JPH05170444A - Stabilized zirconia-alumina powder for solid electrolyte fuel cell - Google Patents

Stabilized zirconia-alumina powder for solid electrolyte fuel cell

Info

Publication number
JPH05170444A
JPH05170444A JP3355612A JP35561291A JPH05170444A JP H05170444 A JPH05170444 A JP H05170444A JP 3355612 A JP3355612 A JP 3355612A JP 35561291 A JP35561291 A JP 35561291A JP H05170444 A JPH05170444 A JP H05170444A
Authority
JP
Japan
Prior art keywords
alumina
zirconia
weight
powder
stabilized zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3355612A
Other languages
Japanese (ja)
Inventor
Masashi Mori
昌史 森
Hibiki Ito
響 伊藤
Toshio Abe
俊夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP3355612A priority Critical patent/JPH05170444A/en
Publication of JPH05170444A publication Critical patent/JPH05170444A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To form a sintered material by sintering at relatively low temp. such as <=1400 deg.C in flat planer shape end concretely to form a cell structural material by a wet process such as the tape casting method so as to enable to make an electrolyte for the solid electrolyte fuel cell by the co-sintering method. CONSTITUTION:A high purity alumina of <=5wt.% is dispersed into a zirconia stabilized in crystalline structure with an yttria of 8-10mol%. Particle diameter ratio (y) of the stabilized zirconia powder to the alumina powder {(y)=(zirconia particle diameter)/(alumina particle diameter)} is (y)>0.63 and particle diameter of the zirconia powder is $ 0.3mum and particle diameter of the alumina powder is <=0.7mum. Particularly when adding amount of the high purity alumina is 1wt.%, a unique phenomenon is exhibited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質燃料電池用
安定化ジルコニア−アルミナ粉体に関する。更に詳述す
ると、本発明は、特に共焼結法により固体電解質型燃料
電池の電解質の作製に用いて好適な安定化ジルコニア−
アルミナ粉体に関する。
FIELD OF THE INVENTION The present invention relates to a stabilized zirconia-alumina powder for a solid electrolyte fuel cell. More specifically, the present invention provides a stabilized zirconia suitable for use in preparing an electrolyte for a solid oxide fuel cell, particularly by a co-sintering method.
Regarding alumina powder.

【0002】[0002]

【従来の技術】イットリア安定化ジルコニアは、酸素イ
オン導電性を持ち、高温、酸化還元雰囲気に安定である
ため、ち密な焼結体は固体電解質燃料電池あるいは酸素
センサーの電解質として用いられている。しかしなが
ら、ジルコニア(ZrO2 )は、イットリア(Y
2 3 )を安定化剤に用いた場合に限らず、一般にち密
焼結温度が高い。例えばイットリア安定化ジルコニアの
平均粒子が0.2〜0.3μm程度で焼結を阻害する不
純物例えば酸化クロム等を含んでいない場合で1600
℃、5〜10時間必要となる。
2. Description of the Related Art Yttria-stabilized zirconia has oxygen ion conductivity and is stable in a high temperature and redox atmosphere. Therefore, a dense sintered body is used as an electrolyte for a solid electrolyte fuel cell or an oxygen sensor. However, zirconia (ZrO 2 ) does not yield yttria (Y
Not only when 2 O 3 ) is used as a stabilizer, but generally the dense sintering temperature is high. For example, when the average particle of yttria-stabilized zirconia is about 0.2 to 0.3 μm and does not include impurities that inhibit sintering, such as chromium oxide, 1600
C., 5-10 hours are required.

【0003】一方、平板型固体電解質燃料電池の場合、
ジルコニアをち密に焼結させた固体電解質に例えばスラ
リーコーティング等により電極を作製することが考えら
れる。このような方法を用いると電極特性を低下させる
ことなく、高性能な固体電解質燃料電池の単電池が作製
できる。しかしながら、このスラリーコーティング法の
場合、電極材をスラリー状にして電解質に塗りつけるの
で電極を厚く作製することができない。このため、セパ
レータを介して単電池を積層したとき、集電時に薄い電
極を電気が流れることとなり、電極の電気抵抗に因る電
圧低下を大幅に引起し、ひいては電池の効率を異常に低
下させることになる。
On the other hand, in the case of a flat plate type solid electrolyte fuel cell,
It is conceivable to form an electrode by, for example, slurry coating or the like on a solid electrolyte obtained by densely sintering zirconia. By using such a method, a high-performance single cell of a solid oxide fuel cell can be produced without deteriorating the electrode characteristics. However, in the case of this slurry coating method, since the electrode material is made into a slurry and applied to the electrolyte, the electrode cannot be made thick. For this reason, when the unit cells are stacked via the separator, electricity flows through the thin electrodes during current collection, causing a large voltage drop due to the electrical resistance of the electrodes, and thus abnormally reducing the efficiency of the battery. It will be.

【0004】そこで、テープキャスティング法などの湿
式法を用いて電解質材と各電極材とで成形した単電池を
一回の焼結工程で作製して厚い電極の単電池を作製する
共焼結法、言い換えれば、燃料極/電解質/空気極の3
層から成る単電池を一度に焼結させてしまう同時焼結法
が考案された。この共焼結法を用いれば、膜厚の厚い電
極をもつ高性能固体電解質燃料電池を低コストで作製す
ることが可能と考えられる。
Therefore, a co-sintering method for producing a thick electrode single cell by producing a single cell formed of an electrolyte material and each electrode material by a single sintering process using a wet method such as a tape casting method. , In other words, fuel electrode / electrolyte / air electrode 3
A simultaneous sintering method was devised in which a unit cell composed of layers was sintered at one time. If this co-sintering method is used, it is considered possible to manufacture a high-performance solid electrolyte fuel cell having thick electrodes at low cost.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、共焼結
法により単電池を作製する場合、焼結温度が高い(1
400℃を超える高温)と空気極の触媒活性が喪失して
しまうこと、電解質と他の電極材との各温度での収縮
率を同じにする必要がある、熱膨脹係数を一致させな
ければならない等の問題がある。
However, when a unit cell is manufactured by the co-sintering method, the sintering temperature is high (1
(High temperature over 400 ° C) and loss of catalytic activity of the air electrode, it is necessary to make the contraction rate of the electrolyte and other electrode materials the same at each temperature, and the thermal expansion coefficients must match. There is a problem.

