JP2010244867A - Method for manufacturing electrochemical cell - Google Patents

Method for manufacturing electrochemical cell Download PDF

Info

Publication number
JP2010244867A
JP2010244867A JP2009092810A JP2009092810A JP2010244867A JP 2010244867 A JP2010244867 A JP 2010244867A JP 2009092810 A JP2009092810 A JP 2009092810A JP 2009092810 A JP2009092810 A JP 2009092810A JP 2010244867 A JP2010244867 A JP 2010244867A
Authority
JP
Japan
Prior art keywords
fuel electrode
conductive plate
solid electrolyte
electrolyte membrane
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009092810A
Other languages
Japanese (ja)
Inventor
Koichi Koga
功一 古賀
Shigenori Ito
重則 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009092810A priority Critical patent/JP2010244867A/en
Publication of JP2010244867A publication Critical patent/JP2010244867A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain sufficient joining strength and conductivity by firing in an oxidizing atmosphere in an electrochemical cell of a type of joining an internal fuel electrode and a conductive plate with a conductive joining material. <P>SOLUTION: The cell includes: a fuel electrode 9 provided with a gas passage for flowing a fuel gas and made of a porous ceramic; a solid electrolyte membrane 6 covering an outer surface 9a of the fuel electrode; a dense conductive plate 12 provided in an outer surface side of the solid electrolyte membrane 6, electrically connected to an air electrode and the fuel electrode 9 in contact with an oxidizing gas, and exposed to the outer surface side of the solid electrolyte membrane 6; and a joining material 17 provided between the conductive plate 12 and the fuel electrode 9. The joining material 17 is generated by interposing a mixture between the conductive plate 12 and the fuel electrode 9, and firing the mixture at a temperature of 800 to 1,000°C in an oxidizing atmosphere, the mixture including: a metal oxide powder of 10 to 55 vol%, which is not decomposed by a reducing atmosphere; and a metal powder of 90 to 45 vol%, which has an average particle diameter of 10 μm or below. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体酸化物型燃料電池などの電気化学セルに関するものである。   The present invention relates to an electrochemical cell such as a solid oxide fuel cell.

特許文献1では、セラミック製電気化学セルの例えば燃料極の内部に燃料流路を形成し、燃料極の上に固体電解質膜、空気極膜を形成する。そしてセルそのものにガス供給孔とガス排出孔とを設け、セルを直接に複数枚積層してスタックを形成する。このスタック形成のさいに、隣接する各セルのガス供給孔を連続させてガス供給路を形成し、各セルのガス排出孔を連続させることでガス排出路を形成する。ただし、この構造では、燃料極そのものはセルの外表面に露出しないので、隣接するセルを電気的に接続することが難しい。そこで、固体電解質膜に開口を設け、そこから燃料極表面を露出させ、セル外表面へと突出させている。この突出部分を電気的接続パッドとして用いる。ただし、この燃料極と接続パッドとの詳細は記載されていない。   In Patent Document 1, a fuel flow path is formed inside, for example, a fuel electrode of a ceramic electrochemical cell, and a solid electrolyte membrane and an air electrode membrane are formed on the fuel electrode. A gas supply hole and a gas discharge hole are provided in the cell itself, and a plurality of cells are directly stacked to form a stack. In forming the stack, the gas supply passages are formed by connecting the gas supply holes of adjacent cells, and the gas discharge passages are formed by connecting the gas discharge holes of the cells. However, in this structure, since the fuel electrode itself is not exposed to the outer surface of the cell, it is difficult to electrically connect adjacent cells. Therefore, an opening is provided in the solid electrolyte membrane, and the surface of the fuel electrode is exposed therefrom and protrudes to the outer surface of the cell. This protruding portion is used as an electrical connection pad. However, details of the fuel electrode and the connection pad are not described.

一方、特許文献2においては、空気極上に金属メッキ層を設け、その上にニッケル粒子と溶媒からなるペーストを塗布し、900〜1100℃の還元雰囲気中で焼成することによって、空気極をニッケルフェルトに対して接合している。
なお、本出願人は、特許文献3において、内部燃料極と導電板との間で、白金やニッケルとジルコニアなどとの混合物を焼結させることで多孔質接合材を形成することを開示した。
On the other hand, in Patent Document 2, a metal plating layer is provided on an air electrode, a paste made of nickel particles and a solvent is applied on the metal plating layer, and fired in a reducing atmosphere at 900 to 1100 ° C., whereby the air electrode is made of nickel felt. It is joined to.
In addition, the present applicant disclosed in Patent Document 3 that a porous bonding material is formed by sintering a mixture of platinum, nickel, zirconia, or the like between an internal fuel electrode and a conductive plate.

WO 2007/029860 A1WO 2007/029860 A1 特許第3652195号Patent No. 3652195 特願2008−81539Japanese Patent Application No. 2008-81539

