JP4544872B2 - Fuel cell and fuel cell - Google Patents

Fuel cell and fuel cell Download PDF

Info

Publication number
JP4544872B2
JP4544872B2 JP2004018495A JP2004018495A JP4544872B2 JP 4544872 B2 JP4544872 B2 JP 4544872B2 JP 2004018495 A JP2004018495 A JP 2004018495A JP 2004018495 A JP2004018495 A JP 2004018495A JP 4544872 B2 JP4544872 B2 JP 4544872B2
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
rare earth
support
interconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004018495A
Other languages
Japanese (ja)
Other versions
JP2004253376A (en
Inventor
和弘 岡本
祥二 高坂
雄一 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004018495A priority Critical patent/JP4544872B2/en
Publication of JP2004253376A publication Critical patent/JP2004253376A/en
Application granted granted Critical
Publication of JP4544872B2 publication Critical patent/JP4544872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池セル及び燃料電池に関するものである。 The present invention relates to a fuel cell及beauty fuel cells.

近年、次世代エネルギーとして、燃料電池セルのスタックを収納容器内に収納した燃料電池が種々提案されている。   In recent years, various fuel cells in which a stack of fuel cells is stored in a storage container have been proposed as next-generation energy.

図3は、従来の固体電解質燃料電池のセルスタックを示すもので、このセルスタックは、複数の燃料電池セル1を整列集合させ、一方の燃料電池セル1と他方の燃料電池セル1との間に金属フェルトからなる集電部材3を介在させ、一方の燃料電池セル1の燃料側電極1aと他方の燃料電池セル1の酸素側電極1bとを電気的に接続して構成されている。 Figure 3 shows a cell stack of a conventional solid electrolyte fuel cell, the cell stack is aligned set a plurality of fuel cells 1, one of the fuel cell 1 and the other fuel cell 1 and the A current collecting member 3 made of metal felt is interposed therebetween, and the fuel side electrode 1a of one fuel cell 1 and the oxygen side electrode 1b of the other fuel cell 1 are electrically connected.

燃料電池セル1は、支持体1c上の外周面に多孔質な燃料側電極1a、緻密質な固体電解質1d、多孔質な導電性セラミックスからなる酸素側電極1bを順次設けて構成されており、固体電解質1d、酸素側電極1bから露出した支持体1cには、酸素側電極1bに接続しないようにインターコネクタ1eが設けられ、燃料側電極1aと電気的に接続している。   The fuel cell 1 is configured by sequentially providing a porous fuel-side electrode 1a, a dense solid electrolyte 1d, and an oxygen-side electrode 1b made of porous conductive ceramics on the outer peripheral surface of the support 1c. The support 1c exposed from the solid electrolyte 1d and the oxygen side electrode 1b is provided with an interconnector 1e so as not to be connected to the oxygen side electrode 1b, and is electrically connected to the fuel side electrode 1a.

このインターコネクタ1eは、燃料側電極1aの内部を流れる燃料ガスと、酸素側電極1bの外側を流れる酸素含有ガスとを確実に遮断するため、また、燃料ガス及び酸素含有ガスで変質しにくい緻密な導電性セラミックスが用いられている。   The interconnector 1e is a dense material that reliably shuts off the fuel gas flowing inside the fuel side electrode 1a and the oxygen-containing gas flowing outside the oxygen-side electrode 1b, and is hardly changed by the fuel gas and the oxygen-containing gas. New conductive ceramics are used.

一方の燃料電池セル1と他方の燃料電池セル1との電気的接続は、一方の燃料電池セル1の燃料側電極1aを、支持体1cに設けられたインターコネクタ1e、集電部材3を介して、他方の燃料電池セル1の酸素側電極1bに接続することにより行われている。   The electrical connection between one fuel cell 1 and the other fuel cell 1 is performed by connecting the fuel-side electrode 1a of one fuel cell 1 via an interconnector 1e provided on a support 1c and a current collecting member 3. This is done by connecting to the oxygen side electrode 1b of the other fuel cell 1.

燃料電池は、上記セルスタックを収納容器内に収納して構成され、支持体1c内部に燃料ガス(水素)を供給し、酸素側電極1bに酸素含有ガスを供給して1000℃程度で発電される。   The fuel cell is configured by storing the cell stack in a storage container, supplying fuel gas (hydrogen) into the support 1c, supplying oxygen-containing gas to the oxygen side electrode 1b, and generating electric power at about 1000 ° C. The

このような燃料電池セル1では、一般に、支持体1cと、燃料側電極1aが、Niと、Yを含有するZrO(YSZ)とからなり、固体電解質1dがYを含有するZrO(YSZ)からなり、酸素側電極1bが遷移金属ペロブスカイト型酸化物から構成されている。 In such a fuel cell 1, in general, the support 1c, the fuel side electrode 1a are made of Ni and ZrO 2 (YSZ) containing Y 2 O 3 , and the solid electrolyte 1d is made of Y 2 O 3 . The oxygen side electrode 1b is made of a transition metal perovskite oxide and is made of ZrO 2 (YSZ).

また、上記のような燃料電池セル1を製造する方法としては、近年では製造工程を簡略化し、且つ製造コストを低減するために、支持体1cと、燃料側電極1a、固体電解質1d、インターコネクタ1eを同時焼成する、いわゆる共焼結法が提案されている。この共焼結法は非常に簡単なプロセスで製造工程数も少なく、セルの製造時の歩留まり向上、コスト低減に有利である。   Further, as a method of manufacturing the fuel cell 1 as described above, in recent years, in order to simplify the manufacturing process and reduce the manufacturing cost, the support 1c, the fuel side electrode 1a, the solid electrolyte 1d, the interconnector A so-called co-sintering method in which 1e is simultaneously fired has been proposed. This co-sintering method is a very simple process and has a small number of manufacturing steps, and is advantageous in improving the yield during manufacturing of cells and reducing costs.

しかしながら、従来の燃料電池セル1では、支持体1cが、Niと、Yを含有するZrOとから構成されており、Niの熱膨張係数が16.3×10−6/℃、Yを含有するZrOの熱膨張係数が10.8×10−6/℃であるため、Yを含有するZrOからなる固体電解質1dに、支持体1cの熱膨張係数を近づけることが困難であり、セル製造工程を簡略化するため、支持体1cと固体電解質1dを同時焼成すると、固体電解質1dにクラックが発生したり、固体電解質1dが支持体1c上に形成された燃料側電極1aから剥離するという問題があった。 However, in the conventional fuel cell 1, the support 1 c is composed of Ni and ZrO 2 containing Y 2 O 3 , and the thermal expansion coefficient of Ni is 16.3 × 10 −6 / ° C. Since the thermal expansion coefficient of ZrO 2 containing Y 2 O 3 is 10.8 × 10 −6 / ° C., the thermal expansion coefficient of the support 1 c is added to the solid electrolyte 1 d made of ZrO 2 containing Y 2 O 3. When the support 1c and the solid electrolyte 1d are simultaneously fired in order to simplify the cell manufacturing process, cracks are generated in the solid electrolyte 1d, or the solid electrolyte 1d is formed on the support 1c. There was a problem of peeling from the fuel side electrode 1a.

そこで、近年においては、固体電解質と支持体の熱膨張係数を近づけるため、支持体を、Niと、ZrOよりも熱膨張係数の低いムライト(3Al・2SiO)やスピネル(MgAl、CaAl)とから形成することが行われている(特許文献1参照)。
特開平7−029574号公報
Therefore, in recent years, in order to approximate the thermal expansion coefficient of the solid electrolyte and the support, a support, Ni and a low thermal expansion coefficient than the ZrO 2 mullite (3Al 2 O 3 · 2SiO 2 ) and spinel (MgAl 2 O 4 and CaAl 2 O 4 ) are formed (see Patent Document 1).
JP-A-7-029574

ところが、このような燃料電池セル1では、支持体1cと固体電解質1dを同時焼成したとしても、支持体1cの熱膨張係数を固体電解質1dの熱膨張係数に近づけることができるため、固体電解質1dのクラックや、固体電解質1dの燃料側電極1aからの剥離を抑制できるものの、同時焼成時に、支持体1cのMg、Al、Si等の成分が固体電解質1dに拡散し、固体電解質1dのイオン伝導度を低下させ、燃料電池セル1の発電性能を低くするという問題があった。   However, in such a fuel battery cell 1, even if the support 1c and the solid electrolyte 1d are co-fired, the thermal expansion coefficient of the support 1c can be brought close to the thermal expansion coefficient of the solid electrolyte 1d. Although cracking of the solid electrolyte 1d and separation of the solid electrolyte 1d from the fuel-side electrode 1a can be suppressed, components such as Mg, Al, and Si of the support 1c diffuse into the solid electrolyte 1d during simultaneous firing, and ion conduction of the solid electrolyte 1d There is a problem that the power generation performance of the fuel cell 1 is lowered.

そこで、本出願人は、支持体1cとして鉄族金属及び/又は鉄族金属の酸化物と、Y,Lu,Yb,Tm,Er,Ho,Dy,Gd,Sm,Prから選ばれた1種以上の希土類元素酸化物を主成分とすることを提案した(特願2002−024980)。
Therefore, the applicant of the present invention is the iron group metal and / or iron group metal oxide as the support 1c, and one kind selected from Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Sm, and Pr. and it suggested as a main component oxides of the above rare earth elements (Japanese Patent Application No. 2002-024980).

この燃料電池セルによれば発電性能を向上できるが、さらなる出力向上のため、燃料電池セルを詳細に分析した結果、共焼結させた場合、酸素側電極と燃料側電極間での出力は向上するものの、燃料側電極とインターコネクタ間の電位降下が従来よりも若干大きくなっていることが判明した。   According to this fuel cell, the power generation performance can be improved. However, as a result of detailed analysis of the fuel cell to further improve the output, the output between the oxygen side electrode and the fuel side electrode is improved when co-sintered. However, it was found that the potential drop between the fuel electrode and the interconnector was slightly larger than before.

