JPS5819873A - Leak prevention of oxygen-gas concentration cell - Google Patents

Leak prevention of oxygen-gas concentration cell

Info

Publication number
JPS5819873A
JPS5819873A JP56119806A JP11980681A JPS5819873A JP S5819873 A JPS5819873 A JP S5819873A JP 56119806 A JP56119806 A JP 56119806A JP 11980681 A JP11980681 A JP 11980681A JP S5819873 A JPS5819873 A JP S5819873A
Authority
JP
Japan
Prior art keywords
gas concentration
zirconia
leads
oxygen
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56119806A
Other languages
Japanese (ja)
Other versions
JPH0221104B2 (en
Inventor
Kimio Momiyama
籾山 公男
Toshiaki Sato
敏昭 佐藤
Takeo Ido
井戸 猛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56119806A priority Critical patent/JPS5819873A/en
Publication of JPS5819873A publication Critical patent/JPS5819873A/en
Publication of JPH0221104B2 publication Critical patent/JPH0221104B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increse the electric insulation between the current collecting platinum leads of an oxygen-gas concentration cell, and prevent any leak between the said leads by providing high-resistance zirconia layers, which contain large amounts of Y2O3 and the like, between the said leads and a base zirconia electrolyte. CONSTITUTION:Raw sheets 1 and 1a are formed from zirconia powder stabilized with Y2O3, an organic binder and a plasticizer. Next, a paint prepared by dissolving stabilized zirconia and containing 18-50mol% of a rare-earth-element oxide such as CaO or Y2O3, is applied to both surfaces of the raw sheet 1 before the paint is dried so as to form electric insulating layers 2 and 2a. Next, current collecting platinum leads 3 and 3a are formed on the layers 2 and 2a by printing, and the raw sheet 1a is superposed over the sheet 1 so that a fine platinum wire 4 is buried between the sheets 1 and 1a. After that, they are joined together by heating and pressing, and the joined body is sontered by being subjected to binder eliminating treatment, thereby obtaining a base plate for an oxygen-gas concentration cell. By the means mentioned above, stable leak-preventing layers can be formed between the leads 3 and 3a without deteriorating the airtightness and the thermal shock characteristic.

Description

【発明の詳細な説明】 この発明扛、ジルコニア固体電解質を用いた酸素ガス濃
淡電池の集電IJ + )1間リークを防止する方法に
関するものである@ ジルコニアを固体電解質として用いた酸素ガス濃淡電池
は、燃料電池、あ゛るい拡酸素濃度計として工業計測制
御、自動車の排ガス制御に広く用いられている。
[Detailed Description of the Invention] This invention relates to a method for preventing leakage between the current collector IJ + )1 of an oxygen gas concentration battery using a zirconia solid electrolyte @ Oxygen gas concentration battery using zirconia as a solid electrolyte It is widely used in fuel cells, industrial measurement and control as a wide oxygen concentration meter, and automobile exhaust gas control.

