JP3319136B2 - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JP3319136B2
JP3319136B2 JP07017594A JP7017594A JP3319136B2 JP 3319136 B2 JP3319136 B2 JP 3319136B2 JP 07017594 A JP07017594 A JP 07017594A JP 7017594 A JP7017594 A JP 7017594A JP 3319136 B2 JP3319136 B2 JP 3319136B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
mol
intermediate layer
ceo
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07017594A
Other languages
Japanese (ja)
Other versions
JPH07254418A (en
Inventor
晃 上野
正信 相沢
正宏 黒石
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP07017594A priority Critical patent/JP3319136B2/en
Publication of JPH07254418A publication Critical patent/JPH07254418A/en
Application granted granted Critical
Publication of JP3319136B2 publication Critical patent/JP3319136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質燃料電池に
関する。特には、固体電解質層と燃料極層との間の接触
抵抗が低く発電効率の高い固体電解質燃料電池に関す
る。
The present invention relates to relates <br/> the solid electrolyte fuel cells. Particularly, Ru <br/> relates to a contact high resistance power generation efficiency lower solid electrolyte fuel cells between the solid electrolyte layer and the fuel electrode layer.

【0002】[0002]

【従来の技術】円筒型セルタイプSOFCを例にとって
従来技術を説明する。円筒型セルタイプSOFC(以下
CCSOFCと言う)は、特公平1−59705等によ
って公知である。CCSOFCは、電極支持管−空気電
極−固体電解質−燃料電極−インターコネクターで構成
される円筒型セルを有する。空気電極側に酸素(空気)
を流し、燃料電極側にガス燃料(H2 、CO等)を流し
てやると、このセル内でO2 -イオンが移動して化学的燃
焼が起り、空気電極と燃料電極の間に電位が生じ発電が
行われる。
2. Description of the Related Art The prior art will be described using a cylindrical cell type SOFC as an example. A cylindrical cell type SOFC (hereinafter, referred to as CCSOFC) is known from Japanese Patent Publication No. 1-59705. The CCSOFC has a cylindrical cell composed of an electrode support tube, an air electrode, a solid electrolyte, a fuel electrode, and an interconnector. Oxygen (air) on the air electrode side
When gaseous fuel (H 2 , CO, etc.) is allowed to flow to the fuel electrode side, O 2 - ions move in this cell, causing chemical combustion, and a potential is generated between the air electrode and the fuel electrode. Power generation is performed.

【0003】SOFCの発電効率を高めるためには、セ
ル自身の内部抵抗を下げる必要がある。セルの内部抵抗
には、固体電解質膜の抵抗や電極表面におけるイオン化
反応に伴う抵抗、電極材・インタコネクタ等のオーム抵
抗、及び、各膜間の接触抵抗が含まれる。このうち、各
膜間の接触抵抗を低くするには、各膜間のミクロ的密着
性を上げる必要がある。SOFCセルの各膜は、セラミ
ックスや金属の薄膜(厚さ数μm 〜数百μm )であり、
各種材質の膜を、基体上に順次形成していく方法によっ
てセルが製造される。
In order to increase the power generation efficiency of an SOFC, it is necessary to lower the internal resistance of the cell itself. The internal resistance of the cell includes the resistance of the solid electrolyte membrane, the resistance associated with the ionization reaction on the electrode surface, the ohmic resistance of the electrode material and the interconnector, and the contact resistance between the membranes. In order to reduce the contact resistance between the films, it is necessary to increase the microscopic adhesion between the films. Each film of the SOFC cell is a thin film of ceramics or metal (thickness of several μm to several hundred μm),
A cell is manufactured by a method of sequentially forming films of various materials on a substrate.