この電位降下が従来よりも若干大きくなる理由は明確ではないが、支持体とインターコネクタの界面の断面をEPMAにより分析した結果、例えば、支持体にYを含有させた場合、インターコネクタに含有されるLa成分の拡散と、支持体に含有されるY成分の拡散が認められ、この界面に両者の偏析が観察された。このことから、両者の界面に、La−Y−O系からなる絶縁性の反応層が形成され、電位降下を大きくしていると推定される。 The reason why this potential drop is slightly larger than before is not clear. However, as a result of analyzing the cross section of the interface between the support and the interconnector by EPMA, for example, when the support contains Y 2 O 3 , the interconnector The diffusion of the La component contained in and the diffusion of the Y component contained in the support were observed, and segregation of both was observed at this interface. From this, it is presumed that an insulating reaction layer made of La—Y—O system is formed at the interface between the two, and the potential drop is increased.

本発明は、導電性支持体とインターコネクタ間の電位降下を小さくし、発電能力の高い燃料電池セル及び燃料電池を提供することを目的とする。 The present invention comprises a conductive support and a potential drop between the interconnector can be reduced, and to provide a high power generation capacity fuel cell及beauty fuel cells.

本発明の燃料電池セルは、導電性支持体上に、燃料側電極、固体電解質、酸素側電極順次設けられ前記導電性支持体上の前記燃料側電極が設けられていない部位に、導電性中間膜を介してインターコネクタが設けられてなる燃料電池セルであって前記導電性支持体が、Ni及び/又はNiOとセラミック粒子とからなり、前記導電性中間膜がNi及び/又はNiOと、希土類元素を固溶してなるZrO又はCeOとからなることを特徴とする。
Fuel cell of the present invention, on the electrically conductive substrate, the fuel-side electrode, the solid electrolyte, the oxygen side electrodes are sequentially provided, at a portion where the fuel side electrode on the conductive support is not provided, the conductive a fuel cell comprising an interconnector is provided via sexual intermediate layer, wherein the conductive support is made of a Ni and / or NiO and ceramic particles, wherein the conductive intermediate layer is Ni and / or NiO And ZrO 2 or CeO 2 formed by dissolving a rare earth element as a solid solution.

このような燃料電池セルでは、一般にセラミックスから構成されるインターコネクタと、Ni及び/又はNiOとセラミック粒子とからなる導電性支持体との間に、Ni及び/又はNiOと、希土類元素を固溶してなるZrO又はCeOとからなる導電性中間膜が形成されているため、インターコネクタと導電性支持体との間の中間膜により、同時焼成時における両者間の元素の相互拡散を抑制でき、導電性支持体とインターコネクタとの間の電位降下を小さくできるとともに、インターコネクタと導電性支持体との接合強度を向上できる。さらに、導電性中間膜はNi及び/又はNiOを含有しているため、インターコネクタと導電性支持体との間の導電性を向上できる。
In such a fuel cell, typically an interconnector made of a ceramic, between the Ni and / or the conductive support ing from the NiO and ceramic particles, and Ni and / or NiO, solid rare earth elements Since a conductive intermediate film made of dissolved ZrO 2 or CeO 2 is formed, the intermediate film between the interconnector and the conductive support allows mutual diffusion of elements between the two during simultaneous firing The potential drop between the conductive support and the interconnector can be reduced, and the bonding strength between the interconnector and the conductive support can be improved. Furthermore, since the conductive intermediate film contains Ni and / or NiO, the conductivity between the interconnector and the conductive support can be improved.

また、本発明の燃料電池セルは、導電性中間膜の希土類元素を固溶してなるZrO又はCeOの存在比率が、前記導電性支持体の前記セラミック粒子の存在比率よりも少ないことを特徴とする。
Further, the fuel cell of the present invention, the abundance ratio of ZrO 2 or CeO 2 formed by a solid solution of a rare earth element of the conductive intermediate layer is that less than the presence ratio of the ceramic particles before Kishirube conductive support It is characterized by.

このような燃料電池セルでは、インターコネクタと、このインターコネクタが設けられた導電性支持体との間に、導電性支持体のセラミック粒子の存在比率よりも少ない存在比率で希土類元素を固溶してなるZrO又はCeOを含有する導電性中間膜が形成されているため、導電性中間膜中のNi量が導電性支持体のNi量よりも多くなり、インターコネクタと導電性支持体との間の導電性を向上できる。
In such a fuel cell, a rare earth element is fixed between the interconnector and the conductive support provided with the interconnector at an abundance ratio smaller than the abundance ratio of the ceramic particles of the conductive support body. since the conductive intermediate layer containing ZrO 2 or CeO 2 formed by soluble are formed, the more than Ni of Ni amount Gashirube conductive support in the conductive intermediate layer, the interconnector and the conductive The conductivity between the conductive support can be improved.

さらに、本発明の燃料電池セルは、前記導電性支持体が、前記セラミック粒子として希土類元素の酸化物を含有しなるとともに、前記インターコネクタがランタン−クロム系酸化物材料からなり、前記導電性支持体、前記燃料側電極、前記固体電解質、前記導電性中間膜及び前記インターコネクタが同時焼結されていることを特徴とする。
Furthermore, the fuel cell of the present invention, the conductive support, together comprising an oxide of a rare earth element as the ceramic particles, the interconnector lanthanum - made of a chromium-containing oxide material, wherein the conductive The support, the fuel side electrode, the solid electrolyte, the conductive intermediate film, and the interconnector are simultaneously sintered.

このような燃料電池セルでは、導電性支持体とインターコネクタとの間に、Ni及び/又はNiOと、希土類元素を固溶してなるZrOとを含有する導電性中間膜を設けることで、同時焼成時における両者間のLa及び希土類元素の相互拡散を抑制でき、導電性支持体とインターコネクタとの間の電位降下を小さくし、発電能力の高い燃料電池セルを提供できる。 In such a fuel cell, between the electrically conductive substrate and the interconnector, by providing a Ni and / or NiO, a conductive intermediate layer containing a ZrO 2 solid solution of rare earth ing In addition, it is possible to suppress the mutual diffusion of La and rare earth elements between the two at the time of simultaneous firing, to reduce the potential drop between the conductive support and the interconnector, and to provide a fuel cell with high power generation capability.

また、このような燃料電池セルでは、導電性支持体を希土類元素の酸化物とNi及び/又はNiOとを含有する組成物から構成することにより、導電性支持体が固体電解質に及ぼす悪影響を排除できるため、固体電解質のイオン伝導度を高くすることができ、発電性能に優れた燃料電池セルを提供できる。
In such a fuel cell, the conductive support is composed of a composition containing a rare earth element oxide and Ni and / or NiO, thereby eliminating the adverse effect of the conductive support on the solid electrolyte. Therefore, the ionic conductivity of the solid electrolyte can be increased, and a fuel cell excellent in power generation performance can be provided.

このような燃料電池セルでは、希土類元素の酸化物は、焼成時や発電中に鉄族金属及び/又は鉄族金属の酸化物との固溶、反応が殆どなく、また、導電性支持体に混合する希土類元素の酸化物、例えばYは熱膨張係数が8.14×10−6/℃、YbはYと殆ど同程度であり、希土類元素が固溶したZrOの熱膨張係数(約10.8×10−6/℃)よりも遥かに小さいため、Y、Ybなどの含有比率を制御することにより、導電性支持体の熱膨張係数を固体電解質の熱膨張係数に近づけることができる。また、さらに、熱膨張係数の小さい希土類元素の酸化物を用いることにより、導電性支持体のNi量を増加させることができ、導電性支持体の電気伝導度を向上させることができ、燃料電池セルの特性を向上させることができる。
In such a fuel cell, the rare earth element oxide hardly dissolves or reacts with the iron group metal and / or iron group metal oxide during firing or during power generation, and the conductive support is used as a conductive support. Oxides of rare earth elements to be mixed, for example, Y 2 O 3 has a thermal expansion coefficient of 8.14 × 10 −6 / ° C., Yb 2 O 3 is almost the same as Y 2 O 3 , and the rare earth elements are dissolved. Since it is much smaller than the thermal expansion coefficient of ZrO 2 (about 10.8 × 10 −6 / ° C.), by controlling the content ratio of Y 2 O 3 , Yb 2 O 3, etc. The expansion coefficient can be made close to the thermal expansion coefficient of the solid electrolyte. Further, by using a rare earth element oxide having a small thermal expansion coefficient, the amount of Ni in the conductive support can be increased, the electrical conductivity of the conductive support can be improved, and the fuel cell Cell characteristics can be improved.

また、導電性支持体は、Ni及び/又はNiOと特定の希土類元素の酸化物を主成分とするため、導電性支持体と固体電解質とを同時焼成したとしても希土類元素が固体電解質に拡散しにくく、固体電解質のイオン伝導度や酸素側電極の導電率等に悪影響を及ぼすことがなく、さらに希土類元素が仮に同時焼成時に拡散したとしても、固体電解質はそもそもY、Yb等の希土類元素の酸化物が固溶したZrOから構成されているため、固体電解質への影響を最小限に抑制できる。また、Y、Ybなどの希土類元素の酸化物は、固体電解質の安定化剤として用いられており、燃料電池セルの元素種の増加を防止できる。
In addition, since the conductive support mainly contains Ni and / or NiO and a specific rare earth element oxide, the rare earth element diffuses into the solid electrolyte even if the conductive support and the solid electrolyte are simultaneously fired. The solid electrolyte does not adversely affect the ionic conductivity of the solid electrolyte, the conductivity of the oxygen side electrode, and the like, and even if the rare earth element diffuses during simultaneous firing, the solid electrolyte is originally Y 2 O 3 , Yb 2 O 3. Since it is composed of ZrO 2 in which an oxide of a rare earth element such as a solid is dissolved, the influence on the solid electrolyte can be suppressed to a minimum. Moreover, oxides of rare earth elements such as Y 2 O 3 and Yb 2 O 3 are used as solid electrolyte stabilizers and can prevent an increase in the number of element types in the fuel cell.