本発明者は、特許文献1記載のような構造において、燃料極と導電板との間の接合材を生成させるのに際して、酸化ニッケル等の金属酸化物とジルコニアの混合物を大気雰囲気中で焼結させることを検討した。しかし、この結果として、1000℃以下の焼成温度では、接合材粒子の焼結が進行せず、接合材と燃料極界面の接合強度が発現せず、電気抵抗が高いことが分かった。これを1200℃以上で焼成すれば,接合材と燃料極との界面において強固な接合強度が発現する。しかし、例えば、導電板にステンレスを用いた場合、1200℃以上の焼成温度では急激に酸化膜が生成するため、接合体の抵抗が急激に上昇する。また、導電板にランタンクロマイト系の酸化物を用いた場合、1200℃以上で焼成すると、接合材と導電板との界面において反応生成物が生じ、接合体の抵抗が急激に上昇する問題があった。   In the structure as described in Patent Document 1, the inventor sinters a mixture of a metal oxide such as nickel oxide and zirconia in an air atmosphere when generating a bonding material between the fuel electrode and the conductive plate. We considered making it. However, as a result, it was found that at the firing temperature of 1000 ° C. or lower, the sintering of the bonding material particles did not proceed, the bonding strength between the bonding material and the fuel electrode interface did not appear, and the electrical resistance was high. If this is fired at 1200 ° C. or higher, a strong bonding strength is exhibited at the interface between the bonding material and the fuel electrode. However, for example, when stainless steel is used for the conductive plate, an oxide film is rapidly formed at a firing temperature of 1200 ° C. or higher, and thus the resistance of the joined body is rapidly increased. In addition, when a lanthanum chromite oxide is used for the conductive plate, if it is fired at 1200 ° C. or higher, a reaction product is generated at the interface between the bonding material and the conductive plate, and the resistance of the bonded body rapidly increases. It was.

一方、例えば特許文献2においては、接合材として、ニッケル粒子と溶媒からなるペースト900〜1100℃の還元雰囲気中で焼成している。しかし、還元雰囲気での焼成は、特許文献1記載のようなセルでは、外側に露出する空気極の分解を招くので、酸化性雰囲気で焼成する必要があり、特許文献2記載の接合材は適用できない。また、接合材が純ニッケル金属材料からなるため、接合材の塗布量が大きくなれば、焼成時の収縮量が大きくなり、接合体界面剥離が起こりやすくなるため、接合材の塗布量を1mm2あたり0.08〜0.15mg、接合材厚みで8.9〜17μmと非常に薄い接合材厚みで接合しなければならなかった。特許文献1のセルスタック作製プロセスにおいては、そのような薄い接合材の厚みでは、セル表面の凹凸を考えると、非常に狭い領域でしか接合することができなかった。 On the other hand, for example, in Patent Document 2, as a bonding material, paste is fired in a reducing atmosphere at 900 to 1100 ° C. made of nickel particles and a solvent. However, firing in a reducing atmosphere causes decomposition of the air electrode exposed to the outside in a cell as described in Patent Document 1, so it is necessary to fire in an oxidizing atmosphere, and the bonding material described in Patent Document 2 is applied. Can not. Further, since the bonding material is made of pure nickel metal material, the greater the coating amount of the bonding material, the shrinkage amount at the time of firing becomes large, assembly for interfacial peeling is likely to occur, the coating amount of the bonding material 1 mm 2 It was necessary to join at a very thin joining material thickness of 0.08 to 0.15 mg per unit and a joining material thickness of 8.9 to 17 μm. In the cell stack manufacturing process of Patent Document 1, with such a thin bonding material thickness, in consideration of the irregularities on the cell surface, bonding can be performed only in a very narrow region.

本発明の課題は、内部燃料極と導電板とを導電性接合材で接合するタイプの電気化学セルにおいて、酸化性雰囲気で焼成することで、十分な接合強度と導電性とが得られるようにすることである。   An object of the present invention is to obtain sufficient bonding strength and conductivity by firing in an oxidizing atmosphere in an electrochemical cell of a type in which an internal fuel electrode and a conductive plate are bonded with a conductive bonding material. It is to be.

本発明は、
燃料ガスを流すためのガス流路が形成されている多孔質セラミック製の燃料極、
この燃料極の外表面を被覆する固体電解質膜、
この固体電解質膜の外表面側に設けられており、酸化性ガスと接触する空気極、
燃料極と電気的に接続されており、固体電解質膜の外表面側に露出する緻密質の導電板、および
導電板と燃料極との間に設けられている接合材を備えている電気化学セルを製造するのに際して、
還元雰囲気で分解しない金属酸化物粉末10〜55体積%と平均粒径10μm以下の金属粉末90〜45体積%との混合物を導電板と燃料極との間に介在させ、酸化性雰囲気下で800℃〜1000℃で焼成することによって接合材を生成させることを特徴とする。
The present invention
A fuel electrode made of porous ceramic in which a gas flow path for flowing fuel gas is formed,
A solid electrolyte membrane covering the outer surface of the fuel electrode;
An air electrode that is provided on the outer surface side of the solid electrolyte membrane and is in contact with the oxidizing gas,
An electrochemical cell comprising a dense conductive plate that is electrically connected to the fuel electrode and exposed on the outer surface side of the solid electrolyte membrane, and a bonding material provided between the conductive plate and the fuel electrode When manufacturing
A mixture of 10 to 55% by volume of metal oxide powder that does not decompose in a reducing atmosphere and 90 to 45% by volume of metal powder having an average particle size of 10 μm or less is interposed between the conductive plate and the fuel electrode, and 800 under an oxidizing atmosphere. The bonding material is produced by firing at a temperature of from 1000C to 1000C.

本発明によれば、内部燃料極と導電板とを導電性接合材で接合するタイプの電気化学セルにおいて、酸化性雰囲気で焼成することで、十分な接合強度と導電性とが得られる。   According to the present invention, in an electrochemical cell of a type in which the internal fuel electrode and the conductive plate are joined with the conductive joining material, sufficient joining strength and conductivity can be obtained by firing in an oxidizing atmosphere.