【0004】固体電解質層上に燃料極層を形成する方法
としては、溶射法(特開昭61−198570)、CV
D・EVD法(特開昭61−153280)、スラリー
コート法等がある。
[0004] As a method of forming a fuel electrode layer on a solid electrolyte layer, a thermal spraying method (Japanese Patent Laid-Open No. 61-198570), a CV
D. EVD method (JP-A-61-153280), slurry coating method and the like are available.

【0005】[0005]

【発明が解決しようとする課題】上記各種製造方法の差
はあるが、従来の固体電解質燃料電池においては、固体
電解質層上に直接燃料極層を形成していた。そのため、
両相界面での接触抵抗が大きくなっていた。というの
は、燃料極は電子導電性、電解質はイオン導電性である
ため、両者の接触界面のみで電流が流れるようになって
いるが、固体電解質上に直接燃料極を形成すると、両者
の接触は点接触状態となり、そのため接触抵抗が増大し
ていたのである。
Although there is a difference between the above-mentioned various manufacturing methods, in the conventional solid electrolyte fuel cell, the fuel electrode layer is formed directly on the solid electrolyte layer. for that reason,
The contact resistance at the interface between both phases increased. This is because the fuel electrode is electronically conductive and the electrolyte is ionically conductive, so that current flows only at the contact interface between them, but if the fuel electrode is formed directly on the solid electrolyte, Was in a point contact state, and the contact resistance was increased.

【0006】本発明は、固体電解質層と燃料極層との間
の接触抵抗が低く発電効率の高い固体電解質燃料電池を
提供することを目的とする。
The present invention aims to <br/> provide a contact high resistance power generation efficiency lower solid electrolyte fuel cells between the solid electrolyte layer and the fuel electrode layer.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本願発明の固体電解質燃料電池は、 空気電極と;
23 安定化ZrO2 (YSZ)からなる固体電解質
層と; この固体電解質層上に形成された、y(mol%)
CeO 2 を含むYSZ(0<y≦10)、又は、x(mol
%)TiO 2 及びy(mol%)CeO 2 を含むYSZ(た
だし0<x、y≦10)からなる中間層と; この中間
層上に形成された、金属Ni及び/又は酸化Niと上記
中間層を構成する物質との混合物からなる燃料極層と;
を含むことを特徴とする。
In order to solve the above problems, a solid electrolyte fuel cell according to the present invention comprises an air electrode;
A solid electrolyte layer made of Y 2 O 3 stabilized ZrO 2 (YSZ); y (mol%) formed on this solid electrolyte layer
YSZ containing CeO 2 (0 <y ≦ 10) or x (mol
%) YSZ containing TiO 2 and y (mol%) CeO 2
An intermediate layer comprising 0 <x, y ≦ 10 ); and a fuel electrode layer formed on the intermediate layer and made of a mixture of metal Ni and / or Ni oxide and the substance constituting the intermediate layer;
It is characterized by including.

【0008】[0008]

【作用】上記中間層中のCeO 2 あるいはCeO 2 及び
TiO 2 という電子導電性材料の働きにより、固体電解
質層と燃料極層との界面の接触抵抗を下げることができ
る。すなわち、中間層に電子導電性を持たせることによ
り、電解質層と燃料極との電流パスを多くすることがで
きる(図1参照)。つまり、電流の流れる道を多くする
ことができるため接触抵抗が減らすことができるのであ
る。中間層の主成分をYSZとしたのは、固体電解質燃
料電池は1000℃という高温で作動するので、ヒート
サイクルなどによる熱応力を少なくするため、線膨張係
数を電解質層の同係数と近づける必要があるからであ
る。
The CeO 2 or CeO 2 in the intermediate layer and
By the action of an electron conductive material that TiO 2, it is possible to reduce the contact resistance at the interface between the solid electrolyte layer and the fuel electrode layer. That is, by providing the intermediate layer with electronic conductivity, the number of current paths between the electrolyte layer and the fuel electrode can be increased (see FIG. 1). That is, the number of paths through which the current flows can be increased, so that the contact resistance can be reduced. The main component of the intermediate layer is YSZ because the solid electrolyte fuel cell operates at a high temperature of 1000 ° C., so that the linear expansion coefficient needs to be close to that of the electrolyte layer in order to reduce thermal stress due to heat cycles and the like. Because there is.