さらに、本発明の燃料電池セルは、前記導電性支持体中の希土類元素の酸化物は、Y,Lu,Yb,Tm,Er,Ho,Dy,Gd,Sm,Prから選ばれた1種以上の希土類元素の酸化物であることを特徴とする。このような燃料電池セルでは、導電性支持体の希土類元素の酸化物を、熱膨張係数が小さい希土類元素の酸化物とすることで、導電性支持体中の鉄族金属量を増加させることができるため、導電性支持体の電気電導度を増加させることができ、燃料電池セルの発電能力を向上できる。
Furthermore, in the fuel cell according to the present invention, the oxide of the rare earth element in the conductive support is one or more selected from Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Sm, and Pr. wherein the of an oxide of a rare earth element. In such a fuel cell, an oxide of a rare earth element of the conductive support, the support is an oxide of a small rare earth thermal expansion coefficient, to increase the iron group metal content of the conductive support in Therefore, the electrical conductivity of the conductive support can be increased, and the power generation capacity of the fuel cell can be improved.

また、本発明の燃料電池セルは、前記導電性中間膜の厚さが20μm以下であることを特徴とする。このような燃料電池セルでは、導電性中間膜には、微量ながらLa成分が拡散する傾向があるが、導電性中間膜を20μm以下と薄くすることで抵抗を減少させることができ、それにより導電性中間膜を通しての電位降下を小さくできる。さらに、導電性中間膜を薄くすることにより、導電性中間膜の熱膨張係数が、インターコネクタ、燃料側電極又は導電性支持体と異なる場合であっても、導電性中間膜における剥離を防止できる。 Further, the fuel cell of the present invention is characterized in that the thickness of the conductive intermediate layer is 20μm or less. In such a fuel cell, the conductive intermediate layer, tends to trace while La component is diffused, the conductive intermediate layer can reduce the resistance by thin as 20μm or less, thereby conducting Potential drop through the conductive interlayer can be reduced. Furthermore, by reducing the thickness of the conductive intermediate film, even if the thermal expansion coefficient of the conductive intermediate film is different from that of the interconnector, the fuel-side electrode, or the conductive support, it is possible to prevent peeling of the conductive intermediate film. .

さらに、本発明の燃料電池セルは、前記インターコネクタ表面にP型半導体からなる集電膜を設けたことを特徴とする。インターコネクタ表面に直接金属の集電部材を介して集電すると非オーム接触により、電位降下が大きくなる。オーム接触をし、電位降下を少なくするためには、インターコネクタにP型半導体を接続する必要があり、例えば、P型半導体であるペロブスカイト型酸化物を用いることが重要である。これにより、インターコネクタ表面に直接金属の集電部材を介して集電するよりも、インターコネクタと集電体界面の電位降下を小さくできる。 Furthermore, the fuel cell of the present invention is characterized in that a collector layer made of P-type semiconductor on the interconnector surface. If current is collected directly on the surface of the interconnector via a metal current collecting member, the potential drop increases due to non-ohmic contact. In order to make ohmic contact and reduce the potential drop, it is necessary to connect a P-type semiconductor to the interconnector. For example, it is important to use a perovskite oxide that is a P-type semiconductor. Accordingly, the potential drop at the interface between the interconnector and the current collector can be made smaller than when the current is collected directly on the surface of the interconnector via the metal current collector.

また、本発明の燃料電池セルは、前記導電性中間膜のZrO 又はCeO に固溶された希土類元素が、Y,Lu,Yb,Tm,Er,Ho,Dy,Gd,Sm,Prからなる群より選択された少なくとも1種の元素を含むZrO又はCeOであることを特徴とする。 Further, the fuel cell of the present invention, before Kishirubeden intermediate film rare earth element is dissolved in ZrO 2 or CeO 2 of, Y, Lu, Yb, Tm , Er, Ho, Dy, Gd, Sm, Pr ZrO 2 or CeO 2 containing at least one element selected from the group consisting of

このような燃料電池セルでは、同時焼成時における両者間のLa及び希土類元素の相互拡散を抑制でき、電子伝導性を有するセラミック粒子であるZrO又はCeOにより導電性中間膜を形成することから、導電性支持体とインターコネクタ間の電位降下を小さくし、発電能力の高い燃料電池セルを提供できる。 In such a fuel cell, it is possible to suppress mutual diffusion of La and rare earth elements between the two at the time of simultaneous firing, and the conductive intermediate film is formed from ZrO 2 or CeO 2 which are ceramic particles having electronic conductivity. The potential drop between the conductive support and the interconnector can be reduced, and a fuel cell with high power generation capability can be provided.

さらに、本発明の燃料電池セルは、導電性中間膜の希土類元素を固溶してなるZrO又はCeOは35〜45体積%、前記導電性支持体の前記セラミック粒子は35〜65体積%であることを特徴とする。このような燃料電池セルでは、少ないセラミック粒子を含有する導電性中間膜が形成されているため、インターコネクタと導電性支持体との間の導電性を向上できる。
Furthermore, the fuel cell of the present invention, the conductive ZrO 2 or CeO 2 formed by a solid solution of a rare earth element of the intermediate layer is 35 to 45 vol%, the ceramic particles before Kishirube conductive support 35 to 65 volume %. In such a fuel cell, since the conductive intermediate film containing few ceramic particles is formed, the conductivity between the interconnector and the conductive support can be improved.

本発明の燃料電池は、上記燃料電池セルを収納容器内に複数収納してなることを特徴とする。このような燃料電池では、導電性支持体と固体電解質の熱膨張差による燃料電池セルの破損を防止できるとともに、導電性支持体とインターコネクタの界面での電位降下を抑制できるため、発電性能の優れた燃料電池を提供できる。 The fuel cell according to the present invention is characterized in that a plurality of the fuel cells are accommodated in a storage container. In such a fuel cell, the fuel cell can be prevented from being damaged due to the difference in thermal expansion between the conductive support and the solid electrolyte, and the potential drop at the interface between the conductive support and the interconnector can be suppressed. An excellent fuel cell can be provided.

本発明の燃料電池セルでは、一般にセラミックスから構成されるインターコネクタと、Ni及び/又はNiOとセラミック粒子とからなる導電性支持体との間に、Ni及び/又はNiOと、希土類元素を固溶してなるZrO又はCeOとからなる導電性中間膜が
形成されているため、インターコネクタと導電性支持体との間の導電性中間膜により、同時焼成時における両者間の元素の相互拡散を抑制でき、導電性支持体とインターコネクタとの間の電位降下を小さくできるとともに、インターコネクタと導電性支持体との接合強度を向上できる。さらに、導電性中間膜はNiを含有しているため、インターコネクタと導電性支持体との間の導電性を向上できる。
In the fuel cell of the present invention, generally the interconnector consists of ceramic, between the Ni and / or the conductive support ing from the NiO and ceramic particles, and Ni and / or NiO, solid rare earth elements Since a conductive intermediate film made of dissolved ZrO 2 or CeO 2 is formed, the conductive intermediate film between the interconnector and the conductive support allows the elements between the two to be simultaneously fired. Mutual diffusion can be suppressed , the potential drop between the conductive support and the interconnector can be reduced, and the bonding strength between the interconnector and the conductive support can be improved. Furthermore, since the conductive intermediate film contains Ni , the conductivity between the interconnector and the conductive support can be improved.

図1は、本発明の燃料電池セル33の横断面斜視図を示すもので、燃料電池セル33は断面が扁平状で、全体的に見て平板棒状(中空平板型)であり、その内部には複数のガス流路34が軸長方向に形成されている。   FIG. 1 is a cross-sectional perspective view of a fuel battery cell 33 according to the present invention. The fuel battery cell 33 has a flat cross-section and is generally a flat bar shape (hollow flat plate type). A plurality of gas flow paths 34 are formed in the axial length direction.

この燃料電池セル33は、断面が扁平状で、全体的に見て長尺状平板のY,Lu,Yb,Tm,Er,Ho,Dy,Gd,Sm,Prから選ばれた1種以上の希土類元素酸化物とNi及び/又はNiOとを含有する導電性支持体33a(以下、支持体と略す場合がある。)の外面に、多孔質な燃料側電極33b、緻密質な固体電解質33c、多孔質な導電性セラミックスからなる酸素側電極33dを順次積層し、酸素側電極33dと反対側の支持体33aの外面に導電性中間膜33e(以下、中間膜と略す場合がある。)、ランタン−クロム系酸化物材料からなるインターコネクタ33f、P型半導体材料からなる集電膜33gを形成して構成されている。
The fuel cell 33 has a flat cross section, and one or more kinds selected from Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Sm, and Pr which are long and flat as a whole. conductive support 33a containing an oxide and Ni and / or NiO of rare earth elements on the outer surface (hereinafter, if there is. abbreviated as support), a porous fuel side electrode 33b, dense solid electrolyte 33c The oxygen side electrode 33d made of porous conductive ceramics is sequentially laminated, and a conductive intermediate film 33e (hereinafter sometimes abbreviated as an intermediate film) is formed on the outer surface of the support 33a opposite to the oxygen side electrode 33d. An interconnector 33f made of a lanthanum-chromium oxide material and a current collecting film 33g made of a P-type semiconductor material are formed.

即ち、燃料電池セル33は、断面形状が、幅方向両端に設けられた弧状部mと、これらの弧状部mを連結する一対の平坦部nとから構成されており、一対の平坦部nは平坦であり、ほぼ平行に形成されている。これらの燃料電池セル33の平坦部nの一対のうち一方は、支持体33の平坦部に、中間膜33e、インターコネクタ33f、集電膜33gを形成して構成され、他方の平坦部nは、支持体33の平坦部に、燃料側電極33b、固体電解質33c、酸素側電極33dを形成して構成されている。 That is, the fuel cell 33 has a cross-sectional shape including arc-shaped portions m provided at both ends in the width direction, and a pair of flat portions n that connect the arc-shaped portions m. It is flat and formed substantially in parallel. One of the pair of flat portions n of these fuel cell 33, the flat portion of the support member 33 a, an intermediate layer 33e, the interconnector 33f, configured to form a current-collecting film 33 g, the other flat portion n Is configured by forming a fuel side electrode 33b, a solid electrolyte 33c, and an oxygen side electrode 33d on a flat portion of the support 33a.

導電性中間膜33eは、Ni及び/またはNiOと希土類元素を固溶してなるZrO又はCeO とからなる。 Conductive intermediate layer 33e is that Do since N i and / or NiO and a rare earth element and ZrO 2 or CeO 2 ing a solid solution.