【0006】そこで、焼結助剤としてアルミナを用いて
ジルコニアの焼結温度を下げたり、より細かいジルコニ
ア粒子(例えば一次粒子径が200〜500オングスト
ロームの粒子)を合成すること(細かい粒子であればち
密焼結温度も低くなる)により、それらの欠点を補うこ
とがなされた。このような条件の中で、現在、最もち密
焼結温度が低いのは、例えば株式会社東ソー製の安定化
ジルコニア(商品名:TZ−8Y:一次平均粒子径25
0オングストローム)であり、そのち密焼結条件は13
50〜1400℃で、5時間保持することである。しか
しながら、この粉体は粒子が細か過ぎて湿式法により電
解質を作製した場合には未焼成のグリーンシートが反っ
たり、均一に成形しづらかったりする。このことは、固
体電解質燃料電池の製品の良品率の低下、ひいては固体
電解質燃料電池の実用化に最も大切な項目となる信頼性
を欠くことになり、実用化を阻害する。
Therefore, alumina is used as a sintering aid to lower the sintering temperature of zirconia or to synthesize finer zirconia particles (for example, particles having a primary particle diameter of 200 to 500 angstroms) The dense sintering temperature is also lowered) to compensate for these drawbacks. Among these conditions, the one having the lowest lowest dense sintering temperature is, for example, stabilized zirconia (trade name: TZ-8Y: primary average particle diameter 25, manufactured by Tosoh Corporation).
0 angstrom) and then the dense sintering condition is 13
It is to hold at 50 to 1400 ° C. for 5 hours. However, the particles of this powder are too fine, and when an electrolyte is produced by a wet method, an unsintered green sheet is warped or it is difficult to uniformly form the green sheet. This impairs the yield rate of the solid oxide fuel cell product, and eventually lacks reliability, which is the most important item for putting the solid oxide fuel cell into practical use, and impedes commercialization.

【0007】そこで、本発明は、比較的低温例えば14
00℃以下で焼結し、かつ反ったりしないで平坦な板状
に成形できる安定化ジルコニア−アルミナ粉体を提供す
ることを目的とする。更に具体的には、本発明はテープ
キャスティング法等の湿式法を用いて電池構成材料を成
形し、それらを共焼結法により作製可能な固体電解質燃
料電池の電解質に好適な安定化ジルコニア−アルミナ粉
体を提供することを目的とする。
Therefore, the present invention has a relatively low temperature of, for example, 14
An object of the present invention is to provide a stabilized zirconia-alumina powder which can be sintered at 00 ° C or lower and can be molded into a flat plate without warping. More specifically, the present invention is a stabilized zirconia-alumina suitable for an electrolyte of a solid electrolyte fuel cell which can be formed by a co-sintering method by molding a cell constituent material using a wet method such as a tape casting method. The purpose is to provide a powder.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
め、本発明のジルコニア−アルミナ粉体は、8〜10モ
ル%のイットリアで結晶構造を安定化させたジルコニア
に、5重量%以下の高純度アルミナを分散させ、かつ前
記安定化ジルコニア粉体の前記アルミナ粉体との粒径比
y[y=(ジルコニア粒径/アルミナ粒径)]がy>
0.63でかつ前記ジルコニアの大きさが0.3μm以
下、アルミナ粒子の大きさが0.7μm以下の粉体とし
ている。
In order to achieve the above object, the zirconia-alumina powder of the present invention has a high zirconia content of 8 to 10 mol% of yttria whose crystal structure is stabilized at 5% by weight or less. Purity alumina is dispersed, and the particle size ratio y [y = (zirconia particle size / alumina particle size)] of the stabilized zirconia powder to the alumina powder is y>.
The powder is 0.63 and the size of the zirconia is 0.3 μm or less and the size of the alumina particles is 0.7 μm or less.

【0009】本発明の粉体は、イットリア安定化ジルコ
ニアとアルミナの各々の粉体を粉混ぜ法やあるいは共沈
法、燃焼合成法等により得られる。
The powder of the present invention can be obtained by a method of mixing powders of yttria-stabilized zirconia and alumina, a coprecipitation method, a combustion synthesis method, or the like.

【0010】ここで、イットリアが8モル%よりも少な
い場合には、導電率(電気抵抗の逆数)が低く、立
方晶という結晶構造をもつジルコニア中に正方晶と単斜
晶も2つの異なる結晶構造をもつものが含まれてきて、
体積変化を起こし、ジルコニアで作製した電解質板が破
壊されるという問題を招く。例えば、立方晶ジルコニア
では1モルあたり、1cm3 であったものが、正方晶、
単斜晶のジルコニアが1モルあたり1.5cm3 に変化
することにより、自分自身が崩壊してしまう(本文に示
した数値は説明のしやすい適当な値を用いた)。また、
イットリアが10モル%よりも多い場合には、導電率
が低く、イットリアの結晶構造が支配的になり、ジル
コニアの構造(ホタル石型構造)ではなくなってしま
い、ついにはジルコニアの優れた特性が喪失してしま
う。
When yttria is less than 8 mol%, the conductivity (reciprocal of electric resistance) is low, and two different crystals, tetragonal and monoclinic, are contained in zirconia having a cubic crystal structure. The one with the structure is included,
This causes a volume change, which causes a problem that the electrolyte plate made of zirconia is destroyed. For example, in cubic zirconia, the amount of 1 cm 3 per mole is changed to tetragonal,
When the monoclinic zirconia changes to 1.5 cm 3 per mol, it collapses itself (the numerical values shown in the text are appropriate values that are easy to explain). Also,
When yttria is more than 10 mol%, the conductivity is low, the crystal structure of yttria becomes dominant, and the structure of zirconia (fluorite type structure) is lost, and finally the excellent properties of zirconia are lost. Resulting in.