従来、この酸素ガス濃淡電池を直列に結んで回路電圧を
上げる試みが種々なされている。例えば、チー/々円筒
のジルコニア電解質の内面に負極(燃料電極)11一つ
け、外面に正極(空気電極)をつけて単電池を構成し、
これをつくし状に連結して直列接続する方法、あるいは
多孔質支持セラミック基体の上に、部分的に複数個の単
電池を化学的気相成長(CVD)、デラズi溶射などに
より、負極、ジルコニア電解質、正極の順に形成し、こ
の単電池間をインターコネクタによシ接続する方法など
があるが、いずれも工程が複雑であ〕、信頼性の確保が
難しく、またコストも高くつく欠点があつた0この点を
改良するために、熱可塑性樹脂をバインダーとして含有
するジルフェア生シートを作成し、その両面にスクリー
ン印刷によシ、負および正電極と、直列接続のためのり
−pを形成し、これ管中空部ができるように加熱圧着し
、その後に高温にて焼結して酸素ガス濃淡電池を作成す
る方法があるが、同一ジル−ニア薄板上に電位の異なる
単電池が並ぶことになシ、各単電池間のリークを防ぐた
めに相互の間隔を近接させられない欠点があると共に、
接続り−V?ジルコニア薄板の両面間でも交叉させられ
ない欠点があった。
Conventionally, various attempts have been made to increase the circuit voltage by connecting these oxygen gas concentration batteries in series. For example, a unit cell is constructed by attaching a negative electrode (fuel electrode) 11 to the inner surface of a cylindrical zirconia electrolyte and attaching a positive electrode (air electrode) to the outer surface.
By connecting these cells in series in a comb shape, or by partially forming a plurality of single cells on a porous support ceramic substrate by chemical vapor deposition (CVD), Derazu I spraying, etc., the negative electrode and the zirconia There are methods such as forming the electrolyte and the positive electrode in that order, and then connecting these cells with an interconnector, but these methods have the disadvantages that the process is complicated, it is difficult to ensure reliability, and the cost is high. In order to improve this point, we created a Zilphere raw sheet containing thermoplastic resin as a binder, and formed negative and positive electrodes and glue for series connection on both sides of the sheet by screen printing. There is a method of heat-pressing this to create a hollow part of the tube, and then sintering it at high temperature to create an oxygen gas concentration battery, but this method involves arranging cells with different potentials on the same Zirnia thin plate. However, there is a drawback that the cells cannot be spaced close to each other to prevent leakage between them, and
Connection-V? There was also a drawback that the two sides of the zirconia thin plate could not be crossed.

とくに自動車の排ガスセンナに用いる場合に杜、挿入孔
よりセンサの一端を排ガス中に入れて堆付ける方法が望
ましく、空気極側の開口部を外部に向け、しかもこの部
分より出力信号v−ymYr取り出す必要性から、取)
出しり−yと、各単電池の直列接続シーVの近接あるい
は交叉がまぬがれず、出力電圧がリークによシ低下する
欠点が問題であった。
Particularly when used in an automobile exhaust gas sensor, it is desirable to deposit one end of the sensor into the exhaust gas through the insertion hole, with the opening on the air electrode side facing the outside, and the output signal v-ymYr being taken out from this part. Due to necessity)
There was a problem in that the output voltage -y and the series-connected cells V of each unit cell could not be avoided in close proximity to each other or crossed each other, resulting in a decrease in the output voltage due to leakage.

この発明は、上述した従来の欠点全改良するために、リ
ーク防止が必要な個所に、基体ジルコニア電解質と結晶
構造、成分元素が同じで、その組成比率が異なる層を形
成することにより、基体電解−質との化学的、あるいは
機械的な安定性を損なうことなく出力電力損の小さな酸
素ガス濃淡電池の製造を可能にしようとす−るものであ
る。
In order to improve all of the above-mentioned conventional drawbacks, this invention forms a layer with the same crystal structure and component elements as the base zirconia electrolyte, but with a different composition ratio, at the location where leak prevention is required. - The aim is to make it possible to manufacture oxygen gas concentration batteries with low output power loss without compromising quality, chemical or mechanical stability.