希土類元素としては、Y,Lu,Yb,Tm,Er,Ho,Dy,Gd,Sm,Prからなる群より選択された少なくとも1種の元素が好適に用いられる。 Examples of the rare earth elements, Y, Lu, Yb, Tm , Er, Ho, Dy, Gd, Sm, at least one elemental selected from the group consisting of Pr is suitably used.

中間膜33e中のNi化合物のNi換算量は、導電性を向上するという点から、全量中35〜80体積%が望ましく、好ましくは50〜70体積%、さらには55〜65体積%が望ましい。言い換えると、中間膜33e中の希土類元素を固溶してなるZrO 又はCeO は、20〜65体積%、好ましくは30〜50体積%、さらには35〜45体積%が望ましい。中間膜33e中のNi換算量を35体積%以上とすることで、Niの導電パスが増加し、中間膜33eの伝導度が向上し、電圧降下が小さくなる。また、Niを80体積%以下とすることで、支持体33aとインターコネクタ33fの間の熱膨張係数差を小さくすることができ、両者の界面での亀裂の発生を抑制できる。 The Ni conversion amount of the Ni compound in the intermediate film 33e is desirably 35 to 80% by volume, preferably 50 to 70% by volume, and more desirably 55 to 65% by volume in terms of improving the conductivity. In other words, ZrO 2 or CeO 2 formed by dissolving the rare earth element in the intermediate film 33e is 20 to 65% by volume, preferably 30 to 50% by volume, and more preferably 35 to 45% by volume. By setting the Ni conversion amount in the intermediate film 33e to 35% by volume or more, the Ni conductive path is increased, the conductivity of the intermediate film 33e is improved, and the voltage drop is reduced. Moreover, by making Ni 80 volume% or less, the thermal expansion coefficient difference between the support body 33a and the interconnector 33f can be made small, and generation | occurrence | production of the crack in both interface can be suppressed.

また、電位降下が小さくなるという点から中間膜33eの厚さは20μm以下が望ましく、さらに、10μm以下が望ましい。また、このように、中間膜33eの厚さを薄くすることにより、仮にインターコネクタ33f、支持体33aと中間膜33eとの熱膨張係数差が大きい場合であっても、その間における界面亀裂を抑制できる。拡散を防止するという点から6μm以上が望ましい。   In addition, the thickness of the intermediate film 33e is preferably 20 μm or less, and more preferably 10 μm or less from the viewpoint that the potential drop is reduced. In addition, by reducing the thickness of the intermediate film 33e in this way, even if the thermal expansion coefficient difference between the interconnector 33f and the support 33a and the intermediate film 33e is large, interfacial cracks between them are suppressed. it can. 6 μm or more is desirable from the viewpoint of preventing diffusion.

また、支持体33aの希土類元素は中希土類元素、重希土類元素が望ましい。中希土類元素や重希土類元素の酸化物の熱膨張係数は、固体電解質33cのYを含有するZrOの熱膨張係数より熱膨張係数が小さく、Niとのサーメット材としての支持体33aの熱膨張係数を固体電解質33cの熱膨張係数に近づけることができ、固体電解質33cのクラックや、固体電解質33cの燃料側電極33bからの剥離を抑制できる。熱膨張係数が小さい重希土類元素の酸化物を用いることで、支持体33a中のNiを多くでき、支持体33aの電気伝導度を上げることができるという点から、さらに、重希土類元素の酸化物を用いることが望ましい。
The rare earth element of the support 33a is preferably a medium rare earth element or a heavy rare earth element. The thermal expansion coefficient of the medium rare earth element or heavy rare earth element oxide is smaller than that of ZrO 2 containing Y 2 O 3 of the solid electrolyte 33c, and the support 33a as a cermet material with Ni is used. Can be made closer to the thermal expansion coefficient of the solid electrolyte 33c, and cracking of the solid electrolyte 33c and separation of the solid electrolyte 33c from the fuel side electrode 33b can be suppressed. With the oxide thermal expansion coefficient smaller heavy rare earth element, can increase the Ni in the support 33a, from the viewpoint that it is possible to increase the electrical conductivity of the support 33a, furthermore, oxides of heavy rare earth elements It is desirable to use

なお、軽希土類元素のLa、Ce、Pr、Ndの酸化物は、希土類元素酸化物の熱膨張係数の総和が固体電解質の熱膨張係数未満である範囲であれば、中希土類元素、重希土類元素に加えて含有されていても何ら問題はない。
Incidentally, La of the light rare earth elements, Ce, Pr, oxides of Nd, if the summed area of the thermal expansion coefficient of the oxide is less than the thermal expansion coefficient of the solid electrolyte of the rare earth elements, middle rare earth elements, heavy rare earth There is no problem even if it is contained in addition to the elements.

また、精製途中の安価な複数の希土類元素を含む複合希土類元素の酸化物を用いることにより原料コストを大幅に下げることができる。その場合も、複合希土類元素の酸化物の熱膨張係数は固体電解質の熱膨張係数未満であることが重要である。
In addition, the raw material cost can be significantly reduced by using an oxide of a complex rare earth element including a plurality of inexpensive rare earth elements in the course of purification. Also in that case, it is important that the thermal expansion coefficient of the oxide of the complex rare earth element is less than the thermal expansion coefficient of the solid electrolyte.

このような導電性支持体33aは、セラミック粒子としての希土類元素の酸化物と、Ni及び/又はNiOを含有することが望ましく、希土類元素の酸化物は、Y,Lu,Yb,Tm,Er,Ho,Dy,Gd,Sm,Prから選ばれた1種以上の希土類元素酸化物であることが望ましい。また、支持体33aは、希土類元素の酸化物を35〜65体積%と、Ni及び/又はNiOをNi換算で35〜65体積%含有することが望ましい。このような組成比とすることにより、導電性を確保できるとともに、固体電解質の熱膨張係数に近づけることができる。
Such electroconductive support 33a is an oxide of a rare earth element as the ceramic particles, it is desirable to contain N i and / or NiO, oxides of rare earth elements, Y, Lu, Yb, Tm, Er , Ho, Dy, Gd, Sm , it is preferable that the oxide of one or more rare earth elements selected from Pr. The support 33a preferably contains 35 to 65% by volume of a rare earth element oxide and 35 to 65% by volume of Ni and / or NiO in terms of Ni. By setting it as such a composition ratio, while being able to ensure electroconductivity, it can approximate to the thermal expansion coefficient of a solid electrolyte.

そして、本発明では、導電性中間膜33eの希土類元素を固溶してなるZrO又はCeOの存在比率が、導電性支持体33aのセラミック粒子の存在比率よりも少ないことが望ましい。逆に言えば、導電性中間膜33eのNi及び/又はNiOのNi換算の存在比率が、導電性支持体33aのNi換算の存在比率よりも多いことが望ましい。
In the present invention, it is desirable that the abundance ratio of ZrO 2 or CeO 2 formed by dissolving the rare earth element in the conductive intermediate film 33e is smaller than the abundance ratio of the ceramic particles of the conductive support 33a. Conversely, the existence ratio of Ni in terms of Ni and / or NiO conductive intermediate layer 33e may be desirable more than the presence ratio of Ni in terms of the conductive support 33a.

また、インターコネクタ33fは、ランタンークロム系酸化物材料からなり、低温焼結するため、通常MgやSr等の添加物が添加されて形成されている。このような添加物を添加する場合には、熱膨張係数が高くなりやすいが、上記したように、中間膜33eの厚みを20μm以下とすることにより、支持体33aとインターコネクタ33fの間の界面亀裂を抑制できる。   Further, the interconnector 33f is made of a lanthanum-chromium oxide material, and is usually formed by adding additives such as Mg and Sr for sintering at a low temperature. When such an additive is added, the coefficient of thermal expansion tends to be high. However, as described above, the interface between the support 33a and the interconnector 33f can be obtained by setting the thickness of the intermediate film 33e to 20 μm or less. Cracks can be suppressed.

このインターコネクタ33f表面には、P型半導体、例えば、遷移金属ペロブスカイト型酸化物からなる集電膜33gを設けることが望ましい。インターコネクタ33f表面に直接金属の集電部材を配して集電すると非オーム接触により、電位降下が大きくなる。オーム接触をし、電位降下を少なくするためには、インターコネクタ33fにP型半導体からなる集電膜33gを接続することが望ましく、P型半導体である遷移金属ペロブスカイト型酸化物を用いることが望ましい。遷移金属ペロブスカイト型酸化物としては、ランタン−マンガン系酸化物、ランタン−鉄系酸化物、又は、それらの複合酸化物の少なくとも一種からなることが望ましい。   It is desirable to provide a current collecting film 33g made of a P-type semiconductor such as a transition metal perovskite oxide on the surface of the interconnector 33f. When a metal current collecting member is disposed directly on the surface of the interconnector 33f to collect current, the potential drop increases due to non-ohmic contact. In order to make ohmic contact and reduce the potential drop, it is desirable to connect a current collecting film 33g made of a P-type semiconductor to the interconnector 33f, and it is desirable to use a transition metal perovskite oxide that is a P-type semiconductor. . The transition metal perovskite oxide is preferably made of at least one of lanthanum-manganese oxide, lanthanum-iron oxide, or a composite oxide thereof.

支持体33aの外面に設けられた燃料側電極33bは、Niと希土類元素が固溶したZrOとから構成される。この燃料側電極33bの厚みは1〜30μmであることが望ましい。燃料側電極33bの厚みを1μm以上とすることで、燃料側電極33bとしての3層界面が十分に形成される。また、燃料側電極33bの厚みを30μm以下とすることで、固体電解質33cとの熱膨張差による界面剥離を防止できる。燃料側電極33bは、中間膜33eの両端に接合していることが望ましい。 The fuel side electrode 33b provided on the outer surface of the support 33a is composed of Ni and ZrO 2 in which a rare earth element is dissolved. The thickness of the fuel side electrode 33b is desirably 1 to 30 μm. By setting the thickness of the fuel side electrode 33b to 1 μm or more, a three-layer interface as the fuel side electrode 33b is sufficiently formed. Further, by setting the thickness of the fuel side electrode 33b to 30 μm or less, it is possible to prevent interface peeling due to a difference in thermal expansion from the solid electrolyte 33c. The fuel side electrode 33b is desirably joined to both ends of the intermediate film 33e.