すなわち、酸化性雰囲気中での金属粒子の表面酸化を駆動力とした金属粒子間の焼結を利用することで、還元雰囲気でなくとも、1000℃以下の焼成温度で、接合体を強固に焼結することを実現した。また、接合材内に、骨格材として還元雰囲気でも分解しない材料を含有させることで、金属粒子焼結時に起こる接合材の焼成収縮、さらに、その接合材を還元する際に生じる還元収縮を抑制でき、接合体界面の剥離を抑制することで良好な界面の通電性を得ることができた。   That is, by using sintering between metal particles with the driving force of surface oxidation of metal particles in an oxidizing atmosphere, the joined body can be firmly fired at a firing temperature of 1000 ° C. or less even in a reducing atmosphere. Realized that. In addition, by including a material that does not decompose even in a reducing atmosphere as a framework material in the bonding material, it is possible to suppress the firing shrinkage of the bonding material that occurs during metal particle sintering, and the reduction shrinkage that occurs when the bonding material is reduced. In addition, it was possible to obtain good interfacial conductivity by suppressing peeling of the bonded body interface.

しかも、金属粒子の粒経を10μm以下と微細にすることで、より強固な接合体の焼結強度を得ることができる。   Moreover, by making the particle size of the metal particles as fine as 10 μm or less, a stronger sintered strength of the joined body can be obtained.

更に、上記した配合量にすることで、接合体の接合界面に剥離がなく、接合部分の電気抵抗を長期にわたって低く保持することができる。   Furthermore, by setting it as the above compounding quantity, there is no peeling in the joining interface of a joined body, and the electrical resistance of a junction part can be kept low over a long period of time.

本発明を適用可能な電気化学セル1を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the electrochemical cell 1 which can apply this invention. (a)は、図1のセル1をIIa−IIa線に沿って切った断面図であり、(b)は、図1のセル1をIIb−IIb線に沿って切ってみた断面図である。(A) is sectional drawing which cut | disconnected the cell 1 of FIG. 1 along the IIa-IIa line, (b) is sectional drawing which cut | disconnected the cell 1 of FIG. 1 along the IIb-IIb line. . 図1のセル1をIII−III線に沿って切ってみた断面図である。It is sectional drawing which cut the cell 1 of FIG. 1 along the III-III line. (a)は、固体電解質膜6からの燃料極9の露出部分11を示す断面図であり、(b)は、導電板12と固体電解質膜9との間に導電性接合材17を生成させた状態を示す断面図である。(A) is sectional drawing which shows the exposed part 11 of the fuel electrode 9 from the solid electrolyte membrane 6, (b) makes the electroconductive joining material 17 produce | generate between the electrically conductive plate 12 and the solid electrolyte membrane 9. FIG. It is sectional drawing which shows the state.

以下、適宜図面を参照しつつ、本発明をさらに詳細に説明する。
図1〜3に示すように、燃料極9の内部に、還元性ガスを流すためのガス流路8が形成されている。燃料極9は平板状をなしており、燃料極9の両方の主面および側面を被覆するように、固体電解質膜6が設けられている。両方の主面上にある固体電解質膜6上には、それぞれ、空気極2A、2Bあるいは2Cが形成されており、セルの表面に露出している。また、セル1の表面には、内側の燃料極9に電気的に導通する導電板3が露出している。この導電板3を使用して、隣接するセル同士を電気的に接続する。
Hereinafter, the present invention will be described in more detail with reference to the drawings as appropriate.
As shown in FIGS. 1 to 3, a gas flow path 8 for flowing a reducing gas is formed inside the fuel electrode 9. The fuel electrode 9 has a flat plate shape, and the solid electrolyte membrane 6 is provided so as to cover both main surfaces and side surfaces of the fuel electrode 9. Air electrodes 2A, 2B, or 2C are formed on the solid electrolyte membrane 6 on both main surfaces, respectively, and are exposed on the surface of the cell. Further, a conductive plate 3 that is electrically connected to the inner fuel electrode 9 is exposed on the surface of the cell 1. Adjacent cells are electrically connected using this conductive plate 3.

電気化学セル1には貫通孔4、5が形成されている。電気化学セルの稼働時には、貫通孔5から還元性ガスを供給する。このガスは、流路8内を矢印A、B、Cのように流れ、貫通孔4から流出する。この間に電気化学反応に寄与する。   Through holes 4 and 5 are formed in the electrochemical cell 1. During operation of the electrochemical cell, reducing gas is supplied from the through hole 5. This gas flows in the flow path 8 as indicated by arrows A, B, and C, and flows out from the through hole 4. During this time, it contributes to the electrochemical reaction.

ここで、導電板12を燃料極9と電気的に接続するには、例えば図4(a)に示すように、燃料極9の表面9aにおいて固体電解質6を開口させ、露出部分11を形成する。そして、導電板12と燃料極9との間に接続材を収容し、その周囲をシール材13で封止する。この状態で熱処理を行い、導電性の接合層17を形成する。12aは、導電板の接合面であり、12bは、外部への接続面である。   Here, in order to electrically connect the conductive plate 12 to the fuel electrode 9, for example, as shown in FIG. 4A, the solid electrolyte 6 is opened on the surface 9 a of the fuel electrode 9 to form the exposed portion 11. . Then, a connecting material is accommodated between the conductive plate 12 and the fuel electrode 9, and the periphery thereof is sealed with a sealing material 13. In this state, heat treatment is performed to form the conductive bonding layer 17. 12a is a joint surface of the conductive plate, and 12b is a connection surface to the outside.

ここで、導電板の材質は限定されないが、白金などの貴金属、ニッケル、インコネル、ニクロムなどのニッケル基合金、ステンレスなどの鉄基合金、ランタンクロマイトなどの導電性セラミックがある。   Here, although the material of the conductive plate is not limited, there are noble metals such as platinum, nickel-based alloys such as nickel, inconel and nichrome, iron-based alloys such as stainless steel, and conductive ceramics such as lanthanum chromite.