また、第1図はジルコニア固体電解質の生シートを用い
て・、筒状酸素ガス濃淡電池を製造する工程t−70−
チャートで説明した図である。一般にジルコニア(Zr
Om)固体電解貧鉱、正方晶から単斜晶系への結晶変態
による脆化を防ぐために立方晶の安定化剤として、また
同時に酸素イオン空孔子を生成するための半導体化剤と
して、CaO1Yt OsあるいはGd冨Os 、 Y
b雪Os 、などの希土類元素酸化物を4〜16モル(
moj)%をZ r (hに混合して仮焼しこれらを固
溶させて製造される。Ym Osで安定化する場合につ
いて説明すれば、固溶されるYm Osの量は、機械的
性能を重視するか、電気的な性能を重視するかで異なる
・機械的性能を重視する場合には6〜8モル%固溶させ
一部単斜晶を残存させた部分安定化物を用い、電気的性
能を重視する場合には、導電率が最大値を示す10モル
%近傍の固溶体を用いる0800℃における導電率は6
モル%固溶体でIXIO−2g−シー、10モル%固溶
体で1.5xlO−”g−1/−である。
In addition, Figure 1 shows the process t-70- of manufacturing a cylindrical oxygen gas concentration battery using a raw sheet of zirconia solid electrolyte.
It is a figure explained with a chart. Generally, zirconia (Zr
Om) Solid electrolyzed poor ore, CaO1YtOs as a stabilizer for cubic crystals to prevent embrittlement due to crystal transformation from tetragonal to monoclinic system, and as a semiconducting agent to simultaneously generate oxygen ion vacancies. Or Gd Tomi Os, Y
4 to 16 moles of rare earth element oxides such as
It is manufactured by mixing moj)% with Zr(h and calcining them to form a solid solution.To explain the case of stabilizing with YmOs, the amount of YmOs dissolved in the solid solution depends on the mechanical performance. The difference depends on whether you place importance on electrical performance or electrical performance. If you place emphasis on mechanical performance, use a partially stabilized product with 6 to 8 mol% solid solution and some monoclinic crystals remaining. If performance is important, use a solid solution with a maximum conductivity of around 10 mol%.The conductivity at 0800°C is 6.
IXIO-2g-c in mol% solid solution and 1.5xlO-''g-1/- in 10 mol% solid solution.

このように安定化されたジルコニア電解質を用い、第1
図の工程に従って、粉砕、スラリー化を行ない、有機バ
インダーとして熱可塑性樹脂を用いrフタ−ツレ−V法
にょシ、生シートを作成すれば、単電池電極部および集
電リーv部はスクリーン印刷によシ容易に形成できる0
このようにして印刷された生シート2枚の間に、同一材
料でできた生シートを中空筒形成用スペーサとして挿入
し、加熱圧着して一体成形した後、焼結すれば中空筒の
内外面に電極を有する単電池群からなる酸素ガス濃淡電
池が得られる。しかし、個々の単電池を直列あるいは並
列に所望の個数完結線する場合に蝶、各り−yが同一平
面上で近接した〕、あるい轄接続後の電位差が大きな状
態のy=yが基体電解質を隔てて交叉する必要が出るケ
ースが多く生じてくる。このような場合には、リーr部
を基体電解質面から持ち上げるか、基体電解質との間に
絶縁層を入れる必要がある。高温絶縁用セラミックスと
しては通常アル建すなどが使用されているが、生シート
法のように予め焼成前に全ての配Inできる限)完成し
でおくことが望ましい製造法では、異種元素酸化物Yr
用いると、焼成時に基体と反応し、相互の拡散速度の違
いが微細なりラックを発生し易くし、信頼性に欠ける点
が問題であった〇 この発IjlI控、このような高抵抗層形成材料として
、ジルコニアにY鵞08などの安定化剤を導電率が最大
を示す量よpさらに増して固溶させると導電率が低下す
る現象に注目してなされたもので、基体ジルコニア電解
質と成分的には全く同一で、組成比のみが異なる材料を
用いることによシ、高抵抗層(以下絶縁層と呼ぶ)と基
体ジルコニア電解質問に結晶学的に異種の層管形成させ
ることなく、焼結時に完全に一体化でき、気密性を必要
とする加熱圧着部に形成しても十分に使用に耐え得る電
気的絶縁性の高い絶縁層が得られる酸素ガス濃淡電池の
リーク防止方法を提供することを目的としている。
Using the zirconia electrolyte stabilized in this way, the first
If you follow the process shown in the figure to create a raw sheet by crushing and slurrying and using a thermoplastic resin as an organic binder using the Lid-Tree-V method, the cell electrode part and the current collector part will be screen-printed. 0 that can be easily formed
A raw sheet made of the same material is inserted as a spacer for forming a hollow cylinder between two raw sheets printed in this way, and after being heat-pressed and integrally formed, the inner and outer surfaces of the hollow cylinder are sintered. An oxygen gas concentration battery consisting of a group of single cells having electrodes is obtained. However, when connecting a desired number of individual cells in series or parallel, each cell - y are close to each other on the same plane], or y = y with a large potential difference after connection is the substrate. There are many cases where it is necessary to separate and cross electrolytes. In such a case, it is necessary to lift the lea r part from the base electrolyte surface or to insert an insulating layer between it and the base electrolyte. For high-temperature insulating ceramics, aluminum alloys are usually used, but in manufacturing methods such as the raw sheet method, where it is desirable to complete all the arrangements before firing (as much as possible), different element oxides are used. Yr
If used, the problem is that it reacts with the substrate during firing, and the difference in mutual diffusion rate is minute, making it easy to generate racks, resulting in a lack of reliability. This was done by paying attention to the phenomenon that the electrical conductivity decreases when a stabilizer such as Y-08 is dissolved in zirconia in an amount greater than the amount that gives the maximum electrical conductivity. By using materials that are exactly the same but differ only in composition ratio, the high-resistance layer (hereinafter referred to as the insulating layer) and the substrate zirconia electrolyte layer can be sintered without forming crystallographically different layers. To provide a method for preventing leakage of an oxygen gas concentration battery, which can be completely integrated at times, and can obtain an insulating layer with high electrical insulation properties that can withstand use even when formed in a heat-compressed part that requires airtightness. It is an object.

