JP2008200724A - Joining material, joint member, joining method, and solid electrolyte fuel cell - Google Patents

Joining material, joint member, joining method, and solid electrolyte fuel cell Download PDF

Info

Publication number
JP2008200724A
JP2008200724A JP2007040444A JP2007040444A JP2008200724A JP 2008200724 A JP2008200724 A JP 2008200724A JP 2007040444 A JP2007040444 A JP 2007040444A JP 2007040444 A JP2007040444 A JP 2007040444A JP 2008200724 A JP2008200724 A JP 2008200724A
Authority
JP
Japan
Prior art keywords
joining
bonding
thermal expansion
nickel
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007040444A
Other languages
Japanese (ja)
Inventor
Yasuhiko Tsuru
靖彦 水流
Kazutaka Mori
一剛 森
Toshitake Kurashige
俊武 倉重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007040444A priority Critical patent/JP2008200724A/en
Publication of JP2008200724A publication Critical patent/JP2008200724A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive joining material for forming a joint member which is free from any degradation of the joining strength or less degraded in the joining strength even when the joint member is used under a reducing atmosphere during the operation of an SOFC. <P>SOLUTION: A joining material is formed of a material containing a base material containing nickel oxide, metal nickel and a thermal expansion adjusting material having the coefficient of thermal expansion of ≤10×10<SP>-6</SP>/°C, but substantially not containing iron oxide. As a result, the metal nickel is turned into nickel oxide during the atmospheric heat treatment, resulting in the volumetric expansion. Thus, the joining member obtained after the atmospheric heat treatment becomes dense, and the joining strength after the atmospheric heat treatment is enhanced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体電解質型燃料電池(以下、「SOFC」と記載する。)や水蒸気電解セル等の電極と他の構造部材を電気的に接合する場合に用いられる接合材、これを用いた接合部材および接合方法、ならびにこの接合部材を有するSOFCに関する。   The present invention relates to a bonding material used when an electrode such as a solid oxide fuel cell (hereinafter referred to as “SOFC”) or a steam electrolysis cell and other structural members are electrically bonded, and bonding using the same. The present invention relates to a member, a joining method, and an SOFC having the joining member.

SOFCの要部の一般的な構成として、図1に示すものが知られている。発電膜2は、イットリア安定化ジルコニアの固体電解質膜4と、その両面に形成された燃料側電極3と空気側電極5とから構成され、ディンプル状の形状をしている。発電膜2の燃料側電極3の側には、燃料側電極3と電気的に接続されたインターコネクタ7が設けられ、発電膜2の空気側電極5の側には、空気側電極5と電気的に接続されたインターコネクタ7が設けられている。こうした構成のSOFCにおいては、インターコネクタ7と燃料側電極3との間、インターコネクタ7と空気側電極5との間に一般的に導電性接合部材11、12が用いられている。   As a general configuration of the main part of the SOFC, the one shown in FIG. 1 is known. The power generation membrane 2 includes a solid electrolyte membrane 4 of yttria-stabilized zirconia, a fuel side electrode 3 and an air side electrode 5 formed on both sides thereof, and has a dimple shape. An interconnector 7 electrically connected to the fuel side electrode 3 is provided on the fuel side electrode 3 side of the power generation membrane 2, and the air side electrode 5 and the electrical side are connected to the air side electrode 5 side of the power generation membrane 2. Connected interconnector 7 is provided. In the SOFC having such a configuration, conductive joining members 11 and 12 are generally used between the interconnector 7 and the fuel-side electrode 3 and between the interconnector 7 and the air-side electrode 5.

図1に示した構成のSOFCにおいて、前記導電性接合部材11、12は一般に、電極と他の構成部材との間に配置されたペースト状の接合材を焼結することにより形成される。SOFCでは、一般的に約1000℃の作動温度にて発電が行われるため、導電性接合部材11、12にもこの温度に耐える耐熱性が要求される。   In the SOFC having the configuration shown in FIG. 1, the conductive joining members 11 and 12 are generally formed by sintering a paste-like joining material disposed between an electrode and another constituent member. Since SOFC generally generates power at an operating temperature of about 1000 ° C., the conductive joining members 11 and 12 are also required to have heat resistance that can withstand this temperature.

ところで、一般的に低温で各部材間を電気的に接合する場合は、前記接合材として銀ペーストや白金ペーストが知られている。ここで、銀ペーストは銀の電気抵抗が低く、導電性接着材として一般的に使用されている。しかし、銀の融点は約960℃であり、上記SOFCのように1000℃で発電するものには使用できない。また、白金ペーストの場合は1000℃でも使用可能であるが、コスト高になるという問題点がある。   By the way, generally, when electrically joining members at low temperatures, silver paste or platinum paste is known as the joining material. Here, the silver paste has a low electric resistance of silver and is generally used as a conductive adhesive. However, the melting point of silver is about 960 ° C., and it cannot be used for the power generation at 1000 ° C. like the SOFC. In the case of platinum paste, it can be used even at 1000 ° C., but there is a problem that the cost is increased.

そこで、酸化ニッケルと酸化鉄と酸化チタンをベース材料として含む接合材が、良好な導電性、接合性を有する接合部材を形成する材料として提案されている(例えば、特許文献1参照。)。
特開平8−287930号公報
Therefore, a bonding material including nickel oxide, iron oxide, and titanium oxide as a base material has been proposed as a material for forming a bonding member having good conductivity and bondability (see, for example, Patent Document 1).
JP-A-8-287930

しかしながら、上述のように酸化ニッケルと酸化鉄と酸化チタンをベース材料として含む接合材では、酸化ニッケルを添加し、運転中に酸化ニッケルが金属ニッケルに還元されることで接合部材の導電性を確保しているが、酸化ニッケルが還元される際に体積収縮を伴うため、接合部材がやや多孔質になり、酸化雰囲気で製造したときと比べて、還元後の接合強度が低下するという問題がある。   However, as described above, in the joining material containing nickel oxide, iron oxide, and titanium oxide as the base material, nickel oxide is added, and the nickel oxide is reduced to metallic nickel during operation to ensure the conductivity of the joining member. However, since the volumetric shrinkage is accompanied when nickel oxide is reduced, the joining member becomes slightly porous, and there is a problem that the joining strength after reduction is reduced as compared with the case where it is manufactured in an oxidizing atmosphere. .