【0009】TiO2 、CeO2 の含有量(x、y mol
%)が0<x、y≦10に制限される理由は、ある程度
以上、TiO2 、CeO2 が多くなると、イオン導電性
が著しく低下し、中間層、固体電解質間の抵抗が増すと
考えられるからである。
The content of TiO 2 and CeO 2 (x, y mol
%) Is limited to 0 <x, y ≦ 10. It is considered that the ionic conductivity significantly decreases and the resistance between the intermediate layer and the solid electrolyte increases when TiO 2 and CeO 2 increase to a certain degree or more. Because.

【0010】本発明の固体電解質燃料電池を製造する方
法の一例としては、空気電極の表面に形成されたY2
3 安定化ZrO2 (YSZ)からなる固体電解質層と;
この固体電解質層上に形成された、y(mol%)CeO2
を含むYSZ、又は、x(mol%)TiO2 及びy(mol
%)CeO2 を含むYSZ(ただし0<x、y≦10)
からなる中間層と;この中間層上に形成された、金属N
i及び/又は酸化Niと上記中間層を構成する物質との
混合物からなる燃料極層と;を含む固体電解質燃料電池
の製造方法であって;上記中間層を上記固体電解質層上
にスラリーコート・乾燥する中間層塗膜工程と;上記燃
料極層をスラリーコート・乾燥する燃料極層塗膜工程
と;両塗膜を共焼成する焼成工程と; を含む方法を挙
げることができる。
As an example of a method for manufacturing the solid oxide fuel cell of the present invention, Y 2 O formed on the surface of an air electrode is used.
A solid electrolyte layer made of 3 stabilized ZrO 2 (YSZ);
Y (mol%) CeO 2 formed on this solid electrolyte layer
Or x (mol%) TiO 2 and y (mol
%) YSZ containing CeO 2 (where 0 <x, y ≦ 10)
An intermediate layer consisting of: a metal N formed on the intermediate layer
a fuel electrode layer comprising a mixture of i and / or Ni oxide and a substance constituting the intermediate layer; and a slurry coating the intermediate layer on the solid electrolyte layer. An intermediate layer coating step of drying; a fuel electrode layer coating step of slurry coating and drying the fuel electrode layer; and a firing step of co-firing both coatings.

【0011】中間層と燃料極層とをスラリーコートによ
り上下に塗膜した後に両塗膜を共焼成することにより、
密着性を向上し、接触抵抗を下げることができる。
[0011] By coating the intermediate layer and the fuel electrode layer on the upper and lower sides by slurry coating and then co-firing the two coatings,
The adhesion can be improved and the contact resistance can be reduced.

【0012】[0012]

【0013】[0013]

【0014】本発明の固体電解質燃料電池においては、
中間層の厚さは、0.5〜50μm、さらには1〜10
μm 、であることが好ましい。その理由は、0.5μm
未満だと中間層効果が小さく、50μm を超えると接触
抵抗及び集電抵抗が大となり電池性能が低下するからで
ある。1〜10μm の範囲では、安定して効果が得られ
る。
In the solid electrolyte fuel cell of the present invention,
The thickness of the intermediate layer is 0.5 to 50 μm, further 1 to 10 μm.
μm. The reason is 0.5μm
If it is less than 50 μm, the effect of the intermediate layer is small. In the range of 1 to 10 μm, the effect can be obtained stably.