この発明について、単純化されたモデル実験汽何例によ
シ説明する。第2図は、電気的絶縁効果および接合の完
全さ全検証するために用いた試験片の構成管示す0まず
、Y*0slOモル%で安定化されたジルコニア粉と、
有機パイン〆一としてIジビニル1テラール、可塵剤と
してlリエチレングリコールおよびオクチル7タレート
を含んだ生シート1および1at−作成した。次に、絶
縁層形成用ペイントとして、18モル%以上60モル%
以下のY*0st−添加したジルコニア(ZrO*)粉
を生シートと同様の有機物質成分を溶解したダイア七ト
ンアルコールおよびセルソルブ、エチレンクロライド、
竜ルソルツアセテート、キシレンの混合液中に分散させ
九〇上記ペイントを生シートlの両面に相対向して、ス
クリーン印刷により塗布し、これを80℃で乾燥して電
気的絶縁層2および21管形成した。次に、この上に白
金ペイン全形成した後、生シート1aを白金り−r3a
と生シー)1aの間に白金−線4の一部を埋め込むよう
に重ね合わせて、加熱板のついたプレス機によシ、15
0℃で加熱圧着した。この試料を300℃〜500℃の
温度間で+−分脱バインダー処理を行なった後160℃
で5時間焼結し、第3図のような基板を得友。白金り−
I′3にさらに取シ出し線として白金線全白金ペイント
を用いて焼付は几後、800Cの電気炉中に挿入して両
り−p間に1vの直流電圧を印加し、白金リード3,3
1間に流れる電流を計測した。試料の各寸法は、シート
厚さ9.4 m 、絶縁層印刷幅5m、長さ301m)
、厚さ10μ、白余り−p幅4鴫、長さ30■、厚さ1
5μである。電流計測の結果を第4図に示す。
The invention will be explained using a simplified model experiment example. Figure 2 shows the composition of the test piece used to fully verify the electrical insulation effect and the integrity of the bond.First, zirconia powder stabilized with Y*0 mol%
Raw sheets 1 and 1at containing I divinyl 1 teral as an organic pine filler and l lyethylene glycol and octyl 7 talate as dusting agents were prepared. Next, as a paint for forming an insulating layer, 18 mol% or more and 60 mol%
The following Y*0st-added zirconia (ZrO*) powder is mixed with dia-7ton alcohol, cellosolve, ethylene chloride,
The above paint is dispersed in a mixed solution of Rusolz acetate and xylene, and the above paint is applied by screen printing to both sides of the green sheet L, facing each other, and this is dried at 80°C to form electrically insulating layers 2 and 21. Tube formed. Next, after forming the entire platinum pane on this, the raw sheet 1a is platinum-r3a
Place the platinum wire 4 on top of each other so as to embed a part of it between 1a and 1a, and press it into a press equipped with a heating plate.15
Heat and pressure bonding was carried out at 0°C. This sample was subjected to debinding treatment for +/- minutes at a temperature of 300°C to 500°C, and then heated to 160°C.
After sintering for 5 hours, a substrate as shown in Figure 3 was obtained. Shirokaneri
Further, a platinum wire is coated with all-platinum paint as a lead wire for I'3, and after baking, the platinum lead 3, 3
The current flowing during the period was measured. The dimensions of the sample are: sheet thickness 9.4 m, insulating layer printing width 5 m, length 301 m)
, thickness 10μ, white margin - p width 4mm, length 30μ, thickness 1
It is 5μ. Figure 4 shows the results of current measurement.