本発明は、このような事情に鑑みてなされたものであって、還元後も接合強度の低下のないあるいは接合強度の低下が少ない接合部材を形成する接合材を提供することを目的とする。
また本発明は、前記接合材より形成され、SOFCの運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部材を提供することを目的とする。
また本発明は、前記接合材を用いて、SOFCにおける燃料側電極とインターコネクタ等の他の部材とのあいだ等に、運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部を形成する接合方法を提供することを目的とする。
また本発明は、燃料側電極とインターコネクタ等の他の部材とのあいだ等において、運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部を有し、信頼性が向上したSOFCを提供することを目的とする。
This invention is made | formed in view of such a situation, Comprising: It aims at providing the bonding | jointing material which forms the joining member which does not reduce a joint strength after reduction | restoration or there is little decline in a joint strength.
It is another object of the present invention to provide a joining member which is formed from the joining material and whose joining strength is not easily lowered even when used in a reducing atmosphere in SOFC operation or the like.
Further, the present invention uses the above-mentioned bonding material to provide a bonding portion in which the bonding strength is not easily lowered even when used in a reducing atmosphere during operation or the like between the fuel-side electrode in SOFC and another member such as an interconnector. An object is to provide a bonding method to be formed.
In addition, the present invention provides a SOFC having improved reliability, including a joint portion between the fuel side electrode and another member such as an interconnector, in which the joint strength is not easily lowered even when used in a reducing atmosphere in operation or the like. The purpose is to provide.

上記課題を解決するために、本発明は、以下の手段を採用する。
本発明に係る接合材は、酸化ニッケルと、金属ニッケルと、熱膨張係数10×10−6/℃以下の熱膨張調整材とを含有するベース材料を含み、実質的に酸化鉄を含有しない材料である。
本発明の接合材は、金属ニッケルを用いることにより、大気熱処理時に金属ニッケルが酸化ニッケルとなることにより体積膨張するので、大気熱処理後に得られる接合部材は緻密なものとなり、大気熱処理後の接合強度が向上する。また、接合部材の還元の際は、大気熱処理による焼結時に体積膨張した分が収縮するのみであるので、接合強度の低下が小さい。また、前記熱膨張調整材は、導電接合材全体の熱膨張率を低下させることにより、電解質やインターコネクタとの熱膨張差を抑制し、SOFCセルの運転停止などによる熱サイクル時の熱膨張差による剥離抑制に寄与する。
従って、本発明の接合材より形成される接合部材は、大気熱処理による焼結後の使用初期および還元雰囲気における使用後の両方において高い接合強度を有する。
In order to solve the above problems, the present invention employs the following means.
The bonding material according to the present invention includes a base material containing nickel oxide, metallic nickel, and a thermal expansion adjusting material having a thermal expansion coefficient of 10 × 10 −6 / ° C. or less, and substantially does not contain iron oxide. It is.
Since the bonding material of the present invention uses metallic nickel and the volume expansion occurs when the metallic nickel becomes nickel oxide during the atmospheric heat treatment, the bonding member obtained after the atmospheric heat treatment becomes dense, and the bonding strength after the atmospheric heat treatment. Will improve. Further, when the joining member is reduced, only the volume expansion during the sintering by the atmospheric heat treatment contracts, so the reduction in joining strength is small. In addition, the thermal expansion adjusting material suppresses the thermal expansion difference with the electrolyte and the interconnector by reducing the thermal expansion coefficient of the entire conductive bonding material, and the thermal expansion difference during the thermal cycle due to the shutdown of the SOFC cell. This contributes to suppression of peeling due to.
Therefore, the joining member formed from the joining material of the present invention has high joining strength both in the initial use after sintering by atmospheric heat treatment and after use in a reducing atmosphere.

本発明に係る接合部材は、複数の部材の間に配置された前記本発明の接合材を焼結して得られる。
従って、本発明の接合部材は、SOFCにおける燃料側電極とインターコネクタ等の部材間の接合部に用いた際に、使用初期および還元雰囲気における使用後の両方において高い接合強度を有する。
The joining member according to the present invention is obtained by sintering the joining material of the present invention disposed between a plurality of members.
Therefore, the joint member of the present invention has high joint strength both in the initial use and after use in a reducing atmosphere when used in a joint portion between a fuel-side electrode and an interconnector in SOFC.

本発明に係る接合方法は、前記本発明の接合材を複数の部材の間に配置し、該接合材を焼結する方法である。
従って、本発明の接合方法によれば、SOFCにおける燃料側電極とインターコネクタ等の部材間に、接合強度に優れた接合部を形成することができる。
The bonding method according to the present invention is a method in which the bonding material of the present invention is disposed between a plurality of members and the bonding material is sintered.
Therefore, according to the bonding method of the present invention, it is possible to form a bonded portion having excellent bonding strength between the fuel-side electrode and the interconnector and the like in the SOFC.

本発明に係るSOFCは、複数の部材と、該複数の部材の間を接合する前記本発明の接合部材とを有する。
従って、本発明のSOFCは、燃料側電極とインターコネクタ等の部材間の接合部の接合強度を高めることができるので、信頼性に優れる。
The SOFC according to the present invention includes a plurality of members and the joining member of the present invention that joins between the plurality of members.
Therefore, the SOFC of the present invention is excellent in reliability because it can increase the bonding strength of the bonding portion between the fuel side electrode and the interconnector.