この燃料側電極33bの外面に設けられた固体電解質33cは、例えば、3〜15モル%のY等の希土類元素を含有した部分安定化あるいは安定化ZrOからなる緻密質なセラミックスから構成される。希土類元素としては、安価であるという点からYもしくはYbが望ましい。 The solid electrolyte 33c provided on the outer surface of the fuel side electrode 33b is composed of a dense ceramic made of partially stabilized or stabilized ZrO 2 containing, for example, 3 to 15 mol% of a rare earth element such as Y. . As the rare earth element, Y or Yb is desirable because it is inexpensive.

固体電解質33cの厚さは、10〜100μmであることが望ましい。固体電解質33cの厚さを10μm以上とすることで、ガス透過を防止できる。また、固体電解質33cの厚さを100μm以下にすることで、抵抗成分の増加を抑制できる。   The thickness of the solid electrolyte 33c is desirably 10 to 100 μm. Gas permeation can be prevented by setting the thickness of the solid electrolyte 33c to 10 μm or more. Moreover, the increase in a resistance component can be suppressed by making the thickness of the solid electrolyte 33c into 100 micrometers or less.

また、酸素側電極33dは、遷移金属ペロブスカイト型酸化物のランタン−マンガン系酸化物、ランタン−鉄系酸化物、または、それらの複合酸化物の少なくとも一種の多孔質の導電性セラミックスから構成されている。酸素側電極33dは、800℃程度の中温域での電気伝導性が高いという点から(La,Sr)(Fe,Co)Oが望ましい。酸素側電極33dの厚さは、集電性という点から30〜100μmであることが望ましい。 The oxygen side electrode 33d is composed of a lanthanum-manganese oxide, a lanthanum-iron oxide of a transition metal perovskite oxide, or at least one porous conductive ceramic of a composite oxide thereof. Yes. The oxygen side electrode 33d is preferably (La, Sr) (Fe, Co) O 3 from the viewpoint of high electrical conductivity in the middle temperature range of about 800 ° C. The thickness of the oxygen side electrode 33d is preferably 30 to 100 μm from the viewpoint of current collection.

そして、支持体33a外面の一部には、その軸長方向に燃料側電極33b、固体電解質33c及び酸素側電極33dが形成されていない部分を有しており、この固体電解質33c及び酸素側電極33dから露出した支持体33aの外面には、中間膜33e、ランタン−クロム系酸化物からなるインターコネクタ33f、集電膜33gが形成されている。   A part of the outer surface of the support 33a has a portion in which the fuel side electrode 33b, the solid electrolyte 33c, and the oxygen side electrode 33d are not formed in the axial length direction. The solid electrolyte 33c and the oxygen side electrode An intermediate film 33e, an interconnector 33f made of lanthanum-chromium oxide, and a current collecting film 33g are formed on the outer surface of the support 33a exposed from 33d.

インターコネクタ33fは、支持体33aの内外の燃料ガス、酸素含有ガスの漏出を防止するため緻密質とされており、また、インターコネクタ33fの内外面は、燃料ガス、酸素含有ガスと接触するため、耐還元性、耐酸化性を有している。   The interconnector 33f is made dense to prevent leakage of the fuel gas and oxygen-containing gas inside and outside the support 33a, and the inner and outer surfaces of the interconnector 33f are in contact with the fuel gas and oxygen-containing gas. It has reduction resistance and oxidation resistance.

このインターコネクタ33fの厚みは、30〜200μmであることが望ましい。このインターコネクタ33fの端面と固体電解質33cの端面との間には、シール性を向上すべく例えば、Yからなる接合層を介在させても良い。 The thickness of the interconnector 33f is desirably 30 to 200 μm. For example, a bonding layer made of Y 2 O 3 may be interposed between the end face of the interconnector 33f and the end face of the solid electrolyte 33c in order to improve the sealing performance.

以上のような燃料電池セル33の製法について説明する。先ず、La、Ce、Pr、Ndの元素を除く希土類元素の酸化物粉末とNi及び/又はNiO粉末を混合し、この混合粉末に、有機バインダーと、溶媒とを混合した支持体材料を用い、押出成形して、扁平状の支持体成形体を作製し、これを乾燥、脱脂する。 The manufacturing method of the fuel cell 33 as described above will be described. First, rare earth element oxide powder excluding La, Ce, Pr, and Nd elements and Ni and / or NiO powder are mixed, and the mixed powder is used with a support material in which an organic binder and a solvent are mixed. Extruded to produce a flat support molded body, which is dried and degreased.

次に、Ni及び/又はNiO粉末と希土類元素が固溶したZrO粉末と有機バインダーと、溶媒を混合し、作製したスラリーを用いてシート状の燃料側電極成形体を作製し、支持体成形体に積層する。 Next, Ni and / or NiO powder, a ZrO 2 powder in which a rare earth element is dissolved, an organic binder, and a solvent are mixed, and a sheet-like fuel-side electrode molded body is manufactured using the prepared slurry, and the support is molded. Laminate on the body.

次に、希土類元素が固溶したZrO粉末と有機バインダーと、溶媒を混合した固体電解質材料を用いてシート状の固体電解質成形体を作製し、支持体成形体上の燃料側電極成形体上に前記シート状の固体電解質成形体を積層巻き付けし、乾燥する。なお、このとき脱脂を行ってもよい。 Next, using a solid electrolyte material in which a rare earth element solid solution ZrO 2 powder, an organic binder, and a solvent are mixed, a sheet-like solid electrolyte molded body is produced, and the fuel-side electrode molded body on the support molded body The sheet-like solid electrolyte molded body is laminated and wound on the substrate and dried. In addition, you may degrease at this time.

次に、Ni及び/又はNiO粉末と希土類元素が固溶したZrO粉と有機バインダーと、溶媒を混合したスラリーを用いてシート状の中間膜成形体を作製し、支持体成形体に積層する。 Next, a sheet-like intermediate film molded body is produced using a slurry in which Ni and / or NiO powder, a rare earth element-dissolved ZrO 2 powder, an organic binder, and a solvent are mixed, and is laminated on the support body molded body. .

次に、ランタン−クロム系酸化物粉末と、有機バインダーと、溶媒を混合したインターコネクタ材料を用いてシート状のインターコネクタ成形体を作製し、中間膜成形体上に積層する。   Next, a sheet-like interconnector molded body is produced using an interconnector material in which a lanthanum-chromium oxide powder, an organic binder, and a solvent are mixed, and is laminated on the intermediate film molded body.

これにより、支持体成形体の一方の平坦部の表面に、燃料側電極成形体、固体電解質成形体を順次積層するとともに、他方の平坦部の表面に中間膜成形体、インターコネクタ成形体が積層された積層成形体を作製する。尚、各成形体はドクターブレードによるシート成形や印刷、スラリーディップ、スプレーによる吹き付けなどにより作製することができ、または、これらの組み合わせにより作製してもよい。   As a result, the fuel-side electrode molded body and the solid electrolyte molded body are sequentially laminated on the surface of one flat portion of the support molded body, and the intermediate film molded body and the interconnector molded body are laminated on the surface of the other flat portion. A laminated molded body is produced. Each molded body can be produced by sheet molding using a doctor blade, printing, slurry dip, spraying by spraying, or the like, or a combination thereof.

次に、積層成形体を脱脂処理し、酸素含有雰囲気中で1300〜1600℃で同時焼成する。   Next, the multilayer molded body is degreased and cofired at 1300 to 1600 ° C. in an oxygen-containing atmosphere.

次に、P型半導体である遷移金属ペロブスカイト型酸化物粉末と、溶媒を混合し、ペーストを作製し、前記積層体をこのペースト中に浸漬し、固体電解質33b、インターコネクタ33fの表面に酸素側電極成形体、集電膜成形体をディッピングにより形成するか、または、直接スプレー塗布し、1000〜1300℃で焼き付けることにより、本発明の燃料電池セル33を作製できる。   Next, a transition metal perovskite oxide powder, which is a P-type semiconductor, and a solvent are mixed to prepare a paste, and the laminate is immersed in this paste, and the oxygen side is placed on the surfaces of the solid electrolyte 33b and the interconnector 33f. The fuel cell 33 of the present invention can be produced by forming an electrode molded body and a current collector film molded body by dipping, or by direct spray coating and baking at 1000 to 1300 ° C.

尚、燃料電池セル33は、酸素含有雰囲気での焼成により、導電性支持体33a、燃料側電極33b、中間膜33中のNi成分が、NiOとなっているため、その後、支持体33a側から還元性の燃料ガスを流し、NiOを800〜1000℃で還元処理する。また、この還元処理は発電時に行ってもよい。 The fuel cell 33 is, by firing in an oxygen-containing atmosphere, since the conductive substrate 33a, the fuel-side electrode 33b, Ni component in the intermediate layer 33 e has a NiO, then the support 33a side Then, a reducing fuel gas is flowed to reduce NiO at 800 to 1000 ° C. Further, this reduction process may be performed during power generation.

セルスタックは、図2に示すように、複数の燃料電池セル33が複数集合してなり、一方の燃料電池セル33と他方の燃料電池セル33との間に、金属フェルト及び/又は金属板からなる集電部材43を介在させ、一方の燃料電池セル33の支持体33aを、該支持体33aに設けられたインターコネクタ33f、集電膜33g、集電部材43を介して他方の燃料電池セル33の酸素側電極33dに電気的に接続して構成されている。   As shown in FIG. 2, the cell stack is composed of a plurality of fuel battery cells 33, and a metal felt and / or a metal plate is interposed between one fuel battery cell 33 and the other fuel battery cell 33. The support member 33a of one fuel battery cell 33 is inserted into the other fuel battery cell via the interconnector 33f, the current collector film 33g, and the current collector member 43 provided on the support member 33a. It is configured to be electrically connected to 33 oxygen side electrodes 33d.

集電部材43は、耐熱性、耐酸化性、電気伝導性という点から、Pt、Ag、Ni基合金、Fe−Cr鋼合金の少なくとも一種からなることが望ましい。   The current collecting member 43 is preferably made of at least one of Pt, Ag, Ni-base alloy, and Fe—Cr steel alloy from the viewpoint of heat resistance, oxidation resistance, and electrical conductivity.

尚、符号42は、燃料電池セルを直列に接続するための導電部材である。   Reference numeral 42 denotes a conductive member for connecting the fuel cells in series.