この第4図から明らかなように、白金リーrと基体ジル
コニア電解質問に、Y諺Os を多量に添加したジルコ
ニア層を形成させることによ〕、リーク電流を大幅に減
少させることができる0次にこれらの試料を800℃か
ら毎分200℃の速度でaooctで冷却し、その後、
同様の速度で800Cまで加熱する急熱、急冷サイクル
を20サイクル繰〕返し、さらにその後、走査型電子顕
微鏡を用いて各試料4個所の断面を観察し、マイクロク
ラックの発生について調べt所、60モル%のものにお
いて、微細クラックのある個所が観察された他は異常は
認められなかった。
As is clear from Fig. 4, by forming a zirconia layer with a large amount of YOs added to the platinum lea and the zirconia substrate, it is possible to significantly reduce the leakage current. These samples were cooled from 800 °C at a rate of 200 °C per minute, and then
20 cycles of rapid heating and rapid cooling of heating up to 800C at the same rate] After that, the cross sections of each sample were observed at 4 locations using a scanning electron microscope to examine the occurrence of microcracks. In the case of mol%, no abnormality was observed except for the observation of microcracks.

以上の実施例では安定化剤としてY*Os’を用いた場
合について述べ九が、C1ot  あるいB Yb20
s 。
In the above examples, the case where Y*Os' is used as a stabilizer is described.
s.

Gd鵞Osなどの希土類元素酸化物安定化剤を用いても
よい。下限を18モル%以上と限定した理由扛、工業的
に適用した場合に明らかに効果が期待できる値として、
また上限を50モル%以下と限定したのは、す′−マル
ショックによる信頼性が確保できる範囲からである〇 以上説明したようにこの発明の方法によれば、気密性、
サーマルショック特性を損なう仁となく安定な集電リー
V間のリーク防止層の形成ができ、出力電力損の小さい
ジルコニア固体電解質からなる酸素ガス濃淡電池の提供
が可能になるという効果が得られる。
Rare earth element oxide stabilizers such as Gd and Os may also be used. The reason why the lower limit was set at 18 mol% or more is that the value is clearly expected to be effective when applied industrially.
In addition, the upper limit was set to 50 mol% or less because it was within the range where reliability due to S'-marshock could be ensured. As explained above, according to the method of the present invention, airtightness,
It is possible to form a stable leak prevention layer between the current collectors V without impairing thermal shock characteristics, and it is possible to provide an oxygen gas concentration battery made of a zirconia solid electrolyte with low output power loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はジルコニア固体電解質生シートヲ用いた酸素ガ
ス濃淡電池の製造フローチャート、第2図はこの発明の
一実施例を示す試験片の圧着前の斜視図、第3図鉱同焼
結後°の試験片の斜視図、第4図はとの発明の効果を説
明するためのリーク電流−−03含有率関係線図である
。 1.1a・・・ジルコニア生シート、2.2a・・・ス
クリーン印刷ジルコニア高抵抗層、3.3a・・・白金
集電’)−’s”i・・・外部取り出し白金細線。 なお、図中同一符号は同一または相当部分を示す0 代 理 人   葛   野   信   −第1図 第2図 第4図 Y2O3も1し% 手続補正書(自発) 特許庁長官殿 1、事件の表示    特願昭 56−119806号
2、発明の名称 酸素ガス議淡電池C1−クー防止方法 3、補正をする者 5、 補正の対象 ゛ 明細書の発明の詳細な説明の欄 補正の内容 第9員第9行のr Cart Jk r CaOJと補
正する。
Fig. 1 is a manufacturing flow chart of an oxygen gas concentration battery using a raw zirconia solid electrolyte sheet, Fig. 2 is a perspective view of a test piece showing an embodiment of the present invention before crimping, and Fig. 3 is a view of the test piece after sintering. FIG. 4 is a perspective view of a test piece, and is a leakage current--03 content relationship diagram for explaining the effects of the invention. 1.1a...zirconia raw sheet, 2.2a...screen printed zirconia high resistance layer, 3.3a...platinum current collector')-'s"i...externally taken out platinum thin wire. The same reference numerals in the middle indicate the same or equivalent parts 0 Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 4 Y2O3 is also 1 and % Procedural amendment (spontaneous) Mr. Commissioner of the Japan Patent Office 1, Indication of case Patent application Sho No. 56-119806 No. 2, Title of the invention Oxygen gas neutralization battery C1 - Method for preventing cooling 3, Person making the amendment 5, Subject of the amendment ゛Detailed explanation of the invention in the specification, Contents of amendment No. 9, Line 9 of the amendment r Cart Jk r CaOJ.