【0011】また、アルミナの添加量xが0<x≦5重
量%の範囲内のイットリア安定化ジルコニアの導電率
は、図4に示すように、アルミナを添加しない場合の導
電率とほとんど変らないか、あるいは添加量によっては
特異的に向上する。本導電率は固体電解質燃料電池の作
動温度である1000℃での値である。しかしながら、
アルミナは絶縁体であるため、多量の添加は導電率の低
下を引き起こす。この場合、5重量%よりも多い添加量
のジルコニア−アルミナ複合電解質は導電率が低下して
いる。これは、5重量%よりも多いアルミナを加える
と、ジルコニア−アルミナ複合電解質の導電率を低く
し、実用に適さないものにしてしまうということであ
る。
Further, as shown in FIG. 4, the conductivity of yttria-stabilized zirconia in which the amount x of alumina added is within the range of 0 <x ≦ 5% by weight is almost the same as the conductivity when alumina is not added. Or, it is specifically improved depending on the amount added. This conductivity is a value at 1000 ° C. which is the operating temperature of the solid oxide fuel cell. However,
Since alumina is an insulator, addition of a large amount causes a decrease in conductivity. In this case, the conductivity of the zirconia-alumina composite electrolyte added in an amount of more than 5% by weight is lowered. This means that adding more than 5% by weight of alumina lowers the conductivity of the zirconia-alumina composite electrolyte, making it unsuitable for practical use.

【0012】反面、アルミナを添加しない場合の導電率
が本来最も高いはずであるが、本測定結果によるとアル
ミナを添加しないとき(0重量%)は、アルミナを1〜
5重量%加えたときよりも導電率が低いことがわかっ
た。これは、詳しいことは不明ではあるが、アルミナ添
加により、アルミナがジルコニアに固溶したり、融体を
形成したりして、導電率を測定した焼結体の相対密度が
向上したこと等が原因であると考えられる。しかしなが
ら、このジルコニア−アルミナ複合電解質の焼結性は、
図1に示すように、アルミナの添加量(x:重量パーセ
ント)が、0<x≦5の領域でち密焼結温度の低下に役
立ち、何も加えていない純粋なジルコニアのち密焼結温
度と比べて200℃も低くすることができる。特に1重
量%添加の場合には、1400℃程度・保持時間なしで
ち密(94%以上)に焼結でき、かつ導電率も特異的に
向上した。また、アルミナは基本的には、電解質である
ジルコニア、空気極であるランタンマンガナイト、燃料
極であるニッケルジルコニアサーメットと反応せず、固
体電解質燃料電池の性能を低くすることがない。
On the other hand, the conductivity should originally be the highest when alumina is not added, but according to the measurement results, when alumina is not added (0% by weight), 1 to 1% of alumina is added.
It was found that the conductivity was lower than when 5% by weight was added. Although this is not clear in detail, by adding alumina, alumina may form a solid solution in zirconia or form a melt, and the relative density of the sintered body whose conductivity is measured is improved. Probably the cause. However, the sinterability of this zirconia-alumina composite electrolyte is
As shown in FIG. 1, the added amount of alumina (x: weight percent) helps to reduce the dense sintering temperature in the region of 0 <x ≦ 5, and the pure sintering amount of pure zirconia to which nothing is added is In comparison, the temperature can be lowered by 200 ° C. In particular, when 1 wt% was added, it was possible to sinter densely (94% or more) without holding time at about 1400 ° C., and the conductivity was also improved specifically. Alumina basically does not react with zirconia that is an electrolyte, lanthanum manganite that is an air electrode, and nickel zirconia cermet that is a fuel electrode, and does not deteriorate the performance of the solid electrolyte fuel cell.

【0013】次に、安定化ジルコニア粉体のアルミナ粉
体との粒径比y[y=(ジルコニア粒径/アルミナ粒
径)]が、y>0.63でかつ前記ジルコニアの大きさ
が0.3μm以下、アルミナ粒子の大きさが0.7μm
以下の粉体であることを条件にしている。これはジルコ
ニアの粒子がこれ以上の粒径の材料であると、いくらア
ルミナを加えたとしても、ち密なジルコニア焼結体にな
る温度が1400℃以下にならないためである。また、
アルミナの粒子の大きさが、粒径0.7μmよりも大き
くなると、前記アルミナの添加量(x:重量パーセン
ト)は、0<x≦5の領域以上のアルミナ添加量が必要
になり、導電率の低下を招く、不良品率の向上を招く
等の問題が現れる。これは、大きいアルミナ粒子にする
と、体積当たりのアルミナの表面積が小さくなってしま
い、ジルコニア粒子とも接触面積も減少し、アルミナ添
加効果が小さくなってしまうからと思われる。
Next, the particle size ratio y [y = (zirconia particle size / alumina particle size)] of the stabilized zirconia powder to the alumina powder is y> 0.63 and the size of the zirconia is 0. 0.3 μm or less, the size of alumina particles is 0.7 μm
The condition is that the powder is the following. This is because if the particles of zirconia have a particle size larger than this, the temperature at which a dense zirconia sintered body is formed does not fall below 1400 ° C., no matter how much alumina is added. Also,
When the particle size of alumina becomes larger than 0.7 μm, the amount of alumina added (x: weight percent) requires an amount of alumina added in the range of 0 <x ≦ 5 or more. Problems such as a decrease in the product quality and an increase in the defective product rate appear. This is considered to be because when the alumina particles are large, the surface area of the alumina per volume becomes small, the contact area with the zirconia particles also decreases, and the effect of adding alumina becomes small.

【0014】また、本実験に用いたジルコニア−アルミ
ナ複合電解質の作製法は、分散剤等を加えず、蒸留水あ
るいは純水を用いて混合した後、急激に乾燥させること
によってジルコニア粒子とアルミナ粒子とを均一に混合
させた。通常の乳ばちで混合するような単純な方法で
は、やはり不良品率が高くなることもわかった。
The method for producing the zirconia-alumina composite electrolyte used in this experiment is as follows: Distilled water or pure water is mixed without adding a dispersant and the like, followed by rapid drying to obtain zirconia particles and alumina particles. And were mixed uniformly. It has also been found that a simple method such as mixing with a regular bee increases the defective rate.

