel Cell, AFC), 고분자전해질 연료전지(Proton Exchange Membrane Fuel Cell, PEMFC), 직접메탄올 연료전지(Direct Methanol Fuel Cells, DEMFC) 등이 있다.
Examples of fuel cells include a Molten Carbonate Fuel Cell (MCFC), a Solid Oxide Fuel Cell (SOFC), and a Phosphoric Acid Fuel (PAFC), Alkaline Fuel Cell (AFC), Proton Exchange Membrane Fuel Cell (PEMFC), and Direct Methanol Fuel Cells (DEMFC).

이 중 평판형 고체산화물 연료전지는 고성능의 깨끗하고 효율적인 전원이 될 수 있는 잠재력을 가지며, 다양한 전력 발생 용도로서 개발되고 있다. 고체산화물 연료전지는 공기극(cathod)과 연료극(anode) 및 전해질(electrolyte)로 구성되는 단위전지(cell)의 다층 구조물(stack)로 형성된다. 통상적인 고체산화물 연료전지의 단위전지는, 전해질로서 이트리아 안정화된 지르코니아(Yttria Stabilized Zirconia, YSZ)가 사용되고, 공기극으로는 스트론튬 도핑된 란탄 망가나이트(Lanthanum Strontium Manganite, LSM)(예를 들어, La0.8Sr0.2MnO3)가 사용되고, 연료극으로는 니켈 옥사이드(Nickel Oxide, NiO)와 YSZ가 혼합된 서메트(cermet)(NiO/YSZ)가 사용된다.
Among them, the planar solid oxide fuel cell has the potential to be a high performance, clean and efficient power source, and is being developed for various power generation applications. The solid oxide fuel cell is formed of a multilayer stack of unit cells composed of a cathode, an anode, and an electrolyte. As a unit cell of a conventional solid oxide fuel cell, Yttria Stabilized Zirconia (YSZ) is used as an electrolyte, and strontium-doped Lanthanum Strontium Manganite (LSM) (for example, La0) is used as an air electrode. .8Sr0.2MnO3) is used, and cermet (NiO / YSZ) in which nickel oxide (NiO) and YSZ are mixed is used as a fuel electrode.

상기 단위전지의 다층 구조물(스택, stack)을 형성하기 위해서, 단위전지와 단위전지 사이에 분리판을 포함하여, 이웃한 단위전지들을 물리적으로 분리시키고, 단위 전지를 향한 일면에 수소 또는 산소를 공급하기 위한 채널을 하고, 도전성 소재로 제조되어 어느 한 단위전지의 공기극과 이웃한 단위전지의 연료극을 직렬로 연결시킨다.
In order to form a multi-layer structure (stack, stack) of the unit cell, including a separator plate between the unit cell and the unit cell, physically separate neighboring unit cells, supply hydrogen or oxygen to one side toward the unit cell It is made of a conductive material and is made of a conductive material to connect the cathode of one unit cell and the anode of a neighboring unit cell in series.

한편, 평판형 고체 산화물 연료전지에서 단위전지와 분리판은 다공성 금속 집전체(폼, 메쉬, 펠트 등 기타 구조물)로 전기적으로 연결되어 있다. 상기 분리판은 평판을 에칭, 기계가공 또는 스탬핑을 통해 공기나 연료가 이동할 수 있는 유로(channel)을 형성한다. 따라서, 이러한 유로를 형성하기 위해서 많은 시간과 노력을 기울여야 하는 문제가 있다.
Meanwhile, in a planar solid oxide fuel cell, the unit cell and the separator are electrically connected to a porous metal current collector (foam, mesh, felt, or other structure). The separator forms a channel through which air or fuel can move through etching, machining or stamping the plate. Therefore, there is a problem that requires a lot of time and effort to form such a flow path.

또한, 상기 분리판과 다공성의 금속 집전체는 접촉이 균일하지 않아, 높은 접촉저항이 발생할 우려가 있고, 특히 공기극에서는 다공성 금속 집전체와 분리판의 표면 산화로 시간에 따라 접촉 저항이 증가하는 문제가 있다. 게다가, 연료전지의 가동시에 분리판과 집전체의 접합이 균일하지 않으며, 국부적으로 저항열에 의한 열점(hot spot)이 발생하고 있으며, 이로 인한 전기 효율 감소, 연료전지 수명 저하 등의 문제점이 있다.
In addition, since the contact between the separator and the porous metal current collector is not uniform, high contact resistance may occur. In particular, in the air electrode, contact resistance increases with time due to surface oxidation of the porous metal current collector and the separator. There is. In addition, the junction of the separator and the current collector is not uniform during the operation of the fuel cell, and hot spots are generated locally due to resistance heat, resulting in a decrease in electric efficiency and a decrease in fuel cell life. .