【0015】[0015]

【実施例】以下、本願発明の実施例を説明する。図2
は、本願発明の一実施例に係る固体電解質燃料電池の一
部構造を模した実験用試料の構成を示す図である。固体
電解質層12の上面には、後に詳述する中間層13、燃
料極層14が膜上に重なるように形成されている。固体
電解質層12の下面には、Pt電極15が形成されてい
る。燃料極層14とPt電極15には、リード線17、
18が取付けられており、この試料の過電圧特性を測定
できるようになっている。
Embodiments of the present invention will be described below. FIG.
FIG. 1 is a view showing a configuration of an experimental sample that simulates a partial structure of a solid oxide fuel cell according to one embodiment of the present invention. On the upper surface of the solid electrolyte layer 12, an intermediate layer 13 and a fuel electrode layer 14, which will be described in detail later, are formed so as to overlap the membrane. On the lower surface of the solid electrolyte layer 12, a Pt electrode 15 is formed. A lead wire 17 is connected to the fuel electrode layer 14 and the Pt electrode 15.
18 is attached so that the overvoltage characteristic of this sample can be measured.

【0016】図2の試料の作成方法を説明する。 (1)固体電解質基板:ZrO2 +8 mol%Y23
固体電解質基板(プレス成形法により、厚1000μm
に形成されたもの、焼成済)を準備した。
A method for preparing the sample shown in FIG. 2 will be described. (1) Solid electrolyte substrate: ZrO 2 +8 mol% Y 2 O 3 solid electrolyte substrate (1000 μm thick by press molding)
, Which had been fired).

【0017】(2)中間層塗膜用スラリー調整: ZrO2 +8 mol%Y23 の粉末(粒度0.1〜5μ
m )に表1に記載の添加量のTiO 2 、CeO 2 を加え
た粉末を用い、さらに、有機溶剤(α・テルピネオー
ル、エチルアルコール)20重量部、バインダー(PV
B)1重量部、分散剤(ポリオキシエレンアルキルリ
ン酸エステル)1重量部、消泡剤(ソルビタンセスキオ
レエート)1重量部とを混合した後、十分攪拌して中間
塗膜用スラリーを調整した。このスラリーの粘度は5
00cps であった。
(2) Preparation of slurry for intermediate layer coating: powder of ZrO 2 +8 mol% Y 2 O 3 (particle size: 0.1 to 5 μm)
m) , TiO 2 and CeO 2 in the amounts shown in Table 1 were added.
With powder, further, an organic solvent (alpha · terpineol, ethyl alcohol) 20 parts by weight, binder (PV
B) 1 part by weight of a dispersant (Poriokishie Chi alkylene alkyl phosphate ester) 1 part by weight, a defoaming agent (sorbitan sesquioleate) was mixed with 1 part by weight, the intermediate was sufficiently stirred
Adjusting the layer coating slurry. The viscosity of this slurry is 5
00 cps.

【0018】(3)燃料極層塗膜スラリー調整: NiO粉末(粒径0.2〜10μm )、上記中間層構成
物質(粉末)10重量部と、有機溶剤(α・テルピネオ
ール、エチルアルコール)20重量部、バインダー(P
VB)2重量部、分散剤(ポリオキシエレンアルキル
リン酸エステル)1重量部、消泡剤(ソルビタンセスキ
オレエート)1重量部とを混合した後、十分攪拌して
料極層塗膜用スラリーを調整した。このスラリーの粘度
は700cps であった。
(3) Preparation of slurry for fuel electrode layer coating film: NiO powder (particle size: 0.2 to 10 μm), 10 parts by weight of the above-mentioned intermediate layer constituent material (powder), and organic solvent (α-terpineol, ethyl alcohol) 20 Parts by weight, binder (P
VB) 2 parts by weight, dispersant (Poriokishie Chi alkylene alkyl phosphate ester) 1 part by weight, a defoaming agent (sorbitan sesquioleate) was mixed with 1 part by weight, fuel sufficiently stirred
The slurry for the electrode layer coating was prepared. The viscosity of this slurry was 700 cps.