【0015】[0015]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0016】本発明のジルコニア−アルミナ粉体にあっ
ては、8〜10モル%イットリアで結晶構造を安定化さ
せたジルコニアと、高純度アルミナを原料とする。しか
も、これらジルコニア粉体と高純度アルミナ粉体とは、
その粒径比y(ジルコニア粒径/アルミナ粒径)がy>
0.63でかつ前記ジルコニア及びアルミナ粉体の大き
さが0.7μm以下の粉体を準備する。そして、ジルコ
ニア粉体へのアルミナの添加量(x:重量%)は、0<
x≦5の領域とした。例えば、本粉体は、分散剤等を用
いず純水を用いてジルコニア−アルミナをボールミルを
用いて24時間混合した後、スプレードライヤを用いて
急激に乾燥させることによって均一なジルコニア−アル
ミナ複合電解質粉体を得た。
In the zirconia-alumina powder of the present invention, zirconia whose crystal structure is stabilized with 8 to 10 mol% yttria and high-purity alumina are used as raw materials. Moreover, these zirconia powder and high-purity alumina powder are
The particle size ratio y (zirconia particle size / alumina particle size) is y>
A powder having a size of 0.63 and a size of the zirconia and alumina powder of 0.7 μm or less is prepared. The amount of alumina added to the zirconia powder (x:% by weight) is 0 <
The region was set to x ≦ 5. For example, the present powder is a uniform zirconia-alumina composite electrolyte prepared by mixing zirconia-alumina with a ball mill for 24 hours using pure water without using a dispersant or the like, and then rapidly drying it with a spray dryer. A powder was obtained.

【0017】次にアルミナの添加量及び粒径が焼結性並
びに導電性に与える影響を実施例を挙げて説明する。
Next, the influence of the added amount and particle size of alumina on the sinterability and conductivity will be described with reference to examples.

【0018】尚、実験に用いたアルミナを添加する前の
イットリア安定化ジルコニアは、ZrO2 が85.62
重量%、Y2 3 が14.2重量%であり、これはほと
んど8モル%イットリア−84%安定化ジルコニアに相
当する。しかしながら、現在、どのような方法を用いて
も不純物を0にするということはできないため、本実験
に用いた試料も不純物も、Al2 3 は0.03重量
%、NaO2 は0.04重量%、MgOは0.01重量
%、CaOは0.08重量%、Fe2 3 は0.01重
量%、SiO2 は0.01重量%と非常に少ないが存在
している。この中でも、導電率が影響を受けるのは、F
2 3 とSiO2 の2つであるが、最も少なく、ほと
んど導電率に影響ないような値であることがわかる。ま
た、このジルコニアの平均粒径は0.25μmである。
The yttria-stabilized zirconia used in the experiment before addition of alumina had a ZrO 2 content of 85.62.
Wt%, a Y 2 O 3 is 14.2 wt%, which corresponds to nearly 8 mol% yttria -84% stabilized zirconia. However, at present, it is not possible to reduce the impurities to 0 by any method. Therefore, both the samples and impurities used in this experiment were 0.03% by weight for Al 2 O 3 and 0.04% for NaO 2. %, MgO is 0.01% by weight, CaO is 0.08% by weight, Fe 2 O 3 is 0.01% by weight, and SiO 2 is 0.01% by weight, which are very small. Among them, the conductivity is affected by F
There are two values, e 2 O 3 and SiO 2 , but it can be seen that it is the smallest value and has a value that hardly affects the conductivity. The average particle size of this zirconia is 0.25 μm.

【0019】実施例1:ZrO2 84.80重量%、Y
2 3 14.0重量%、Al2 3 1.01重量%、N
aO2 0.03重量%、MgO0.01重量%、CaO
0.07重量%、Fe2 3 0.01重量%、SiO2
<0.01重量%の組成から成る。この組成はイットリ
ア安定化ジルコニアに1重量%アルミナを添加したもの
であり、東レ株式会社製8モル%イットリア安定化ジル
コニア(YSZ)と大明化学株式会社製アルミナとを用
いて達成された。尚、8モル%イットリア安定化ジルコ
ニアには電気抵抗を極端に高くするためSiO2 やFe
2 3 が非情に少なく不純物もほとんどない。また、該
ジルコニアの平均粒径は0.25μm、アルミナの平均
粒径は0.23μmである。この組成の粉体の焼結性は
図1及び図2に1%Al2 3 添加物として表わされて
いる。
Example 1: 84.80% by weight of ZrO 2 , Y
2 O 3 14.0 wt%, Al 2 O 3 1.01 wt%, N
aO 2 0.03% by weight, MgO 0.01% by weight, CaO
0.07 wt%, Fe 2 O 3 0.01 wt%, SiO 2
<0.01 wt% composition. This composition was obtained by adding 1% by weight alumina to yttria-stabilized zirconia, and was achieved by using 8 mol% yttria-stabilized zirconia (YSZ) manufactured by Toray Industries, Inc. and alumina manufactured by Daimei Chemical Co., Ltd. It should be noted that 8 mol% yttria-stabilized zirconia has SiO 2 and Fe in order to make the electric resistance extremely high.
2 O 3 is ruthless and there are almost no impurities. The zirconia has an average particle size of 0.25 μm, and the alumina has an average particle size of 0.23 μm. The sinterability of a powder of this composition is represented in FIGS. 1 and 2 as a 1% Al 2 O 3 additive.

【0020】実施例2:ZrO2 83.08重量%、Y
2 3 13.8重量%、Al2 3 3.01重量%、N
aO2 0.04重量%、MgO0.01重量%、CaO
0.05重量%、Fe2 3 0.01重量%、SiO2
<0.01重量%の組成から成る。この組成はイットリ
ア安定化ジルコニアに3重量%アルミナを添加したもの
であり、東レ株式会社製8モル%イットリア安定化ジル
コニア(YSZ)と大明化学株式会社製アルミナとを用
いて達成された。この場合の、ジルコニアの平均粒径は
0.25μm、アルミナの平均粒径は0.23μmであ
る。この組成の粉体の焼結性は、図2に3%Al2 3
添加物として表わされている。
Example 2: 83.08% by weight of ZrO 2 , Y
2 O 3 13.8% by weight, Al 2 O 3 3.01% by weight, N
aO 2 0.04% by weight, MgO 0.01% by weight, CaO
0.05% by weight, Fe 2 O 3 0.01% by weight, SiO 2
<0.01 wt% composition. This composition was obtained by adding 3 wt% alumina to yttria-stabilized zirconia, and was achieved by using 8 mol% yttria-stabilized zirconia (YSZ) manufactured by Toray Industries, Inc. and alumina manufactured by Daimei Chemical Co., Ltd. In this case, zirconia has an average particle size of 0.25 μm and alumina has an average particle size of 0.23 μm. The sinterability of the powder of this composition is shown in Fig. 2 as 3% Al 2 O 3
Represented as an additive.

【0021】実施例3:ZrO2 81.29重量%、Y
2 3 13.4重量%、Al2 3 5.03重量%、N
aO2 0.03重量%、MgO0.01重量%、CaO
0.05重量%、Fe2 3 0.01重量%、SiO2
<0.01重量%の組成から成る。この組成はイットリ
ア安定化ジルコニアに5重量%アルミナを添加したもの
であり、東レ株式会社製8モル%イットリア安定化ジル
コニア(YSZ)と大明化学株式会社製アルミナとを用
いて達成された。この場合の、ジルコニアの平均粒径は
0.25μm、アルミナの平均粒径は0.23μmであ
る。この組成の粉体の焼結性は、図2に5%Al2 3
添加物として表わされている。
Example 3: 81.29% by weight of ZrO 2 , Y
2 O 3 13.4% by weight, Al 2 O 3 5.03% by weight, N
aO 2 0.03% by weight, MgO 0.01% by weight, CaO
0.05% by weight, Fe 2 O 3 0.01% by weight, SiO 2
<0.01 wt% composition. This composition was obtained by adding 5 wt% alumina to yttria-stabilized zirconia, and was achieved by using 8 mol% yttria-stabilized zirconia (YSZ) manufactured by Toray Industries, Inc. and alumina manufactured by Daimei Chemical Co., Ltd. In this case, zirconia has an average particle size of 0.25 μm and alumina has an average particle size of 0.23 μm. The sinterability of the powder of this composition is shown in Fig. 2 as 5% Al 2 O 3
Represented as an additive.

【0022】比較例1:ZrO2 76.71重量%、Y
2 3 13.1重量%、Al2 3 10.06重量%、
NaO2 0.03重量%、MgO0.01重量%、Ca
O0.07重量%、Fe2 3 0.01重量%、SiO
2 <0.01重量%の組成から成る。この組成はイット
リア安定化ジルコニアに20重量%アルミナを添加した
ものであり、東レ株式会社製8モル%イットリア安定化
ジルコニア(YSZ)と大明化学株式会社製アルミナと
を用いて達成された。尚、アルミナの平均粒径は0.2
3μmである。この組成の粉体の焼結性は、図1に10
%Al2 3 添加物として表わされている。
Comparative Example 1: ZrO 2 76.71% by weight, Y
2 O 3 13.1% by weight, Al 2 O 3 10.06% by weight,
0.03 wt% NaO 2 , 0.01 wt% MgO, Ca
O0.07% by weight, Fe 2 O 3 0.01% by weight, SiO
2 <0.01 wt.% Composition. This composition was obtained by adding 20 wt% alumina to yttria-stabilized zirconia, and was achieved by using 8 mol% yttria-stabilized zirconia (YSZ) manufactured by Toray Industries, Inc. and alumina manufactured by Daimei Chemical Co., Ltd. The average particle size of alumina is 0.2.
It is 3 μm. The sinterability of the powder of this composition is 10 in FIG.
% Al 2 O 3 additive.

【0023】比較例2:ZrO2 68.07重量%、Y
2 3 11.8重量%、Al2 3 20.23重量%、
NaO2 0.03重量%、MgO0.01重量%、Ca
O0.05重量%、Fe2 3 0.01重量%、SiO
2 <0.01重量%の組成から成る。この組成はイット
リア安定化ジルコニアに20重量%アルミナを添加した
ものであり、東レ株式会社製8モル%イットリア安定化
ジルコニア(YSZ)と大明化学株式会社製アルミナと
を用いて達成された。尚、アルミナの平均粒径は0.2
3μmである。この組成の粉体の焼結性は、図1に20
%Al2 3 添加物として表わされている。
Comparative Example 2: 68.07% by weight of ZrO 2 , Y
2 O 3 11.8% by weight, Al 2 O 3 20.23% by weight,
0.03 wt% NaO 2 , 0.01 wt% MgO, Ca
0.05 wt% O, 0.01 wt% Fe 2 O 3 , SiO
2 <0.01 wt.% Composition. This composition was obtained by adding 20% by weight alumina to yttria-stabilized zirconia, and was achieved by using 8 mol% yttria-stabilized zirconia (YSZ) manufactured by Toray Industries, Inc. and alumina manufactured by Daimei Chemical Co., Ltd. The average particle size of alumina is 0.2.
It is 3 μm. The sinterability of the powder having this composition is shown in FIG.
% Al 2 O 3 additive.

【0024】比較例3:ZrO2 59.41重量%、Y
2 3 9.9重量%、Al2 3 30.57重量%、N
aO2 0.04重量%、MgO0.01重量%、CaO
0.05重量%、Fe2 3 0.01重量%、SiO2
<0.01重量%の組成から成る。この組成はイットリ
ア安定化ジルコニアに30重量%アルミナを添加したも
のであり、東レ株式会社製8モル%イットリア安定化ジ
ルコニア(YSZ)と大明化学株式会社製アルミナとを
用いて達成された。尚、アルミナの平均粒径は0.23
μmである。この組成の粉体の焼結性は、図1に30%
Al2 3 添加物として表わされている。
Comparative Example 3: 59.41% by weight of ZrO 2 , Y
2 O 3 9.9% by weight, Al 2 O 3 30.57% by weight, N
aO 2 0.04% by weight, MgO 0.01% by weight, CaO
0.05% by weight, Fe 2 O 3 0.01% by weight, SiO 2
<0.01 wt% composition. This composition was obtained by adding 30% by weight alumina to yttria-stabilized zirconia, and was achieved using 8 mol% yttria-stabilized zirconia (YSZ) manufactured by Toray Industries, Inc. and alumina manufactured by Daimei Chemical Co., Ltd. The average particle size of alumina is 0.23.
μm. The sinterability of powder of this composition is 30% in Fig. 1.
It is represented as an Al 2 O 3 additive.

【0025】比較例4:ZrO2 68.07重量%、Y
2 3 11.8重量%、Al2 3 20.02重量%、
NaO2 0.03重量%、MgO0.01重量%、Ca
O0.05重量%、Fe2 3 0.01重量%、SiO
2 <0.01重量%の組成から成る。この組成はイット
リア安定化ジルコニアに20重量%アルミナを添加した
ものであり、東レ株式会社製8モル%イットリア安定化
ジルコニア(YSZ)と住友化学株式会社製アルミナと
を用いて達成された。尚、アルミナの平均粒径は0.3
9μmである。この組成の粉体の焼結性は特に比較例2
のものと変わらなかったので図示しなかった。アルミナ
の平均粒径を0.23μmから0.39μmに大きくし
ても焼結性は特に変化しなかったのである。
Comparative Example 4: 68.07% by weight of ZrO 2 , Y
2 O 3 11.8% by weight, Al 2 O 3 20.02% by weight,
0.03 wt% NaO 2 , 0.01 wt% MgO, Ca
0.05 wt% O, 0.01 wt% Fe 2 O 3 , SiO
2 <0.01 wt.% Composition. This composition was obtained by adding 20% by weight alumina to yttria-stabilized zirconia, and was achieved by using 8 mol% yttria-stabilized zirconia (YSZ) manufactured by Toray Industries, Inc. and alumina manufactured by Sumitomo Chemical Co., Ltd. The average particle size of alumina is 0.3.
It is 9 μm. The sinterability of the powder having this composition is particularly good in Comparative Example 2
I didn't show it because it was the same as that of No. Even if the average particle size of alumina was increased from 0.23 μm to 0.39 μm, the sinterability did not change.

【0026】比較例5:ZrO2 67.98重量%、Y
2 3 11.6重量%、Al2 3 20.28重量%、
NaO2 0.04重量%、MgO0.01重量%、Ca
O0.07重量%、Fe2 3 0.01重量%、SiO
2 <0.01重量%の組成から成る。この組成はイット
リア安定化ジルコニアに20重量%アルミナを添加した
ものであり、東レ株式会社製8モル%イットリア安定化
ジルコニア(YSZ)と住友化学株式会社製アルミナと
を用いて達成された。尚、アルミナの平均粒径は0.6
8μmである。この組成の粉体の焼結性も特に比較例2
のものと変わらなかったので図示しなかった。即ち、ア
ルミナの平均粒径を0.23μmから0.68μmに大
きくしても焼結性は特に変化しなかったのである。した
がって、アルミナの平均粒径を大きくしてテープキャス
ティング法などの湿式法で厚く形成してから焼成しても
焼結性に影響を与えない。しかも、反りがなく平坦な板
に成形できる。
Comparative Example 5: 67.98% by weight of ZrO 2 , Y
2 O 3 11.6% by weight, Al 2 O 3 20.28% by weight,
0.04 wt% NaO 2 , 0.01 wt% MgO, Ca
O0.07% by weight, Fe 2 O 3 0.01% by weight, SiO
2 <0.01 wt.% Composition. This composition was obtained by adding 20% by weight alumina to yttria-stabilized zirconia, and was achieved by using 8 mol% yttria-stabilized zirconia (YSZ) manufactured by Toray Industries, Inc. and alumina manufactured by Sumitomo Chemical Co., Ltd. The average particle size of alumina is 0.6.
8 μm. The sinterability of the powder having this composition is also particularly Comparative Example 2.
I didn't show it because it was the same as that of No. That is, even if the average particle size of alumina was increased from 0.23 μm to 0.68 μm, the sinterability did not change particularly. Therefore, the sinterability is not affected even if the average particle size of alumina is increased to form it thick by a wet method such as a tape casting method and then fired. Moreover, it can be formed into a flat plate without warpage.

【0027】これら実施例及び比較例の粉体は図5に示
す方法で評価した。まず、できるだけ均一にジルコニア
−アルミナ粉体が作製できるように、これら粉体に蒸留
水程度の純水を加えてボールミルを用い24時間湿式混
合し、スプレードライヤで急激に乾燥させ、評価粉体と
した。その後、各実施例の粉体を92MPaの圧力でプ
レス成型した。次に、1000〜1600℃の温度領域
で0,5,10時間焼成し評価試料を得た。その後、試
料の大きさを計り、相対密度を求めた。
The powders of these examples and comparative examples were evaluated by the method shown in FIG. First, in order to produce zirconia-alumina powder as uniformly as possible, pure water such as distilled water was added to these powders, wet-mixed for 24 hours using a ball mill, and rapidly dried with a spray dryer to obtain evaluation powders. did. Then, the powder of each example was press-molded at a pressure of 92 MPa. Next, an evaluation sample was obtained by firing in the temperature range of 1000 to 1600 ° C. for 0.5, 10 hours. Then, the size of the sample was measured to determine the relative density.

【0028】また、各評価試料のアルミナ添加量に対す
る導電率の変化は図6に示すような交流インピーダンス
法を用いた測定装置で測定した。この装置は、ポテンシ
ョスタット1と周波数レスポンスアナライザ2から電極
4を介して試料5に交流の電流を流し、その交流電流の
変化をデジタルオシロスコープ3で測定し、導電率を求
めるようにしている。電極4は白金ペーストをコーティ
ングし、1000℃、1時間で焼き付けた。この装置で
測定した値をCole−Coleプロットにより、試料
のインピーダンスを解析し電気抵抗を求めた。その結果
を図4に示す。
The change in conductivity of each evaluation sample with respect to the amount of alumina added was measured by a measuring device using an AC impedance method as shown in FIG. In this device, an alternating current is made to flow from the potentiostat 1 and the frequency response analyzer 2 to the sample 5 via the electrode 4, and the change of the alternating current is measured by the digital oscilloscope 3 to obtain the conductivity. The electrode 4 was coated with platinum paste and baked at 1000 ° C. for 1 hour. The value measured by this device was analyzed by Cole-Cole plot to analyze the impedance of the sample and obtain the electric resistance. The result is shown in FIG.

【0029】図2にアルミナ添加量0,1,3,5重量
%のそれぞれの領域における、1100℃〜1600℃
の温度で保持時間なしの相対密度を示す。アルミナ添加
量が0重量%の場合に比べて1〜5重量%の領域ではち
密焼結温度が150℃以上低下していることが分かる。
本結果からも一定量のアルミナの添加がジルコニアのち
密焼結温度を低くしていることがわかる。
In FIG. 2, 1100 ° C. to 1600 ° C. in the respective regions where the amount of alumina added is 0, 1, 3, 5% by weight.
Shows relative density without holding time at the temperature of. It can be seen that the dense sintering temperature is lowered by 150 ° C. or more in the region of 1 to 5 wt% as compared with the case where the added amount of alumina is 0 wt%.
This result also shows that addition of a fixed amount of alumina lowers the dense sintering temperature of zirconia.

【0030】図1にアルミナを0,1,5,10,2
0,30重量%添加した場合の1100℃〜1600℃
の各温度における保持時間なしの相対密度をそれぞれ示
す。これから、アルミナを1〜5重量%添加した場合に
比べて10重量%以上の領域ではアルミナを添加しない
とき(8YZS)よりもち密焼結温度が逆に高くなって
いることがわかる。即ち、アルミナの多量の添加は必ず
しもち密焼結温度の低下に繋がらず、ある特定の範囲
(0<x≦5重量%:xはアルミナ添加量)の場合にの
みち密焼結温度の低下に寄与することが理解できる。
In FIG. 1, 0, 1, 5, 10, 2 alumina was added.
1100 ° C to 1600 ° C when 0,30% by weight is added
The respective relative densities of each of the above-mentioned samples without the holding time are shown. From this, it can be seen that the dense sintering temperature is higher in the region of 10% by weight or more than in the case of not adding alumina (8YZS), as compared with the case of adding 1 to 5% by weight of alumina. That is, addition of a large amount of alumina does not necessarily lead to a decrease in the dense sintering temperature, but only in a specific range (0 <x ≦ 5% by weight: x is the amount of alumina added), a decrease in the dense sintering temperature occurs. Understand that you can contribute.

【0031】図3に各焼成温度と保持時間の関係を示
す。アルミナを添加しないジルコニアでは、1400℃
で焼成する場合、10時間保持でようやくち密に焼結し
た。反面、アルミナを20重量%添加した場合、140
0℃で焼成すると10時間保持しても94%以上のち密
な焼結体にならず、1500℃で10時間の保持時間を
与えてやっとち密に焼結した。
FIG. 3 shows the relationship between each firing temperature and the holding time. 1400 ° C for zirconia without alumina
In the case of firing at 10, it was finally densely sintered by holding for 10 hours. On the other hand, when adding 20% by weight of alumina,
When fired at 0 ° C., a dense sintered body of 94% or more was not formed even if held for 10 hours, and finally a dense sintering was performed at 1500 ° C. for a holding time of 10 hours.

【0032】図4にアルミナの添加量とそのアルミナを
添加したジルコニアの導電率の関係を示す。アルミナを
5重量%以下添加したジルコニア−アルミナ複合電解質
の導電率は添加しないものと比べてほとんど変わらない
か逆に向上しているが、5重量%よりも多くアルミナを
添加すると添加しない場合に比べて電気抵抗も高くなっ
ていることがわかる。このことから、アルミナの添加
は、5重量%以下であれば導電率について問題を与えな
いばかりか、却ってこれを改善する効果があったことが
理解できる。
FIG. 4 shows the relationship between the amount of alumina added and the conductivity of zirconia to which the alumina was added. The conductivity of the zirconia-alumina composite electrolyte containing less than 5% by weight of alumina is almost the same as that of the one without addition, or on the contrary improved, but if more than 5% by weight of alumina is added, it will be compared to the case without addition. It can be seen that the electric resistance is also high. From this, it can be understood that the addition of alumina did not cause a problem with respect to the electric conductivity if it was 5% by weight or less, and on the contrary had the effect of improving it.

【0033】尚、上述の実施例は本発明の好適な実施の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。例えば、本実施では粉体作製において、純水による
湿式混合法により行ったが、共沈法、燃焼合成法によっ
ても作製可能である。また、粉体作製時における混合時
間や混合法、混合装置、乾燥法にも特に限定を受けるも
のではない。
The above embodiment is one example of the preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, the powder was produced by the wet mixing method using pure water, but it can be produced by the coprecipitation method or the combustion synthesis method. Further, the mixing time, the mixing method, the mixing apparatus, and the drying method at the time of producing the powder are not particularly limited.

【0034】[0034]

【発明の効果】以上の説明より明らかなように、本発明
の安定化ジルコニア−アルミナ粉体はジルコニア粒子や
アルミナ粒子を従来よりも比較的大径にしても1400
℃前後の低温で焼結させることができる。しかも各粒子
の粒径を従来品よりも大きくしても焼結性に影響を与え
ないので、テープキャスティング法などの湿式法を用い
ても、焼成過程で反ったり割れたりすることがない。し
たがって、本発明の粉体をジルコニア−アルミナ複合電
解質用原料として用いれば、共焼結法により厚い膜厚を
もった電極の固体電解質燃料電池を作製することがで
き、高性能なものをつくることができる。
As is apparent from the above description, the stabilized zirconia-alumina powder of the present invention has a zirconia particle or alumina particle size of 1400 even if the diameter thereof is relatively larger than that of the conventional one.
It can be sintered at a low temperature around ℃. Moreover, even if the particle size of each particle is made larger than that of the conventional product, the sinterability is not affected. Therefore, even if a wet method such as a tape casting method is used, the particle does not warp or crack during the firing process. Therefore, if the powder of the present invention is used as a raw material for a zirconia-alumina composite electrolyte, a solid electrolyte fuel cell having an electrode having a thick film thickness can be produced by a co-sintering method, and a high-performance one can be produced. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の粉体と比較品との焼成温度と相対密度
との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the firing temperature and the relative density of a powder of the present invention and a comparative product.

【図2】本発明の粉体とアルミナ無添加のイットリア安
定化ジルコニアの焼成温度と相対密度との関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between the firing temperature and the relative density of the powder of the present invention and yttria-stabilized zirconia without addition of alumina.

【図3】保持時間と相対密度との関係を比較例について
示すグラフである。
FIG. 3 is a graph showing a relationship between holding time and relative density for a comparative example.