本発明の燃料電池は、図2のセルスタックを、収納容器内に収納して構成されている。この収納容器には、外部から水素等の燃料ガス及び空気等の酸素含有ガスを燃料電池セル33に導入する導入管が設けられており、燃料電池セル33が所定温度に加熱されることにより発電し、余剰の燃料ガス、酸素含有ガスは燃焼して、収納容器外に排出される。   The fuel cell of the present invention is configured by storing the cell stack of FIG. 2 in a storage container. This storage container is provided with an introduction pipe for introducing a fuel gas such as hydrogen and an oxygen-containing gas such as air into the fuel cell 33 from the outside, and the fuel cell 33 is heated to a predetermined temperature to generate power. Then, surplus fuel gas and oxygen-containing gas are burned and discharged out of the storage container.

尚、本発明は上記形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、円筒状の支持体を用いて円筒型燃料電池セルを作製してもよく、支持体を用いる燃料電池セルであれば形状は問わない。また、酸素側電極33dと固体電解質33cとの間に、反応防止層を形成しても良い。   In addition, this invention is not limited to the said form, A various change is possible in the range which does not change the summary of invention. For example, a cylindrical fuel cell may be produced using a cylindrical support, and the shape is not limited as long as the fuel cell uses a support. Further, a reaction preventing layer may be formed between the oxygen side electrode 33d and the solid electrolyte 33c.

また、上記形態では、支持体33a上に燃料側電極を形成した例について説明したが、本発明は、別個に支持体を有しない燃料側電極支持の燃料電池セルであってもよい。この場合には、燃料側電極に中間膜を介してインターコネクタが形成されることになる。   Moreover, although the said form demonstrated the example which formed the fuel side electrode on the support body 33a, this invention may be the fuel cell of the fuel side electrode support which does not have a support body separately. In this case, the interconnector is formed on the fuel side electrode via the intermediate film.

先ず、平均粒径0.5μmのNiO粉末と、平均粒径0.8〜1.0μmの表1に示す周期律表第3a族元素(RE)の酸化物を、焼成後におけるNi換算の体積比率が50体積%、RE酸化物の体積比率が50体積%になるように混合した。   First, NiO powder having an average particle diameter of 0.5 μm and an oxide of Group 3a element (RE) in the periodic table shown in Table 1 having an average particle diameter of 0.8 to 1.0 μm after firing are converted into Ni. The mixing was performed so that the ratio was 50% by volume and the volume ratio of the RE oxide was 50% by volume.

次に、この混合粉末に、ポアー剤、PVAからなる有機バインダーと、水からなる溶媒とを混合して形成した支持体材料を押出成形し、扁平状の支持体成形体を作製し、これを乾燥し、1000℃まで昇温し、脱脂、仮焼し、支持体成形体を作製した。   Next, a support material formed by mixing the mixed powder with an organic binder composed of a pore agent and PVA and a solvent composed of water is extruded to produce a flat support compact, It dried and heated up to 1000 degreeC, degreased and calcined, and produced the support body molded object.

次に、8モル%Yを含有するZrO(YSZ)粉末と、上記したNiO粉末とを焼成後におけるNi換算量が50体積%、YSZの体積比率が50体積%となるように添加し、さらに、アクリル樹脂からなる有機バインダーと、トルエンからなる溶媒とを混合した燃料側電極33bとなるスラリーを作製し、上記YSZ粉末と、アクリル樹脂からなる有機バインダーと、トルエンからなる溶媒とを混合した固体電解質材料を用いてシート状成形体を作製し、このシート状成形体に燃料側電極33bとなるスラリーを印刷し、固体電解質成形体側が外側になるように支持体成形体にまき付け、積層、乾燥した。 Next, the amount of Ni converted after firing ZrO 2 (YSZ) powder containing 8 mol% Y 2 O 3 and the above-described NiO powder is 50% by volume, and the volume ratio of YSZ is 50% by volume. In addition, a slurry to be a fuel side electrode 33b in which an organic binder made of acrylic resin and a solvent made of toluene are mixed is prepared, and the YSZ powder, an organic binder made of acrylic resin, and a solvent made of toluene A sheet-like molded body is prepared using a solid electrolyte material mixed with the catalyst, and a slurry to be the fuel-side electrode 33b is printed on the sheet-shaped molded body, and the support-molded body is spread so that the solid electrolyte molded body side is on the outside. Applied, laminated and dried.

次に、平均粒径0.5μmのNiO粉末と、平均粒径0.8μmの表1に示す希土類元素を8モル%含有するZrO粉末を、焼成後における体積比率が表1に示す含有量になるように混合した。尚、NiOはNi換算量である。この混合粉末と、アクリル樹脂からなる有機バインダーと、トルエンからなる溶媒とを混合し、シート状の中間膜成形体を作製した。 Next, the content of the NiO powder having an average particle size of 0.5 μm and the ZrO 2 powder containing 8 mol% of the rare earth elements shown in Table 1 having an average particle size of 0.8 μm, whose volume ratio after firing is shown in Table 1 It mixed so that it might become. NiO is a Ni conversion amount. This mixed powder, an organic binder made of an acrylic resin, and a solvent made of toluene were mixed to produce a sheet-like intermediate film molded body.

この後、平均粒径1.1μmのLa(MgCr)O系材料と、アクリル樹脂からなる有機バインダーと、トルエンからなる溶媒とを混合したインターコネクタ材料を用いてシート状成形体を作製した。 Thereafter, a sheet-like molded body was produced using an interconnector material obtained by mixing a La (MgCr) O 3 -based material having an average particle diameter of 1.1 μm, an organic binder made of an acrylic resin, and a solvent made of toluene.

このインターコネクタシート状成形体に前記シート状の中間膜成形体を積層し、さらに、露出した支持体成形体の平坦部外面に中間膜成形体側が支持体成形体側になるように積層し、支持体成形体に燃料側電極成形体、固体電解質成形体、中間膜成形体、インターコネクタ成形体が積層された積層成形体を作製した。次に、この積層成形体を脱脂処理し、さらに、大気中にて1500℃で同時焼成した。   The sheet-like intermediate film molded body is laminated on the interconnector sheet-shaped molded body, and further, the intermediate film molded body side is laminated on the outer surface of the flat portion of the exposed support molded body so that the support molded body side is supported. A laminated molded body in which a fuel-side electrode molded body, a solid electrolyte molded body, an intermediate film molded body, and an interconnector molded body were laminated on the body molded body was produced. Next, this laminated molded body was degreased and further fired at 1500 ° C. in the air.

次に、平均粒径2μmのLa0.6Sr0.4Co0.2Fe0.8粉末と、イソプロピルアルコールからなる混合液を作製し、前記積層成形体の固体電解質33cの表面、および、インターコネクタ33fの表面にそれぞれ噴霧塗布し、酸素側電極成形体と集電膜成形体を形成し、1150℃で焼き付け、酸素側電極33dと集電膜33gを形成し、燃料電池セル33を作製した。 Next, a mixed liquid composed of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 powder having an average particle diameter of 2 μm and isopropyl alcohol is prepared, and the surface of the solid electrolyte 33c of the multilayer molded body, Further, each of the surfaces of the interconnector 33f is spray-applied to form an oxygen side electrode molded body and a current collector film molded body and baked at 1150 ° C. to form an oxygen side electrode 33d and a current collector film 33g. Was made.

次に、この燃料電池セル33の支持体33a側から、水素ガスを流し、850℃で還元処理を施した。   Next, hydrogen gas was flowed from the support 33a side of the fuel battery cell 33, and reduction treatment was performed at 850 ° C.

尚、支持体33aの幅は26mm、厚みは3.5mm、長さは200mmで、酸素側電極33dは、幅24mm、長さ130mmとした。燃料側電極33bの厚みは10μm、固体電解質33cの厚みは30μm、酸素側電極33dの厚みは50μm、インターコネクタ33fの厚みは50μm、集電膜33gの厚みは50μmであった。中間膜33eの厚みは、表1に示す。   The support 33a had a width of 26 mm, a thickness of 3.5 mm and a length of 200 mm, and the oxygen side electrode 33d had a width of 24 mm and a length of 130 mm. The thickness of the fuel side electrode 33b was 10 μm, the thickness of the solid electrolyte 33c was 30 μm, the thickness of the oxygen side electrode 33d was 50 μm, the thickness of the interconnector 33f was 50 μm, and the thickness of the current collecting film 33g was 50 μm. The thickness of the intermediate film 33e is shown in Table 1.

なお、燃料側電極33b、固体電解質33c、酸素側電極33d、中間膜33e、インターコネクタ33f、集電膜33gの厚さは断面のSEM観察から求めた。   The thicknesses of the fuel side electrode 33b, the solid electrolyte 33c, the oxygen side electrode 33d, the intermediate film 33e, the interconnector 33f, and the current collecting film 33g were obtained from SEM observation of the cross section.

このようにして作製した燃料電池セル33の酸素側電極33dと集電膜33gにPt製の集電部材を形成し、この集電部材に電圧線を取り付けると同時に、ガス流路34にPt線を差し込み、参照電極とし、燃料電池セル33を850℃に加熱し、酸素側電極33dに酸素含有ガスを供給し、燃料側電極33bに燃料ガスを供給し、発電させ、電流を取り出し、0.4A/cmの電流密度の時の参照電極と集電体との間の電位降下を測定した。測定値を表1に示す。

Figure 0004544872
A Pt current collecting member is formed on the oxygen side electrode 33d and the current collecting film 33g of the fuel battery cell 33 thus produced, and a voltage line is attached to the current collecting member, and at the same time, a Pt line is connected to the gas flow path 34. The fuel cell 33 is heated to 850 ° C., the oxygen-containing gas is supplied to the oxygen-side electrode 33d, the fuel gas is supplied to the fuel-side electrode 33b, the power is generated, and the current is taken out. The potential drop between the reference electrode and the current collector at a current density of 4 A / cm 2 was measured. The measured values are shown in Table 1.
Figure 0004544872

表1から、支持体33aとインターコネクタ33fの間に中間膜33eを形成していない本発明の範囲外である試料No.1は、0.4A/cmの電流密度の時の電位降下が110mVと大きかった。一方、支持体33aとインターコネクタ33fの間に、Niと希土類元素を固溶してなるZrO とからなる中間膜33eを形成させることで電位降下を小さくできることがわかる。 From Table 1, it can be seen from Sample No. 1 that is outside the scope of the present invention in which the intermediate film 33e is not formed between the support 33a and the interconnector 33f. No. 1 had a large potential drop of 110 mV at a current density of 0.4 A / cm 2 . On the other hand, between the support 33a and the interconnector 33f, it can be seen that reducing the potential drop by the formation of intermediate layer 33e Do that because the ZrO 2 comprising a solid solution of Ni and rare earth elements.