シール部材の材質は特に限定されないが、電気化学セルの作動温度において耐酸化性と耐還元性を有する必要がある。具体的には、シリカを主成分とするガラス及び結晶化ガラス、金属ろうなどを例示できる。また、O リング、C リング、E リングやメタルジャケットガスケット、マイカガスケットなどのコンプレッションシールも例示できる。   The material of the sealing member is not particularly limited, but it needs to have oxidation resistance and reduction resistance at the operating temperature of the electrochemical cell. Specifically, glass mainly composed of silica, crystallized glass, metal brazing and the like can be exemplified. Also, compression seals such as O-rings, C-rings, E-rings, metal jacket gaskets, and mica gaskets can be exemplified.

本発明では、耐還元性の金属酸化物粉末10〜55体積%と平均粒径10μm以下の金属粉末90〜45体積%との混合物を導電板と燃料極との間に介在させ、酸化性雰囲気下で800℃〜1000℃で焼成することによって接合材を生成させる。   In the present invention, a mixture of reduction-resistant metal oxide powder 10 to 55% by volume and metal powder 90 to 45% by volume having an average particle size of 10 μm or less is interposed between the conductive plate and the fuel electrode, and an oxidizing atmosphere. A joining material is produced | generated by baking at 800 to 1000 degreeC under.

耐還元性の金属酸化物粉末は、焼結後に骨格を形成するものである。この材質は、例えば固体酸化物燃料電池の作動条件として作動温度800℃、燃料利用率10%(酸素分圧6.8×1018 atm)のような還元雰囲気においても分解を生じない材質である。具体的には、ジルコニア、セリア、アルミナ、チタニア、マグネシアを例示できる。
さらに接合材は、より安価な材料で燃料極材料との間に界面生成物が生成しないことが望ましい。そのため、その材質は、燃料極材料として使用されているジルコニア、セリア、アルミナが好ましい。
The reduction-resistant metal oxide powder forms a skeleton after sintering. This material is a material that does not decompose even in a reducing atmosphere such as an operating temperature of 800 ° C. and a fuel utilization rate of 10% (oxygen partial pressure of 6.8 × 10 18 atm) as the operating conditions of the solid oxide fuel cell. Specific examples include zirconia, ceria, alumina, titania, and magnesia.
Further, it is desirable that the bonding material is an inexpensive material and does not generate an interface product with the fuel electrode material. Therefore, the material is preferably zirconia, ceria, or alumina used as the fuel electrode material.

また、金属粉末は、ニッケル、コバルト、鉄等の耐熱性金属、合金、あるいは白金、パラジウム等の貴金属が好ましい。
さらに接合材は、より安価な材料で燃料極材料との間に界面生成物が生成しないことが望ましい。そのため、その材質は、燃料極材料として使用されているニッケルが好ましい。
The metal powder is preferably a heat-resistant metal such as nickel, cobalt or iron, an alloy, or a noble metal such as platinum or palladium.
Furthermore, it is desirable that the bonding material is an inexpensive material and does not generate an interface product with the fuel electrode material. Therefore, the material is preferably nickel used as a fuel electrode material.

金属酸化物粉末の平均粒径は特に限定されないが、導電板と燃料極との間の接合強度および導電性の点で10μm以下が好ましい。この下限は特にないが、平均粒径が小さくなると混合粉末の比表面積が大きくなり、混合粉末をペースト化する場合、多量のバインダー、溶剤を添加する必要となるため、ペーストの乾燥収縮が大きくなる恐れがある。この点から0.1μm以上が好ましい。   The average particle diameter of the metal oxide powder is not particularly limited, but is preferably 10 μm or less from the viewpoint of bonding strength and conductivity between the conductive plate and the fuel electrode. There is no particular lower limit, but when the average particle size is reduced, the specific surface area of the mixed powder increases, and when the mixed powder is made into a paste, it is necessary to add a large amount of binder and solvent, so that the drying shrinkage of the paste increases. There is a fear. In this respect, 0.1 μm or more is preferable.

金属粉末の平均粒径を10μm以下とすることによって、燃料極と導電板との接合強度が著しく向上し、かつ電気抵抗が低下する。この平均粒径の下限は特にないが、平均粒径が小さくなると混合粉末の比表面積が大きくなり、混合粉末をペースト化する場合、多量のバインダー、溶剤を添加する必要となるため、ペーストの乾燥収縮が大きくなる恐れがある。この観点からは、0.1μm以上が好ましい。   By setting the average particle size of the metal powder to 10 μm or less, the bonding strength between the fuel electrode and the conductive plate is remarkably improved and the electric resistance is lowered. There is no particular lower limit on the average particle size, but if the average particle size is decreased, the specific surface area of the mixed powder increases, and when the mixed powder is made into a paste, it is necessary to add a large amount of binder and solvent. There is a risk of shrinkage. In this respect, 0.1 μm or more is preferable.

本発明では、耐還元性の金属酸化物粉末10〜55体積%と、平均粒径10μm以下の金属粉末90〜45体積%との混合物を用いる。ただし、耐還元性の金属酸化物粉末の体積と金属粉末の体積との合計を100体積%とする。   In the present invention, a mixture of reduction-resistant metal oxide powder 10 to 55% by volume and metal powder 90 to 45% by volume having an average particle size of 10 μm or less is used. However, the total of the volume of the reduction-resistant metal oxide powder and the volume of the metal powder is 100% by volume.