本発明によれば、還元後も接合強度の低下のないあるいは接合強度の低下が少ない接合部材を形成する接合材を提供することができる。
また本発明によれば、SOFCの運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部材を提供することができる。
また本発明によれば、SOFCにおける燃料側電極とインターコネクタ等の他の部材とのあいだ等に、運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部を形成する接合方法を提供することができる。
また本発明によれば、燃料側電極とインターコネクタ等の他の部材とのあいだ等において、運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部を有し、信頼性が向上したSOFCを提供することができる
According to the present invention, it is possible to provide a bonding material that forms a bonding member that has no decrease in bonding strength or a small decrease in bonding strength even after reduction.
Further, according to the present invention, it is possible to provide a joining member in which the joining strength is not easily lowered even when used in a reducing atmosphere in SOFC operation or the like.
Further, according to the present invention, there is provided a joining method for forming a joint portion in which the joining strength is not easily lowered even when used in a reducing atmosphere in operation or the like between the fuel side electrode in SOFC and another member such as an interconnector. Can be provided.
In addition, according to the present invention, there is a joint between the fuel side electrode and another member such as an interconnector, etc., and the joint strength is not easily lowered even when used in a reducing atmosphere in operation, etc., and reliability is improved. SOFC can be provided

以下、本発明の実施形態について説明する。
本発明の第1の実施形態は、酸化ニッケル(NiO)と、金属ニッケル(Ni)と、熱膨張係数10×10−6/℃以下の熱膨張調整材とを含有するベース材料を含み、実質的に酸化鉄(Fe)を含有しない接合材である。
前記熱膨張調整材の熱膨張係数は、10×10−6/℃を超えると、導電接合材全体の熱膨張率を低下させ、SOFCセルの運転停止などによる熱サイクル時の熱膨張差による剥離を抑制する効果が十分得られないので好ましくない。
酸化鉄は、接合部材の還元後に、接合強度を低下させ接合抵抗を上昇させるので、接合材中には酸化鉄を実質的に含有しないことが好ましい。
Hereinafter, embodiments of the present invention will be described.
The first embodiment of the present invention includes a base material containing nickel oxide (NiO), metallic nickel (Ni), and a thermal expansion adjusting material having a thermal expansion coefficient of 10 × 10 −6 / ° C. or less, In particular, the bonding material does not contain iron oxide (Fe 2 O 3 ).
When the thermal expansion coefficient of the thermal expansion adjusting material exceeds 10 × 10 −6 / ° C., the thermal expansion coefficient of the entire conductive bonding material is lowered, and peeling due to a thermal expansion difference during a thermal cycle due to the operation stop of the SOFC cell or the like. This is not preferable because the effect of suppressing the above cannot be sufficiently obtained.
Since iron oxide decreases the bonding strength and increases the bonding resistance after reduction of the bonding member, it is preferable that the bonding material does not substantially contain iron oxide.

前記接合材は、前記酸化ニッケルと前記金属ニッケルの合計量100重量部のうち、前記金属ニッケルを30重量部以上70重量部以下含有することが好ましい。
前記金属ニッケルの含有量が30重量部未満では、大気熱処理後に得られる接合部材の接合強度の向上効果ならびに還元後の接合強度の低下抑制効果が十分ではなく、好ましくない。また、前記金属ニッケルの含有量が70重量部を超えると、接合部材の熱膨張率が他の部材(例えばSOFCにおける発電膜やインターコネクタ)より大きくなるため好ましくない。
The bonding material preferably contains 30 parts by weight or more and 70 parts by weight or less of the metal nickel out of 100 parts by weight of the total amount of the nickel oxide and the metal nickel.
If the content of the metallic nickel is less than 30 parts by weight, the effect of improving the joining strength of the joining member obtained after the atmospheric heat treatment and the effect of suppressing the reduction of the joining strength after reduction are not sufficient, which is not preferable. Moreover, when the content of the metallic nickel exceeds 70 parts by weight, the thermal expansion coefficient of the joining member becomes larger than other members (for example, a power generation film or an interconnector in SOFC), which is not preferable.

前記接合材は、前記ベース材料100重量部のうち、前記熱膨張調整材を10重量部以上20重量部以下含有することが好ましい。
前記熱膨張調整材の含有量が10重量部未満では、還元収縮防止の効果が小さく不充分となる場合があり好ましくない。また、前記熱膨張調整材の含有量が20重量部を超
えると導電性の低下を生ずる場合があるので好ましくない。
The bonding material preferably contains 10 parts by weight or more and 20 parts by weight or less of the thermal expansion adjusting material in 100 parts by weight of the base material.
When the content of the thermal expansion adjusting material is less than 10 parts by weight, the effect of preventing reduction shrinkage may be small and insufficient, which is not preferable. In addition, if the content of the thermal expansion adjusting material exceeds 20 parts by weight, the conductivity may be lowered, which is not preferable.

前記熱膨張調整材は、アルミナ、窒化ケイ素、炭化ケイ素およびフューズドシリカからなる群より選ばれる少なくとも一種の材料を含むことが好ましい。
これら材料の熱膨張係数は、アルミナが約8×10−6/℃、窒化ケイ素が約4×10−6、炭化ケイ素が約5×10−6、フューズドシリカが約1×10−6/℃であり、いずれの材料も本発明の接合材において良好な還元収縮防止効果を有する熱膨張調整材として機能する。
The thermal expansion adjusting material preferably contains at least one material selected from the group consisting of alumina, silicon nitride, silicon carbide, and fused silica.
The thermal expansion coefficients of these materials are about 8 × 10 −6 / ° C. for alumina, about 4 × 10 −6 for silicon nitride, about 5 × 10 −6 for silicon carbide, and about 1 × 10 −6 / for fused silica. Each material functions as a thermal expansion adjusting material having a good reduction shrinkage preventing effect in the bonding material of the present invention.

前記酸化ニッケルは、平均粒径0.5μm以上5μm以下の粒子状の酸化ニッケルであることが好ましい。また、前記金属ニッケルは、平均粒径0.3μm以上5μm以下の粒子状の金属ニッケルであることが好ましい。
金属ニッケルの平均粒径が0.3μmより小さく、酸化ニッケルの平均粒径が0.5μmより小さいと、接合部材の収縮率が大きくなるので、大気熱処理時にひび割れが発生し、接合強度が低下することがあり好ましくない。また、金属ニッケルの平均粒径および酸化ニッケルの平均粒径が5μmより大きいと、接合部材の焼結性が低下するので、接合強度が低下することがあり好ましくない。
The nickel oxide is preferably particulate nickel oxide having an average particle size of 0.5 μm to 5 μm. The metallic nickel is preferably particulate metallic nickel having an average particle size of 0.3 μm to 5 μm.
When the average particle diameter of metallic nickel is smaller than 0.3 μm and the average particle diameter of nickel oxide is smaller than 0.5 μm, the shrinkage rate of the joining member increases, so that cracking occurs during the atmospheric heat treatment, and the bonding strength decreases. This is not preferable. On the other hand, if the average particle diameter of metallic nickel and the average particle diameter of nickel oxide are larger than 5 μm, the sinterability of the joining member is lowered, so that the joining strength may be lowered.