Claims (3)

【特許請求の範囲】[Claims] (1)ジルコニア固体電解質からなる一酸素グス濃淡電
池において、集電リーy間のリーク1防゛ぐために、基
体電解質とり−Vの間に、高抵抗層として、CaOある
い拡Ys Os のような希土類元素酸化物を18モル
5以上50モル%以下含んだ安定化ジルコニア層を形成
して、上記17 + p間の電気絶縁性を高くすること
管特徴とする°酸素ガス濃淡電池のリーク防止方法■
(1) In a monooxygen gas concentration battery made of a zirconia solid electrolyte, in order to prevent leakage between the current collector Y and the base electrolyte V, a high resistance layer such as CaO or expanded YsOs is added between the base electrolyte and V. A method for preventing leakage in an oxygen gas concentration battery characterized by forming a stabilized zirconia layer containing 18 mol 5 or more and 50 mol % or less of a rare earth element oxide to increase the electrical insulation between the above 17 + p. ■
(2)高抵抗層をスクリーン印刷によって形成する特許
請求の範囲第1項記載の酸素ガス濃淡電池のリーク防止
方法。
(2) A leak prevention method for an oxygen gas concentration battery according to claim 1, wherein the high resistance layer is formed by screen printing.
(3)ジルコニア固体電解質生シートの必要個所に予め
高抵抗層をスクリーン印刷により形成し、その後に電極
およびリード管印刷し、加熱圧着により中空筒を形成し
た後、焼結する特許請求の範囲第1項記載の酸素ガス濃
淡電池のリーク防止方法。
(3) A high-resistance layer is formed in advance by screen printing at necessary locations on a raw zirconia solid electrolyte sheet, after which electrodes and lead tubes are printed, a hollow cylinder is formed by heat and pressure bonding, and then sintered. A method for preventing leakage in an oxygen gas concentration battery according to item 1.
JP56119806A 1981-07-30 1981-07-30 Leak prevention of oxygen-gas concentration cell Granted JPS5819873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56119806A JPS5819873A (en) 1981-07-30 1981-07-30 Leak prevention of oxygen-gas concentration cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56119806A JPS5819873A (en) 1981-07-30 1981-07-30 Leak prevention of oxygen-gas concentration cell

Publications (2)

Publication Number Publication Date
JPS5819873A true JPS5819873A (en) 1983-02-05
JPH0221104B2 JPH0221104B2 (en) 1990-05-11

Family

ID=14770680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56119806A Granted JPS5819873A (en) 1981-07-30 1981-07-30 Leak prevention of oxygen-gas concentration cell

Country Status (1)