前記混合物中における耐還元性の金属酸化物粉末の比率を10体積%以上とすることによって、接合部分での界面剥離を防止でき、時間経過による抵抗値の上昇を防止できる。また、前記混合物中における耐還元性の金属酸化物粉末の比率を55体積%以下とすることによって、接合部分の抵抗値の時間経過による上昇を防止できる。   By setting the ratio of the reduction-resistant metal oxide powder in the mixture to 10% by volume or more, it is possible to prevent interfacial peeling at the bonded portion and to prevent an increase in resistance value over time. In addition, by setting the ratio of the reduction-resistant metal oxide powder in the mixture to 55% by volume or less, it is possible to prevent the resistance value of the joint portion from increasing over time.

前記混合物に対しては、溶媒、バインダーを混合することでペースト状とすることが好ましい。こうした溶媒としては,エタノール、ブタノール、テルピネオール、アセトン、キシレン、トルエン、ブチルカルビトールアセテートを例示できる。こうしたバインダーとしては、メチルセルロース、エチルセルロース、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB) を例示できる。   The mixture is preferably made into a paste by mixing a solvent and a binder. Examples of such solvents include ethanol, butanol, terpineol, acetone, xylene, toluene, and butyl carbitol acetate. Examples of such a binder include methyl cellulose, ethyl cellulose, polyvinyl alcohol (PVA), and polyvinyl butyral (PVB).

本発明では、酸化性雰囲気下で前記混合物を800℃〜1000℃で焼成することによって接合材を生成させる。ここで、酸化性雰囲気とは、酸素を含有していれば良いが、空気(大気)、希釈空気、酸素、希釈酸素が挙げられる。また、焼成温度を800℃〜1000℃とすることによって、接合部分の強度および導電性が高くなる。   In the present invention, the bonding material is generated by baking the mixture at 800 ° C. to 1000 ° C. in an oxidizing atmosphere. Here, the oxidizing atmosphere only needs to contain oxygen, but examples include air (atmosphere), diluted air, oxygen, and diluted oxygen. Further, by setting the firing temperature to 800 ° C. to 1000 ° C., the strength and conductivity of the joint portion are increased.

接合材の気孔率は、通常50%以上生成する。しかし、接合材の気孔率と導電板/燃料極接合部に生じる抵抗は比例関係にあるため、接合材の気孔率は40%以下であることが好ましい。   The porosity of the bonding material is usually 50% or more. However, since the porosity of the bonding material is proportional to the resistance generated at the conductive plate / fuel electrode junction, the porosity of the bonding material is preferably 40% or less.

本発明では、電気化学セルは板状であることが好ましい。ただし、平板状には限らず、湾曲した板や円弧状の板でもよい。又、セルの各コーナー部はR形状であることが好ましい。   In the present invention, the electrochemical cell is preferably plate-shaped. However, it is not limited to a flat plate shape, and may be a curved plate or a circular arc plate. In addition, each corner of the cell is preferably R-shaped.

酸化性ガスは、酸素イオンを固体電解質膜へと供給可能なガスであれば特に限定されないが、空気、希釈空気、酸素、希釈酸素が挙げられる。還元性ガスとしては、H、CO、CHとこれらの混合ガスを例示できる。 The oxidizing gas is not particularly limited as long as it is a gas that can supply oxygen ions to the solid electrolyte membrane, and examples thereof include air, diluted air, oxygen, and diluted oxygen. Examples of the reducing gas include H 2 , CO, CH 4 and a mixed gas thereof.

本発明が対象とする電気化学セルは、電気化学反応を生じさせるためのセル一般を意味している。例えば、電気化学セルは、酸素ポンプ、高温水蒸気電解セルとして使用できる。高温水蒸気電解セルは、水素の製造装置に使用でき、また水蒸気の除去装置に使用できる。また、電気化学セルを、NOx、SOxの分解セルとして使用できる。この分解セルは、自動車、発電装置からの排ガスの浄化装置として使用できる。この場合には、固体電解質膜を通して排ガス中の酸素を除去するのと共に、NOxを電解してNとO とに分解し、この分解によって生成した酸素をも除去できる。また、このプロセスと共に、排ガス中の水蒸気が電解されて水素と酸素とを生じ、この水素がNOxをNへと還元する。また、好適な実施形態では、電気化学セルが、固体酸化物形燃料電池である。 The electrochemical cell targeted by the present invention means a general cell for causing an electrochemical reaction. For example, the electrochemical cell can be used as an oxygen pump or a high temperature steam electrolysis cell. The high-temperature steam electrolysis cell can be used for a hydrogen production apparatus and a steam removal apparatus. Moreover, an electrochemical cell can be used as a decomposition cell for NOx and SOx. This decomposition cell can be used as a purification device for exhaust gas from automobiles and power generation devices. In this case, oxygen in the exhaust gas is removed through the solid electrolyte membrane, and NOx is electrolyzed and decomposed into N 2 and O 2 −, and oxygen generated by this decomposition can also be removed. Moreover, with this process, water vapor in the exhaust gas is electrolysis produced hydrogen and oxygen, the hydrogen reduces NOx into N 2. In a preferred embodiment, the electrochemical cell is a solid oxide fuel cell.

空気極の材質は、ランタンを含有するペロブスカイト型複合酸化物であることが好ましく、ランタンマンガナイト又はランタンコバルタイトであることが更に好ましく、ランタンマンガナイトが一層好ましい。ランタンコバルタイト及びランタンマンガナイトは、ストロンチウム、カルシウム、クロム、コバルト(ランタンマンガナイトの場合)、鉄、ニッケル、アルミニウム等をドープしたものであってよい。   The material of the air electrode is preferably a perovskite complex oxide containing lanthanum, more preferably lanthanum manganite or lanthanum cobaltite, and even more preferably lanthanum manganite. Lanthanum cobaltite and lanthanum manganite may be doped with strontium, calcium, chromium, cobalt (in the case of lanthanum manganite), iron, nickel, aluminum or the like.