前記熱膨張調整材は、平均粒径5μm以上15μm以下の粒子状の熱膨張調整材であることが好ましい。
前記熱膨張調整材の平均粒径が5μmより小さいと、接合部材の収縮率が大きくなるので、大気熱処理時にひび割れが発生して接合強度が低下し、また熱膨張調整材がニッケル粒子間に入り抵抗体となり接合部材の導電性を低下させるので好ましくない。また、熱膨張調整材の平均粒径が15μmより大きいと、接合部材の焼結性が低下し、接合部材の接合強度が低下するので好ましくない。
The thermal expansion adjusting material is preferably a particulate thermal expansion adjusting material having an average particle diameter of 5 μm to 15 μm.
If the average particle diameter of the thermal expansion adjusting material is smaller than 5 μm, the shrinkage rate of the joining member increases, so that cracking occurs during the atmospheric heat treatment, the bonding strength decreases, and the thermal expansion adjusting material enters between the nickel particles. Since it becomes a resistor and reduces the conductivity of the joining member, it is not preferable. Moreover, when the average particle diameter of the thermal expansion adjusting material is larger than 15 μm, the sinterability of the joining member is lowered, and the joining strength of the joining member is lowered, which is not preferable.

前記接合材は前記ベース材料に加えてビヒクルを含むものが望ましい。
ビヒクルは、接合材を焼結する際に蒸発し、焼結後の接合部材中には残留しない原料であるが、ビヒクルを用いることにより接合材のベース材料をペースト状にし、取り扱いを容易にすることができる。
ビヒクルは、粉体を分散できるものであれば特に限定されないが、好ましくは、ブチルカルビトール、テレピン油、ブタノール等が挙げられ、特に好ましくはブチルカルビトールである。ビヒクルの添加量は、ビヒクルの種類によって異なるが、ベース材料を100重量部とすると、30重量部以上50重量部以下添加することが好ましい。
The bonding material preferably includes a vehicle in addition to the base material.
The vehicle is a raw material that evaporates when the bonding material is sintered and does not remain in the sintered bonding member. By using the vehicle, the base material of the bonding material is made into a paste to facilitate handling. be able to.
The vehicle is not particularly limited as long as it can disperse the powder, but preferably includes butyl carbitol, turpentine oil, butanol and the like, and particularly preferably butyl carbitol. The addition amount of the vehicle varies depending on the type of the vehicle, but when the base material is 100 parts by weight, it is preferable to add 30 parts by weight or more and 50 parts by weight or less.

本発明の第2の実施形態は、前記第1の実施形態による接合材を複数の部材の間に配置し、該接合材を焼結する接合方法ならびにこの接合方法により前記接合材から得られた接合部材である。   In the second embodiment of the present invention, the bonding material according to the first embodiment is disposed between a plurality of members, and the bonding material is sintered from the bonding material, and the bonding material is obtained from the bonding material by the bonding method. It is a joining member.

接合の対象となる前記複数の部材としては、SOFCの構成部材が挙げられ、SOFCの運転時に還元雰囲気となる燃料側部材が、還元時の接合強度の低下を抑制できるという本発明の接合材の効果が発揮できるので好適である。従って、本実施形態の接合方法は、SOFCの燃料側電極と他の燃料側部材(例えばインターコネクタ)との接合に好適に適用できる。   Examples of the plurality of members to be joined include SOFC constituent members, and the fuel-side member that is in a reducing atmosphere during operation of the SOFC can suppress a reduction in joining strength during reduction. Since the effect can be exhibited, it is preferable. Therefore, the joining method of the present embodiment can be suitably applied to joining of the SOFC fuel-side electrode and another fuel-side member (for example, an interconnector).

本実施形態の接合方法においては、公知の塗布方法が採用され、例えばスクリーンプリント法を採用することができる。例えば、インターコネクタとディンプル状の固体電解質上に製膜された燃料側電極とをスクリーンプリント法で接合する場合には、まずペースト状の接合材を、スクリーンにあいた穴から印刷するスクリーンプリントの方法により、インターコネクタの平板上に100〜200μmの厚さに均一に塗布し、接続用波板を載せて、空気中で熱処理を行う。熱処理では、200℃までにビヒクルを蒸発させ、その
後さらにSOFCの作業温度を考慮して1000℃以上、好ましくは1000〜1250℃で処理して焼結させる。この熱処理は、特に好ましくは1250℃で4時間の処理であ
る。この熱処理により前記接合材が焼結し、本実施形態の接合部材となる。この熱処理は空気中での処理であるため、接合材中の金属ニッケルの一部が酸化され酸化ニッケルとなり、体積が膨張する。これにより、その後、SOFCにおいて接合部材中の酸化ニッケルが還元されてニッケルとなるための収縮を緩和でき、収縮による電子の流れの切断に起因する導電性の低下を緩和することができる。また、接合材中のニッケルが酸化されて新たに生じた酸化ニッケル表面は、焼結による焼き付け性が高く、焼結後の密着性が高い利点も有する。
In the bonding method of the present embodiment, a known coating method is employed, for example, a screen printing method can be employed. For example, when joining an interconnector and a fuel-side electrode formed on a dimple-like solid electrolyte by a screen printing method, first a screen printing method of printing a paste-like joining material from a hole in the screen Then, uniformly apply to a thickness of 100 to 200 μm on the flat plate of the interconnector, place the corrugated plate for connection, and perform heat treatment in the air. In the heat treatment, the vehicle is evaporated up to 200 ° C., and is further processed and sintered at 1000 ° C. or higher, preferably 1000 to 1250 ° C. in consideration of the working temperature of SOFC. This heat treatment is particularly preferably a treatment at 1250 ° C. for 4 hours. By this heat treatment, the bonding material is sintered and becomes the bonding member of this embodiment. Since this heat treatment is treatment in air, a part of the nickel metal in the bonding material is oxidized to become nickel oxide, and the volume expands. As a result, the shrinkage of the nickel oxide in the joining member that is reduced to become nickel in the SOFC can be mitigated thereafter, and the decrease in conductivity caused by the disconnection of the electron flow due to the shrinkage can be mitigated. Further, the nickel oxide surface newly generated by oxidation of nickel in the bonding material has an advantage of high bakeability by sintering and high adhesion after sintering.