【0019】(4)塗膜: 上記のように調整した中間層塗膜用スラリーを、固体電
解質基板表面上に、スクリーン印刷法により塗布した。
塗膜厚は10μm であった。この中間塗膜を乾燥した
後、さらにその上に、上記のように調整した燃料極
膜用スラリーを、スクリーン印刷法により塗布し、その
後乾燥した。この燃料極層塗膜厚は100μm であっ
た。なお、燃料電池(電極)用塗膜の厚さは、用途によ
って任意の厚さとできる。
(4) Coating: The slurry for an intermediate layer coating prepared as described above was applied on the surface of a solid electrolyte substrate by a screen printing method.
The coating thickness was 10 μm. This after the intermediate layer coating film was dried, further thereon, the adjusted fuel electrode layer coating slurry as above was applied by screen printing and then dried. The thickness of the fuel electrode layer coating film was 100 μm. The thickness of the coating film for a fuel cell (electrode) can be set to any thickness depending on the application.

【0020】(5)焼成:上記のように塗膜した基板
を、1100℃、2hrで焼成した。 (6)過電圧測定:上記のように作成した試料を用いて
過電圧測定を行った。その方法は、両リード線間に電流
(1A/cm2)を流し、この電流を遮断した時の電圧変化か
ら過電圧を求めた。なお電流密度(A/cm2)計算の対象と
なる面積は、燃料極の面積とした。得られた過電圧測定
結果を表1に示す。
(5) Firing: The substrate coated as described above was fired at 1100 ° C. for 2 hours. (6) Overvoltage measurement: Overvoltage measurement was performed using the sample prepared as described above. In this method, a current (1 A / cm 2 ) was passed between both lead wires, and an overvoltage was determined from a voltage change when the current was cut off. The area for which the current density (A / cm 2 ) was calculated was the area of the fuel electrode. Table 1 shows the obtained overvoltage measurement results.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から読み取れるように、TiO2 又は
CeO2 を0.1 mol%でもYSZ中に添加したのみ
で、顕著な過電圧低下効果が得られる。特に効果が高い
(過電圧190mV以下)のは、CeO2 を0.1〜10
mol%、TiO2 を10 mol%以下添加した場合であ
る。最も効果が高い(過電圧128mV以下)のは、Ce
Oを5〜7 mol%、TiO2 を0.1〜7 mol%添加し
た場合である。
As can be seen from Table 1, a remarkable overvoltage lowering effect can be obtained only by adding TiO 2 or CeO 2 to YSZ even at 0.1 mol%. Particularly effective (overvoltage 190 mV or less ) is that CeO 2
mol%, a case where the TiO 2 was added 10 mol% or less. The most effective (overvoltage 128 mV or less) is Ce
O and 5 to 7 mol%, a case of adding TiO 2 0.1~7 mol%.

【0023】図3は、CeO2 添加量と過電圧の関係を
示したグラフである。CeO添加量が10 mol%を越え
ると、過電圧が上昇することを示している。
FIG. 3 is a graph showing the relationship between the amount of CeO 2 added and the overvoltage. This indicates that when the amount of CeO added exceeds 10 mol%, the overvoltage increases.

【0024】図4は、TiO2 添加量と過電圧の関係を
示したグラフである。TiO2 添加量が10 mol%を越
えると、過電圧が上昇することを示している。
FIG. 4 is a graph showing the relationship between the amount of TiO 2 added and the overvoltage. This indicates that when the amount of TiO 2 added exceeds 10 mol%, the overvoltage increases.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
は以下の効果を発揮する。 固体電解質層と燃料極層との
間に、固体電解質に電子導電性材料を添加した中間層を
含むので、固体電解質層と燃料極層との間の界面抵抗
(接触抵抗)を低くでき、発電効率の高い固体電解質燃
料電池を提供できる。
As is apparent from the above description, the present invention
Has the following effects. Between the solid electrolyte layer and the fuel electrode layer
In between, an intermediate layer made by adding an electronic conductive material to the solid electrolyte
Interface resistance between the solid electrolyte layer and the fuel electrode layer
(Contact resistance) and high power generation efficiency with solid electrolyte fuel
Battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解質燃料電池の断面模式図であ
る。
FIG. 1 is a schematic sectional view of a solid oxide fuel cell according to the present invention.

【図2】本願発明の一実施例に係る固体電解質燃料電池
の一部構造を模した実験用試料の構成を示す図である。
FIG. 2 is a view showing a configuration of an experimental sample that simulates a partial structure of a solid oxide fuel cell according to one embodiment of the present invention.

【図3】CeO2 添加量と過電圧の関係を示したグラフ
である。
FIG. 3 is a graph showing the relationship between the amount of CeO 2 added and the overvoltage.

【図4】TiO2 添加量と過電圧の関係を示したグラフ
である。
FIG. 4 is a graph showing the relationship between the amount of TiO 2 added and the overvoltage.

【符号の説明】 1 空気極 2 電解質(YSZ
etc) 3 中間層 4 燃料極 12 固体電解質層 13 中間層 14 燃料極層 15 Pt電極 17、18 リード線
[Description of Signs] 1 Air electrode 2 Electrolyte (YSZ
etc) 3 Intermediate layer 4 Fuel electrode 12 Solid electrolyte layer 13 Intermediate layer 14 Fuel electrode layer 15 Pt electrode 17, 18 Lead wire

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−95859(JP,A) 特開 平4−215254(JP,A) 特表 平8−509570(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/02,8/12 H01M 4/86,4/88 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-95859 (JP, A) JP-A-4-215254 (JP, A) JP-A-8-509570 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) H01M 8 / 02,8 / 12 H01M 4 / 86,4 / 88

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 空気電極と;23 安定化ZrO2 (YSZ)からなる固体電解質
層と; この固体電解質層上に形成された、y(mol%)CeO 2
を含むYSZ(0<y≦10)、又は、x(mol%)Ti
2 及びy(mol%)CeO 2 を含むYSZ(ただし0<
x、y≦10)からなる中間層と; この中間層上に形成された、金属Ni及び/又は酸化N
iと上記中間層を構成する物質との混合物からなる燃料
極層と; を含むことを特徴とする固体電解質燃料電池。
1. An air electrode; a solid electrolyte layer made of Y 2 O 3 stabilized ZrO 2 (YSZ); and y (mol%) CeO 2 formed on this solid electrolyte layer .
(0 <y ≦ 10) or x (mol%) Ti
YSZ containing O 2 and y (mol%) CeO 2 (where 0 <
x, y ≦ 10 2 ); metal Ni and / or N oxide formed on this intermediate layer
a fuel electrode layer comprising a mixture of i and a substance constituting the intermediate layer.
【請求項2】 上記中間層が、上記x(mol%)TiO
2 、及び、0.1〜10mol %CeO2 を含むYSZか
らなることを特徴とする請求項1記載の固体電解質燃料
電池。
2. The method according to claim 1, wherein the intermediate layer is composed of the x (mol%) TiO.
2. The solid electrolyte fuel cell according to claim 1, comprising YSZ containing 0.1 to 10 mol% CeO 2. 3.
【請求項3】 上記中間層が、CeO2 を5〜7 mol
%、TiO2 を0.1〜7 mol%含むYSZからなるこ
とを特徴とする請求項1記載の固体電解質燃料電池。
3. The method according to claim 1, wherein the intermediate layer contains CeO 2 in an amount of 5 to 7 mol.
%, The solid electrolyte fuel cell according to claim 1, characterized in that it consists of YSZ containing TiO 2 0.1 to 7 mol%.
【請求項4】 上記中間層が、CeO2 を0.1〜10
mol%含むYSZからなることを特徴とする請求項1記
載の固体電解質燃料電池。
4. The method according to claim 1, wherein the intermediate layer contains CeO 2 in an amount of 0.1 to 10%.
The solid electrolyte fuel cell according to claim 1, comprising YSZ containing mol%.
【請求項5】 上記中間層が、CeO2 を5〜7 mol%
含むYSZからなることを特徴とする請求項1記載の固
体電解質燃料電池。
5. The intermediate layer contains CeO 2 in an amount of 5 to 7 mol%.
2. The solid electrolyte fuel cell according to claim 1, comprising YSZ.
JP07017594A 1994-03-16 1994-03-16 Solid electrolyte fuel cell Expired - Lifetime JP3319136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07017594A JP3319136B2 (en) 1994-03-16 1994-03-16 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07017594A JP3319136B2 (en) 1994-03-16 1994-03-16 Solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH07254418A JPH07254418A (en) 1995-10-03
JP3319136B2 true JP3319136B2 (en) 2002-08-26

Family

ID=13423940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07017594A Expired - Lifetime JP3319136B2 (en) 1994-03-16 1994-03-16 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3319136B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955685A4 (en) * 1996-12-20 2008-12-10 Tokyo Gas Co Ltd Fuel electrode of solid electrolyte type fuel cell and process for the preparation of the same
JP5031187B2 (en) * 2004-11-19 2012-09-19 東邦瓦斯株式会社 SOLAR ELECTRODE FOR SOLID OXIDE FUEL CELL AND SOLID OXIDE FUEL CELL
JP2006344543A (en) * 2005-06-10 2006-12-21 Tokyo Electric Power Co Inc:The Manufacturing method of cell for solid oxide fuel battery
DE102011078614B4 (en) 2011-07-04 2019-06-27 Siltronic Ag Apparatus and method for caching a plurality of semiconductor wafers
US9812726B2 (en) 2012-01-30 2017-11-07 Kyocera Corporation Solid oxide fuel cell, fuel cell module, and fuel cell device
JP6734816B2 (en) * 2017-06-21 2020-08-05 日本特殊陶業株式会社 Electrochemical cell and electrochemical stack

Also Published As

Publication number Publication date
JPH07254418A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
JP5184731B2 (en) FLEXIBLE ELECTRODE / ELECTROLYTE STRUCTURE FOR SOLID OXIDE FUEL CELL, FUEL CELL DEVICE, AND METHOD FOR PRODUCING THE SAME
US5670270A (en) Electrode structure for solid state electrochemical devices
US5035962A (en) Layered method of electrode for solid oxide electrochemical cells
Matsuzaki et al. Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes
US6852436B2 (en) High performance solid electrolyte fuel cells
US4767518A (en) Cermet electrode
US5281490A (en) Process for producing solid oxide fuel cells
EP1032953A1 (en) Sintered electrode for solid oxide fuel cells
JP3981418B2 (en) Electrode structure for solid state electrochemical devices
JP3319136B2 (en) Solid electrolyte fuel cell
JPH07320754A (en) Connecting structure between solid electrolytic film and electrode film, and its manufacture
JPH1021935A (en) Solid electrolyte fuel cell
JP2011210623A (en) Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell having the same
JPH1173982A (en) Solid electrolyte fuel cell and its manufacture
JPH08162120A (en) Solid electrolyte type electrochemical cell
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
JP3256919B2 (en) Solid electrolyte fuel cell
EP0519681B1 (en) Method for preparing anode for solid oxide fuel cells
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JP3533694B2 (en) Porous conductive material powder, method for producing the same, and method for producing fuel cell
JPH09190824A (en) Fuel electrode structure of fuel cell of solid electrolyte type and manufacture thereof
Visco et al. Fabrication and performance of thin-film SOFCs
JPH1173981A (en) Solid electrolyte fuel cell and its manufacture
JPH03192660A (en) Fuel cell device
JPH08264187A (en) Solid electrolyte type fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140621

Year of fee payment: 12

EXPY Cancellation because of completion of term