본 발명의 일측면은 접촉저항을 저하시키고, 전기효율 및 경제성을 향상시킬 수 있는 유로가 형성된 집전체를 포함하는 금속 산화물 연료전지 분리판 및 그 제조방법을 제공하고자 하는 것이다.
One aspect of the present invention is to provide a metal oxide fuel cell separator comprising a current collector formed with a flow path that can lower the contact resistance, and improve the electrical efficiency and economics, and a method of manufacturing the same.

본 발명은 일면에 유로가 형성된 금속 집전체 및 평판의 분리판 기재를 포함하고,The present invention includes a separator plate substrate of a metal current collector and a plate having a flow path formed on one surface thereof,

상기 금속 집전체의 유로가 형성되지 않는 면과 상기 분리판 기재가 접합되어 있는 유로가 형성된 집전체를 포함하는 고체 산화물 연료전지 분리판을 제공한다.
The present invention provides a solid oxide fuel cell separator comprising a current collector on which a flow path on which the flow path of the metal current collector is not formed and on which the separator substrate is bonded is formed.

또한, 본 발명은 평판의 금속 집전체 일면에 유로를 형성하는 단계; 및In addition, the present invention comprises the steps of forming a flow path on one surface of the metal current collector of the plate; And

상기 금속 집전체의 유로가 형성되지 않은 면과 평판의 분리판 기재와 접합하는 단계를 포함하는 유로가 형성된 집전체를 포함하는 고체 산화물 연료전지 분리판의 제조방법을 제공한다.
Provided is a method for manufacturing a solid oxide fuel cell separator comprising a current collector having a flow path including a step of bonding the surface of the metal current collector on which the flow path of the metal current collector is not formed and the plate of the separator.

본 발명에 의하면, 금속 산화물 연료전지 분리판은 유로가 형성된 집전체를 포함하여, 분리판과 집전체의 접촉저항을 감소시켜, 전기효율을 향상시킬 수 있고, 분리판에 유로를 형성할 필요가 없기 때문에 제조공정을 간소화하고, 비용을 절감할 수 있다.
According to the present invention, the metal oxide fuel cell separator includes a current collector in which a flow path is formed, thereby reducing contact resistance between the separator and the current collector, thereby improving electrical efficiency, and it is necessary to form a flow path in the separator. There is no need to simplify the manufacturing process and reduce costs.

도 1은 본 발명의 제조방법을 나타낸 모식도임.1 is a schematic diagram showing a manufacturing method of the present invention.

이하, 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명의 분리판은 일면에 유로가 형성된 금속 집전체 및 평판의 분리판 기재를 포함하고, 상기 금속 집전체의 유로가 형성되지 않는 면과 분리판 기재가 접합되어 있다.
The separator of the present invention includes a separator plate substrate of a metal current collector having a flow path formed on one surface thereof, and a plate, and a plate on which the flow path of the metal collector is not formed is bonded to the separator plate substrate.

상기 금속 집전체에 유로를 형성함으로서, 고가의 분리판 유로 형성 공정을 생략하여, 경제성을 높일 수 있는 장점이 있으며, 유로가 집전체에 형성되어, 분리판과 집전체의 계면에서의 저항열 발생이 억제되므로, 전지 성능을 향상시킬 수 있다. 또한, 본 발명에 의하면 접촉저항이 감소한다. 접촉저항은 접촉면적의 역수와 비저항값에 비례하는 바, 분리판과 집전체의 유로가 형성되지 않은 분리판의 경우에는 실질적인 접촉면적이 증가하여 감소한다.
By forming a flow path in the metal current collector, an expensive separation plate flow path forming process can be omitted, and the economical efficiency can be improved, and a flow path is formed in the current collector to generate heat of resistance at an interface between the separator and the current collector. Since this is suppressed, battery performance can be improved. In addition, according to the present invention, the contact resistance is reduced. The contact resistance is proportional to the inverse of the contact area and the resistivity value. In the case of the separation plate and the separation plate in which the flow path between the current collector is not formed, the actual contact area increases and decreases.