燃料極の材質としては、ニッケル−マグネシアアルミナスピネル、ニッケル−ニッケルアルミナスピネル、ニッケル−ジルコニア、白金−酸化セリウム、ルテニウム−ジルコニア等が好ましい。   As the material for the fuel electrode, nickel-magnesia alumina spinel, nickel-nickel alumina spinel, nickel-zirconia, platinum-cerium oxide, ruthenium-zirconia, and the like are preferable.

本発明では、固体電解質膜によって燃料極を被覆し、これによって酸化性ガスと還元性ガスとの間の気密性を保持する。固体電解質の材質は特に限定されず、あらゆる酸素イオン伝導体を利用できる。例えば、イットリア安定化ジルコニア又はイットリア部分安定化ジルコニアであってよく、NOx分解セルの場合には、酸化セリウムも好ましい。   In the present invention, the fuel electrode is covered with the solid electrolyte membrane, thereby maintaining the airtightness between the oxidizing gas and the reducing gas. The material of the solid electrolyte is not particularly limited, and any oxygen ion conductor can be used. For example, it may be yttria stabilized zirconia or yttria partially stabilized zirconia, and in the case of a NOx decomposition cell, cerium oxide is also preferable.

(実験1)
図1〜3を参照しつつ説明した固体電解質型燃料電池を作製した。まず、図1〜3に示すセル1を以下のようにして作製した。
(燃料極9用の成形体の作製)
酸化ニッケル粉末と3mol%イットリア安定化ジルコニア粉末とに対して、有機バインダーおよび水を添加してボールミル中で湿式混合し、混合物を乾燥し、造粒した。この造粒粉末を金型を用いてプレス成形し、燃料極9用の成型体を2枚製作した。燃料極用の成形体と同一の材料をプレス成形した後、打ち抜きプレスにより流路形成部材を形成した。2枚の燃料極用成形体の間に流路形成部材を挟み、プレスによって接合し、燃料極9用の成形体を得た。
(Experiment 1)
A solid oxide fuel cell described with reference to FIGS. First, the cell 1 shown in FIGS. 1-3 was produced as follows.
(Preparation of molded body for fuel electrode 9)
An organic binder and water were added to the nickel oxide powder and 3 mol% yttria-stabilized zirconia powder and wet-mixed in a ball mill, and the mixture was dried and granulated. This granulated powder was press-molded using a mold to produce two molded bodies for the fuel electrode 9. After press-molding the same material as the molded body for the fuel electrode, a flow path forming member was formed by a punching press. A flow path forming member was sandwiched between the two molded articles for the fuel electrode and joined by pressing to obtain a molded article for the fuel electrode 9.

(固体電解質膜の形成)
3mol%イットリア安定化ジルコニア粉末よりペーストを作製し、ディッピングにより、前記の燃料極9用成形体の表面に固体電解質膜6を塗布し、乾燥炉にて乾燥させた。ただし、この際、固体電解質膜9の露出部分11を形成した。
(Formation of solid electrolyte membrane)
A paste was prepared from 3 mol% yttria-stabilized zirconia powder, and the solid electrolyte membrane 6 was applied to the surface of the molded body for the fuel electrode 9 by dipping and dried in a drying furnace. At this time, however, the exposed portion 11 of the solid electrolyte membrane 9 was formed.

(焼結および空気極の形成)
得られた成形品を1400℃で2時間焼成し、焼結体を得た。この焼結体の両面に空気極2A、2B、2Cをスクリーン印刷し、1200℃で1時間焼成し、固体電解質型燃料電池の単セル1を得た。
(Sintering and air electrode formation)
The obtained molded product was fired at 1400 ° C. for 2 hours to obtain a sintered body. Air electrodes 2A, 2B, and 2C were screen-printed on both surfaces of the sintered body and fired at 1200 ° C. for 1 hour to obtain a unit cell 1 of a solid oxide fuel cell.

得られたセルの大きさは縦150mm、横150mm、厚さが2mmの平板形状である。また、固体電解質膜6の厚さは5μmであった。   The obtained cell has a flat plate shape with a length of 150 mm, a width of 150 mm, and a thickness of 2 mm. The thickness of the solid electrolyte membrane 6 was 5 μm.

次に、表1に示す平均粒径の酸化ニッケル粉末、または表1に示す平均粒径の金属ニッケル粉末と、平均粒径1μmの3mol%イットリア安定化ジルコニア粉末とを混合した。両者の体積比率は、金属ニッケル粉末(酸化ニッケル粉末の場合は、粉末中のニッケル体積量で計算):3mol%イットリア安定化ジルコニア粉末として75:25で混合した。この混合粉末に溶剤を加えてペーストを作製した。このペーストを用いて、ステンレス製の導電板と燃料極を接合した。この接合体を乾燥後、800℃で1時間、空気中で焼成した。これらの接続体の密着性を評価するため、引張試験を実施した。   Next, nickel oxide powder having an average particle diameter shown in Table 1 or metallic nickel powder having an average particle diameter shown in Table 1 and 3 mol% yttria-stabilized zirconia powder having an average particle diameter of 1 μm were mixed. The volume ratio of both was mixed at 75:25 as metallic nickel powder (in the case of nickel oxide powder, calculated by the volume of nickel in the powder): 3 mol% yttria stabilized zirconia powder. A solvent was added to the mixed powder to prepare a paste. Using this paste, a stainless steel conductive plate and a fuel electrode were joined. The joined body was dried and then fired in air at 800 ° C. for 1 hour. In order to evaluate the adhesion of these connectors, a tensile test was performed.