【図4】イットリア安定化ジルコニアへのアルミナの添
加量が導電率へ与える影響を示すグラフである。
FIG. 4 is a graph showing the effect of the amount of alumina added to yttria-stabilized zirconia on the conductivity.

【図5】ジルコニア−アルミナ複合材料の製法及びその
評価試料の作製法を示す工程図である。
FIG. 5 is a process diagram showing a method for producing a zirconia-alumina composite material and a method for producing an evaluation sample thereof.

【図6】導電率測定装置の概略図である。FIG. 6 is a schematic view of a conductivity measuring device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 8〜10モル%のイットリアで結晶構造
を安定化させたジルコニアに、5重量%以下の高純度ア
ルミナを分散させ、かつ前記安定化ジルコニア粉体の前
記アルミナ粉体との粒径比y[y=(ジルコニア粒径/
アルミナ粒径)]がy>0.63で、かつ前記安定化ジ
ルコニア粒子の大きさが0.3μm以下、アルミナ粒子
が0.7μm以下であることを特徴とする固体電解質燃
料電池用安定化ジルコニア−アルミナ粉体。
1. Grains of the stabilized zirconia powder and the alumina powder, in which 5 wt% or less of high-purity alumina is dispersed in zirconia whose crystal structure is stabilized by 8 to 10 mol% of yttria. Diameter ratio y [y = (zirconia particle size /
Stabilized zirconia for solid electrolyte fuel cells, characterized in that the alumina particle size)] is y> 0.63, the size of the stabilized zirconia particles is 0.3 μm or less, and the alumina particles are 0.7 μm or less. -Alumina powder.
【請求項2】 高純度アルミナの添加量が1重量%であ
ることを特徴とする請求項1記載の固体電解質燃料電池
用安定化ジルコニア−アルミナ粉体。
2. The stabilized zirconia-alumina powder for a solid electrolyte fuel cell according to claim 1, wherein the amount of high-purity alumina added is 1% by weight.
JP3355612A 1991-12-24 1991-12-24 Stabilized zirconia-alumina powder for solid electrolyte fuel cell Pending JPH05170444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3355612A JPH05170444A (en) 1991-12-24 1991-12-24 Stabilized zirconia-alumina powder for solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3355612A JPH05170444A (en) 1991-12-24 1991-12-24 Stabilized zirconia-alumina powder for solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH05170444A true JPH05170444A (en) 1993-07-09

Family

ID=18444879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3355612A Pending JPH05170444A (en) 1991-12-24 1991-12-24 Stabilized zirconia-alumina powder for solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH05170444A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100317465B1 (en) * 1998-06-04 2001-12-22 무라타 야스타카 Solid electrolyte fuel cell
US7402356B2 (en) 2003-11-28 2008-07-22 Sanyo Electric Co., Ltd. Solid oxide electrolyte material and method of producing solid oxide electrolyte
JP2009505928A (en) * 2005-08-25 2009-02-12 エボニック デグサ ゲーエムベーハー Stabilized aluminum zirconium mixed oxide powder
JP2010505235A (en) * 2006-09-27 2010-02-18 コーニング インコーポレイテッド Electrolyte sheet with regions of different composition and fuel cell device comprising the same
JP2012227070A (en) * 2011-04-22 2012-11-15 National Institute For Materials Science Composite cathode material for solid oxide fuel cell operating at medium-low temperature, composite cathode for solid oxide fuel cell, and method for manufacturing electrolyte-composite cathode structure for solid oxide fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100317465B1 (en) * 1998-06-04 2001-12-22 무라타 야스타카 Solid electrolyte fuel cell
US7402356B2 (en) 2003-11-28 2008-07-22 Sanyo Electric Co., Ltd. Solid oxide electrolyte material and method of producing solid oxide electrolyte
JP2009505928A (en) * 2005-08-25 2009-02-12 エボニック デグサ ゲーエムベーハー Stabilized aluminum zirconium mixed oxide powder
JP2010505235A (en) * 2006-09-27 2010-02-18 コーニング インコーポレイテッド Electrolyte sheet with regions of different composition and fuel cell device comprising the same
JP2012227070A (en) * 2011-04-22 2012-11-15 National Institute For Materials Science Composite cathode material for solid oxide fuel cell operating at medium-low temperature, composite cathode for solid oxide fuel cell, and method for manufacturing electrolyte-composite cathode structure for solid oxide fuel cell

Similar Documents

Publication Publication Date Title
Sammes et al. Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials
EP0568281B1 (en) Air electrode material having controlled sinterability
JPH08306361A (en) Fuel electrode material for solid electrolyte fuel cell and its manufacture
JPH06107462A (en) Oxide ion conductive body and solid fuel cell
US5676806A (en) Method for applying a cermet electrode layer to a sintered electrolyte and electrochemical reactor
US20010007381A1 (en) Process for the production of sintered ceramic oxide
JP2617204B2 (en) Method for producing solid electrolyte
US5418081A (en) Method of producing electrically conductive ceramic film for interconnectors of solid oxide fuel cells
JP2003173801A (en) Solid electrolyte fuel cell and its manufacturing method
JPH05170444A (en) Stabilized zirconia-alumina powder for solid electrolyte fuel cell
JP3121982B2 (en) Conductive ceramics
JPH07149522A (en) Zirconia electrolyte powder and its production
JPH076622A (en) Crystal phase stabilized solid electrolyte material
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JPH09180731A (en) Solid electrolyte fuel cell
JP2007311060A (en) Nickel oxide powder composition for solid oxide fuel cell, its manufacturing method, and fuel electrode material using it
JPH0437646A (en) Production of zirconia ceramics film and its calcination method as well as zirconia conductive ceramics produced by this method and solid electrolyte fuel battery utilizing this ceramics
JPH07149521A (en) Zirconia electrolyte powder
JPH07249414A (en) Solid electrolytic fuel cell
JP4038628B2 (en) Oxide ion conductor, method for producing the same, and solid oxide fuel cell
JPH10321239A (en) Electrode of fuel cell
JPH076768A (en) Nickel-scandium stabilized zirconia group cermet fuel electrode for solid electrolyte fuel cell
JP3091100B2 (en) Method for producing conductive ceramics
KR102270128B1 (en) Zirconia electrolyte and manufacturing method thereof
JP4428735B2 (en) Oxide ion conductor and solid oxide fuel cell