이하, 도 1을 참조하여 본 발명의 제조방법에 대하여 상세히 설명한다. 도 1은 본 발명의 일예를 나타낸 것일 뿐, 도 1에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the manufacturing method of the present invention will be described in detail with reference to FIG. 1. FIG. 1 shows only one example of the present invention, but the present invention is not limited to FIG. 1.

먼저, 평판의 금속 집전체에 유로를 형성한다(도 1(a) 및 (b)). 금속 집전체에 유로를 형성하는 방법은 다양하나, 도 1에서는 성형 지그(111)를 이용하여, 상기 성형 지그(111)는 금속 집전체(112)에 유로를 형성할 수 있는 돌출부를 포함하고, 평판의 금속 집전체(112)에 상기 돌출부를 갖는 성형 지그(111)를 압착함으로써, 금속 집전체(112)의 일면에 유로(115)를 형성한다.
First, a flow path is formed in the metal current collector of the flat plate (Figs. 1 (a) and (b)). There are various methods of forming a flow path in the metal current collector, but in FIG. 1, the molding jig 111 includes a protrusion for forming a flow path in the metal current collector 112. The flow path 115 is formed on one surface of the metal current collector 112 by crimping the molding jig 111 having the protruding portion to the flat metal current collector 112.

상기 금속집전체에 유로를 형성하는 방법은 상기 방법이외에, 기계가공(밀링), 에칭, 스탬핑 등의 방법으로도 형성이 가능하다.
The method of forming the flow path in the metal current collector may be formed by a method such as machining (milling), etching, or stamping, in addition to the above method.

상기 유로가 형성된 금속 집전체(114)를 평판의 분리판(113)에 접합한다(도 1(b) 및 (c)). 상기 접합의 방법은 전기 용접, 확산 접합, 브레이징, 기계적 접합 등이 가능하며, 이 중 어느 방법을 사용하더라도 무방하다.
The metal current collector 114 in which the flow path is formed is bonded to the separating plate 113 of the flat plate (Figs. 1 (b) and (c)). The joining method may be electric welding, diffusion bonding, brazing, mechanical bonding, or the like, and any of these methods may be used.

한편, 도 1의 (b)에 나타난 바와 같이, 금속 집전체에 유로를 형성하는 단계와 금속 집전체를 분리판에 접합시키는 단계를 동시에 행하는 것이 바람직하다.
On the other hand, as shown in Fig. 1B, it is preferable to simultaneously perform the step of forming a flow path in the metal current collector and the step of joining the metal current collector to the separator.

111.....성형 지그 112.....집전체
113.....분리판 기재 114.....유로가 형성된 집전체
115.....유로 120.....단위 전지
111 ..... molding jig 112 ....
113 ..... Separator substrate 114 ..... Euro formed current collector
115 ..... Euro 120 ....

Claims (5)

일면에 유로가 형성된 금속 집전체 및 평판의 분리판 기재를 포함하고,
상기 금속 집전체의 유로가 형성되지 않는 면과 상기 분리판 기재가 접합되어 있는 유로가 형성된 집전체를 포함하는 고체 산화물 연료전지 분리판.
Including a separator plate of a metal current collector and a plate formed with a flow path on one surface,
And a current collector on which a surface of the metal current collector, on which a flow path is not formed, and a flow path to which the separation plate substrate is bonded, is formed.
평판의 금속 집전체 일면에 유로를 형성하는 단계; 및
상기 금속 집전체의 유로가 형성되지 않은 면과 평판의 분리판 기재와 접합하는 단계
를 포함하는 유로가 형성된 집전체를 포함하는 고체 산화물 연료전지 분리판의 제조방법.
Forming a flow path on one surface of the metal current collector of the plate; And
Bonding the surface of the metal current collector on which the flow path is not formed and the separation plate substrate of the plate
Method of manufacturing a solid oxide fuel cell separator comprising a current collector formed with a flow path comprising a.
청구항 2에 있어서,
상기 금속 집전체의 일면에 유로를 형성하는 방법은 유로 형성을 위한 돌출부를 포함하는 성형 지그로 금속 집전체의 일면을 압착하여 행하는 고체 산화물 연료전지 분리판의 제조방법.
The method according to claim 2,
The method of forming a flow path on one surface of the metal current collector is a manufacturing method of a solid oxide fuel cell separator plate by pressing one surface of the metal current collector with a molding jig including a protrusion for forming the flow path.
청구항 2에 있어서,
상기 접합은 전기 용접, 확산 접합, 브레이징 및 기계적 접합 중 어느 하나의 방법으로 행하는 고체 산화물 연료전지 분리판의 제조방법.
The method according to claim 2,
And the joining is performed by any one of electrical welding, diffusion bonding, brazing and mechanical bonding.
청구항 2에 있어서,
상기 유로를 형성하는 단계와 분리판 기재를 접합하는 단계를 동시에 행하는 고체 산화물 연료전지 분리판의 제조방법.
The method according to claim 2,
A method of manufacturing a solid oxide fuel cell separator comprising simultaneously forming the flow path and bonding the separator substrate.
KR1020100136653A 2010-12-28 2010-12-28 Solid oxide fuel cell separator comprising collector formed channel and method for manufacturing the same KR101220740B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100136653A KR101220740B1 (en) 2010-12-28 2010-12-28 Solid oxide fuel cell separator comprising collector formed channel and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100136653A KR101220740B1 (en) 2010-12-28 2010-12-28 Solid oxide fuel cell separator comprising collector formed channel and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20120074726A KR20120074726A (en) 2012-07-06
KR101220740B1 true KR101220740B1 (en) 2013-01-09