本発明の第3の実施形態は、複数の部材と、該複数の部材の間を接合する前記第2の実施形態による接合部材とを有するSOFCである。
前記複数の部材としては、SOFCの運転時に還元雰囲気となる燃料側部材が、還元時の接合強度の低下を抑制できるという本発明の接合材の効果が発揮できるので好適である。従って、本実施形態のSOFCとしては、SOFCの燃料側電極と他の燃料側部材(例えばインターコネクタ)とが前記第2の実施形態による接合部材で接合されたSOFCが挙げられる。
The third embodiment of the present invention is an SOFC having a plurality of members and the joining member according to the second embodiment that joins the plurality of members.
As the plurality of members, the fuel-side member that is in a reducing atmosphere during the operation of the SOFC is preferable because the effect of the bonding material of the present invention that can suppress a decrease in bonding strength during reduction can be achieved. Therefore, the SOFC of this embodiment includes an SOFC in which a fuel-side electrode of the SOFC and another fuel-side member (for example, an interconnector) are joined by the joining member according to the second embodiment.

本実施形態のSOFCは、燃料側で用いられる接合部材を前記第2の実施形態による接合部材に代えた以外は、従来のSOFCと同様の構成とすることができる。従って、以下、前述の図1を参照して本実施形態のSOFCの構成例を説明する。前述の構成要素と同様の機能を有する構成要素については、同じ符号を用いて説明する。なお、本発明のSOFCは、以下の構成例に限定されない。   The SOFC of this embodiment can have the same configuration as that of a conventional SOFC except that the joining member used on the fuel side is replaced with the joining member according to the second embodiment. Therefore, a configuration example of the SOFC of this embodiment will be described below with reference to FIG. Components having functions similar to those of the above-described components will be described using the same reference numerals. The SOFC of the present invention is not limited to the following configuration example.

図1に示すように、発電膜2は、イットリア安定化ジルコニアの固体電解質膜4と、その両面に形成された燃料側電極3と空気側電極5とから構成され、ディンプル状の形状をしている。発電膜2の燃料側電極3の側には、燃料側電極3と電気的に接続されたインターコネクタ7が設けられ、発電膜2の空気側電極5の側には、空気側電極5と電気的に接続されたインターコネクタ7が設けられている。インターコネクタ7と空気側電極5との間には、この部位の使用環境に適合した導電性接合部材12が用いられている。またインターコネクタ7と燃料側電極3との間には、前記第2の実施形態による接合部材11が用いられている。   As shown in FIG. 1, the power generation membrane 2 is composed of a yttria-stabilized zirconia solid electrolyte membrane 4, a fuel side electrode 3 and an air side electrode 5 formed on both sides thereof, and has a dimple shape. Yes. An interconnector 7 electrically connected to the fuel side electrode 3 is provided on the fuel side electrode 3 side of the power generation membrane 2, and the air side electrode 5 and the electrical side are connected to the air side electrode 5 side of the power generation membrane 2. Connected interconnector 7 is provided. Between the interconnector 7 and the air side electrode 5, the conductive joining member 12 suitable for the usage environment of this part is used. Further, the joining member 11 according to the second embodiment is used between the interconnector 7 and the fuel side electrode 3.

次に、本発明を実験例に基づき説明するが、本発明はこれら実験例に限定されるものではない。   Next, the present invention will be described based on experimental examples, but the present invention is not limited to these experimental examples.

実験例1
表1に示した分量の金属ニッケル粉(平均粒径1μm)と酸化ニッケル粉(平均粒径1μm)を合計85重量部とし、これに15重量部のアルミナ(平均粒径10μm)を熱膨張調整用粉末として加えてベース材料とした。このベース材料にビヒクル(混合溶媒)としてブチルカルビトールを加えて、アルミナ製3本ロールミルを用いて混練し、ペースト状として、接合材ペーストの各サンプルを得た。
この接合材ペーストを用いて、図2に示すような発電膜とインターコネクタの接合サンプルを作製し、以下に説明する方法で接合部の接合強度を測定した。
Experimental example 1
The total amount of metallic nickel powder (average particle size 1 μm) and nickel oxide powder (average particle size 1 μm) shown in Table 1 is 85 parts by weight, and 15 parts by weight of alumina (average particle size 10 μm) is adjusted for thermal expansion. In addition, it was used as a base material. Butyl carbitol was added to this base material as a vehicle (mixed solvent) and kneaded using a three-roll mill made of alumina to obtain each sample of the bonding material paste as a paste.
A joining sample of the power generation film and the interconnector as shown in FIG. 2 was prepared using this joining material paste, and the joining strength of the joining portion was measured by the method described below.

まず、接合材ペーストを30mm角のインターコネクタ22の片面に100〜200μmの厚さに均一に塗布し、この塗布部分に、30mm角の発電膜23の燃料側電極側を接着した。次に接合材ペーストを1250℃で1時間にわたって焼付処理をしたのち炉冷し、導電性接合部材21を形成した。焼付後、インターコネクタ22と、固体電解質膜4の両面に燃料極電極13及び空気側電極15を形成してなる発電膜23の燃料側電極13側との接合強度を測定するために、インターコネクタ22を接着剤でアクリル板25に接着し、発電膜23の空気側電極15側には重しを入れられるような容器27を取り付けた。この容器に重しを入れていき、インターコネクタ22と発電膜23の燃料側電極側とがはがれる重量を評価した。測定結果を表1に示す。   First, the bonding material paste was uniformly applied to one side of a 30 mm square interconnector 22 to a thickness of 100 to 200 μm, and the fuel side electrode side of the 30 mm square power generation film 23 was adhered to this applied portion. Next, the bonding material paste was baked at 1250 ° C. for 1 hour and then cooled in the furnace to form the conductive bonding member 21. After baking, in order to measure the bonding strength between the interconnector 22 and the fuel electrode 13 side of the power generation film 23 formed by forming the fuel electrode 13 and the air electrode 15 on both surfaces of the solid electrolyte membrane 4, the interconnector is measured. 22 was bonded to the acrylic plate 25 with an adhesive, and a container 27 was attached on the air electrode 15 side of the power generation film 23 so that a weight could be placed. A weight was put into this container, and the weight by which the interconnector 22 and the fuel-side electrode side of the power generation membrane 23 were peeled off was evaluated. The measurement results are shown in Table 1.