Country Link
JP (1) JPS5819873A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045903A (en) * 1983-08-23 1985-03-12 Victor Co Of Japan Ltd Multiple magnetic recording system and multiple magnetic recording/reproducing system
JPS60108745A (en) * 1983-11-18 1985-06-14 Ngk Insulators Ltd Electrochemical device
US4936157A (en) * 1988-04-22 1990-06-26 Koyo Seiko Co., Ltd. Rack and pinion type steering apparatus
EP0867715A1 (en) * 1997-03-27 1998-09-30 Ngk Insulators, Ltd. Gas sensor
WO2005085039A1 (en) 2004-03-09 2005-09-15 Oiles Corporation Rack guide and rack and pinion steering device using the rack guide
JP2008286569A (en) * 2007-05-16 2008-11-27 Ngk Spark Plug Co Ltd Sensor element, and gas sensor equipped with the sensor element
JP2012027036A (en) * 2011-09-26 2012-02-09 Ngk Spark Plug Co Ltd Sensor element and gas sensor with sensor element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045903A (en) * 1983-08-23 1985-03-12 Victor Co Of Japan Ltd Multiple magnetic recording system and multiple magnetic recording/reproducing system
JPH0348562B2 (en) * 1983-08-23 1991-07-24 Victor Company Of Japan
JPS60108745A (en) * 1983-11-18 1985-06-14 Ngk Insulators Ltd Electrochemical device
JPH0562297B2 (en) * 1983-11-18 1993-09-08 Ngk Insulators Ltd
US4936157A (en) * 1988-04-22 1990-06-26 Koyo Seiko Co., Ltd. Rack and pinion type steering apparatus
EP0867715A1 (en) * 1997-03-27 1998-09-30 Ngk Insulators, Ltd. Gas sensor
WO2005085039A1 (en) 2004-03-09 2005-09-15 Oiles Corporation Rack guide and rack and pinion steering device using the rack guide
JP2008286569A (en) * 2007-05-16 2008-11-27 Ngk Spark Plug Co Ltd Sensor element, and gas sensor equipped with the sensor element
JP2012027036A (en) * 2011-09-26 2012-02-09 Ngk Spark Plug Co Ltd Sensor element and gas sensor with sensor element

Also Published As

Publication number Publication date
JPH0221104B2 (en) 1990-05-11

Similar Documents

Publication Publication Date Title
ES2439699T3 (en) Manufacturing method and current collector
JP3453283B2 (en) Solid oxide fuel cell
US5234722A (en) Solid electrolyte film, solid oxide fuel cell comprising such a solid electrolyte film, and processes for producing such film and solid oxide fuel cell
JPH05502060A (en) Ceramic solid electrolyte based electrochemical oxygen concentrator
JP2004514240A (en) High performance solid electrolyte fuel cell
JP6734816B2 (en) Electrochemical cell and electrochemical stack
DE69304353T2 (en) Process for the production of solid oxide fuel cells
Mehta et al. Two-layer fuel cell electrolyte structure by sol-gel processing
US5322612A (en) Carbon dioxide gas detection element
JP2001332122A (en) Oxide ion conducting material, its manufacturing method, and fuel cell using it
JPS5819873A (en) Leak prevention of oxygen-gas concentration cell
EP0726609B1 (en) Solid electrolyte for a fuel cell and its manufacturing method
JP2000338078A (en) Heater one-piece type oxygen sensor and manufacture thereof
CN113488689B (en) Solid oxide fuel cell stack and method for preparing the same
JP3319136B2 (en) Solid electrolyte fuel cell
JP5330849B2 (en) Conductive bonding material and solid oxide fuel cell having the same
JPH033181B2 (en)
JP2001118590A (en) High conductivity solid electrolyte film and method for manufacturing the same
JP3018925B2 (en) Electrochemical element
JP2980921B2 (en) Flat solid electrolyte fuel cell
JP2001041922A (en) Oxygen sensor element integrated with heater
JPH1064565A (en) Solid electrolytic fuel cell
JPS5827051A (en) Manufacture of oxygen gas concentration cell
JPS5827054A (en) Oxygen gas concentration cell
JPH0656556A (en) Production of porous electrode