Figure 2010244867
Figure 2010244867

表1に示すように、酸化ニッケル粉末とジルコニア粉末との混合物を焼結させた場合には、接合材と燃料極との界面で接合せず、接合強度は発現しなかった。しかし、平均粒径10μm以下の金属ニッケル粉末とジルコニア粉末との混合物を焼結させた場合には、7〜10MPaの接合強度が発現した。   As shown in Table 1, when the mixture of nickel oxide powder and zirconia powder was sintered, it was not bonded at the interface between the bonding material and the fuel electrode, and the bonding strength was not expressed. However, when a mixture of metallic nickel powder having an average particle size of 10 μm or less and zirconia powder was sintered, a bonding strength of 7 to 10 MPa was developed.

(実験2)
実験1と同様にしてセルを作製した。次いで、平均粒径1μmの金属ニッケル粉末と平均粒径1μmのセリア粉末とを、ニッケルとセリアの体積比で75:25で混合し、溶剤を加えてペーストを作製した。これを用いて、実験1と同様の方法で接合体を作製した。これらの接続体の密着性を評価するため、引張試験を実施した。この結果、11MPaの接合強度が得られた。
(Experiment 2)
A cell was produced in the same manner as in Experiment 1. Next, metallic nickel powder having an average particle diameter of 1 μm and ceria powder having an average particle diameter of 1 μm were mixed at a volume ratio of nickel and ceria of 75:25, and a solvent was added to prepare a paste. Using this, a joined body was produced in the same manner as in Experiment 1. In order to evaluate the adhesion of these connectors, a tensile test was performed. As a result, a bonding strength of 11 MPa was obtained.

(実験3)
実験1と同様にしてセルを作製した。次いで、平均粒径1μmの金属ニッケル粉末と平均粒径1μmの3mol%イットリア安定化ジルコニア粉末とを、表2に示す配合比で混合し、得られた混合粉末に溶剤を加え、ペーストを作製した。これを用いてステンレス導電板と燃料極を接合した。この接合体を乾燥後、800℃の空気中で1時間焼成し、その後、800℃の水素雰囲気中で1時間還元処理を行った。
(Experiment 3)
A cell was produced in the same manner as in Experiment 1. Subsequently, metallic nickel powder having an average particle diameter of 1 μm and 3 mol% yttria-stabilized zirconia powder having an average particle diameter of 1 μm were mixed at a blending ratio shown in Table 2, and a solvent was added to the obtained mixed powder to prepare a paste. . Using this, the stainless steel conductive plate and the fuel electrode were joined. After drying this bonded body, it was fired in air at 800 ° C. for 1 hour, and then subjected to reduction treatment in a hydrogen atmosphere at 800 ° C. for 1 hour.

そして、この接合体の水素加湿雰囲気における抵抗経時変化を初期値と100時間経過後において測定評価した。測定後、接合体の断面観察により、接合体界面の剥離状況を確認した。また、上記熱処理を行った接合ペーストの寸法変動を測定し、接合ペーストの収縮量を確認した。   Then, the resistance temporal change in the hydrogen humidified atmosphere of this joined body was measured and evaluated after the initial value and 100 hours had elapsed. After the measurement, the peeling state of the bonded interface was confirmed by observing the cross section of the bonded structure. Moreover, the dimensional fluctuation | variation of the joining paste which performed the said heat processing was measured, and the shrinkage amount of the joining paste was confirmed.

Figure 2010244867
Figure 2010244867

この結果、表2に示すように、接合材のジルコニア配合量が10体積%未満の場合には、接合材の収縮量が大きく、接合体界面で剥離が発生し、接合体の抵抗が上昇した。また、接合材のジルコニア配合量が55体積%を超えると、接合体界面での剥離はないものの、接合材/燃料極界面近傍のニッケル粒子と燃料極側のニッケルの凝集が起こり、接合体界面の導電パスが寸断されて、抵抗が上昇した。   As a result, as shown in Table 2, when the zirconia compounding amount of the bonding material is less than 10% by volume, the shrinkage amount of the bonding material is large, peeling occurs at the bonded body interface, and the resistance of the bonded body increases. . If the zirconia content in the bonding material exceeds 55% by volume, although there is no separation at the bonded body interface, the nickel particles in the vicinity of the bonded material / fuel electrode interface and the nickel on the fuel electrode side agglomerate, and the bonded body interface The conductive path was cut off, and the resistance increased.

1 電気化学セル 2A、2B、2C 空気極 3 導電部 4、5 貫通孔 6 固体電解質膜 6a 固体電解質膜の表面 8 燃料ガスの流路 9 燃料極 9a 燃料極9の接合面 12 導電板 12a 導電板の接合面 12b 外部への接続面 13 シール材 17 接合材   DESCRIPTION OF SYMBOLS 1 Electrochemical cell 2A, 2B, 2C Air electrode 3 Conductive part 4, 5 Through-hole 6 Solid electrolyte membrane 6a Surface of solid electrolyte membrane 8 Fuel gas flow path 9 Fuel electrode 9a Joint surface of fuel electrode 9 12 Conductive plate 12a Conductivity Bonding surface 12b Connecting surface 13 Sealing material 17 Bonding material

Claims (3)