即ち、本発明の試料No.3〜11、13〜26では、支持体33aとインターコネクタ33fの間にNiと希土類元素を含有するZrOサーメットからなる中間膜33eを形成させることで、0.4A/cmの電流密度の時の電位降下を53mV以下と小さくすることができ、燃料電池セル33の出力を大きくすることができた。 That is, the sample No. of the present invention. 3 to 11 and 13 to 26, by forming an intermediate film 33e made of ZrO 2 cermet containing Ni and rare earth elements between the support 33a and the interconnector 33f, a current density of 0.4 A / cm 2 is obtained. The potential drop at that time could be reduced to 53 mV or less, and the output of the fuel cell 33 could be increased.

さらに、中間膜33e中のNi化合物のNi換算量が35〜80体積%の試料No.4〜11は、さらに0.4A/cmの電流密度の時の電位降下を33mV以下と小さくでき、さらに、Ni化合物のNi換算量が50〜70体積%の試料No.5〜8では、0.4A/cmの電流密度の時の電位降下を27mV以下に小さくすることができ、さらに55〜65体積%の試料No.6,7では電位降下を21mV以下に小さくすることができた。 Further, the sample No. 5 in which the Ni conversion amount of the Ni compound in the intermediate film 33e is 35 to 80% by volume. Nos. 4 to 11 can further reduce the potential drop at a current density of 0.4 A / cm 2 to 33 mV or less. 5 to 8, the potential drop at a current density of 0.4 A / cm 2 can be reduced to 27 mV or less. In 6 and 7, the potential drop could be reduced to 21 mV or less.

中間膜33eに含有されるNi化合物のNi換算量を65体積%とし、中間膜33eの厚さを5〜30μmの範囲で変化させた試料No.13〜16についてみると、中間膜33eの厚さが20μmを超える試料No.16では電位降下が53mVとやや大きくなっていることから、中間膜33eの厚さは20μm以下、特には10μm以下が好ましいことが判る。 Sample No. 5 was obtained by changing the Ni conversion amount of the Ni compound contained in the intermediate film 33e to 65% by volume and changing the thickness of the intermediate film 33e in the range of 5 to 30 μm. As for Samples 13 to 16, the sample No. 16 shows that the potential drop is a little as large as 53 mV. Therefore, it can be seen that the thickness of the intermediate film 33e is preferably 20 μm or less, particularly preferably 10 μm or less.

また、支持体33a中の希土類元素をYに固定し、中間膜33e中の希土類元素を変更した試料No.17〜No.21、支持体33a中と中間膜33e中の希土類元素を変更した試料No.22〜No.26はいずれも0.4A/cmの電流密度の時の電位降下が37mV以下と小さくなった。 In addition, the sample No. 1 in which the rare earth element in the support 33a is fixed to Y and the rare earth element in the intermediate film 33e is changed. 17-No. 21, sample No. 1 in which the rare earth elements in the support 33a and the intermediate film 33e were changed. 22-No. In each case, the potential drop at a current density of 0.4 A / cm 2 was as small as 37 mV or less.

一方、比較例の希土類元素が固溶したZrOを含まないNi単独の中間膜33eを持つ試料No.2は、中間膜33eと支持体33a、インターコネクタ33fとの間で亀裂が観察され、0.4A/cmの電流密度の時の電位降下が123mVと大きくなった。尚、Ni換算量が70〜85体積%では次第に電位降下が大きくなっているが、これは、Ni量が増加することにより、中間膜33eの熱膨張係数が大きくなり、インターコネクタとの熱膨張係数差により微小な亀裂が発生しているものと考えられる。 On the other hand, the sample No. 1 having an intermediate film 33e of Ni alone not containing ZrO 2 in which the rare earth element was dissolved in the comparative example. In No. 2 , cracks were observed between the intermediate film 33e, the support 33a, and the interconnector 33f, and the potential drop at a current density of 0.4 A / cm 2 was as large as 123 mV. The potential drop gradually increases when the Ni conversion amount is 70 to 85% by volume. This is because the thermal expansion coefficient of the intermediate film 33e increases and the thermal expansion with the interconnector increases as the Ni amount increases. It is thought that micro cracks have occurred due to the coefficient difference.

また、比較例のNiを含まない希土類元素が固溶したZrO単独の中間膜33eを持つ試料No.12は、中間層33eの抵抗が大きくなるために、0.4A/cmの電流密度の時の電位降下が244mVと非常に大きくなった。 Further, sample No. 1 having an intermediate film 33e made of ZrO 2 alone in which a rare earth element not containing Ni is dissolved is used as a comparative example. 12 has a very large potential drop of 244 mV at a current density of 0.4 A / cm 2 because the resistance of the intermediate layer 33 e increases.

実施例1に基づき、平均粒径0.5μmのNiO粉末と、平均粒径0.8μmの表2に示す希土類元素を20モル%含有するCeO粉末を、焼成後における体積比率が表2に示す含有量になるように混合した中間膜材料を用いて、実施例1と同様にして燃料電池セルを作製し、評価した。 Based on Example 1, NiO powder having an average particle diameter of 0.5 μm and CeO 2 powder containing 20 mol% of the rare earth elements shown in Table 2 having an average particle diameter of 0.8 μm, the volume ratio after firing is shown in Table 2. A fuel cell was produced and evaluated in the same manner as in Example 1 using the intermediate film material mixed so as to have the content shown.

さらに、平均粒径0.5μmのNiO粉末と、平均粒径0.8〜1.0μmのYを、焼成後における体積比率が表2になるように混合した支持基板材料を用いて、実施例1と同様にして燃料電池セルを作製し、評価した。これらの結果を表2に記載した。

Figure 0004544872
Further, using a support substrate material in which NiO powder having an average particle size of 0.5 μm and Y 2 O 3 having an average particle size of 0.8 to 1.0 μm are mixed so that the volume ratio after firing is as shown in Table 2. In the same manner as in Example 1, a fuel cell was produced and evaluated. These results are shown in Table 2.
Figure 0004544872

この表2から、支持体33aとインターコネクタ33fの間に、Niと希土類元素を固溶してなるCeO からなる中間膜33eを形成させることで電位降下を小さくできることがわかる。 The Table 2, between the support 33a and the interconnector 33f, it can be seen that reducing the potential drop by forming an intermediate layer 33e made of CeO 2 Metropolitan comprising a solid solution of Ni and rare earth elements.

本発明の燃料電池セルを示す横断面斜視図である。It is a cross-sectional perspective view which shows the fuel battery cell of this invention. 本発明のセルスタックを示す横断面図である。It is a cross-sectional view showing a cell stack of the present invention. 従来のセルスタックを示す横断面図である。It is a cross-sectional view showing a conventional cell stack.

符号の説明Explanation of symbols

33・・・燃料電池セル
33a・・・導電性支持体
33b・・・燃料側電極
33c・・・固体電解質
33d・・・酸素側電極
33e・・・導電性中間膜
33f・・・インターコネクタ
33g・・・集電膜
33 ... Fuel cell 33a ... Conductive support 33b ... Fuel side electrode 33c ... Solid electrolyte 33d ... Oxygen side electrode 33e ... Conductive intermediate film 33f ... Interconnector 33g ... Current collector film

Claims (9)

導電性支持体上に、燃料側電極、固体電解質、酸素側電極順次設けられ前記導電性支持体上の前記燃料側電極が設けられていない部位に、導電性中間膜を介してインターコネクタが設けられてなる燃料電池セルであって前記導電性支持体が、Ni及び/又はNiOとセラミック粒子とからなり、前記導電性中間膜がNi及び/又はNiOと、希土類元素を固溶してなるZrO又はCeOとからなることを特徴とする燃料電池セル。 On a conductive support, fuel-side electrode, the solid electrolyte, the oxygen side electrodes are sequentially provided, at a portion where the fuel side electrode on the conductive support is not provided, the interconnector via the conductive intermediate layer a fuel cell is provided, wherein the conductive support is made of a Ni and / or NiO and ceramic particles, wherein the conductive intermediate layer is a solid solution with Ni and / or NiO, a rare earth element A fuel cell comprising: ZrO 2 or CeO 2 . 前記導電性中間膜の希土類元素を固溶してなるZrO又はCeOの存在比率が、前記導電性支持体の前記セラミック粒子の存在比率よりも少ないことを特徴とする請求項1記載の燃料電池セル。 Existence ratio of ZrO 2 or CeO 2 formed by a solid solution of a rare earth element of the conductive intermediate layer is, prior to Kishirube conductive support of the proportions according to claim 1, wherein the less than the ceramic particles Fuel cell. 前記導電性支持体が、前記セラミック粒子として希土類元素の酸化物を含有しなるとともに、前記インターコネクタがランタン−クロム系酸化物材料からなり、前記導電性支持体、前記燃料側電極、前記固体電解質、前記導電性中間膜及び前記インターコネクタが同時焼結されていることを特徴とする請求項1又は2記載の燃料電池セル。 Wherein the conductive support is a conjunction comprising an oxide of a rare earth element as the ceramic particles, the interconnector lanthanum - made of a chromium-containing oxide material, wherein the conductive support, wherein the fuel-side electrode, the solid 3. The fuel cell according to claim 1, wherein the electrolyte, the conductive intermediate film, and the interconnector are simultaneously sintered. 前記導電性支持体中の希土類元素の酸化物は、Y,Lu,Yb,Tm,Er,Ho,Dy,Gd,Sm,Prから選ばれた1種以上の希土類元素の酸化物であることを特徴とする請求項3に記載の燃料電池セル。 Oxides of rare earth elements in the conductive support is a Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Sm, oxides of one or more rare earth elements selected from Pr The fuel cell according to claim 3. 前記導電性中間膜の厚さが20μm以下であることを特徴とする請求項1乃至4のうちいずれかに記載の燃料電池セル。   The fuel cell according to any one of claims 1 to 4, wherein the thickness of the conductive intermediate film is 20 µm or less. 前記インターコネクタ表面にP型半導体からなる集電膜を設けたことを特徴とする請求項1乃至5のうちいずれかに記載の燃料電池セル。   6. The fuel cell according to claim 1, wherein a current collecting film made of a P-type semiconductor is provided on the surface of the interconnector. 前記導電性中間膜のZrO又はCeOに固溶された希土類元素が、Y,Lu,Yb,Tm,Er,Ho,Dy,Gd,Sm,Prからなる群より選択された少なくとも1種であることを特徴とする請求項1乃至6のうちいずれかに記載の燃料電池セル。 The rare earth element dissolved in ZrO 2 or CeO 2 of the conductive intermediate film is at least one selected from the group consisting of Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Sm, and Pr. The fuel battery cell according to claim 1, wherein the fuel battery cell is provided. 前記導電性中間膜の希土類元素を固溶してなるZrO又はCeOは35〜45体積%、前記導電性支持体の前記セラミック粒子は35〜65体積%であることを特徴とする請求項1乃至7のうちいずれかに記載の燃料電池セル。 Claims, characterized in that the ZrO 2 or CeO 2 formed by a solid solution of a rare earth element of the conductive intermediate layer is 35 to 45 vol%, the ceramic particles before Kishirube conductive support is 35 to 65 vol% Item 8. The fuel cell according to any one of Items 1 to 7. 請求項1乃至8のうちいずれかに記載の燃料電池セルを収納容器内に複数収納してなることを特徴とする燃料電池。   A fuel cell comprising a plurality of the fuel cells according to any one of claims 1 to 8 in a storage container.
JP2004018495A 2003-01-27 2004-01-27 Fuel cell and fuel cell Expired - Fee Related JP4544872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018495A JP4544872B2 (en) 2003-01-27 2004-01-27 Fuel cell and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003018009 2003-01-27
JP2004018495A JP4544872B2 (en) 2003-01-27 2004-01-27 Fuel cell and fuel cell