金属ニッケルを添加したサンプルは、大気焼成時に金属ニッケルが酸化ニッケルとなることにより体積膨張するので、接合部材21が緻密になり、大気焼成後の接合強度が向上している。また、還元後は、酸化ニッケルが金属ニッケルに還元される際に体積収縮を伴うため、酸化ニッケルのみのサンプル1では、接合部材21中に気孔が多く形成され、接合強度が低下するが、金属ニッケルを添加したサンプルでは焼結時に体積膨張した分が収縮するのみであるので、接合強度の低下が小さい。
金属ニッケル100%としたサンプル5では、接合部材21の熱膨張率が発電膜23やインターコネクタ22より大きくなるため、接合強度が低下している。
酸化鉄(Fe)を添加した接合材を用いたサンプル6は大気焼成後の接合部材21の接合強度は優れるが、還元後の接合強度が低下している。
Since the sample to which metallic nickel is added expands in volume when the metallic nickel becomes nickel oxide during atmospheric firing, the joining member 21 becomes dense, and the joint strength after atmospheric firing is improved. Further, after the reduction, when nickel oxide is reduced to metallic nickel, volume contraction occurs. Therefore, in sample 1 containing only nickel oxide, many pores are formed in the joining member 21 and the joining strength is reduced. In the sample to which nickel is added, the amount of volume expansion during sintering only shrinks, so the decrease in bonding strength is small.
In sample 5 made of 100% metallic nickel, the thermal expansion coefficient of the joining member 21 is larger than that of the power generation film 23 and the interconnector 22, so that the joining strength is lowered.
In the sample 6 using the bonding material to which iron oxide (Fe 2 O 3 ) is added, the bonding strength of the bonding member 21 after air firing is excellent, but the bonding strength after reduction is reduced.

Figure 2008200724
Figure 2008200724

実験例2
ベース材料中の金属ニッケルと酸化ニッケルの配合重量比を50:50で一定とし、金属ニッケルと酸化ニッケルの平均粒径を表2に示すとおりとした以外は実験例1と同様にして発電膜とインターコネクタの接合サンプルを作製し、接合部の接合強度を測定した。測定結果を表2に示す。
Experimental example 2
The power generation membrane is the same as Experimental Example 1 except that the mixing weight ratio of metallic nickel and nickel oxide in the base material is constant at 50:50 and the average particle diameter of metallic nickel and nickel oxide is as shown in Table 2. An interconnector joining sample was prepared and the joining strength of the joined portion was measured. The measurement results are shown in Table 2.

金属ニッケルがの平均粒径が0.3μmより小さく、酸化ニッケルの平均粒径が0.5μmより小さいサンプル7では、接合材21の収縮率が大きくなるので、大気熱処理時に接合部材21にひび割れが発生し、接合強度が低下している。
また、金属ニッケル、酸化ニッケルとも平均粒径が5μmより大きいサンプル12では、接合材の焼結性が低下するので、接合部材21の接合強度が低下している。
In the sample 7 in which the average particle diameter of the metallic nickel is smaller than 0.3 μm and the average particle diameter of the nickel oxide is smaller than 0.5 μm, since the shrinkage rate of the bonding material 21 is increased, the bonding member 21 is cracked during the atmospheric heat treatment. Has occurred and the bonding strength is reduced.
Moreover, in the sample 12 whose average particle diameter is larger than 5 μm for both metallic nickel and nickel oxide, since the sinterability of the bonding material is reduced, the bonding strength of the bonding member 21 is reduced.

Figure 2008200724
Figure 2008200724

実験例3
ベース材料中の金属ニッケルと酸化ニッケルの配合重量比を50:50で一定とし、熱膨張調整材(アルミナ)の平均粒径を表3に示すとおりとした以外は実験例1と同様にして発電膜とインターコネクタの接合サンプルを作製し、接合部の接合強度を測定した。測定結果を表3に示す。
Experimental example 3
Power generation in the same manner as in Experimental Example 1 except that the mixing weight ratio of metallic nickel and nickel oxide in the base material is constant at 50:50 and the average particle diameter of the thermal expansion adjusting material (alumina) is as shown in Table 3. A joining sample of the membrane and the interconnector was prepared, and the joining strength of the joined portion was measured. Table 3 shows the measurement results.

アルミナが5μmより小さいサンプル13で、接合部材21の収縮率が大きくなり、大気熱処理時にひび割れが発生し、接合強度が低下している。
また、アルミナが15μmより大きいサンプル17では、接合材の焼結性が低下し、接合部材21の接合強度が低下している。
In the sample 13 in which the alumina is smaller than 5 μm, the shrinkage rate of the bonding member 21 is increased, cracks are generated during the atmospheric heat treatment, and the bonding strength is reduced.
Moreover, in the sample 17 whose alumina is larger than 15 μm, the sinterability of the joining material is lowered, and the joining strength of the joining member 21 is lowered.

Figure 2008200724
Figure 2008200724

実験例4
ベース材料中の金属ニッケルと酸化ニッケルの配合重量比を50:50で一定とし、熱膨張調整材を窒化ケイ素、炭化ケイ素またはフューズドシリカ(いずれも粒径10μm)とした以外は実験例1と同様にして発電膜とインターコネクタの接合サンプルを作製し、接合部の接合強度を測定した。測定結果を表4に示す。
これらの熱膨張調整材についても、熱膨張調整材をアルミナとした場合と同様に、接合部材21の接合強度向上効果が得られた。
Experimental Example 4
Experimental Example 1 except that the mixing weight ratio of metallic nickel and nickel oxide in the base material is constant at 50:50, and the thermal expansion adjusting material is silicon nitride, silicon carbide or fused silica (all having a particle size of 10 μm). Similarly, a joining sample of the power generation film and the interconnector was produced, and the joining strength of the joined portion was measured. Table 4 shows the measurement results.
With respect to these thermal expansion adjusting materials, the effect of improving the bonding strength of the bonding member 21 was obtained as in the case where the thermal expansion adjusting material was alumina.