燃料ガスを流すためのガス流路が形成されている多孔質セラミック製の燃料極、
この燃料極の外表面を被覆する固体電解質膜、
この固体電解質膜の外表面側に設けられており、酸化性ガスと接触する空気極、
前記燃料極と電気的に接続されており、前記固体電解質膜の外表面側に露出する緻密質の導電板、および
前記導電板と前記燃料極との間に設けられている接合材を備えている電気化学セルを製造するのに際して、
耐還元性の金属酸化物粉末10〜55体積%と平均粒径10μm以下の金属粉末90〜45体積%との混合物を前記導電板と前記燃料極との間に介在させ、酸化性雰囲気下で800℃〜1000℃で焼成することによって前記接合材を生成させることを特徴とする、電気化学セルの製造方法。
A fuel electrode made of porous ceramic in which a gas flow path for flowing fuel gas is formed,
A solid electrolyte membrane covering the outer surface of the fuel electrode;
An air electrode that is provided on the outer surface side of the solid electrolyte membrane and is in contact with the oxidizing gas,
A dense conductive plate that is electrically connected to the fuel electrode and exposed on the outer surface side of the solid electrolyte membrane; and a bonding material provided between the conductive plate and the fuel electrode. When manufacturing an electrochemical cell
A mixture of reduction-resistant metal oxide powder 10 to 55% by volume and metal powder 90 to 45% by volume with an average particle size of 10 μm or less is interposed between the conductive plate and the fuel electrode, and in an oxidizing atmosphere. A method for producing an electrochemical cell, wherein the bonding material is produced by firing at 800 ° C. to 1000 ° C.
前記金属酸化物粉末が、ジルコニア、セリアまたはアルミナであることを特徴とする、請求項1記載の方法。   2. The method according to claim 1, wherein the metal oxide powder is zirconia, ceria or alumina. 前記金属粉末がニッケルであることを特徴とする、請求項1または2記載の方法。   3. The method according to claim 1, wherein the metal powder is nickel.
JP2009092810A 2009-04-07 2009-04-07 Method for manufacturing electrochemical cell Withdrawn JP2010244867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009092810A JP2010244867A (en) 2009-04-07 2009-04-07 Method for manufacturing electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009092810A JP2010244867A (en) 2009-04-07 2009-04-07 Method for manufacturing electrochemical cell

Publications (1)

Publication Number Publication Date
JP2010244867A true JP2010244867A (en) 2010-10-28

Family

ID=43097661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009092810A Withdrawn JP2010244867A (en) 2009-04-07 2009-04-07 Method for manufacturing electrochemical cell

Country Status (1)

Country Link
JP (1) JP2010244867A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101906A (en) * 2011-10-14 2013-05-23 Ngk Insulators Ltd Fuel cell
JP2019102377A (en) * 2017-12-07 2019-06-24 株式会社ノリタケカンパニーリミテド Joint material and assembly
KR20200010844A (en) * 2018-07-23 2020-01-31 주식회사 엘지화학 Apparatus for evaluating of solid oxide fuel cell
JP2021028417A (en) * 2019-08-13 2021-02-25 日本製鉄株式会社 Nickel-ion conductive ceramic mixed powder and composition thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101906A (en) * 2011-10-14 2013-05-23 Ngk Insulators Ltd Fuel cell
JP2019102377A (en) * 2017-12-07 2019-06-24 株式会社ノリタケカンパニーリミテド Joint material and assembly
JP7103783B2 (en) 2017-12-07 2022-07-20 株式会社ノリタケカンパニーリミテド Joining material and joining body
KR20200010844A (en) * 2018-07-23 2020-01-31 주식회사 엘지화학 Apparatus for evaluating of solid oxide fuel cell
KR102606419B1 (en) * 2018-07-23 2023-11-24 주식회사 엘지화학 Apparatus for evaluating of solid oxide fuel cell
JP2021028417A (en) * 2019-08-13 2021-02-25 日本製鉄株式会社 Nickel-ion conductive ceramic mixed powder and composition thereof
JP7381248B2 (en) 2019-08-13 2023-11-15 日本製鉄株式会社 Nickel-ion conductive ceramic mixed powder and composition thereof

Similar Documents

Publication Publication Date Title
JP6398647B2 (en) Method for producing anode for solid oxide fuel cell and method for producing electrolyte layer-electrode assembly for fuel cell
JP2008522370A (en) Sealed joint structure for electrochemical devices
JP2010202490A (en) Method for producing transition metal oxide having spinel structure
TW201011967A (en) Metal-supported, segmented-in-series high temperature electrochemical device
EP1889650B1 (en) Electrochemical devices
JP2010244867A (en) Method for manufacturing electrochemical cell
JP2008066296A (en) Electrochemical device
JP5122777B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
WO2011138915A1 (en) High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
JP2009238506A (en) Electrochemical cell
CN112467164B (en) Solid oxide battery chip with double-electrolyte structure and preparation method
JP5177847B2 (en) Electrochemical equipment
JP2008234927A (en) Manufacturing method of solid oxide fuel cell
JP5203635B2 (en) Solid oxide fuel cell stack and monolithic solid oxide fuel cell
JP4881479B2 (en) Fuel cell
JP5211533B2 (en) Current collector for fuel electrode and solid oxide fuel cell using the same
JP2010287520A (en) Electrochemical cell
JP5176362B2 (en) Solid oxide fuel cell structure and solid oxide fuel cell using the same
JP2005100816A (en) Manufacturing method of cell of fuel cell
JPH08287921A (en) Fuel electrode for solid electrolyte fuel cell
JP2008200724A (en) Joining material, joint member, joining method, and solid electrolyte fuel cell
JP2008047380A (en) Single chamber type solid oxide fuel cell
JP4069759B2 (en) Flat fuel cell stack and flat fuel cell
JP5417344B2 (en) Electrochemical equipment
JP2008053044A (en) Solid oxide fuel cell and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703