Publications (2)

Publication Number Publication Date
JP2004253376A JP2004253376A (en) 2004-09-09
JP4544872B2 true JP4544872B2 (en) 2010-09-15

Family

ID=33032107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018495A Expired - Fee Related JP4544872B2 (en) 2003-01-27 2004-01-27 Fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP4544872B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544874B2 (en) * 2004-01-28 2010-09-15 京セラ株式会社 Fuel cell and fuel cell
JP4754867B2 (en) * 2005-04-28 2011-08-24 三菱重工業株式会社 Solid oxide fuel cell and method for producing solid oxide fuel cell
JP5000158B2 (en) * 2006-03-14 2012-08-15 東京瓦斯株式会社 Solid oxide fuel cell stack and manufacturing method thereof
JP5013750B2 (en) * 2006-05-29 2012-08-29 京セラ株式会社 Cell stack and fuel cell
JP5159382B2 (en) * 2008-03-19 2013-03-06 日本碍子株式会社 Electrochemical cell
JP5289010B2 (en) * 2008-11-26 2013-09-11 京セラ株式会社 Solid oxide fuel cell, fuel cell stack device, fuel cell module and fuel cell device
JP5363888B2 (en) * 2009-01-28 2013-12-11 京セラ株式会社 SOLID OXIDE FUEL CELL AND METHOD FOR PRODUCING THE SAME, FUEL CELL STACK DEVICE, FUEL CELL MODULE, FUEL CELL DEVICE
JP2010287520A (en) * 2009-06-15 2010-12-24 Ngk Insulators Ltd Electrochemical cell
JP5566405B2 (en) * 2010-01-26 2014-08-06 京セラ株式会社 FUEL CELL CELL, FUEL CELL CELL DEVICE, FUEL CELL MODULE, AND FUEL CELL DEVICE
KR101155375B1 (en) 2010-10-07 2012-06-12 주식회사 세원공업 Combined flat-tube anode support solid oxide fuel cell and stack structure using the same
JP5555682B2 (en) * 2010-11-01 2014-07-23 日本碍子株式会社 Solid oxide fuel cell
JP4928642B1 (en) 2010-12-03 2012-05-09 日本碍子株式会社 Solid oxide fuel cell
KR101185380B1 (en) 2011-04-14 2012-09-24 한국광유주식회사 Junction flat-tube support for solid oxide fuel cell and stack structure using the same
JP5377599B2 (en) * 2011-08-26 2013-12-25 京セラ株式会社 FUEL BATTERY CELL, CELL STACK DEVICE USING THE SAME, FUEL CELL MODULE, AND FUEL CELL DEVICE
EP2680358B1 (en) 2012-06-27 2018-02-21 NGK Insulators, Ltd. Fuel cell
JP6121895B2 (en) * 2013-12-26 2017-04-26 京セラ株式会社 Electrolytic cell, electrolytic cell stack device, electrolytic module, and electrolytic device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035505A (en) * 1999-07-21 2001-02-09 Mitsui Eng & Shipbuild Co Ltd Fuel cell stack and method and member for joining same
JP2002309203A (en) * 2001-04-13 2002-10-23 Mitsubishi Heavy Ind Ltd Electroconductive bonding material
JP2003297388A (en) * 2002-04-01 2003-10-17 Kyocera Corp Fuel cell, cell stack, and fuel battery
JP2003303603A (en) * 2002-02-07 2003-10-24 Kyocera Corp Fuel cell cell and cell stack and fuel cell
JP2004146334A (en) * 2002-05-29 2004-05-20 Kyocera Corp Cell for fuel cell, and fuel cell
JP2004179071A (en) * 2002-11-28 2004-06-24 Kyocera Corp Cell for fuel cell, and fuel cell
JP2004265734A (en) * 2003-02-28 2004-09-24 Kyocera Corp Fuel battery cell
JP2004303455A (en) * 2003-03-28 2004-10-28 Kyocera Corp Solid oxide fuel battery cell
JP2005100816A (en) * 2003-09-25 2005-04-14 Kyocera Corp Manufacturing method of cell of fuel cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134964A (en) * 1989-10-20 1991-06-07 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JP2877259B2 (en) * 1991-03-07 1999-03-31 三菱重工業株式会社 Fuel electrode material
JP3064087B2 (en) * 1992-03-05 2000-07-12 三菱重工業株式会社 Manufacturing method of solid electrolyte cell
JPH07296839A (en) * 1994-04-28 1995-11-10 Kyocera Corp Solid electrolyte fuel cell
JP3434883B2 (en) * 1994-04-28 2003-08-11 京セラ株式会社 Method for manufacturing fuel cell
JP3110265B2 (en) * 1994-10-31 2000-11-20 三井造船株式会社 Bonding material and bonding method for solid oxide fuel cell stack
JP3339998B2 (en) * 1995-09-29 2002-10-28 京セラ株式会社 Cylindrical fuel cell
JPH10223243A (en) * 1997-02-04 1998-08-21 Mitsubishi Heavy Ind Ltd Base pipe for solid electrolyte fuel cell
JPH10241714A (en) * 1997-02-25 1998-09-11 Tokyo Electric Power Co Inc:The Solid electrolyte type fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035505A (en) * 1999-07-21 2001-02-09 Mitsui Eng & Shipbuild Co Ltd Fuel cell stack and method and member for joining same
JP2002309203A (en) * 2001-04-13 2002-10-23 Mitsubishi Heavy Ind Ltd Electroconductive bonding material
JP2003303603A (en) * 2002-02-07 2003-10-24 Kyocera Corp Fuel cell cell and cell stack and fuel cell
JP2003297388A (en) * 2002-04-01 2003-10-17 Kyocera Corp Fuel cell, cell stack, and fuel battery
JP2004146334A (en) * 2002-05-29 2004-05-20 Kyocera Corp Cell for fuel cell, and fuel cell
JP2004179071A (en) * 2002-11-28 2004-06-24 Kyocera Corp Cell for fuel cell, and fuel cell
JP2004265734A (en) * 2003-02-28 2004-09-24 Kyocera Corp Fuel battery cell
JP2004303455A (en) * 2003-03-28 2004-10-28 Kyocera Corp Solid oxide fuel battery cell
JP2005100816A (en) * 2003-09-25 2005-04-14 Kyocera Corp Manufacturing method of cell of fuel cell

Also Published As

Publication number Publication date
JP2004253376A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP5328275B2 (en) Cell stack, fuel cell module including the same, and fuel cell device
JP5080951B2 (en) Horizontal stripe fuel cell stack and fuel cell
JP4544872B2 (en) Fuel cell and fuel cell
JP2004146334A (en) Cell for fuel cell, and fuel cell
JP4146738B2 (en) Fuel cell, cell stack and fuel cell
JP5328439B2 (en) Fuel cell, fuel cell stack device, fuel cell module and fuel cell device
JP2008186665A (en) Unit cell of fuel cell, cell stack and fuel cell
JP5247051B2 (en) Fuel cell and fuel cell stack, and fuel cell
JP4931365B2 (en) Support substrate for fuel cell, fuel cell, and fuel cell
JP4511122B2 (en) Fuel cell
JP2004152585A (en) Cell of fuel cell and fuel cell
JP5294649B2 (en) Cell stack and fuel cell module
JP5455271B1 (en) Fuel cell
JP4593997B2 (en) Support for fuel cell, fuel cell, and fuel cell
JP4883992B2 (en) Fuel cell and fuel cell
JP4805642B2 (en) Fuel cell, fuel cell stack and fuel cell
JP2004265742A (en) Surface treatment method of collector member
JP2006127973A (en) Fuel battery cell
JP4412984B2 (en) Fuel cell and fuel cell
JP2004259555A (en) Fuel battery cell and fuel battery
JP4480377B2 (en) Fuel cell and fuel cell
JP4925574B2 (en) Fuel cell and fuel cell
JP5455268B1 (en) Fuel cell
JP5455270B1 (en) Fuel cell
JP2009087539A (en) Fuel battery cell and fuel battery cell stack, as well as fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4544872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees