JPH08162120A - Solid electrolyte type electrochemical cell - Google Patents
Solid electrolyte type electrochemical cellInfo
- Publication number
- JPH08162120A JPH08162120A JP6297500A JP29750094A JPH08162120A JP H08162120 A JPH08162120 A JP H08162120A JP 6297500 A JP6297500 A JP 6297500A JP 29750094 A JP29750094 A JP 29750094A JP H08162120 A JPH08162120 A JP H08162120A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- solid electrolyte
- nio
- ysz
- stabilized zirconia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、固体電解質型電気化
学セルの改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in a solid electrolyte type electrochemical cell.
【0002】[0002]
【従来の技術】固体電解質を用いた電気化学セルには、
燃料電池、及び高温水蒸気電解セルがある。燃料電池で
は電極を設けた酸素イオン導電性固体電解質を900℃
から1000℃の高温にして、この固体電解質を隔壁と
して、一方に燃料ガス、もう一方に空気を供給し、固体
電解質型の両面に設けた電極において電気化学反応を進
行させて外部に電力を取り出す。2. Description of the Related Art An electrochemical cell using a solid electrolyte is
There are fuel cells and high temperature steam electrolysis cells. In a fuel cell, an oxygen ion conductive solid electrolyte with electrodes is set at 900 ° C.
To 1000 ° C., the solid electrolyte is used as a partition wall, fuel gas is supplied to one side, and air is supplied to the other side, and an electrochemical reaction is allowed to proceed at electrodes provided on both sides of the solid electrolyte type to take out electric power to the outside. .
【0003】高温水蒸気電解の場合は、電極を設けた酸
素イオン導電性固体電解質を900℃から1000℃の
高温にして、この固体電解質を隔壁として、一方に水蒸
気、他方に空気を供給し、水蒸気側電極(陰極)が負電
位となるように電極間に電圧を印加すると、陰極で水蒸
気が還元されて水素ガスと酸素イオンとなり、生成した
酸素イオンは固体電解質を空気側電極(陽極)へと拡散
する。In the case of high temperature steam electrolysis, the oxygen ion conductive solid electrolyte provided with an electrode is heated to a high temperature of 900 ° C. to 1000 ° C., and this solid electrolyte is used as a partition wall to supply steam to one side and air to the other side. When a voltage is applied between the electrodes so that the side electrode (cathode) has a negative potential, water vapor is reduced at the cathode into hydrogen gas and oxygen ions, and the generated oxygen ions transfer the solid electrolyte to the air side electrode (anode). Spread.
【0004】陽極では酸素イオンが電子を放出し酸素ガ
スとなる。陰極で発生した水素ガスは、製品水素として
利用される。固体電解質電気化学セルの燃料極材料とし
て、Ni−YSZサーメットは最も一般的に用いられて
いる。この電極は調整段階ではNiOとYSZの混合物
であるが、作動条件下でNiOが還元されて電極活性を
有するNiとなる。Niは燃料極に要求される条件の多
くを満たしており、低コストであることからも、有望な
燃料極材料と位置付けられている。At the anode, oxygen ions release electrons to become oxygen gas. Hydrogen gas generated at the cathode is used as product hydrogen. Ni-YSZ cermet is most commonly used as a fuel electrode material for solid electrolyte electrochemical cells. This electrode is a mixture of NiO and YSZ in the conditioning stage, but under operating conditions NiO is reduced to Ni with electrode activity. Ni satisfies many of the conditions required for the fuel electrode and is low in cost, so it is regarded as a promising fuel electrode material.
【0005】[0005]
【発明が解決しようとする課題】上述したように、Ni
−YSZサーメットは最も一般的に用いられているが、
熱膨脹係数が電解質である安定化ジルコニアに比べて大
きく、Ni単独で用いる場合には界面で熱応力が発生
し、亀裂,剥離等の原因となる。また、Niは高温,還
元雰囲気において凝集する傾向があり、固体電解質電気
化学セル作動時の経時的な性能劣化の1つの要因となっ
ている。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
-YSZ cermet is most commonly used,
The coefficient of thermal expansion is larger than that of stabilized zirconia, which is an electrolyte, and when Ni alone is used, thermal stress occurs at the interface, which causes cracks, peeling, and the like. Further, Ni tends to aggregate in a reducing atmosphere at high temperature, which is one of the causes of performance deterioration over time during operation of the solid electrolyte electrochemical cell.
【0006】この発明はこうした事情を考慮してなされ
たもので、イットリア安定化ジルコニアに粒径10μm
以下の酸化ニッケルを重量分率で45〜80wt%混合
した燃料極を用いることにより、高性能な燃料極を有す
る固体電解質型電気化学セルを提供することを目的とす
る。The present invention has been made in consideration of such circumstances, and it has been found that yttria-stabilized zirconia has a particle size of 10 μm.
An object of the present invention is to provide a solid electrolyte type electrochemical cell having a high performance fuel electrode by using a fuel electrode in which the following nickel oxide is mixed in a weight fraction of 45 to 80 wt%.
【0007】[0007]
【課題を解決するための手段】上述した問題を解決する
には、(1) 熱機械的特性,高温,還元雰囲気での安定性
に優れる新規燃料極材料を探索する方法、あるいは(2)
Niに安定化ジルコニアを混合する等により電極の微細
構造を制御することで、物理的な特性を制御する方法と
が考えられる。Ni−YSZサーメットの望ましい構造
としては、例えば下記の1)〜4)がある。[Means for Solving the Problems] To solve the above-mentioned problems, (1) a method of searching for a novel fuel electrode material having excellent thermomechanical properties, stability in high temperature and reducing atmosphere, or (2)
A method of controlling physical properties by controlling the fine structure of the electrode by mixing stabilized zirconia with Ni or the like is considered. Examples of desirable structures of Ni-YSZ cermet include the following 1) to 4).
【0008】1)Ni粒子同士の連結が充分で、高い電子
伝導性が確保されていること、 2)Ni粒子とYSZ粒子の接触が良く、Ni粒子の焼結
・凝集を抑え得ること、 3)サーメット中のYSZ粒子同士、あるいは電解質とY
SZ粒子との付きが良く、有効な電極反応サイトが厚み
をもった層状に分布するように作られていること、 4)ガスの拡散を妨げない適度な多孔性を持つこと、 本発明では、Ni−YSZサーメットの微細構造を原料
のNiOとYSZの組成比,粒径によって制御すること
により燃料極性能の向上を行った。1) The Ni particles are sufficiently connected to each other to ensure high electron conductivity, 2) The Ni particles and the YSZ particles are in good contact with each other, and the sintering / aggregation of the Ni particles can be suppressed. ) YSZ particles in the cermet, or electrolyte and Y
It has good adhesion to SZ particles and is constructed so that effective electrode reaction sites are distributed in a layered form having a thickness, 4) it has appropriate porosity that does not prevent gas diffusion, and in the present invention, The fuel electrode performance was improved by controlling the fine structure of the Ni-YSZ cermet by the composition ratio of the raw material NiO and YSZ and the particle size.
【0009】即ち、この発明は、イットリア安定化ジル
コニアに粒径10μm以下の酸化ニッケルを重量分率で
45〜80wt%混合した燃料極を具備したことを特徴
とする固体電解質型電気化学セルである。That is, the present invention is a solid electrolyte type electrochemical cell comprising a fuel electrode in which yttria-stabilized zirconia is mixed with nickel oxide having a particle size of 10 μm or less in a weight fraction of 45 to 80 wt%. .
【0010】[0010]
【作用】本発明の固体電解質型電気化学セルは、上述の
ように構成されるため、セルの低抵抗化が可能となる。
抵抗の低下は電流を流したときの電圧降下(過電圧)を
低減することになる。以下の例(図3〜図5)では、こ
の過電圧の大小で性能を評価しており、過電圧が小さい
ほど高性能であることを意味している。Since the solid electrolyte type electrochemical cell of the present invention is constructed as described above, the resistance of the cell can be lowered.
The reduction in resistance reduces the voltage drop (overvoltage) when a current is passed. In the following examples (FIGS. 3 to 5), the performance is evaluated by the magnitude of this overvoltage, and the smaller the overvoltage, the higher the performance.
【0011】[0011]
【実施例】以下、この発明の一実施例を図面を参照して
説明する。電解質材料である8mol%Y2 O3 を固溶
させたZrO2 (イットリア安定化ジルコニア,以下Y
SZと略す,粒径0.2μm)を、室温で150Kg/
cm2 ,10分間,一軸成形にてφ20mm,厚さ1m
mの円盤状に成形し、更に室温で2.5t/cm2 ,3
min(分) で、静水圧プレスをかけた。この成形体を、空
気中で1500℃,5時間焼結することにより、緻密な
YSZ電解質板を得ることができた。YSZ電解質の表
面の粗さを統一するために、電解質の表面をSiC耐水
ペーパー#1500で研磨した。なお、粒径はJISの
遠心沈降法によって測定した平均粒径である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. ZrO 2 (yttria-stabilized zirconia, hereinafter referred to as Y) in which 8 mol% Y 2 O 3 which is an electrolyte material is dissolved.
(Abbreviated as SZ, particle size 0.2 μm) is 150 kg /
cm 2 , 10 minutes, uniaxial molding φ20 mm, thickness 1 m
m into a disk shape, and 2.5 t / cm 2 , 3 at room temperature.
At min, a hydrostatic press was applied. A compact YSZ electrolyte plate could be obtained by sintering this molded body in air at 1500 ° C. for 5 hours. To unify the surface roughness of the YSZ electrolyte, the electrolyte surface was polished with SiC water resistant paper # 1500. The particle size is the average particle size measured by the JIS centrifugal sedimentation method.
【0012】燃料極には、NiとYSZを混合したサー
メットを用いた。サーメットは0.6μm,2.2μ
m,5.5μm,15μmの平均粒径を有するNiOと
0.2μmの平均粒径を有するYSZをテレピン油中で
混合した後、3本ローラーを用いて混合して目的のスラ
リー電極を得た。NiO含有率は、40wt%,50w
t%,60wt%,80wt%である。For the fuel electrode, a cermet in which Ni and YSZ were mixed was used. Cermet is 0.6μm, 2.2μ
NiO having an average particle diameter of m, 5.5 μm, and 15 μm and YSZ having an average particle diameter of 0.2 μm were mixed in turpentine oil, and then mixed using three rollers to obtain a target slurry electrode. . NiO content is 40wt%, 50w
t%, 60 wt% and 80 wt%.
【0013】例えば、燃料電池の場合、一方は燃料極で
他方は空気極となり電池を構成しているが、ここではモ
デル実験として、2電極とも燃料雰囲気においてハーフ
セルを用いて電極の評価を行なった。ハーフセルの電解
質材料には、先に作製したYSZ電解質板を用いた。For example, in the case of a fuel cell, one is a fuel electrode and the other is an air electrode to form a cell. Here, as a model experiment, both electrodes were evaluated in a fuel atmosphere using a half cell. . The YSZ electrolyte plate prepared above was used as the electrolyte material of the half cell.
【0014】燃料極は、図1(A),(B)に示すよう
に、YSZ電解質板1の表面に先ほどのNiO−YSZ
スラリーを直径8mmφだけ塗布して作用極(試験極)
2とした。対極3には、いずれの試料にも、80wt%
NiO−YSZを用いた。参照極4には、図1に示すよ
うにPt電極を取り付けた。いずれの電極を用いた場合
にも、電極焼き付けは、空気中、1400℃,1時間で
行なった。As shown in FIGS. 1A and 1B, the fuel electrode is formed on the surface of the YSZ electrolyte plate 1 by NiO-YSZ.
Working electrode (test electrode) by applying slurry with a diameter of 8 mmφ
And 2. The counter electrode 3 is 80 wt% in any sample
NiO-YSZ was used. A Pt electrode was attached to the reference electrode 4 as shown in FIG. Regardless of which electrode was used, the electrode was baked in air at 1400 ° C. for 1 hour.
【0015】図2は、過電圧,分極抵抗測定時の図1の
電極評価素子及び装着部分の説明図である。得られたハ
ーフセル(電極評価素子)21は、図2に示すようにPt
メッシュ22にスプリングで圧縮させ、前記Ptメッシュ
22につながっているPt線23を介して外部の測定機器と
接続させた。なお、図中の符号24は多孔質アルミナ板、
符号25は磁製管である。FIG. 2 is an explanatory view of the electrode evaluation element and the mounting portion of FIG. 1 at the time of measuring overvoltage and polarization resistance. The obtained half cell (electrode evaluation element) 21 was formed of Pt as shown in FIG.
The Pt mesh is made by compressing the mesh 22 with a spring.
It was connected to an external measuring device via a Pt wire 23 connected to 22. In the figure, reference numeral 24 is a porous alumina plate,
Reference numeral 25 is a porcelain tube.
【0016】ハーフセル試料による電極特性評価は、図
3に示すような装置を用いたカレントインターラプター
法により評価した。なお、図中の符号31は作用極2,参
照極4に接続されたエレクトロメーター、符号32はこの
エレクトロメーターに接続されたオシロスコープ、符号
33は作用極2,対極3に接続されたカレントパルスジュ
ネレータ、符号34,35は夫々このカレントパルスジュネ
レータに順次接続されたファンクションジュネレータ,
パーソナルコンピュータである。この方法は、通電状態
から電流を遮断したときの電圧の減衰曲線から、応答速
度の早い電圧降下と本報告で問題とした過電圧とを分離
して測定することができる。The electrode characteristics of the half cell sample were evaluated by the current interrupter method using an apparatus as shown in FIG. In the figure, reference numeral 31 is an electrometer connected to the working electrode 2 and reference electrode 4, reference numeral 32 is an oscilloscope connected to this electrometer, and a reference numeral
Reference numeral 33 is a current pulse generator connected to the working electrode 2 and counter electrode 3, reference numerals 34 and 35 are function generators sequentially connected to the current pulse generator, respectively.
It is a personal computer. In this method, the voltage drop with a fast response speed and the overvoltage which is a problem in this report can be measured separately from the voltage decay curve when the current is cut off from the energized state.
【0017】80wt%,60wt%,50wt%,4
0wt%NiO−YSZスラリー塗布膜の電極特性の評
価を行なった。この時のNiO粒径は0.6μm、YS
Zは0.2μmである。図4及び図5に水素導入後(9
7vol%H2 −3vol%H2 O)、1時間後のアノ
ーディック(SOFCモード,酸化反応が進行するよう
に電流を流した場合)およびカソーディック(SOFE
モード、還元反応が進行するように電流を流した場合)
過電圧のNiO濃度依存性をそれぞれ示す。過電圧はで
きるだけ小さい方が良いが、測定した電流値0.2〜
0.5Acm-2(実際使用する電流は1Acm-2以下で
ある)において、夫々0.2V以下が好ましい。80 wt%, 60 wt%, 50 wt%, 4
The electrode characteristics of the 0 wt% NiO-YSZ slurry coating film were evaluated. NiO particle size at this time is 0.6 μm, YS
Z is 0.2 μm. After hydrogen introduction (9
7 vol% H 2 -3 vol% H 2 O), anodic after 1 hour (SOFC mode, when an electric current is passed so that the oxidation reaction proceeds) and cathodic (SOFE
Mode, when an electric current is passed so that the reduction reaction proceeds)
The NiO concentration dependence of overvoltage is shown respectively. Overvoltage should be as small as possible, but measured current value 0.2-
At 0.5 Acm -2 (the current actually used is 1 Acm -2 or less), 0.2 V or less is preferable.
【0018】図4,図5より、アノーデイック,カソー
ディックいずれの方向に分極させた場合でも、NiOが
50及び60wt%において、過電圧は最も小さくなる
ことが分かる。また、図4,図5中のプロットを内挿す
ることにより、電極反応の進行に対して45〜80wt
%NiOの範囲の組成は良好な過電圧特性を示すことが
わかる。It can be seen from FIGS. 4 and 5 that the overvoltage becomes the smallest when NiO is 50 and 60 wt% regardless of whether polarization is performed in either the anodic or cathodic direction. Further, by interpolating the plots in FIGS. 4 and 5, it is possible to obtain 45 to 80 wt with respect to the progress of the electrode reaction
It can be seen that the composition in the range of% NiO exhibits good overvoltage characteristics.
【0019】NiO量を60wt%,YSZ粒径を0.
2μmに固定し、NiOの粒径を0.6〜15μmまで
変化させた試料、1A,2A,3A,4Aにおいて、そ
の電極特性を比較評価した。図6には0.2Acm-2だ
け電流を流したときの過電圧を示した。試料1Aにおい
て最も小さい過電圧を示したが、このことより、仕込の
NiO粒径を小さくするほど電気性能は向上することが
分かった。また、図よりNiOが10μm以下であれ
ば、0.2V以下の低過電圧値を維持できることが分か
った。The NiO amount is 60 wt% and the YSZ grain size is 0.
The electrode characteristics of the samples 1A, 2A, 3A and 4A which were fixed to 2 μm and whose NiO particle size was changed to 0.6 to 15 μm were comparatively evaluated. FIG. 6 shows the overvoltage when a current of 0.2 Acm −2 is applied. Sample 1A exhibited the smallest overvoltage, but it was found that the smaller the charged NiO particle size, the better the electrical performance. It was also found from the figure that if NiO is 10 μm or less, a low overvoltage value of 0.2 V or less can be maintained.
【0020】上述したように、固体電解質燃料電池及び
高温水蒸気電解セル等の燃料極として、イットリア安定
化ジルコニアに対して10μm以下の粒径の酸化ニッケ
ルを混合し、酸化ニッケルの重量分率が45wt%〜8
0wt%とすることにより、燃料極性能を向上させるこ
とができる。As described above, nickel oxide having a particle size of 10 μm or less is mixed with yttria-stabilized zirconia as a fuel electrode of a solid electrolyte fuel cell, a high temperature steam electrolysis cell, etc., and the weight fraction of nickel oxide is 45 wt. % ~ 8
The fuel electrode performance can be improved by setting the content to 0 wt%.
【0021】[0021]
【発明の効果】以上詳述したようにこの発明によれば、
イットリア安定化ジルコニアに粒径10μm以下の酸化
ニッケルを重量分率で45〜80wt%混合した燃料極
を用いることにより、高性能な燃料極を有する信頼性の
高い固体電解質型電気化学セルを提供できる。As described above in detail, according to the present invention,
A highly reliable solid electrolyte type electrochemical cell having a high-performance fuel electrode can be provided by using a fuel electrode in which yttria-stabilized zirconia is mixed with nickel oxide having a particle size of 10 μm or less in a weight fraction of 45 to 80 wt%. .
【図1】この発明の一実施例に係る固体電解質型電気化
学セルに使用される電極評価素子の説明図で、図1
(A)は平面図、図1(B)は図1(A)の側面図。1 is an explanatory view of an electrode evaluation element used in a solid electrolyte type electrochemical cell according to an embodiment of the present invention.
1A is a plan view, and FIG. 1B is a side view of FIG.
【図2】過電圧,分極抵抗測定時の図1の電極評価素子
及び装着部分の説明図。FIG. 2 is an explanatory diagram of an electrode evaluation element and a mounting portion in FIG. 1 when measuring overvoltage and polarization resistance.
【図3】ハーフセル使用による電極特性評価を行なうた
めのカレントインターラプラー測定回路図。FIG. 3 is a current interrupter measurement circuit diagram for evaluating electrode characteristics by using a half cell.
【図4】Ni−YSZサーメットのアノーデイック過電
圧のNi濃度依存性を示す特性図。FIG. 4 is a characteristic diagram showing Ni concentration dependency of anodically overvoltage of Ni-YSZ cermet.
【図5】Ni−YSZサーメットのカソーデイック過電
圧のNi濃度依存性を示す特性図。FIG. 5 is a characteristic diagram showing Ni concentration dependency of cathodic overvoltage of Ni-YSZ cermet.
【図6】NiO粒径の過電圧に及ぼす影響を確認するた
めの過電圧とNiO粒径との関係を示す特性図。FIG. 6 is a characteristic diagram showing the relationship between the overvoltage and the NiO grain size for confirming the effect of the NiO grain size on the overvoltage.
1…YSZ電解質板、 2…作用極、
3…対極。21…電極評価素子、 22…Ptメ
ッシュ、 23…Pt線、24…多孔質アルミナ板、
25…磁製管。1 ... YSZ electrolyte plate, 2 ... working electrode,
3 ... Counter electrode. 21 ... Electrode evaluation element, 22 ... Pt mesh, 23 ... Pt wire, 24 ... Porous alumina plate,
25 ... Porcelain tube.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成7年7月6日[Submission date] July 6, 1995
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0004[Correction target item name] 0004
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0004】陽極では酸素イオンが電子を放出し酸素ガ
スとなる。陰極で発生した水素ガスは、製品水素として
利用される。固体電解質電気化学セルの燃料極材料とし
て、Ni−YSZサーメットは最も一般的に用いられて
いる。この電極は調製段階ではNiOとYSZの混合物
であるが、作動条件下でNiOが還元されて電極活性を
有するNiとなる。Niは燃料極に要求される条件の多
くを満たしており、低コストであることからも、有望な
燃料極材料と位置付けられている。At the anode, oxygen ions release electrons to become oxygen gas. Hydrogen gas generated at the cathode is used as product hydrogen. Ni-YSZ cermet is most commonly used as a fuel electrode material for solid electrolyte electrochemical cells. This electrode is a mixture of NiO and YSZ in the preparation stage, but under operating conditions NiO is reduced to Ni having electrode activity. Ni satisfies many of the conditions required for the fuel electrode and is low in cost, so it is regarded as a promising fuel electrode material.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0017[Correction target item name] 0017
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0017】80wt%,60wt%,50wt%,4
0wt%NiO−YSZスラリー塗布膜の電極特性の評
価を行なった。この時のNiO粒径は0.6μm、YS
Zは0.2μmである。図4及び図5に水素導入後(9
7vol%H2 −3vol%H2 O)、1時間後のアノ
ーディック(SOFCモード,酸化反応が進行するよう
に電流を流した場合)およびカソーディック(SOSE
モード、還元反応が進行するように電流を流した場合)
過電圧のNiO濃度依存性をそれぞれ示す。過電圧はで
きるだけ小さい方が良いが、測定した電流値0.2〜
0.5Acm-2(実際使用する電流は1Acm-2以下で
ある)において、夫々0.2V以下が好ましい。80 wt%, 60 wt%, 50 wt%, 4
The electrode characteristics of the 0 wt% NiO-YSZ slurry coating film were evaluated. NiO particle size at this time is 0.6 μm, YS
Z is 0.2 μm. After hydrogen introduction (9
7 vol% H 2 -3 vol% H 2 O), anodic after 1 hour (SOFC mode, when a current is passed so that the oxidation reaction proceeds) and cathodic ( SOSE
Mode, when an electric current is passed so that the reduction reaction proceeds)
The NiO concentration dependence of overvoltage is shown respectively. Overvoltage should be as small as possible, but measured current value 0.2-
At 0.5 Acm -2 (the current actually used is 1 Acm -2 or less), 0.2 V or less is preferable.
Claims (1)
μm以下の酸化ニッケルを重量分率で45〜80wt%
混合した燃料極を具備したことを特徴とする固体電解質
型電気化学セル。1. Yttria-stabilized zirconia having a particle size of 10
45-80 wt% nickel oxide having a thickness of less than μm
A solid electrolyte type electrochemical cell comprising a mixed fuel electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6297500A JPH08162120A (en) | 1994-11-30 | 1994-11-30 | Solid electrolyte type electrochemical cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6297500A JPH08162120A (en) | 1994-11-30 | 1994-11-30 | Solid electrolyte type electrochemical cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08162120A true JPH08162120A (en) | 1996-06-21 |
Family
ID=17847320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6297500A Withdrawn JPH08162120A (en) | 1994-11-30 | 1994-11-30 | Solid electrolyte type electrochemical cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08162120A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998028808A1 (en) * | 1996-12-20 | 1998-07-02 | Tokyo Gas Co., Ltd. | Fuel electrode of solid electrolyte type fuel cell and process for the preparation of the same |
WO1999059936A1 (en) * | 1998-05-20 | 1999-11-25 | Nippon Shokubai Co., Ltd. | Porous ceramic sheet, process for producing the same, and setter for use in the process |
JP2005339905A (en) * | 2004-05-25 | 2005-12-08 | Kyocera Corp | Fuel cell cell and fuel cell |
JP2008034305A (en) * | 2006-07-31 | 2008-02-14 | Tokyo Gas Co Ltd | Anode reduction method of solid oxide fuel cell |
WO2012128201A1 (en) * | 2011-03-18 | 2012-09-27 | 日本碍子株式会社 | Solid oxide fuel cell |
JP5090575B1 (en) * | 2011-03-18 | 2012-12-05 | 日本碍子株式会社 | Solid oxide fuel cell |
JP5091346B1 (en) * | 2011-03-18 | 2012-12-05 | 日本碍子株式会社 | Solid oxide fuel cell |
JP2020135928A (en) * | 2019-02-13 | 2020-08-31 | 株式会社豊田中央研究所 | Fuel electrode for solid oxide type fuel cell |
JPWO2020196236A1 (en) * | 2019-03-27 | 2020-10-01 | ||
CN114335641A (en) * | 2022-01-06 | 2022-04-12 | 苏州华清京昆新能源科技有限公司 | Low-temperature sintering electrolyte compact preparation method |
-
1994
- 1994-11-30 JP JP6297500A patent/JPH08162120A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998028808A1 (en) * | 1996-12-20 | 1998-07-02 | Tokyo Gas Co., Ltd. | Fuel electrode of solid electrolyte type fuel cell and process for the preparation of the same |
US6790474B1 (en) | 1996-12-20 | 2004-09-14 | Tokyo Gas Co., Ltd. | Fuel electrode of solid oxide fuel cell and process for the production of the same |
WO1999059936A1 (en) * | 1998-05-20 | 1999-11-25 | Nippon Shokubai Co., Ltd. | Porous ceramic sheet, process for producing the same, and setter for use in the process |
US6344426B1 (en) | 1998-05-20 | 2002-02-05 | Nippon Shokubai Co., Ltd. | Porous ceramic sheet, process for producing the same, and setter for use in the process |
JP2005339905A (en) * | 2004-05-25 | 2005-12-08 | Kyocera Corp | Fuel cell cell and fuel cell |
JP2008034305A (en) * | 2006-07-31 | 2008-02-14 | Tokyo Gas Co Ltd | Anode reduction method of solid oxide fuel cell |
WO2012128201A1 (en) * | 2011-03-18 | 2012-09-27 | 日本碍子株式会社 | Solid oxide fuel cell |
JP5090575B1 (en) * | 2011-03-18 | 2012-12-05 | 日本碍子株式会社 | Solid oxide fuel cell |
JP5091346B1 (en) * | 2011-03-18 | 2012-12-05 | 日本碍子株式会社 | Solid oxide fuel cell |
US8945789B2 (en) | 2011-03-18 | 2015-02-03 | Ngk Insulators, Ltd. | Solid oxide fuel cell |
JP2020135928A (en) * | 2019-02-13 | 2020-08-31 | 株式会社豊田中央研究所 | Fuel electrode for solid oxide type fuel cell |
JPWO2020196236A1 (en) * | 2019-03-27 | 2020-10-01 | ||
WO2020196236A1 (en) * | 2019-03-27 | 2020-10-01 | 国立大学法人山梨大学 | Solid oxide electrolysis cell, and method and system for operating same |
CN114335641A (en) * | 2022-01-06 | 2022-04-12 | 苏州华清京昆新能源科技有限公司 | Low-temperature sintering electrolyte compact preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3100979B2 (en) | Ceramic solid electrolyte based electrochemical oxygen concentrator | |
Basu et al. | Processing of high-performance anode-supported planar solid oxide fuel cell | |
JP3351791B2 (en) | Solid oxide fuel cell | |
US7108938B2 (en) | Single cell for a solid oxide fuel cell | |
Van Herle et al. | Oxygen diffusion through silver cathodes for solid oxide fuel cells | |
KR20010024177A (en) | Sintered electrode for solid oxide fuel cells | |
GB2134317A (en) | Solid electrolyte fuel cell | |
JP3542802B2 (en) | How to attach a cermet electrode layer to a sintered electrolyte | |
Ding et al. | Electrochemical characteristics of samaria-doped ceria infiltrated strontium-doped LaMnO3 cathodes with varied thickness for yttria-stabilized zirconia electrolytes | |
JP3599894B2 (en) | Fuel electrode of solid oxide fuel cell | |
JPH08162120A (en) | Solid electrolyte type electrochemical cell | |
JP3565696B2 (en) | Method for manufacturing electrode of solid oxide fuel cell | |
JP3218555B2 (en) | Ceria based solid electrolyte with protective layer | |
JP2948453B2 (en) | Solid oxide fuel cell | |
JP3533694B2 (en) | Porous conductive material powder, method for producing the same, and method for producing fuel cell | |
JPH05190183A (en) | Solid electrolyte type fuel cell | |
Zhang et al. | Effect of SrTi0. 3Fe0. 6Co0. 1O3 Infiltration on the Performance of LSM-YSZ Cathode Supported Solid Oxide Fuel Cells with Sr (Ti, Fe) O3 Anodes | |
JPH10247498A (en) | Fuel electrode material | |
Visco et al. | Fabrication and performance of thin-film SOFCs | |
JP3553305B2 (en) | Fuel electrode of solid oxide fuel cell | |
JPH10321239A (en) | Electrode of fuel cell | |
JPH08264187A (en) | Solid electrolyte type fuel cell | |
Widmer et al. | Impedance spectroscopy of an electrocatalytic cathode domain in a SOFC | |
JPS60250565A (en) | Fuel cell | |
Yoon et al. | Effect of anode active layer on performance of single step co-fired solid oxide fuel cells (SOFCs) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020205 |