Figure 2008200724
Figure 2008200724

実験例5
実験例1のサンプル3およびサンプル6の接合剤ペーストに関して、図3に示すような燃料側電極とインターコネクタの接合サンプルを作製し、以下に説明する方法で接合部の接合抵抗を測定した。
まず、接合材ペーストを、それぞれ30mm角のインターコネクタ37の片面に100〜200μmの厚さに均一に塗布した。次に、ディンプル形状の発電膜32(燃料側電極33/イットリア安定化ジルコニア固体電解質膜34/空気側電極35)の燃料側電極33とこの燃料側電極33に面したインターコネクタ37の接合材塗布部を接着した。この接合材を1250℃で1時間にわたって焼付処理をして接合部材31とした。焼付後、発電膜とインターコネクタとの接合部の抵抗を測定するために、発電膜32とインターコネクタ37の接合材を塗布していない側のそれぞれ対角線上の位置に白金ペースト41を介して白金線からなる端子43を2本ずつ取り付けた。これを、空気雰囲気中1000℃に昇温し、端子43を焼付けた。
Experimental Example 5
Regarding the bonding agent pastes of Sample 3 and Sample 6 in Experimental Example 1, a fuel-side electrode / interconnector bonding sample as shown in FIG. 3 was prepared, and the bonding resistance of the bonding portion was measured by the method described below.
First, the bonding material paste was uniformly applied to one side of each 30 mm square interconnector 37 to a thickness of 100 to 200 μm. Next, the dimple-shaped power generation membrane 32 (fuel side electrode 33 / yttria stabilized zirconia solid electrolyte membrane 34 / air side electrode 35) is coated with a bonding material for the fuel side electrode 33 and the interconnector 37 facing the fuel side electrode 33. The parts were glued. This bonding material was baked at 1250 ° C. for 1 hour to obtain a bonding member 31. After baking, in order to measure the resistance of the joint between the power generation film and the interconnector, platinum is interposed via the platinum paste 41 at positions on the diagonal lines on the side where the joining material of the power generation film 32 and the interconnector 37 is not applied. Two terminals 43 made of wires were attached. This was heated to 1000 ° C. in an air atmosphere, and terminals 43 were baked.

この接合サンプル上の端子43に定電流発生装置および電圧計をつないで、空気中で1000℃に昇温し、100体積%のHを導入して還元処理を行った場合と、4体積%H/N中で1000℃に昇温し、100体積%のHを導入して還元処理を行った場合について、直流4端子法によって接合抵抗を測定した。各接合サンプルの測定結果を表5に示す。
接合剤のベース材料に酸化鉄を添加していないサンプル3aでは、酸化鉄を添加したサンプル6aと比べて、殆ど接合抵抗に変化がないことが分かる。
When a constant current generator and a voltmeter are connected to the terminal 43 on the joined sample, the temperature is raised to 1000 ° C. in air, and 100% by volume of H 2 is introduced for reduction treatment, and 4% by volume. In the case where the temperature was raised to 1000 ° C. in H 2 / N 2 and the reduction treatment was performed by introducing 100% by volume of H 2 , the junction resistance was measured by the direct current four-terminal method. Table 5 shows the measurement results of each bonded sample.
It can be seen that in the sample 3a in which iron oxide is not added to the base material of the bonding agent, there is almost no change in the bonding resistance compared to the sample 6a in which iron oxide is added.

Figure 2008200724
Figure 2008200724

SOFCの一例を示す概略図である。It is the schematic which shows an example of SOFC. 実験例1ないし実験例4における接合サンプルを示す概略図である。It is the schematic which shows the joining sample in Experimental example 1 thru | or Experimental example 4. FIG. 実験例5における接合サンプルを示す概略図である。It is the schematic which shows the joining sample in Experimental example 5. FIG.

符号の説明Explanation of symbols

11,12,21,31 導電性接合部材
2,23,32 発電膜
3,13,33 燃料側電極
4,14,34 固体電解質膜
5,15,35 空気側電極
7,22,37 インターコネクタ
11, 12, 21, 31 Conductive joining members 2, 23, 32 Power generation membranes 3, 13, 33 Fuel side electrodes 4, 14, 34 Solid electrolyte membranes 5, 15, 35 Air side electrodes 7, 22, 37 Interconnector

Claims (15)