Family

ID=46708811

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100136653A KR101220740B1 (en) 2010-12-28 2010-12-28 Solid oxide fuel cell separator comprising collector formed channel and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101220740B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150074283A (en) * 2013-12-23 2015-07-02 재단법인 포항산업과학연구원 Saperator for solid oxide fuel cell and fuel cell having thereof and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035505A (en) * 1999-07-21 2001-02-09 Mitsui Eng & Shipbuild Co Ltd Fuel cell stack and method and member for joining same
KR20100029331A (en) * 2008-09-08 2010-03-17 한국과학기술원 Metal supported solid oxide fuel cell and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035505A (en) * 1999-07-21 2001-02-09 Mitsui Eng & Shipbuild Co Ltd Fuel cell stack and method and member for joining same
KR20100029331A (en) * 2008-09-08 2010-03-17 한국과학기술원 Metal supported solid oxide fuel cell and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150074283A (en) * 2013-12-23 2015-07-02 재단법인 포항산업과학연구원 Saperator for solid oxide fuel cell and fuel cell having thereof and method for manufacturing the same
KR101628653B1 (en) * 2013-12-23 2016-06-13 재단법인 포항산업과학연구원 Saperator for solid oxide fuel cell and fuel cell having thereof and method for manufacturing the same

Also Published As

Publication number Publication date
KR20120074726A (en) 2012-07-06

Similar Documents

Publication Publication Date Title
KR100968505B1 (en) Metal supported solid oxide fuel cell and manufacturing method thereof
KR100889266B1 (en) The combination structure of solid oxide fuel cell between electrode and interconnect
KR102097434B1 (en) Gas distribution element for a fuel cell
US20100062302A1 (en) Metal support and solid oxide fuel cell including the same
KR20130137795A (en) Current collector for fuel cell and stack structure including the same
US20110008712A1 (en) Fuel Cell Having Single Body Support
JP2017523567A (en) Sealing configuration and method of solid oxide battery stack
US20110039187A1 (en) Manufacturing Method of Solid Oxide Fuel Cell
KR101220740B1 (en) Solid oxide fuel cell separator comprising collector formed channel and method for manufacturing the same
US20110053032A1 (en) Manifold for series connection on fuel cell
KR20100029321A (en) Metal supported solid oxide fuel cell
JP2019192363A (en) Cell unit and metal support cell reinforcing method
KR102055950B1 (en) Stack structure for fuel cell
CN102403524A (en) Solid oxide fuel cell module
KR101155375B1 (en) Combined flat-tube anode support solid oxide fuel cell and stack structure using the same
US20110104584A1 (en) Metal supported solid oxide fuel cell
US7465514B2 (en) Electrochemical energy source and electronic device incorporating such an energy source
KR101180157B1 (en) Apparatus for treating of poor unit cell of solid oxide fuel cell and method for installating the same
KR102548218B1 (en) Solid oxide fuel cells and method of the same
KR101178532B1 (en) Separator and menufacturing method thereof
KR101116241B1 (en) Support and solid oxide fuel cell and manufacturing method thereof
US20050186465A1 (en) Fuel cell system and stack used therein
KR20170005241A (en) Channel frame for fuel cells
US20110117475A1 (en) Anode supported solid oxide fuel cell
JP2024056240A (en) Electrochemical reaction cell stack

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200103

Year of fee payment: 8