酸化ニッケルと、
金属ニッケルと、
熱膨張係数10×10−6/℃以下の熱膨張調整材
とを含有するベース材料を含み、実質的に酸化鉄を含有しない接合材。
Nickel oxide,
Metallic nickel,
A joining material including a base material containing a thermal expansion adjusting material having a thermal expansion coefficient of 10 × 10 −6 / ° C. or less and substantially free of iron oxide.
前記酸化ニッケルと前記金属ニッケルの合計量100重量部のうち、前記金属ニッケルを30重量部以上70重量部以下含有する請求項1に記載の接合材。   2. The bonding material according to claim 1, wherein the metal nickel is contained in an amount of 30 parts by weight or more and 70 parts by weight or less in a total amount of 100 parts by weight of the nickel oxide and the metal nickel. 前記ベース材料100重量部のうち、前記熱膨張調整材を10重量部以上20重量部以下含有する請求項1または請求項2に記載の接合材。   The bonding material according to claim 1 or 2, wherein the thermal expansion adjusting material is contained in an amount of 10 parts by weight or more and 20 parts by weight or less of 100 parts by weight of the base material. 前記熱膨張調整材が、アルミナ、窒化ケイ素、炭化ケイ素およびフューズドシリカからなる群より選ばれる少なくとも一種の材料を含む請求項1から請求項3のいずれか一項に記載の接合材。   The bonding material according to any one of claims 1 to 3, wherein the thermal expansion adjusting material includes at least one material selected from the group consisting of alumina, silicon nitride, silicon carbide, and fused silica. 前記酸化ニッケルが、平均粒径0.5μm以上5μm以下の粒子状の酸化ニッケルである請求項1から請求項4のいずれか一項に記載の接合材。   The bonding material according to any one of claims 1 to 4, wherein the nickel oxide is particulate nickel oxide having an average particle size of 0.5 µm or more and 5 µm or less. 前記金属ニッケルが、平均粒径0.3μm以上5μm以下の粒子状の金属ニッケルである請求項1から請求項5のいずれか一項に記載の接合材。   The joining material according to any one of claims 1 to 5, wherein the metallic nickel is particulate metallic nickel having an average particle size of 0.3 µm to 5 µm. 前記熱膨張調整材が、平均粒径5μm以上15μm以下の粒子状の熱膨張調整材である請求項1から請求項6のいずれか一項に記載の接合材。   The bonding material according to any one of claims 1 to 6, wherein the thermal expansion adjusting material is a particulate thermal expansion adjusting material having an average particle diameter of 5 µm to 15 µm. 前記ベース材料とビヒクルとを含む請求項1から請求項7のいずれか一項に記載の接合材。   The joining material according to any one of claims 1 to 7, comprising the base material and a vehicle. 複数の部材の間に配置された請求項1から請求項8のいずれか一項に記載の接合材を焼結して得られた接合部材。   The joining member obtained by sintering the joining material as described in any one of Claims 1-8 arrange | positioned between several members. 請求項1から請求項8のいずれか一項に記載の接合材を複数の部材の間に配置し、
該接合材を焼結する接合方法。
The bonding material according to any one of claims 1 to 8 is disposed between a plurality of members,
A joining method for sintering the joining material.
前記複数の部材が、固体電解質型燃料電池における燃料側部材を含む請求項10に記載の接合方法。   The joining method according to claim 10, wherein the plurality of members include a fuel-side member in a solid oxide fuel cell. 前記複数の部材が、固体電解質型燃料電池における燃料側電極と他の燃料側部材とを含む請求項10に記載の接合方法。   The joining method according to claim 10, wherein the plurality of members include a fuel-side electrode and another fuel-side member in a solid oxide fuel cell. 複数の部材と、
該複数の部材の間を接合する請求項9に記載の接合部材と
を有する固体電解質型燃料電池。
A plurality of members;
A solid oxide fuel cell comprising: the joining member according to claim 9 that joins the plurality of members.
前記複数の部材が、燃料側部材を含む請求項13に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to claim 13, wherein the plurality of members include fuel-side members. 前記複数の部材が、固体電解質型燃料電池における燃料側電極と他の燃料側部材とを含む請求項13に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to claim 13, wherein the plurality of members include a fuel side electrode and another fuel side member in the solid oxide fuel cell.
JP2007040444A 2007-02-21 2007-02-21 Joining material, joint member, joining method, and solid electrolyte fuel cell Withdrawn JP2008200724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040444A JP2008200724A (en) 2007-02-21 2007-02-21 Joining material, joint member, joining method, and solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040444A JP2008200724A (en) 2007-02-21 2007-02-21 Joining material, joint member, joining method, and solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2008200724A true JP2008200724A (en) 2008-09-04

Family

ID=39778744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040444A Withdrawn JP2008200724A (en) 2007-02-21 2007-02-21 Joining material, joint member, joining method, and solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2008200724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305723A (en) * 2007-06-08 2008-12-18 Univ Of Tokyo Adhesive material composition, bonding method using the adhesive material composition, solid oxide fuel cell, and solid oxide steam electrolytic device
JP2011105582A (en) * 2009-08-26 2011-06-02 Ngk Insulators Ltd Bonding agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305723A (en) * 2007-06-08 2008-12-18 Univ Of Tokyo Adhesive material composition, bonding method using the adhesive material composition, solid oxide fuel cell, and solid oxide steam electrolytic device
JP2011105582A (en) * 2009-08-26 2011-06-02 Ngk Insulators Ltd Bonding agent

Similar Documents

Publication Publication Date Title
JP5072305B2 (en) Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell
JP2010202490A (en) Method for producing transition metal oxide having spinel structure
JP5357347B1 (en) Metal paste for gas sensor electrode formation
TW201011967A (en) Metal-supported, segmented-in-series high temperature electrochemical device
WO2014115867A1 (en) Metal paste for gas sensor electrode formation
WO2010061585A1 (en) Member for solid oxide electrolyte-type fuel cell
JP3891790B2 (en) Conductive bonding material
JP3599894B2 (en) Fuel electrode of solid oxide fuel cell
JP6584097B2 (en) Inter-cell connecting member joining method and method for producing solid oxide fuel cell
JP4442747B2 (en) Contact material for air electrode and solid oxide fuel cell using the same
JP5410076B2 (en) Conductive laminate and method for producing conductive laminate
WO2011138915A1 (en) High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
WO2017146120A1 (en) Metal paste for forming gas sensor electrode
JP5330849B2 (en) Conductive bonding material and solid oxide fuel cell having the same
JP2008200724A (en) Joining material, joint member, joining method, and solid electrolyte fuel cell
JP2008034179A (en) Jointing material, jointing member, jointing method, and solid electrolyte fuel cell
JP6212328B2 (en) Metal paste for gas sensor electrode formation
JP6268209B2 (en) Fuel cell power generation unit and fuel cell stack
JP2010244867A (en) Method for manufacturing electrochemical cell
JP5364292B2 (en) Conductive bonding material, bonding member, bonding method, solid oxide fuel cell and bonding material for solid oxide fuel cell
JP2008234927A (en) Manufacturing method of solid oxide fuel cell
JP5364291B2 (en) Bonding material, bonding member, bonding method, solid oxide fuel cell, and bonding material for solid oxide fuel cell
JP2005174585A (en) Conductive jointing material paste
JP5137416B2 (en) Current collecting material for fuel electrode, solid oxide fuel cell unit cell and solid oxide fuel cell
JP2015002035A (en) Method for manufacturing solid oxide fuel battery cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511